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Fluctuating quantum kinetic theory

T. R. Kirkpatrick 1 and D. Belitz 2,3

1Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
2Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA

3Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA

(Received 14 March 2022; revised 7 June 2022; accepted 9 June 2022; published 29 June 2022)

We consider a quantum Langevin kinetic equation for a system of fermions. We first derive the
Langevin force noise correlation functions in Landau’s Fermi-liquid kinetic theory from general consid-
erations. We then use the resulting equation to calculate the equilibrium dynamic structure factor in the
collisionless regime at low temperatures. The result is in agreement with the conventional many-body
result. We then use the theory to derive both the fluctuating Navier-Stokes equations for a quantum
fluid and the fluctuating hydrodynamic equations for fermions in the presence of quenched disorder. We
also discuss the modifications needed for the fluctuating hydrodynamic equations to describe an elec-
tron fluid with long-ranged interactions, and we prove an H theorem for the nonlinear Landau kinetic
equation.
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I. INTRODUCTION

A Langevin equation is a stochastic equation of motion that
describes a subset of degrees of freedom of a complex sys-
tem. Typically, the explicit degrees of freedom are collective
(macroscopic) variables that are assumed to change slowly
with time compared to the remaining, microscopic, degrees
of freedom. The fast microscopic degrees of freedom are not
described explicitly, but rather taken into account via a ran-
dom force (“Langevin force” or “noise”) in the macroscopic
equations of motion for the collective variables. These ideas
for an effective or reduced theory for complex systems were
first developed by Paul Langevin for the problem of Brownian
motion, i.e., a classical particle coupled to a classical heat bath
[1]. Ever since they have been widely used to study problems
in both classical and quantum statistical mechanics.

One generalization of Langevin’s ideas was their applica-
tion to classical many-body systems such as fluids, which act
as their own heat bath. Examples are the equations of fluctu-
ating hydrodynamics by Landau and Lifshitz [2], and some
of the models analyzed by Hohenberg and Halperin in their
discussion of critical dynamics [3]. In these applications the
noise correlation is determined as follows: One assumes that
the linearized hydrodynamic equations, with Langevin forces
added to the velocity and heat equations, correctly describe
dynamic fluctuations about an equilibrium state, and that the
Langevin forces are delta-correlated in time. The amplitudes
of the noise correlations are then determined by the require-
ment that the dynamic equations yield the correct equal-time
correlation functions, which in classical statistical mechanics
are related to thermodynamic quantities. The same reasoning
has been used to develop a fluctuating classical kinetic theory
[4]. Here the reduced description is in terms of the fluctuating
one-particle distribution function.

Other generalizations aimed at describing quantum me-
chanical systems. The first description of a single quantum
particle coupled to a quantum-mechanical heat bath in terms
of a Langevin equation was given by Ford, Kac, and Mazur
[5]; this work was later extended by others [6–9]. Some
key result were as follows. First, the most general quantum
Langevin equation (QLE) can be realized with specific mod-
els. Second, the objects described by the QLE are Heisenberg
operators. Third, the operator-valued Langevin force is not
delta-correlated in time, i.e., the random force is not Marko-
vian. The operator nature of the terms in the QLE naturally
leads one to consider symmetrized and antisymmetrized cor-
relation functions for both the physical quantities of interest
and for the operator-valued Langevin force. This in turn is
related to the fact that in the quantum limit there are two
types of fundamental correlation functions: dynamic response
functions and dynamic fluctuation functions [10,11].

This raises the question of how to apply Langevin’s ideas
to quantum many-body systems. Quantum mechanically, the
statics and the dynamics couple. As a result, the equal-time
correlation functions in general depend on the dynamics of
the system, are not related to thermodynamic quantities, and
are in general not known. This means that an important in-
gredient of classical fluctuating hydrodynamics is no longer
applicable. On the other hand, the static response functions
are in general related to thermodynamic quantities, at least
for long wavelengths, even in the quantum limit. This is true
in particular for the static response function that naturally
occurs in quantum kinetic theory, and it is this observation
that we will exploit in this paper. In a previous paper (Ref.
[12], to be referred to as Paper I) we showed that Landau
Fermi-liquid (LFL) theory is fully consistent with hydrody-
namics at all temperatures. The present paper relates to Paper
I the same way Boltzmann-Langevin theory [4,13,14] relates
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to the Boltzmann equation, or fluctuating hydrodynamics to
Navier-Stokes theory. In contrast to Paper I, which solved
the kinetic equation and explicitly determined the hydrody-
namic frequencies and modes, the current paper will focus
on deriving the relevant hydrodynamic equations. Specifi-
cally, we will use a fluctuating quantum kinetic theory for
the one-particle distribution operator to express the relevant
dynamic response function in terms of known kinetic op-
erators and an antisymmetrized Langevin force correlation
function. We will then use the known static response function
to determine the amplitude of this noise correlation function.
The fluctuation-dissipation theorem then allows us to deter-
mine the symmetrized Langevin force correlation. From these
two results all of the relevant physical information can be
obtained.

The long-term goal of developing this formalism is to
provide a method for describing the behavior of quantum
many-body systems in nonequilibrium states where conven-
tional quantum many-body theory is difficult to use.

The outline of this paper is as follows. In Sec. II we
formulate the fluctuating quantum kinetic theory and show
how to derive the correlation functions for the operator-valued
Langevin force. In Sec. III we consider three applications.
In Sec. III A we calculate the dynamic structure factor for a
fermionic system in the collisionless regime. In Sec. III B we
derive the fluctuating Navier-Stokes equations for a quantum
fluid and recover the results stated in Ref. [10]. In Sec. III C
we derive the corresponding fluctuating hydrodynamic equa-
tions for a quantum system with quenched disorder. We
conclude with a discussion and some additional remarks in
Sec. IV. Five appendices deal with technical details and
some related issues. In Appendix A we list some relevant
linearized collision operators, Appendix B contains technical
details of the derivation of the Langevin force correlation,
in Appendix C we prove an H theorem for the nonlinear
Boltzmann-Landau kinetic equation, Appendix C lists some
useful thermodynamic identities, and Appendix E sketches the
changes necessary for an application of the theory to electrons
with a long-ranged Coulomb interaction.

II. DERIVATION OF A FLUCTUATING QUANTUM
KINETIC THEORY

A. A fluctuating Boltzmann-Landau equation

Consider the μ-space or single-particle phase space [15]
spanned by the momentum p and the position x of a particle.
If we perform a Fourier transform from the real-space variable
x to a momentum variable k, the one-particle phase-space
distribution operator f̂ (p, k) and its fluctuation δ f̂ (p, k) are
defined by

f̂ (p, k) = â†
p−k/2 âp+k/2 = δk,0 feq(p) + δ f̂ (p, k). (2.1a)

Here â†
p and âp are creation and annihilation operators, respec-

tively, for fermions with momentum p, and

feq(p) = 〈â†
p âp〉 = 1

exp(ξp/T ) + 1
(2.1b)

is the equilibrium Fermi-Dirac distribution. 〈. . .〉 denotes
a quantum-mechanical expectation value plus a statistical

mechanics average, and ξp = εp − μ with εp the equilibrium
single-particle energy (which depends only on p = |p|) and μ

the chemical potential. Throughout this paper, by “particles”
we mean quasiparticles in the sense of LFL theory [10]. As in
Paper I we consider spinless fermions for simplicity, and we
use units such that h̄ = kB = 1. We further define an operator-
valued function φ̂ by

δ f̂ (p, k) = w(p) φ̂(p, k) (2.2a)

where

w(p) = −∂ feq(p)/∂εp = 1

T
feq(p)[1 − feq(p)]

= 1

4T cosh2(ξp/2T )
. (2.2b)

For later reference we define a scalar product 〈. . . | . . .〉 in the
space of functions of the momentum p with w as the weight
function:

〈A(p)|B(p)〉 = 1

V

∑
p

w(p) A(p) B(p) , (2.3a)

with V the system volume [16]. The functions A and B can be
number valued or operator valued. In particular,

N0 = 〈1|1〉 (2.3b)

is the normalization of the weight function. Also useful is an
average with respect to the weight function w defined as [17]

〈A(p)〉w = 〈A(p)|1〉/N0 . (2.3c)

Within LFL theory a small change δ f̂ of the distribu-
tion leads to a change δε of the single-particle energy given
by [10,18]

δε̂(p, x) = 1

N0V

∑
p′

w(p′)F (p, p′) δ f̂ (p′, x) , (2.4)

where F (p, p′) is Landau’s interaction function that parame-
terizes the interaction between the fermions and we consider a
real-space variable x instead of the momentum variable k. The
distribution in Eq. (2.1a) thus corresponds to a single-particle
energy

ε̂(p, x) = εp + δε̂(p, x) , (2.5)

which is operator valued and spatially varying.
Going back to Fourier space, we assume that the time

evolution of the dynamic fluctuation operator φ̂ is governed
by a fluctuating Boltzmann-Landau kinetic equation [19]

[∂t + Lk(p)]φ̂(p, k, t ) = F̂L(p, k, t ) (2.6a)

or, after a temporal Fourier transform with ω as the frequency,

[−iω + Lk(p)]φ̂(p, k, ω) = F̂L(p, k, ω). (2.6b)

Here

Lk(p) = L(1)
k (p) − �(p) (2.6c)

is a linearized kinetic operator. It is comprised of a linearized
collision operator � and

L(1)
k (p) = ik · vp [1 + I (p)] (2.6d)
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where

I (p) = 1

N0V

∑
p′

w(p′) F (p′, p) Rp→p′ (2.6e)

with R a replacement operator defined by Rp→p′A(p) = A(p′).
vp = ∇pεp is the quasiparticle velocity, which obeys the inte-
gral equation [10]

vp = 1

m
p − 1

N0V

∑
p′

w(p′) F (p, p) vp′ , (2.6f)

where m is the bare particle mass. Near the Fermi sur-
face, εp = μ + v∗

F(p − pF), and hence vp = p/m∗ where pF

is the Fermi momentum and v∗
F = pF/m∗ is the Fermi ve-

locity with m∗ the quasiparticle effective mass. The form of
the linearized collision operator � depends on the scattering
processes considered. In Appendix A we give examples of
collision operators that describe fermion-fermion scattering,
fermion-phonon scattering, and fermion-impurity scattering,
respectively.

F̂L in Eqs. (2.6a) and (2.6b) is the fluctuating μ-space
Langevin force operator. We assume that it is Gaussian dis-
tributed with zero mean. The latter property follows because
the average of φ̂ must be governed by the averaged kinetic
equation. The second moment, which then completely deter-
mines the Gaussian distribution, we will determined below.

Two remarks are in order to conclude the setup of the
kinetic theory:

(1) The two interaction contributions to the kinetic operator
Lk(p) in Eq. (2.6c) are physically very different. The Landau
interaction term represented by I (p) is related to small-angle
scattering and is nondissipative. The collision operator �,
on the other hand, is related to large-angle scattering and is
dissipative. We will show that the correlations of the fluctu-
ating force are related to the latter. See also the remarks after
Eq. (2.18) below, and Appendix D.

(2) It should be stressed that the Landau-Boltzmann kinetic
equation in the absence of a fluctuating force is only an ap-
proximate equation for the average single-particle distribution
function since it ignores correlated collision events [4,20].
Adding a Langevin force does not address this approxima-
tion. Rather, it takes into account fluctuations that arise from
ensemble averaging.

B. Response and correlation functions

As mentioned in Sec. I, there are two different correlation
functions for the variable of interest, which is φ̂ [11,21]. One
is the μ-space dynamic response function, or commutator
correlation function χ ′′, defined by

1
2 〈[φ̂(p1, k1, ω1), φ̂(p2, k2, ω2)]−〉

= 2πδ(ω1 + ω2)V δk1+k2,0 χ ′′(p1, p2; k1, ω1) . (2.7a)

The other is the μ-space fluctuation function, or anticommu-
tator correlation function �, defined by

1
2 〈[φ̂(p1, k1, ω1), φ̂(p2, k2, ω2)]+〉

= 2πδ(ω1 + ω2)V δk1+k2,0 �(p1, p2; k1, ω1) . (2.7b)

Here [Â, B̂]∓ = Â ∓ B̂. χ ′′ and � are related by the
fluctuation-dissipation theorem [11,22,23], which in the
present context takes the form

�(p1, p2; k, ω) = coth(ω/2T ) χ ′′(p1, p2; k, ω) . (2.8)

χ ′′ is the spectrum of the related causal function [11]

χ (p1, p2; k, z) =
∫

dω

π

χ ′′(p1, p2; k, ω)

ω − z
(2.9a)

and can be obtained from the latter via the relation

χ ′′(p1, p2; k, ω) = lim
ε→0

Im χ (p1, p2; k, ω + iε). (2.9b)

The static μ-space response function can be written as the
minus first frequency moment of χ ′′,

χ (p1, p2; k) = χ (p1, p2; k, z = 0)

=
∫

dω

π

χ ′′(p1, p2; k, ω)

ω
. (2.10)

C. The Langevin force correlation

We are interested in the correlations of the Langevin noise
operator F̂ . Temporal and spatial translational invariance im-
ply that they must have the form

1
2 〈[F̂L(p1, k1, ω1), F̂L(p2, k2, ω2)]±〉

= 2πδ(ω1 + ω2)V δk1+k2,0 �±(p1, p2; k1, ω1) . (2.11)

By using the kinetic equation (2.6b) in Eq. (2.7a) we ob-
tain a formal relation between �− and the dynamic response
function,

χ ′′(p1, p2; k, ω) = 1

[−iω + Lk(p1)][iω + L−k(p2)]

× �−(p1, p2; k, ω) . (2.12)

We now make an ansatz that assumes that �− is linear in
ω [24],

�−(p1, p2; k, ω) = ω ψ (p1, p2; k) . (2.13)

By using Eq. (2.10) we then obtain an expression for �− in
terms of the static μ-space response function,

�−(p1, p2; k, ω) = ω

2T
[Lk(p1) + L−k(p2)]T χ (p1, p2; k) .

(2.14)
This result depends on the collision operator via the kinetic
operator Lk(p), Eq. (2.6c). The static response function does
not depend on the collision operator, see Appendix B. As a
result, the streaming and interaction terms in Lk(p) do not
contribute, and our final result is

�−(p1, p2; k, ω) = −ω

2T
[�(p1) + �(p2)]T χ (p1, p2; k) ,

(2.15a)

where χ is the solution of the integral equation

χ (p1, p2; k) + 1

N0V

∑
p′

w(p′) F (p1, p′) χ (p′, p2; k)

= V δp1,p2

1

w(p1)
. (2.15b)
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See Appendix B for a derivation of these results. Equa-
tion (2.15b) determines the static response function. Finally,
Eq. (2.8) provides a corresponding expression for �+,

�+(p1, p2; k, ω) = coth
( ω

2T

)
�−(p1, p2; k, ω). (2.15c)

The latter result gives an a posteriori motivation for
the ansatz (2.13): In the high-temperature limit, where
(ω/2T ) coth(ω/2T ) → 1, Eq. (2.15c) is structurally identical
to the corresponding result for the classical fluctuating Boltz-
mann equation, see Chapter 8 in Ref. [4].

For explicit calculations within LFL theory an explicit
interaction model is often used that performs an angular-
momentum expansion of the interaction function F (p1, p2),
truncated at first order,

F (p1, p2) = F0 + F1
p1 · p2

〈p2〉w . (2.16a)

The operator I (p) from Eq. (2.6e) then can be written

I (p) = F0

〈1|1〉 |1〉〈1| + F1

〈p|p〉 |p〉〈p| , (2.16b)

the integral equation (2.15b) becomes separable [25], and we
have

χ (p1, p2; k) = V δp1,p2

1

w(p1)
− 1

N0V

F0

1 + F0

− 1

N0V

p1 · p2

〈p2〉w
F1

1 + F1/3
. (2.17)

This yields the correct result for the static density response
function, viz., N0/(1 + F0) = (∂n/∂μ)T,V , and the static mo-
mentum response function nm∗(1 + F1/3) = nm. Note that
in general Eq. (2.17) implies nontrivial correlations in mo-
mentum space. These do not occur in classical fluids in
equilibrium, where only the δp1,p2

term is present. If the
collision operator conserves both particle number and mo-
mentum (as is the case, e.g., if the only collisions considered
are fermion-fermion collisions), then neither of the Landau
parameters F0 and F1 contribute and we have

�−(p1, p2; k, ω) = −ω

2T
[�(p1) + �(p2)]V δp1,p2

T

w(p1)
.

(2.18)
The absence of Landau interaction parameters in the noise
correlation reflects the fact that the interactions included in
this model are purely deterministic and do not contribute to
dissipative processes. See also Appendix D, where we prove
an H theorem for the nonlinear Landau kinetic equation.

III. APPLICATIONS OF THE KINETIC THEORY

A. The equilibrium structure factor in the collisionless regime

In this section we use the fluctuating kinetic equation de-
rived in the previous section to calculate the dynamic structure

factor S(k, ω) of a clean neutral Fermi liquid in the colli-
sionless regime, which is always realized at sufficiently low
temperatures and sufficiently large wave numbers. In this
limit, the streaming and interaction terms in the kinetic oper-
ator Lk(p) dominate over the collision operator, and −�(p) is
replaced by a positive infinitesimal constant ε that regularizes
the free-fermion propagator. The quasiparticle interaction is
described by the Landau function F (p1, p2). In order to make
contact with well-known results from conventional many-
body theory [26] we restrict the calculation to a model where
the latter is a constant, F (p1, p2) = F0. Equation (2.6f) then
implies vp = p/m, and the kinetic equation (2.6b) takes the
form

φ̂(p, k, ω) = G0(p, k, ω) F̂L(p, k, ω)

− p · k
m

G0(p, k, ω)
F0

N0
δn̂(k, ω) . (3.1)

Here

G0(p, k, ω) = i

ω + iε − p · k/m
(3.2)

is the free-fermion Green function, and

δn̂(k, ω) = 1

V

∑
p

δ f̂ (p, k, ω) = 〈1|φ̂(p, k, ω)〉 (3.3)

is the number-density fluctuation operator.
The structure factor is given in terms of the density-density

anticommutator correlation function via the relation [27]

1
2 〈[δn̂(k1, ω1), δn̂(k2, ω2)]+〉

= 2πδ(ω1 + ω2)V δk1+k2,0 S(k1, ω1) . (3.4a)

Via the fluctuation-dissipation theorem, Eq. (2.8), it is related
to the density-density response function

χ ′′
nn(k, ω) = 1

V 2

∑
p1,p2

χ ′′(p1, p2; k, ω) = tanh(ω/2T )S(k, ω) .

(3.4b)
From Eqs. (3.1) and (3.3) we obtain an explicit expression for
δn̂(k, ω),

δn̂(k, ω) = 1

1 + F0J1(k, ω)

1

V

∑
p

w(p) G0(p, k, ω)

× F̂L(p, k, ω) , (3.5a)

where

J1(k, ω) = −1

N0V

∑
p

w(p)
p · k/m

ω + iε − p · k/m

= J1(−k,−ω)∗ . (3.5b)

By using Eq. (3.5a) in (3.4a) we see that the structure factor
can be expressed in terms of the symmetrized Langevin force
correlation �+. Using Eq. (2.11) we find

S(k, ω) = 1

1 + F0J1(k, ω)

1

1 + F0J1(−k,−ω)

1

V 2

∑
p1,p2

w(p1) w(p2) G0(p1, k, ω) G0(p2,−k,−ω) �+(p1, p2; k, ω) . (3.6)
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We now perform the zero-temperature limit in the terms where we have not done so yet. Then we have

−G0(p1, k, ω) G0(p2,−k,−ω)[�(p1) + �(p2]δp1,p2
→ δp1,p2

2πδ(ω − p1 · k/m) (3.7a)

ω coth(ω/2T ) → ω sgn ω (3.7b)

Finally, the imaginary part of J1 is

Im J1(k, ω) = π

N0V

∑
p

w(p)
p · k
m

δ(ω − p · k/m) . (3.8)

Combining all of this we obtain

S(k, ω) = N0
sgn ω Im J1(k, ω)

(1 + F0 Re J1(k, ω))2 + (F0 Im J1(k, ω))2 .

(3.9)
We recognize this as the standard result obtained from
many-body theory in the so-called ring or random-phase ap-
proximation [26]. See also Ref. [28], where the same result
was obtained by field-theoretic methods. Its physical contents
include the well known � = 0 zero-sound excitation and the
particle-hole continuum that were discussed in Paper I.

B. Fluctuating Navier-Stokes equations for a fermionic
quantum fluid

We now consider the hydrodynamic regime, where the col-
lision operator dominates over the operator L(1)

k . It is realized
in the limit of small frequencies, ωτ � 1, and wave numbers,
k� � 1, with τ a generic collision time and � a generic mean-
free path. As in the previous subsection, we consider a neutral
Fermi liquid; at the end of this subsection we will discuss the
modifications necessary for discussing metals. For simplicity
we will use the simple quasiparticle model interaction given in
Eq. (2.16a). Within this model, vp = p/m∗ and εp = p2/2m∗.
We ignore a p-independent contribution to εp that also de-
pends on the FL interaction [26], as we did in Paper I.

The quantum mechanical generalization of the Boltzmann
equation for this case was first formulated by Uehling and
Uhlenbeck [29]. A crucial aspect of any kinetic theory for
a fluid, quantum or classical, is that the linearized collision
operator has five (or d + 2 in d spatial dimensions) zero eigen-
values, and corresponding zero eigenfunctions, that represent
the conservation of particle number, momentum, and energy.

The relevant hydrodynamic variables are the density fluctu-
ation δn̂, the three components of the fluid velocity fluctuation
δûi (i = x, y, z), and the temperature fluctuation δT̂ . With the
scalar product defined in Eq. (2.3a) they can be expressed as
follows:

δn̂(k, ω) = 〈a1(p)|φ̂(p, k, ω)〉 , (3.10a)

δûi(k, ω) = 1

nm
〈ai(p)|φ̂(p, k, ω)〉 , (3.10b)

δT̂ (k, ω) = 1

cV
〈a5(p)|φ̂(p, k, ω)〉 , (3.10c)

where cV is the specific heat at constant volume. Also of
interest is the entropy density fluctuation

δŝ(k, ω) = 1

T
〈εp − μ|φ̂(p, k, ω)〉 , (3.10d)

the pressure fluctuation

δ p̂(k, ω) =
(

∂ p

∂n

)
T,V

δn̂(k, ω) +
(

∂ p

∂T

)
N,V

δT̂ (k, ω) ,

(3.10e)
and the energy density fluctuation

δê(k, ω) = 〈εp|φ̂(p, k, ω)〉 . (3.10f)

The five functions aα (p) are

a1(p) = 1 , (3.11a)

ai(p) = pi (i = x, y, z) , (3.11b)

a5(p) = εp − 〈εp〉w . (3.11c)

The validity of Eqs. (3.10a), (3.10b), (3.10e), and (3.10f) is
obvious. For a derivation of Eq. (3.10c) see Appendix A2 in
Paper I, and for (3.10d), see Eq. (3.18) in Paper I.

The five functions aα (p) are eigenfunctions of the collision
operator for the five zero eigenvalues that represent the con-
servation of particle number, momentum, and energy,

�(p) |aα (p)〉 = 0 . (3.12)

They span the hydrodynamic subspace L0. This, combined
with the fact that the collisions dominate the physics, implies
that one can derive hydrodynamic equations by using a pro-
jection operator P defined by

P =
∑

α

|aα (p)〉〈aα (p)|
〈aα (p)|aα (p)〉 , (3.13a)

that projects onto L0. The projector onto the complementary
space L⊥ is

P⊥ = 1 − P , (3.13b)

where 1 is the unit operator.

1. The projected μ-space distribution

Now consider the kinetic equation (2.6b) and operate from
the left with P . As in the classical Boltzmann-Langevin
equation [4], the fluctuating force has no overlap with the
five zero eigenfunctions aα (p) of the collision operator,
Eqs. (3.11) and (3.12). This can be seen explicitly from
Eq. (2.18): The function �− has no overlap with either aα (p1)
or aα (p2). Since the (zero) first moment of F̂L and the sec-
ond moment �− completely determine the distribution we
thus have

P|F̂L(p, k, ω)〉 = 0 . (3.14a)

Equation (2.6b) then implies[−iωP + PL(1)
k (p)

]|φ̂(p, k, ω)〉 = 0 . (3.14b)
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By using Eq. (3.13b) this can be written[−iω + PL(1)
k (p)

]
P|φ̂(p, k, ω)〉

= −PL(1)
k (p)P⊥|φ̂(p, k, ω)〉. (3.15)

Our goal is to obtain a closed equation for the projected μ-
space distribution P|φ̂〉. To this end we multiply Eq. (2.6b)
from the left with P⊥, which yields[−iω + P⊥L(1)

k (p) − �(p)
]
P⊥|φ̂(p, k, ω)〉

= −P⊥L(1)
k (p)P|φ̂(p, k, ω)〉 + P⊥|F̂L(p, k, ω)〉 . (3.16)

Here we have used Eq. (3.12), which implies P⊥�(p) =
�(p)P⊥ = �(p).

We are interested in hydrodynamic equations that are valid
for small wave numbers up to O(k2), with the fluctuating force
included to lowest order in k. In a neutral Fermi liquid the hy-
drodynamic frequency scales either linearly or quadratically
with k, while the collision operator acting on the orthogonal
space L⊥ scales as a constant [30]. Therefore, the first two
terms in brackets on the left-hand side of Eq. (3.16) are small
corrections to � and we can approximate P⊥φ̂ by

P⊥|φ̂(p, k, ω)〉 ≈ �−1
⊥ (p)L(1)

k (p)P|φ̂(p, k, ω)〉
− �−1

⊥ (p)|F̂L(p, k, ω)〉 . (3.17)

Here �−1
⊥ (p) = P⊥(�(p))−1P⊥, and we have used the pro-

jector property P2
⊥ = P⊥. Corrections are of relative O(k).

By using Eq. (3.17) in (3.15) we obtain a closed formal
equation for Pφ̂,[−iω + PL(1)

k (p)
]
P|φ̂(p, k, ω)〉

= −PL(1)
k (p)�−1

⊥ (p)L(1)
k (p)P|φ̂(p, k, ω)〉

+ PL(1)
k (p)�−1

⊥ (p)|F̂L(p, k, ω)〉 . (3.18)

2. The fluctuating Navier-Stokes equations

We can now derive the five hydrodynamic equations by
multiplying Eq. (3.18) from the left with 〈aα (p)|. For the
remainder of this subsection we will write the hydrodynamic
quantities as functions of the real-space position x rather than
the wave vector k.

Density equation. Multiplying Eq. (3.18) from the left
with 〈1| yields the continuity equation for the density,

−iω δn̂(x, ω) + n∇ · δû(x, ω) = 0 . (3.19)

The number current density given by nû is exact, and neither
the collision operator nor the fluctuating force enter the den-
sity equation.

Fluid velocity equation. The equation for the velocity,
which we obtain by multiplying Eq. (3.18) from the left
with 〈p|, is more involved. The projector P⊥ acting on func-
tions that are even (odd) in p yields functions that also are
even (odd) in p, and the inverse collision operator �−1(p)
is isotropic in momentum space. As a result, the angular
integrations make sure that the contributions from the various
modes on the right-hand side of Eq. (3.18) do not couple, and
we find

−iω nm δûi(x, ω) + ∂ j τ̂i j (x, ω) + ∂ j (τ̂L)i j (x, ω) = 0 .

(3.20a)

Here

τ̂i j (x, ω)

= δi j δ p̂(x, ω)

−η

[
∂i δû j (x, ω) + ∂ j ûi(x, ω) − 2

3
δi j ∇ · û(x, ω)

]

+ζ δi j ∇ · û(x, ω) (3.20b)

is the stress tensor. Its reactive part is given in terms of
the pressure fluctuation δ p̂, Eq. (3.10e). The dissipative part
has the form familiar from the classical Navier-Stokes equa-
tions [2,11]. η is the shear viscosity given by

η = −k̂i
⊥k̂ j k̂l

⊥k̂m〈σi j (p)|�−1(p)|σlm(p)〉 . (3.20c)

Here k̂ is the unit vector in the direction of k, and k̂⊥ is either
of the two vectors perpendicular to k. The μ-space momentum
current σi j is

|σ i j (p)〉 = ∣∣σ i j
1 (p)

〉 − δi j |σ2(p)〉 (3.20d)

with ∣∣σ i j
1 (p)

〉 = ∣∣piv j
p

〉 − δi j 1
3 |p · vp〉 . (3.20e)

and
∣∣σ2(p)

〉 = −1

3
P⊥|p · vp〉 . (3.20f)

ζ is a contribution to the bulk viscosity given by

ζ = −〈σ2(p)|�−1(p)|σ2(p)〉 . (3.20g)

Note that within the simple model characterized by
Eq. (2.16a), p · vp = 2εp ∈ L0, and hence σ2(p) vanishes, but
it is nonzero in general. For an expression of σ2 in terms of
thermodynamic quantities see Paper I. Finally,

(τ̂L)i j (x, ω) = 〈σi j (p)|�−1(p)|F̂L(p, x, ω)〉 (3.20h)

is the fluctuating part of the stress tensor. In deriving
Eqs. (3.20) we have made use of various thermodynamic
relations that are derived in Appendix A of Paper I; the most
important ones are also given in Appendix E.

Temperature or heat equation. Finally, multiplying
Eq. (3.18) from the left with 〈a5(p)| yields the heat equation.
The calculation yields

−iω cV δT̂ (x, ω) + T

(
∂ p

∂T

)
N,V

∇ · û(x, ω)

−κ ∇2δT̂ (x, ω) + ∇ · q̂L(x, ω) = 0 . (3.21a)

Here

κ = −1

T
k̂ik̂ j

〈
vi

p ψ
L(0)
5 (p)|�−1(p)|v j

p ψ
L(0)
5 (p)

〉
(3.21b)

is the heat conductivity with

ψ
L(0)
5 (p) = a5(p) − T

n

(
∂ p

∂T

)
N,V

a1(p) (3.21c)

the heat mode to zeroth order in the wave vector k; see Paper
I for the identification of the heat mode and Appendix C for a
relation between the present approach and the kinetic-theory
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approach in Paper I. The final term in Eq. (3.21a) is the
fluctuating heat current, given by

q̂L(x, ω) = −〈
vp ψ

L(0)
5 (p)

∣∣�−1(p)
∣∣F̂L(p, x, ω)

〉
. (3.21d)

Alternatively, we can write the heat equation in terms of
the time derivative of either the energy density fluctuation
δê or the entropy density fluctuation δŝ instead of δT̂ . From
Eqs. (3.21a) and (3.19), and using the identity (E2), we find
the heat equation in the form [11]

−iω δê(x, ω) + (e + p)∇ · δû(x, ω) − κ ∇2δT̂ (x, ω)

+∇ · q̂L(x, ω) = 0 . (3.22)

Finally, using Eq. (3.19) to eliminate the ∇ · δû term in (3.22)
yields it in the form [2,10]

−iω T n δŝn(x, ω) − κ ∇2δT̂ (x, ω) + ∇ · q̂L(x, ω) = 0 ,

(3.23a)

where

δŝn = 1

n
δŝ − s

n2
δn̂ = 1

T n

(
δê − e + p

n
δn̂

)
(3.23b)

is the fluctuation of the entropy per particle [see Eq. (3.18)
in Paper I]. Equations (3.21a), (3.22), and (3.23) are pairwise
equivalent.

Fluctuating force correlations. We still need to determine
the correlations of the fluctuating forces in the hydrodynamic
equations. From Eqs. (2.11), (2.15c), and (2.18), and repeat-
edly using the fact that �(p) and �−1(p) are self-adjoint
with respect to the scalar product 〈. . . | . . .〉, we find for the
anticommutator correlation of the fluctuating stress tensor,
Eq. (3.20h),

1
2 〈[(τ̂L)i j (x1, ω1), (τ̂L)kl (x2, ω2)]+〉 = 2πδ(ω1 + ω2) δ(x1 − x2) ω1 coth(ω1/2T )

[
η(δikδ jl + δilδ jk ) + (

ζ − 1
3 η

)
δi jδkl

]
. (3.24a)

Similarly, the anticommutator correlation of the fluctuating heat current, Eq. (3.21d), is

1
2

〈[
qi

L(x1, ω1), q j
L(x2, ω2)

]
+
〉 = δi j2πδ(ω1 + ω2) δ(x1 − x2) ω1T coth(ω1/2T ) κ . (3.24b)

and the cross correlations vanish,

1
2 〈[(τ̂L)i j (x1, ω1), qk

L(x2, ω2)]+〉 = 0 . (3.24c)

The corresponding commutator correlations are given by the
same expressions with coth(ω1/2T ) replaced by 1.

The equations (3.24) are identical to those given in § 88 of
Ref. [10] without a derivation.

C. Fluctuating hydrodynamic equations for a disordered
Fermi liquid

We now consider fermions in the presence of quenched
disorder. In this situation particle number and energy are still
conserved, but the fermion momentum is not. For a deriva-
tion of hydrodynamic equations for such a system we can
still use Eq. (3.18), but the projector P now projects on a
space that is spanned by a1(p) and a5(p) only. Accordingly,
P|p〉 = P|vp〉 = 0 and �(p) has only two zero eigenvalues
with eigenvectors a1(p) and a5(p). In addition to the fermion-
impurity scattering �(p) can contain parts that describe other
scattering processes, in particular fermion-fermion scattering,
as long as they conserve energy. In this subsection we use a
model where only the LFL parameter F0 is nonzero.

1. Fluctuating hydrodynamic equations

Density equation. Multiplying Eq. (3.18) from the left
with 〈a1(p)| yields an equation for the density fluctuation.
The streaming/interaction term on the left-hand side does not
contribute, but the dissipative and fluctuating terms both do.
A calculation that is analogous to the one in Sec. IIIB2 yields

−iω δn̂(x, ω) = D11∇2 δn̂(x, ω) + D12 ∇2 δT̂ (x, ω)

−∇ · jL(x, ω) . (3.25a)

Here

D11 = −1

m2

1

(∂n/∂μ)T,V
〈k̂ · p|�−1(p)|k̂ · p〉 , (3.25b)

and

D12 = −1

m2

1

T
〈k̂ · p|�−1(p)|(k̂ · p)a5(p)〉 (3.25c)

are transport coefficients and

jL(x, ω) = −〈vp|�−1(p)|F̂ (p, x, ω)〉 (3.25d)

is a fluctuating force that dimensionally is a number current
density. Note that the absence of momentum conservation
completely changes the structure of the density equation com-
pared to the continuity equation in Sec. IIIB2a.

Heat equation. Multiplying Eq. (3.18) from the left with
〈a5(p)| yields

−iω cV δT̂ (x, ω) = T

(∂n/∂μ)N,V
D12 ∇2δn̂(x, ω)

+ κ̄ ∇2δT̂ (x, ω) − ∇ · q̄(x, ω) .

(3.26a)

Here

κ̄ = −1

T
k̂ik̂ j

〈
vi

p a5(p)|�−1(p)|v j
p a5(p)

〉
(3.26b)

is a modified heat conductivity, and

q̄L(x, ω) = −〈a5(p)vp|�−1(p)|F̂ (p, x, ω)〉 (3.26c)

is the relevant fluctuating force.
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Fluctuating force correlations. For the anticommutator correlations of the fluctuating forces we find

1

2

〈[
vi

L(x1, ω1), v j
L(x2, ω2)

]
+
〉 = δi j2πδ(ω1 + ω2) δ(x1 − x2) ω1 coth(ω1/2T )

1

T n2
D11 , (3.27a)

1

2

〈[
q̄i

L(x1, ω1), q̄ j
L(x2, ω2)

]
+
〉 = δi j2πδ(ω1 + ω2) δ(x1 − x2) ω1 coth(ω1/2T ) κ̄ , (3.27b)

1

2

〈[
q̄i

L(x1, ω1), v j
L(x2, ω2)

]
+
〉 = δi j2πδ(ω1 + ω2) δ(x1 − x2) ω1 coth(ω1/2T )

1

n
D12 . (3.27c)

The corresponding commutator correlations are again given
by the same expressions with coth(ω1/2T ) replaced by 1.

2. Onsager relations

We now show that the results in Sec. IIIC1 are consistent
with irreversible thermodynamics and the Onsager reciprocal
relations.

In the absence of momentum conservation the relevant
currents are the number current density jn and the heat or en-
tropy current density js [31,32]. They are driven by gradients
of the chemical potential and the temperature, which defines
Onsager coefficients Li j via the linear-response relations

jn = −L11

T
∇μ − L12

T 2
∇T , (3.28a)

js = −L21

T
∇μ − L22

T 2
∇T . (3.28b)

The relevant Onsager relation consists of the statement L21 =
L12. The dynamic equations associated with these currents are

∂t n = −∇ · jn , (3.29a)

T ∂t s = −∇ · js . (3.29b)

Equation (3.29a) is the continuity equation for the number
density, see Eq. (B1a) in Paper I. Equation (3.29b) expresses
energy conservation. In order to relate it to Eq. (B4a) in Paper
I we note that the heat mode ψ

(0)
5 in that paper is a linear

combination of the entropy density and the number density
fluctuations [33].

Ignoring fluctuations, the hydrodynamic equation (3.25a)
yields

jn = −D11∇n − D12∇T . (3.30)

In order to relate this to Eq. (3.28a) we express ∇μ in terms
of ∇n and ∇T via

∇μ =
(

∂μ

∂n

)
T,V

∇n +
(

∂μ

∂T

)
N,V

∇T

= 1

(∂n/∂μ)T,V
∇n − 〈εp − μ〉w 1

T
∇T , (3.31)

where we have used Eq. (E3). Comparing coefficients in
Eqs. (3.28a) and (3.30) yields

L11 = −T

m2
〈k̂ · p|�−1(p)|k̂ · p〉 , (3.32)

L12 = −T

m2
〈k̂ · p|�−1(p)|(k̂ · p)(εp − μ)〉 . (3.33)

In order to obtain the remaining two Onsager coefficients
we note that entropy density, temperature, and number density
fluctuations are related by [see Eq. (3.18) in Paper I]

T δs = cV δT − T (∂μ/∂T )N,V δn . (3.34a)

With Eqs. (3.29) this yields

cV ∂t T = −∇ · js − T

(
∂μ

∂T

)
N,V

∇ · jn . (3.34b)

By using Eqs. (3.26), neglecting the fluctuating force term,
this allows us to express js in terms of density and temperature
gradients,

js =
[

T

(
∂μ

∂T

)
N,V

D11 − T

(
∂μ

∂n

)
T .V

D12

]
∇n

+
[

T

(
∂μ

∂T

)
N,V

D12 − κ̄

]
∇T . (3.35)

By comparing the coefficients in Eqs. (3.35) and (3.28b), and
using Eqs. (3.31) and (E3) we find

L21 = L12 , (3.36)

L22 = −T

m2
〈(k̂ · p)(εp − μ)|�−1(p)|(k̂ · p)(εp − μ)〉 .

(3.37)

Equation (3.36) is the required Onsager reciprocal rela-
tion. Note that the heat current that appears in Eqs. (3.33)
and (3.37) is the one associated with the entropy density,
Eq. (3.10d). It is different from the heat current that deter-
mines the thermal conductivity in a fluid with momentum
conservation (which is associated with the entropy per par-
ticle, see Paper I), and also from the one that determines the
transport coefficient κ̄ , Eq. (3.26b).

IV. DISCUSSION AND OUTLOOK

We conclude with a discussion of some aspects of the
kinetic theory and its applications as formulated in Secs. II and
III, as well an outline of some applications and generalizations
that we leave for future work.

A. General aspects of the kinetic theory

We have considered a kinetic theory that provides an ef-
fective, or reduced, description of a fermionic many-body
system in terms of the μ-space distribution function. In
general, the latter depends on all of the N-particle distribu-
tion functions. The Boltzmann equation closes the system
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by factorizing the two-particle distribution. In the Landau-
Boltzmann equation the simple product of single-particle
distribution functions is generalized to account for the Pauli
principle, see Eq. (D3). This procedure is controlled in the
limit of low density (e.g., for a classical dilute gas), but not
in general. The hydrodynamic description in Sec. III B further
reduces the number of explicitly considered degrees of free-
dom by projecting onto the space of the five hydrodynamic
quantities. This is controlled in the limit of low frequencies
and small wave numbers. Either description involves an av-
eraging process that ignores fluctuations of, and correlations
between, the hydrodynamic modes. The Langevin/Landau-
Lifshitz concept of a fluctuating force is designed to take
these into account, and fluctuating hydrodynamics is capa-
ble of describing mode-mode coupling effects that are not
included in the averaged equations. For an example in the
context of a nonequilibrium classical fluid, see the long-range
correlations originally obtained by means of kinetic theory
and mode-coupling theory [34–36] that were also derived by
using fluctuating hydrodynamics [37].

A remarkable aspect of LFL theory is the fact that the
entropy has the same functional form as in a noninteracting
Fermi gas, see Eq. (D5a) and Eq. (A.11) in Paper I. This is
usually motivated by the assumption that the classification
of energy levels is the same with or without interactions
[10]. An equivalent statement is that the equilibrium single-
particle distribution in a Fermi liquid has the same functional
form as in a noninteracting Fermi gas, i.e., it is given by
the Fermi-Dirac distribution. The equivalency follows from
the observation that maximizing the entropy subject to the
constraints of the conservation of particle number and energy
must yield the equilibrium distribution. An argument for the
single-particle distribution having the Fermi-Dirac form can
be made as follows. The usual derivation of the Fermi-Dirac
distribution within statistical mechanics considers the grand
canonical potential of the particles in a given quantum state
with energy εp that can exchange particles with all other states
[38]. In the case of fermions the state can be occupied by
at most one particle. Therefore, the energy of Np particles
in that state is Npεp (i.e., either zero or εp) whether or not
the fermions in the system as a whole interact. (Note that
this is not true for bosons.) Therefore, the derivation of the
average occupation number, i.e., the Fermi-Dirac distribution,
is unchanged from the noninteracting case. The energy εp

depends on the interactions in a complicated way, but the
distribution function depends on them only via εp. This fixes
the functional form of the entropy up to a constant, and the
latter is determined by the third law [39].

B. Outlook

We finally list some problems that would be interesting to
investigate using the formalism developed in this paper.

(1) The static μ-space response function given in
Eq. (2.17), which we have used to specify the Langevin force
operator correlations, does not include long-range correla-
tions that are present in certain static response functions in
the quantum limit. For example, it is known that the static

spin susceptibility χs(k) is a nonanalytic function of the
wave number, which reflects long-range correlations in the
zero-temperature quantum system [40], and this long-range
behavior fundamentally changes the nature of some quantum
phase transitions [41]. The static number density and momen-
tum response functions, on the other hand, do not display
this long-ranged behavior [42]. These effects will become
relevant once the spin degrees of freedom, which we have not
considered, are included in the theory.

(2) As already mentioned, in classical statistical mechan-
ics it is well known that in nonequilibrium steady states
equal-time correlation functions and static response functions
are generically of extraordinarily long range; see Refs. [4,43]
and references therein. They also display a well-defined kind
of generalized rigidity [44]. It would be of great interest to
consider quantum systems in a corresponding nonequilibrium
state and examine the same functions in both the collisionless
regime and the hydrodynamic regime.

(3) In order to derive the fluctuating hydrodynamic equa-
tions for a disordered fermion system in Sec. III C we assumed
that the disorder average has already been performed as a
first step. An interesting extension would be to derive hydro-
dynamic equations for a fixed impurity configuration. This
could be done by working in real space and taking the
fermion-impurity collision operator, Eq. (A2), to be propor-
tional to a fixed impurity density ni(x). The hydrodynamic
equations would then implicitly depend on ni(x) via a depen-
dence of the transport coefficients on ni(x). In order to derive
physical quantities one would then have to average over both
the noise fluctuations and the static disorder fluctuations.

(4) Another aspect of the model considered in Sec. III C
is that both fermion number and energy are conserved in
collisions. This is the case, for instance, if fermion-fermion
scattering and fermion-impurity scattering are present. An-
other interesting class of problems conserves only the
fermion number; this can be realized, for instance, by adding
electron-phonon scattering. At the level of the hydrodynamic
description the only soft mode would then be the diffusive
number density mode. The relevant equation can be derived by
using the techniques from Sec. III B and III C and projecting
on the mode a1 only. In order to describe heat transport in such
a system one would have to consider the energy transport in
the phonon system as well as the energy carried by the elec-
trons and take into account that the energy in the combined
system is still conserved.

APPENDIX A: SOME LINEARIZED COLLISION
OPERATORS

In Appendix C of Paper I we gave expressions for
collision operators describing fermion-fermion scattering,
fermion-phonon scattering, and fermion-impurity scattering
respectively. They remain valid in the present context if we
replace the distribution function φ by the operator-valued
function φ̂, and we list them here again for completeness.
Remarks concerning their derivations from the more general
expressions given in Ref. [18] can be found in Paper I.

The linearized fermion-fermion collision operator can be
written
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�f-f(p) φ̂(p) = 1

1 − feq(p)

1

V 3

∑
p′,p1,p′

1

W (p, p1; p′, p′
1) δ(εp + εp1 − εp′ − εp′

1
) δ(p + p1 − p′ − p′

1)

× feq(p1)[1 − feq(p′)][1 − feq(p′
1)] [φ̂(p′) + φ̂(p′

1) − φ̂(p) − φ̂(p1)] . (A1a)

Here W is the probability for two fermions in momentum states p and p1 to be scattered into momentum states p′ and p′
1. Time

reversal symmetry implies

W (p, p1; p′, p′
1) = W (p′, p′

1; p, p1) . (A1b)

The fermion-impurity collision operator is

�f-i(p) φ̂(p) = 1

V

∑
p′

W (p′, p) δ(εp′ − εp)[φ̂(p′) − φ̂(p)] , (A2)

with W another scattering probability. Here the fermion particle number and energy are conserved, but the momentum is not.
The fermion-boson collision operator can be written

�f-b(p) φ̂(p) = 1

feq(p)(1 − feq(p))
1

V 2

∑
p′,k

δ(p′ − p − k) neq(k)[W (p′; p, k) feq(p)(1 − feq(p′)) δ(εp′ − εp − ωk )

+W (p′,−k; p) feq(p′)(1 − feq(p)) δ(εp′ − εp + ωk )][φ̂(p′) − φ̂(p)] . (A3)

Here neq(k) = 1/( exp(ωk/T ) − 1) is the equilibrium Bose-
Einstein distribution function, ωk is the energy of a boson with
wave number k, and W is again a transition probability. The
fermion particle number is still conserved, but the fermion
momentum and energy are not. Umklapp processes can be
taken into account if desirable.

Finally, a quantum version of the Bhatnagar-Gross-Krook
collision operator in classical kinetic theory [4,45] is useful
for explicit calculations it uses a single relaxation time τ (T )
and builds in the five conservation laws for the particle num-
ber, momentum, and energy. It is given by

�BGK
f-f (p) = −1

τ
P⊥ , (A4a)

where

P⊥ = 1 −
5∑

α=1

|aα (p〉〈aα (p)|
〈aα (p)|aα (p)〉 (A4b)

is the projection operator defined in Sec. III B that enforces
the five conservation laws.

In general, the linearized collision operator �(p) is a sum
of several of these individual collision operators.

APPENDIX B: THE μ-SPACE STATIC RESPONSE
FUNCTION, AND THE LANGEVIN FORCE CORRELATION

In this Appendix we show how to derive Eqs. (2.15).
We can obtain a kinetic equation for the dynamic response

function by adding a term δμ(p, x, t ) to the chemical potential

that depends on momentum, space, and time, and acts as an
external field conjugate to the operator δ f̂ . The single-particle
energy from Eq. (2.5) then becomes

ε̂(p, x) = εp + δε̂(p, x) − δμ(p, x, t ) . (B1)

In the kinetic equation this produces a new term, and instead
of Eq. (2.6b) we obtain

[−iω + Lk(p)]w(p)φ̂(p, k, ω) − ik · vp δμ̃(p, k, ω)

= F̂L(p, k, ω) , (B2)

where δμ̃(p, k, ω) = w(p)δμ(p, k, ω). The dynamic re-
sponse function infinitesimally above the real frequency axis
is given by the functional derivative

χ (p1, p2; k, ω + iε) = δ〈φ̂(p1, k, ω)〉/δμ̃(p2, k, ω) . (B3)

Equation (B2) yields

[−iω + Lk(p1)]χ (p1, p2; k, ω + iε) = V δp1,p2

ik · vp1

w(p1)
,

(B4a)

which has the formal solution

χ (p1, p2; k, ω + iε)

= −[
ω + iL(1)

k (p1) − i�(p1)
]−1

V δp1,p2

k · vp1

w(p1)
, (B4b)

with L(1)
k from Eq. (2.6d). Using Eq. (2.9b) in (2.10), and per-

forming the frequency integration before taking the imaginary
part (note that iL(1)

k is real, whereas i� is imaginary), yields

χ (p1, p2; k) = −Im (Lk(p1))−1V δp1,p2

k · vp1

w(p1)
. (B5a)

Alternatively we can obtain the static response by putting ω =
0 in Eq. (B4b),

χ (p1, p2; k) = (Lk(p1))−1V δp1,p2

ik · vp1

w(p1)
. (B5b)
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Equations (B5a) and (B5b) are equivalent due to the spectral
representation of the response function, see Eqs. (2.9) and
(2.10). Since the static response cannot depend on transport
coefficients [46], the collision operator implicit in this ex-
pression cannot contribute and we can evaluate Eqs. (B5)
for �(p1) = −iε. The static response function thus obeys an
integral equation

L(1)
k (p1) χ (p1, p2; k) = V δp1,p2

ik · vp1

w(p1)
. (B6)

With L(1)
k from Eqs. (2.6) this is Eq. (2.15b).

We still need to show how to obtain Eq. (2.15a) from
(2.14). To this end we write

χ (p1, p2; k) = V δp1,p2

1

w(p1)
+ δχ (p1, p2; k). (B7)

From Eq. (2.15b) we see that δχ obeys the integral equation

[1 + I (p1)]δχ (p1, p2; k) = −1

N0
F (p1, p2) , (B8a)

with I (p) from Eq. (2.6e). Since δχ and F are both symmetric
under interchange of the two p variables, Eq. (B8a) can also
be written

[1 + I (p2)]δχ (p1, p2; k) = −1

N0
F (p1, p2) . (B8b)

Simple algebra that makes use of Eqs. (B8) then yields[
L(1)

k (p1) + L(1)
−k(p2)

]
χ (p1, p2; k) = 0. (B9)

Equation (2.14) is therefore equivalent to Eq. (2.15a).

APPENDIX C: THE μ-SPACE DISTRIBUTION, AND THE
HYDRODYNAMIC MODES

In order to illustrate the connection between the ap-
proaches in Paper I and the current paper, we consider the
kinetic equation (2.6c) and its formal solution

|φ̂(p, k, ω)〉 = [−iω + Lk(p)]−1|F̂L(p, k, ω)〉 . (C1)

Now we insert a complete set of modes between the propa-
gator and the fluctuating force on the right-hand side. As part
of that complete set we choose the five hydrodynamic modes
ψα (k, p) (α = 1, . . . , 5) that are defined as the eigenfunctions

of the kinetic operator Lk(p) with eigenvalues ωα (k), see
Eq. (3.1) in Paper I. For the part of φ̂ in the space spanned
by the hydrodynamic modes we then have (note that the left
and right eigenfunctions are not identical, see Paper I)

|φ̂hyd(p, k, ω)〉 =
∑

α

|ψ (R)
α (k, p)〉 [−iω + ωα (k)]−1

× 〈ψ (L)
α (k, p)|F̂L(p, k, ω)〉 . (C2)

Here we have assumed that the hydrodynamic modes are
normalized to unity. Equation (C2) is equivalent to an ex-
plicit solution of the hydrodynamic equations in Sec. III B.
The eigenfrequencies ωα (k) and the eigenfunctions ψα have
been determined explicitly in Paper I. To zeroth order in an
expansion of the hydrodynamic modes in powers of the wave
number k = |k|, the ψα are linear combinations of the zero
eigenfunctions aα (p) of the collision operator, see Eq. (3.6)
in Paper I, and therefore have no overlap with the fluctuat-
ing force. However, their contributions to first order in the k
expansion are elements of the complementary space L⊥, see
Eqs. (3.28) in Paper I. The leading contribution to the right-
hand side of Eq. (C2) is thus of O(k). This is consistent with
the fact that the Langevin forces in fluctuating hydrodynamics
are currents, see Sec. IIIB2 and Ref. [2].

APPENDIX D: H THEOREM FOR THE NONLINEAR
BOLTZMANN-LANDAU KINETIC EQUATION

In this Appendix we derive an H theorem for the fermionic
quantum kinetic equation; see Chapter 10.3.3 in Ref. [4], or
Ref. [47] for related discussions. Let fp(x, t ) = 〈 f̂ (p, x, t )〉 be
the average nonequilibrium distribution function, δ fp = fp −
feq(p) its deviation from the equilibrium distribution, and

εp(x, t ) = 〈ε̂(p, x, t )〉 = εp + 1

N0V

∑
p′

F (p, p′) δ fp′ (x, t )

(D1)
the average single-particle energy. The nonlinear Boltzmann-
Landau kinetic equation for fp is [18]

∂t fp + (∇x fp) · ∇pεp − (∇p fp) · ∇xεp = C( f ). (D2)

For the collision integral we assume the one appropriate for
fermion-fermion collisions (Ref. [18], see Eq. (A1a) for the
linearized version)

C( f ) = 1

V 3

∑
p′,p1,p′

1

W (p, p1; p′, p′
1) δ(εp + εp1 − εp′ − εp′

1
) δ(p + p1 − p′ − p′

1)

×[
fp′ fp′

1
(1 − fp)(1 − fp1

) − fp fp1
(1 − fp′ )(1 − fp′

1
)
]
. (D3)

The transition rate W is positive and has the symmetry
properties

W (p, p1; p′, p′
1) = W (−p,−p1; −p′,−p′

1) (D4a)

= W (p′, p′
1; p, p1) (D4b)

= W (p1, p; p′
1, p′) , (D4c)

which express invariance under spatial inversions, time re-
versal, and interchange of particles. The local h function is
usually defined as minus the entropy density

h(x, t ) = 1

V

∑
p

[ fp ln fp + (1 − fp) ln(1 − fp)] . (D5a)
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The global H function is

H (t ) =
∫

dx h(x, t ) . (D5b)

The H theorem consists of the statement

dH/dt � 0 , (D6)

with the equal sign holding if and only if fp is the equilibrium
distribution feq(p), i.e., the Fermi-Dirac distribution.

In order to prove the H theorem we start by using Eq. (D2)
to show that the local h function obeys a continuity equation

∂t h + ∇x · jh = I ( f ) , (D7a)

with

jh(x, t ) = 1

V

∑
p

(∇pεp)[ fp ln fp + (1 − fp) ln(1 − fp)]

(D7b)
the h current density, and

I ( f ) = 1

V

∑
p

C( f ) ln

(
fp

1 − fp

)
(D7c)

a source term. To arrive at this result we have integrated by
parts in momentum space and assumed that any surface terms
vanish. One now can show that I ( f ) � 0 by proceeding as in
the case of the classical Boltzmann equation [48]: Substitute
Eq. (D3) into Eq. (D7c), interchange p and p1 as well as p′ and
p1

′, add the two expressions and divide by 2, using Eq. (D4c).
Next interchange p and p′ as well as p1 and p′

1, again add the
two expressions and divide by 2, using Eq. (D4b). The result
is

I ( f ) = −1

4V 4

∑
p,p1,p′,p′

1

W (p, p1; p′, p′
1) δ(εp + εp1 − εp′ − εp′

1
) δ(p + p1 − p′ − p′

1)

× fp fp1
(1 − fp′ )(1 − fp′

1
)

[
fp′ fp′

1
(1 − fp)(1 − fp1

)

fp fp1
(1 − fp′ )(1 − fp′

1
)

− 1

]
ln

(
fp′ fp′

1
(1 − fp)(1 − fp1

)

fp fp1
(1 − fp′ )(1 − fp′

1
)

)
. (D8)

But

(x − 1) ln x � 0 ∀x > 0 (D9)

with the equal sign holding if and only if x = 1 (this is a
special case of Jensen’s inequality). Accordingly, I ( f ) � 0.
Integrating Eq. (D7a) over all of space, and again ignoring
surface terms, yields Eq. (D6).

It remains to be shown that dH/dt = 0 if and only if
fp = feq(p). This follows in exact analogy to the classical case
[48]: Suppose fp is the Fermi-Dirac distribution, Eq. (2.1b).
Then ln[ fp/(1 − fp)] = −ξp/T is a collision invariant, and
hence I ( feq) = 0. Now suppose I ( f ) = 0. Then by Eq. (D9)
ln[ fp/(1 − fp)] must be a collision invariant, and thus a linear
combination of the five conserved quantities εp (energy), 1
(particle number), and p (momentum). The latter has a zero
coefficient by Galilean invariance, and therefore ln[ fp/(1 −
fp)] = −εp/T + μ, with minus the inverse temperature and
the chemical potential serving as the coefficients in the lin-
ear combination. I ( f ) = 0 thus implies that f is given by
Eq. (2.1b).

APPENDIX E: SOME USEFUL IDENTITIES

In this Appendix we list, for completeness, some thermo-
dynamic identities that were derived in Paper I and that we
have used throughout the main text.

Two common averages are, see Eqs. (A19a) and (A23a) in
Paper I,

〈
vi

p|pj
〉 = δi jn , (E1a)〈

vi
p|pja5(p)

〉 = δi jT (∂ p/∂T )N,V . (E1b)

The average energy density e, the average pressure p, the av-
erage density n, and the temperature derivative of the pressure
are related by

n〈εp〉w + T (∂ p/∂T )N,V = e + p . (E2)

For a derivation, see Eq. (3.16) in Paper I. Another relation
between 〈εp〉w and a thermodynamic derivative is

〈εp〉w = μ − T (∂μ/∂T )N,V , (E3)

see Eq. (A7) in Paper I.

APPENDIX F: FLUCTUATING NAVIER-STOKES
EQUATIONS FOR A CLEAN METAL

In this Appendix we briefly discuss the changes that occur
in Sec. III B if the kinetic theory is applied to the electron fluid
in a metal, i.e., a fermion system with a long-ranged Coulomb
interaction. We will assume that the metal is clean in the sense
that there is no electron-impurity scattering.

A long-ranged Coulomb interaction results in an additional
contribution 4πN0e2/k2 to the Landau interaction parameter
F0. In the fluid velocity equation (3.20a) this leads to an
additional term

ik
4πne2

k2
δn̂(k, ω) .

Combined with the density equation (3.19) this singular term
leads to nonzero eigenfrequencies ω = ±ωp + O(k2) in the
longitudinal (parallel to k) channel, with ωp = (4πne2/m)1/2

the plasmon frequency. This in turn implies that the frequency
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in Eq. (3.16) can no longer be neglected compared to the
collision operator, as both are of O(1) with respect to k.

In order to capture these effects it is advantageous to in-
troduce, instead of Eq. (3.11b), longitudinal and transverse
momentum modes as

a2(p) = k̂ · p , (F1a)

a3(p) = k̂
(1)
⊥ · p , (F1b)

a4(p) = k̂
(2)
⊥ · p , (F1c)

where k̂ and k̂
(1,2)
⊥ are three pairwise orthogonal unit vectors

in the direction of k and the two directions perpendicular to
k, respectively. Repeating the procedure from Sec. IIIB2 we
find that the transverse fluid velocity equation is unchanged,
and the transverse stress tensor is still given in terms of a
transverse shear viscosity that is unchanged from the short-
range case, Eq. (3.20c),

η⊥ = −〈(k̂⊥ · p)(k̂ · vp)|�−1(p)|(k̂ · vp)(k̂⊥ · p)〉. (F2a)

The dissipative term in the equation for the longitudinal fluid
velocity, on the other hand, is given in terms of

η±
‖ = −〈(k̂⊥ · p)(k̂ · vp)|(±iωp + �(p))−1|(k̂ · vp)(k̂⊥ · p)〉.

(F2b)
This transport coefficient, which can be interpreted as a
high-frequency shear viscosity, has both a real part and an

imaginary part, and thus contributes both to the k dependence
of the plasmon frequency and to the plasmon damping, see
Paper I.

Similarly, the fluctuating stress tensor, Eq. (3.20h), has
transverse parts

(τ̂L)(1,2)
⊥ (x, ω) = 〈(k̂(1,2)

⊥ · p)(k̂ · p)|�−1(p)|F̂L(p, x, ω)〉
(F3a)

and a longitudinal part

(τ̂L)±‖ (x, ω) = 〈(k̂ · p)2|(±iωp + �−1(p))−1|F̂L(p, x, ω)〉.
(F3b)

These different contributions to the fluctuating force are not
correlated with each other. The transverse noise correlation is
given in terms of the ordinary zero-frequency shear viscosity,
as in Eq. (3.24a), while the longitudinal correlation depends
on the dissipative (i.e., real) part of the high-frequency shear
viscosity, Eq. (F2b).

We finally mention that in a two-dimensional metal the
Coulomb contribution to the interaction parameter F0 is pro-
portional to 1/k, and consequently the plasmons are soft
with a frequency ωp ∝ k1/2. As a result, the longitudinal and
transverse shear viscosities in the long-wavelength limit are
identical.
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