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Soft modes in Fermi liquids at arbitrary temperatures
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We use kinetic-theory methods to analyze Landau Fermi-liquid theory, and in particular to investigate the
number and nature of modes in Fermi liquids that are soft in the long-wavelength limit, both in the hydrodynamic
and the collisionless regimes. In the hydrodynamic regime we show that Fermi-liquid theory is consistent
with Navier-Stokes hydrodynamics at all temperatures, as expected. The soft modes are the ones familiar from
classical hydrodynamics that are controlled by the five conservation laws; namely, two first-sound modes, two
shear diffusion modes, and one heat diffusion mode. These modes have a particle-like spectrum and are soft, or
scale invariant, at all temperatures. In the collisionless regime we show that the entire single-particle distribution
function is soft with a continuous part of the spectrum. This continuous soft mode, which is well known but
often not emphasized, has important physical consequences, e.g., for certain quantum phase transitions. In
addition, there are the well-known soft zero-sound excitations that describe angular fluctuations of the Fermi
surface; their spectra are particle-like. They are unrelated to conservation laws, acquire a mass at any nonzero
temperature, and their number depends on the strength of the quasiparticle interaction. We also discuss the
fates of these two families of soft modes as the temperature changes. With increasing temperature the size
of the collisionless regime shrinks, the damping of the modes grows, and eventually all of the collisionless
modes become overdamped. In their stead the five hydrodynamic modes appear in the hydrodynamic regime at
asymptotically low frequencies. The two families of soft modes are unrelated and have very different physical
origins. In charged Fermi liquids the first-sound modes in the hydrodynamic regime and the � = 0 zero-sound
modes in the collisionless regime get replaced by plasmons, all other modes remain soft.
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I. INTRODUCTION

Fluid mechanics is one of the oldest and most impor-
tant subfields of physics, going back to Euler’s work in
the mid-1700s. Classical fluid mechanics [1] demonstrated
that by applying the principles of Newtonian mechanics one
can successfully describe the behavior of strongly interacting
condensed many-particle systems. The advent of quantum
mechanics raised the question of how to describe fluids
of quantum particles at low temperatures T , in particular
fermionic ones such as He-3 or the electron fluid in a metal.
Landau’s Fermi-liquid (LFL) theory and its generalization to
charged systems provided an answer by combining kinetic
theory with a phenomenological description of strong inter-
actions and the notion of “quasiparticles”; fictitious entities
that allow for a mapping of the spectrum of the strongly
interacting system onto that of a noninteracting Fermi gas
[2–4].

LFL theory was initially applied to Fermi liquids [5] at
asymptotically low temperature in the absence of impurities,
where it predicted, inter alia, the collective modes known
as zero sound. At zero temperature, zero sound is a soft
or massless mode, i.e., the frequency goes to zero (in this
case linearly) with the wave number, as is the case for first
sound. In other words, these excitations are scale invariant.

Unlike first sound, their existence has nothing to do with
conservation laws. In fact, any nonzero temperature makes
the zero-sound modes massive in the sense that the resonance
frequency has a damping, or imaginary, part that to leading
order is independent of the wave number [6]. By contrast, the
masslessness of first sound, which includes the fact that the
damping goes to zero as the wave number squared for small
wave numbers, is protected by the conservation of particle
number and momentum. More generally, one needs to distin-
guish between the collisionless regime at low temperatures,
where the streaming term in a kinetic equation dominates over
the collision integral, and the hydrodynamic regime at higher
temperatures, where the collisions dominate. The former is
delineated by the requirement ωτ � 1 and/or k� � 1, with
ω the frequency of an excitation, τ a relevant scattering time,
and � the related mean-free path. The latter is delineated by
the conditions ωτ � 1 and k� � 1. Since τ and � diverge as
T → 0, the collisionless regime extends all the way to zero
frequency or wave number only at T = 0, see Fig. 1.

These considerations lead to three questions: (1) What is
the relation between LFL theory and classical hydrodynamics
in the hydrodynamic regime? Since the soft modes in the
hydrodynamic regime of both classical fluids and quantum
fluids are governed by conservation laws, the structure of
the theories should be the same as far as the soft modes are
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FIG. 1. Schematic locations of the collisionless and hydrody-
namic regimes in the frequency-temperature plane. The boundary
(dashed line) is not sharp, and its functional form depends on the
temperature dependence of the relevant scattering time.

concerned, yet LFL theory is usually assumed to be valid only
at low (compared to the Fermi temperature) temperatures. (2)
What is the relation, if any, between the soft modes in the
hydrodynamic and collisionless regimes? The experimentally
observed transition from first sound to zero sound in He-3,
with the damping coefficient going through a maximum in
between (see, e.g., Fig. 1.4 in Ref. [3]), is often referred
to as a “crossover”, but the very different origins of the
excitations make it implausible that they are continuously
connected in any physical sense. This is part of a more general
question: What happens to classical soft modes with decreas-
ing temperature, and to quantum soft modes with increasing
temperature? (3) What is the relation, if any, between the
collective zero-sound modes that are particle-like in the sense
that they are characterized by a well-defined frequency with
a small damping coefficient, and the continuous excitation
known, in a LFL context, as the particle-hole continuum [4],
that is NOT particle-like but nonetheless scale invariant with
the frequency scaling linearly with the wave number?

The purpose of this paper is to discuss and answer these
questions. With respect to question (1), we will show that
LFL theory describes the soft modes of a Fermi system quali-
tatively correctly for all temperatures. In particular, it yields
five soft modes in the hydrodynamic regime, namely, two
(first) sound modes, two shear diffusion modes, and one heat
diffusion mode, that are completely consistent with the lin-
earized Navier-Stokes equations. With respect to question (2),
we will discuss that there is no connection between the soft
modes in the two regimes. With decreasing temperature the
hydrodynamic regime shrinks and the hydrodynamic modes
become confined to a smaller and smaller region of parameter
space and finally disappear. In their stead, a new family of soft
modes emerges in the collisionless regime that is governed by
different physics. With respect to question (3), we will show
that the particle-like zero-sound excitations and the continuum
mode (which we will refer to as the “unparticle” mode, using
a term coined in Ref. [7]) are part of one and the same
scale invariant spectrum, and hence just different aspects of
the same excitation. While historically the zero-sound modes
have received much more attention, the continuum unparticle
mode has important physical consequences. A particularly
striking one is that it is responsible for driving the quantum

ferromagnetic transition generically first order by coupling to
the magnetic order parameter [8].

Experimental studies of quantum hydrodynamics used to
be limited since there was only one known neutral Fermi
liquid, He-3, with very limited opportunities for tuning the in-
teraction parameters, while in metals, which represent charged
Fermi liquids, the hydrodynamic regime tends to be dom-
inated by impurity scattering, which drastically alters the
hydrodynamic behavior from that of clean systems. This has
changed in recent years due to the availability of cold-atom
systems that allow for the realization of Fermi liquids with
widely tunable parameters [9–14]. This is a further motivation
for studying quantum hydrodynamics in more detail.

In this paper we will use the usual Boltzmann/Landau
kinetic equation [2,15] and construct explicit solutions that
identify the soft modes in the system. In a second paper
(Ref. [16], to be referred to as Paper II) we add a Langevin
force to the quantum kinetic equation, and in particular derive
fluctuating Navier-Stokes equations for a fermionic quantum
fluid.

This paper is organized as follows. In Sec. II we briefly
review key elements of LFL theory and formulate the kinetic
equation that governs the time evolution of the single-particle
distribution function. In Sec. III we discuss the solution of
the linearized kinetic equation in the hydrodynamic regime,
and show that the results for the soft modes are the same as
in the theory of classical fluids. In Sec. IV we discuss the
solution in the collisionless regime, with some emphasis on
the continuum unparticle excitation, and highlight the funda-
mental differences between the soft modes in the two regimes.
We conclude in Sec. V with a discussion of various aspects
of the theory and its implications. Some technical details
regarding thermodynamic relations, continuity equations, and
collision operators, are relegated to three appendices. A fourth
Appendix highlights the different natures of zero modes and
hydrodynamic modes by contrasting transverse zero sound
and shear diffusion.

II. KINETIC THEORY FOR FERMIONS

In this section we recall general aspects of Landau
Fermi-liquid (LFL) theory [2,3] and discuss the generalized
Boltzmann equation that governs the time evolution of the
distribution function. For our detailed discussion we will con-
sider systems where the fermions interact only with each
other. However, the formalism can easily be generalized to
include the interaction of fermions with impurities, or with
bosons such as phonons or magnons. Some relevant linearized
collision operators are given in Appendix C.

A. Landau’s Fermi-liquid theory

Consider a description of a Fermi liquid in terms of Lan-
dau quasiparticles (QPs), and let f (p, x, t ) be the single-QP
distribution function that depends on the momentum p, the
real-space position x, and the time t . For simplicity we con-
sider spinless fermions; the theory can easily be generalized to
include spin. If e(x, t ) is the energy density of the system as a
whole, then the QP energy ε(p, x, t ) is defined via the change
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δe of the energy density under a change δ f of the distribution
function,

δe(x, t ) = 1

V

∑
p

ε(p, x, t ) δ f (p, x, t ) (2.1a)

with V the system volume [17]. For later reference we also
introduce variations of the number density

δn(x, t ) = 1

V

∑
p

δ f (p, x, t ) , (2.1b)

and of the fluid velocity

δu(x, t ) = 1

nm

1

V

∑
p

p δ f (p, x, t ) . (2.1c)

with m the bare fermion mass and n the equilibrium number
density, see Eq. (2.5) below.

In equilibrium, ε(p, x, t ) is independent of space and time.
For simplicity, we assume an isotropic Fermi liquid, so εeq(p)
depends on p = |p| only, and we write εeq(p) ≡ εp. The QP
velocity is

vp = ∇p εp . (2.2)

Near the Fermi surface one has εp = μ + v∗
F(p − pF), with

μ the chemical potential, pF the Fermi wave number, and
v∗

F = pF/m∗ the Fermi velocity with m∗ the QP effective mass.
Consequently, for p on the Fermi surface one has vp = v∗

F p̂ =
p/m∗. (We use units such that h̄ = kB = 1.) At zero tempera-
ture, μ(T = 0) = p2

F/2m∗ ≡ εF.
The equilibrium distribution function is given by the

Fermi-Dirac distribution

feq(p) = 1/( exp(ξp/T ) + 1) , (2.3a)

with ξp = εp − μ. For later reference we also define

w(p) = −∂ feq(p)/∂εp = 1

T
feq(p)[1 − feq(p)]

= 1

4T cosh2(ξp/2T )
, (2.3b)

which plays the role of a weight function. Note that feq and w

depend on the modulus of p only. It is useful to define a scalar
product 〈. . . | . . .〉 of p -dependent functions

〈g(p)|h(p)〉 = 1

V

∑
p

w(p) g(p) h(p) , (2.4a)

and an average with respect to the weight function w by

〈g(p)〉w = 〈g(p)|1〉/N0 (2.4b)

where

N0 = 〈1|1〉 = 1

V

∑
p

w(p) (2.4c)

normalizes the weight function. For T → 0, N0 = N∗
F +

O(T 2), where N∗
F = pFm∗/2π2 is the QP density of states at

the Fermi surface.
The equilibrium number density is

n = N

V
= 1

V

∑
p

feq(p) , (2.5)

and the physical mass density is ρ = nm. At T = 0, n =
p3

F/6π2. The internal energy in equilibrium we will denote
by E , and the equilibrium energy density by e = E/V .

Within LFL theory, a change δ f of the distribution function
leads to a change of ε given by

δε(p, x, t ) = 1

N0V

∑
p′

F (p, p′) δ f (p′, x, t ) . (2.6)

Here F (p, p′) = F (p′, p) is a function that parameterizes the
interaction between the QPs, and the factor of N0 serves to
make F dimensionless. The interaction function F is the ker-
nel of the integral equation obeyed by the QP velocity [2],

vp = 1

m
p − 1

N0V

∑
p′

w(p′) F (p, p′) vp′ . (2.7)

For the discussion in Sec. III we keep only the � = 0 and
� = 1 terms in an angular-momentum expansion and write

F (p, p′) = F0 + F1
p · p′

〈p2〉w . (2.8)

At T = 0 this reduces to the usual definition of the Landau
parameter F1, which determines the relation between the QP
effective mass m∗ and the bare fermion mass m via [2,3]

m∗ = m(1 + F1/3) . (2.9)

Note that Eq. (2.9), with F1 as defined in Eqs. (2.8), remains
valid if one performs its usual derivation [3] at nonzero tem-
perature. With the model interaction given by Eq. (2.8) the
integral equation (2.7) is separable and can be solved. We find

vp = p/m∗ , (2.10a)

and hence

εp = 1

2
p · vp = p2/2m∗ . (2.10b)

Here we have used Eqs. (A12) and (A19b), and we ignore
a p -independent contribution to εp that also depends on the
FL interaction [18]. Note that within this model this holds in
general, whereas for a general interaction function F it holds
only for p on the Fermi surface [19]. The Landau parameter
F0 is a positive number for a neutral Fermi liquid with a short-
ranged (SR) repulsive interaction between the QPs. However,
for a charged Fermi liquid (such as the conduction-electron
system in a metal) F0 must be augmented by the long-ranged
(LR) Coulomb interaction [4,20]:

F0 → F0 + 4πN0 e2/k2 (LR case) , (2.11)

where we have anticipated a spatial Fourier transform from
the real-space position variable x to a wave vector k.

The kinetic equation that governs the time evolution of the
distribution function f is

d

dt
f (p, x, t ) =

(
∂ f

∂t

)
coll

(p, x, t ) . (2.12)

This holds in complete generality: The total time derivative
of f on the left-hand side equals the collision integral on the
right-hand side, i.e., the temporal change of f due to collisions
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between the QPs. The left-hand side consists of three terms:

d

dt
f = ∂t f + ∇x f · ẋ + ∇p f · ṗ . (2.13a)

The velocity is given by

ẋ = ∇p ε(p, x, t ) , (2.13b)

and ṗ is equal to the force due to the spatially inhomogeneous
energy, i.e., the potential energy of the QP interaction,

ṗ = −∇x ε(p, x, t ) = −∇x δε(p, x, t ) . (2.13c)

To linear order in small deviations δ f from the equilibrium
distribution we thus have

d

dt
f = ∂t δ f + vp · ∇x δ f − vp · ∂ feq

∂εp
∇x δε , (2.13d)

with δε given by Eq. (2.6). In what follows it will be conve-
nient to write

δ f (p, x, t ) = w(p) φ(p, x, t ) (2.14)

with w(p) from Eq. (2.3b).

B. The linearized kinetic equation

We write the collision integral as a linear collision operator
� acting on δ f :(

∂ f

∂t

)
coll

(p, x, t ) = �(p) δ f (p, x, t ). (2.15)

After a temporal Laplace transform with z as the complex
frequency [21] and a spatial Fourier transform with k as the
wave vector the kinetic equation (2.12) takes the form

[−iz + Lk(p)]φ(p, k, z) = φ(p, k, t = 0) . (2.16a)

Here Lk(p) is a linearized kinetic operator given by

Lk(p) = i k · vp

[
1 + 1

N0V

∑
p′

w(p′) F (p′, p) Rp→p′

]

−�(p) , (2.16b)

with the replacement operator R defined by Rp→p′g(p) = g(p′)
for any p-dependent function g. The first contribution to Lk(p)
represents the streaming term and the QP interaction term in
Eq. (2.13d). The collision operator � must respect the five
collision invariants that are unaffected by QP collisions, viz.,
the density, the three components of the momentum, and the
energy [22].

Using the scalar product defined in Eq. (2.4a) we can write
the density, velocity, and energy fluctuations from Eqs. (2.1)
as

δn(x, t ) = 〈1|φ(p, x, t )〉 , (2.17a)

δu(x, t ) = 1

nm
〈p|φ(p, x, t )〉 , (2.17b)

δe(x, t ) = 〈εp|φ(p, x, t )〉 . (2.17c)

We separate the momentum into a longitudinal (with re-
spect to the wave vector k) and two transverse components:

p = (k̂ · p)k̂ +
∑
i=1,2

(
k̂

(i)
⊥ · p

)
k̂

(i)
⊥ (2.18)

with k̂ the unit vector in k direction, and two unit vectors k̂
(1,2)
⊥

that are perpendicular to k and to each other. This separates
the velocity fluctuations into one longitudinal component δuL

and two transverse components δu(1,2)
⊥ and we write the five

fluctuations from Eqs. (2.17) in the form

δn(x, t ) = 〈a1(p)|φ(p, x, t )〉 , (2.19a)

δuL(x, t ) = 1

nm
〈a2(p)|φ(p, x, t )〉 , (2.19b)

δu(1)
⊥ (x, t ) = 1

nm
〈a3(p)|φ(p, x, t )〉 , (2.19c)

δu(2)
⊥ (x, t ) = 1

nm
〈a4(p)|φ(p, x, t )〉 , (2.19d)

δe(x, t ) = 〈a5(p)|φ(p, x, t )〉 + 〈εp〉w δn(x, t ) . (2.19e)

Also of interest are the temperature fluctuations

δT (x, t ) = 1

cV
〈a5(p)|φ(p, x, t )〉 , (2.19f)

the fluctuations of the entropy density s = S/V ,

T δs(x, t ) = δe(x, t ) − μδn(x, t ) (2.19g)

and the pressure fluctuations

δp(x, t ) =
(

∂ p

∂T

)
N,V

δT (x, t ) +
(

∂ p

∂n

)
T,V

δn(x, t ) . (2.19h)

Here we have defined

a1(p) = 1 , (2.20a)

a2(p) = k̂ · p , (2.20b)

a3(p) = k̂
(1)
⊥ · p , (2.20c)

a4(p) = k̂
(2)
⊥ · p , (2.20d)

a5(p) = εp − 〈εp〉w , (2.20e)

and we have split the energy fluctuation into its overlap with
the density fluctuation plus a part 〈a5|φ〉 that is orthogonal
to the density. We will also need the normalizations of these
vectors. We define

A−2
α = 〈aα (p)|aα (p)〉 (2.21a)

and find

A−2
1 = 〈1|1〉 = (1 + F0)(∂n/∂μ)T , (2.21b)

A−2
2 = A−2

3 = A−2
4 = 1

3
〈p|p〉 = nm∗ , (2.21c)

A−2
5 = 〈a5(p)|a5(p)〉 = T cV , (2.21d)

with cV the specific heat at constant volume. See Ap-
pendix A 1 for the final equalities in Eqs. (2.21), and
Appendix A 2 for the origin of Eq. (2.19f). Equation (2.19g)
follows from Eq. (A11).
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Now consider the five conservation laws. Particle number
conservation implies

0 = d

dt
δn(x, t ) = 1

V

∑
p

w(p)
d

dt
φ(p, x, t )

= 1

V

∑
p

w(p) �(p) φ(p, x, t ) = 〈1|�(p)|φ(p, x, t )〉.

(2.22)

Consequently, �(p) has a zero eigenvalue with eigenvector
a1(p). Analogously, the remaining four conservation laws are
reflected by four additional zero eigenvalues. We will refer
to the space spanned by the aα (p) listed in Eqs. (2.20) as
the “zero-eigenvector space” and denote it by L0. The space
orthogonal to L0 we will refer to as the “orthogonal space”
and denote it by L⊥. For a discussion of the continuity equa-
tions related to the five conservations laws see Appendix B.

These properties of the collision operator suffice for de-
termining the soft modes in the hydrodynamic regime. In the
collisionless regime, the collision operator can be neglected
to leading order. If desirable, one can construct explicit model
collision operators that have the required five zero eigenval-
ues, see Sec. IV and Appendix C.

The solution of the kinetic equation (2.16a) is qualitatively
different depending on whether the collision operator or the
streaming and interaction terms in the kinetic operator Lk(p)
dominate. The corresponding regions of parameter space are
known as the “hydrodynamic regime” and the “collisionless
regime”, respectively, see Fig. 1. We will discuss the hydro-
dynamic regime first, and the collisionless regime second.

III. SOLUTIONS OF THE KINETIC EQUATION I:
HYDRODYNAMIC REGIME

The system is always in the hydrodynamic regime for fixed
nonzero temperature at asymptotically small wave numbers
(or frequencies), or for fixed wave number or frequency at
sufficiently high temperature. This is because of the linear
wave-number dependence of the streaming/interaction con-
tribution to Lk(p) and the fact that collisions become less
frequent with decreasing temperature.

A. Short-ranged case

In the hydrodynamic regime, the collision operator domi-
nates over the first term on the right-hand side of Eq. (2.16b).
As a result, all modes are massive (i.e., they have a nonzero
frequency at k = 0) except for the five hydrodynamic modes
tied to the five conservation laws. The corresponding hydrody-
namic frequencies are given by the eigenvalues of the kinetic
operator Lk(p) defined in Eq. (2.16b), and the hydrodynamic
modes are given by the corresponding left eigenfunctions,
see Eqs. (2.19). Both the eigenvalues and the eigenfunctions
can be determined by studying the perturbed zero eigenvalues
[23]. We thus consider the left eigenproblem〈

ψL
α (k, p

)| Lk
(
p) = 〈

ψL
α (k, p)

∣∣ωα (k) . (3.1)

We are interested in the small-k behavior of the five eigen-
values that are zero at k = 0. Accordingly, we perform an

expansion in powers of k:

ωα (k) = ω(1)
α (k) + ω(2)

α (k) + O(k3) (α = 1, 2, 3, 4, 5)
(3.2a)

where ω(n)
α = O(kn). Analogously, we expand the eigenfunc-

tions
〈
ψL

α (k, p)
∣∣ = 〈

ψL(0)
α (k, p)

∣∣ + 〈
ψL(1)

α (k, p)
∣∣ + 〈

ψL(2)
α (k, p)|

+ O(k3) . (3.2b)

ψL(0)
α can depend on k at most via k̂, ψL(1)

α is linear in k, etc.
For notational simplicity we will not show this k dependence
explicitly from here on and write ψL(0)

α (k, p) ≡ ψL(0)
α (p), etc.

In the same expansion, the linearized kinetic operator is [see
Eq. (2.16b)

Lk(p) = −�(p) + L(1)
k (p) . (3.3)

The operator L(1)
k (p) that is linear in k has two contributions:

L(1)
k (p) = L(1,1)

k (p) + L(1,2)
k (p) (3.4a)

where

L(1,1)
k (p) = i k · vp (3.4b)

reflects the streaming term for noninteracting QPs with mass
m∗, and

L(1,2)
k (p) = i k · vp

1

N0V

∑
p′

w(p′) F (p′, p) Rp→p′ (3.4c)

reflects the QP interaction. If we use the LFL model inter-
action from Eq. (2.8), then by utilizing the scalar product
notation this can be written as

L(1,2)
k (p) = F0

〈1|1〉
∣∣ik · vp

〉〈
1
∣∣ + F1

〈p|p〉
∣∣(ik · vp)p

〉 · 〈
p
∣∣ .

(3.4d)
As we pointed out in Sec. II, this model for the interaction

implies the simple form (2.10a) for the QP velocity. That is,
within this model vp ∈ L0. We will nonetheless usually write
vp rather than p/m∗ in order to point out several aspects of
the theory that will emerge if one considers a more general
QP interaction function so that vp has a component in the
orthogonal space L⊥.

To zeroth order in this wave-number expansion we have
〈
ψL(0)

α (p)
∣∣ �(p) = 0 , (3.5)

which implies that the ψL(0)
α (p) are linear combinations of the

aα (p) from Eqs. (2.20):

〈ψL(0)
α (p)| =

5∑
β=1

c(α)
β (k̂) 〈aβ (p)| . (3.6)

By systematically going to higher order in k we can now
determine the hydrodynamic modes and their eigenvalues.
In particular, in order to determine the coefficients c(α)

β in
Eq. (3.6) one needs to go to O(k).
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1. Speed of first sound

To first order in the k expansion we have〈
ψL(0)

α (p)
∣∣ L(1)

k (p) − 〈
ψL(1)

α (p)
∣∣ �(p) = ω(1)

α (k)
〈
ψL(0)

α (p)
∣∣ .

(3.7)
Multiplying from the right with w(p) aγ (p) and summing over
p we obtain∑

β

c(α)
β (k̂)

(
L(1)

βγ (k, p) − δβγ ω(1)
α (k)

) = 0 (3.8a)

with

L(1)
βγ (k, p) = 〈

aβ (p)|L(1)
k (p)|aγ (p)

〉
A2

γ (3.8b)

the elements of a matrix L(1). Due to the angular integration
in the elements of L(1) the 5 × 5 system decouples into two
scalar equations for the transverse velocity, or shear, modes
and a 3 × 3 system for the density, the longitudinal velocity,
and the energy or heat mode. Furthermore, the two shear
eigenvalues are the same by symmetry, ω3 = ω4 = ω⊥, and
the angular integration makes them vanish at this order,

ω
(1)
⊥ = 0 . (3.9)

One of the eigenvalues of the 3 × 3 submatrix L(1)
L for the

longitudinal modes (α, β = 1, 2, 5) also vanishes at this order,

ω
(1)
5 = 0 . (3.10)

This eigenvalue corresponds to the heat mode, see below. The
other two, which correspond to first sound, have the form

ω
(1)
1,2 = ±ic1k , (3.11)

In order to determine the speed of first sound c1, we need
the matrix L(1)

L explicitly. Evaluating the matrix elements in
Eq. (3.8b) we find

L(1)
L = ik

3

⎛
⎜⎝

0 〈vp|p〉
nm 0

〈vp|p〉
(∂n/∂μ)T,V

0 〈vp|p a5(p)〉
cV T

0 〈vp|p a5(p)〉
nm 0

⎞
⎟⎠

(3.12a)

= ik

⎛
⎝

0 1/m 0(
∂ p
∂n

)
T,V

0 1
cV

(
∂ p
∂T

)
N,V

0 T
nm

(
∂ p
∂T

)
N,V

0

⎞
⎠ ; (3.12b)

see Appendix A 3 for the determination of the matrix ele-
ments in Eq. (3.12b). We note that Eq. (3.12b) represents the
linearized Euler equations for an inviscid fluid [1,24]. This
illustrates that the theory so far is consistent with general
hydrodynamics; we will see below that this remains true if
one takes into account dissipation. Using Eq. (3.12b) in (3.8a)
we find

c2
1 = 1

mnχT

[
1 + T χT

cV

(
∂ p

∂T

)2

N,V

]

= 1/mnχS , (3.13)

where χT = (−1/V )(∂V/∂ p)T,N is the isothermal compress-
ibility, and χS = χT cV /cp is the adiabatic one. We have used

Eqs. (A20b) and (A27b) to cast the speed of sound in this
form. Note that it is the coupling to the heat mode that changes
the isothermal compressibility into the adiabatic one. This is
the correct result for the speed of sound; it is identical with
the expressions obtained in the theory of classical fluids [25],
and in a phenomenological treatment of a Fermi gas [18].
However, we stress that it is not obvious a priori that LFL
theory is consistent with general hydrodynamics in complete
generality, not just at low temperatures. At T = 0 we recover
the well-known result [2,3]

c2
1 = 1

3 (v∗
F)2(1 + F0)(1 + F1/3) . (3.14)

2. Hydrodynamic modes

From Eqs. (3.6) and (3.8a) we see that the left eigenvectors
of L(1) determine the eigenmodes ψL(0)

α that correspond to
the eigenvalues ω(1)

α . The shear modes decouple from the
longitudinal modes and from each other. The remaining three
eigenmodes are determined by the left eigenvectors of the
matrix L(1)

L . Note that the matrix is not symmetric, so we need
to distinguish between left and right eigenvectors.

(a) Shear modes. Since the shear modes decouple there is
no difference between left and right, and we have

ψ
L(0)
3,4 (p) = ψ

R(0)
3,4 (p) ≡ ψ

(0)
3,4 (p) = a3,4(p) = k̂

1,2
⊥ · p .

(3.15a)

The normalization is

〈
ψ

(0)
3,4 (p)|ψ (0)

3,4 (p)
〉 = A−2

2 = nm∗ . (3.15b)

(b) Heat mode. The left and right eigenvectors associated
with the zero eigenvalue ω

(5)
1 = 0 are not the same. For the

left eigenvector we find

ψ
L(0)
5 (p) = a5(p) − T

n

(
∂ p

∂T

)
N,V

a1(p)

= εp − (T s/n + μ)

= εp − e + p

n
, (3.16)

where s = S/V is the entropy density. Here we have used
Eqs. (A7) and (2.8) to go from the first line to the second
one; see also Eq. (2.19g). The third line follows from the
general identity T s = e + p − nμ, with e the energy density.
We recognize (e + p)/n as the enthalpy per particle.

Equation (3.16) shows that the thermodynamic quantity
that represents the heat mode is

q(x, t ) = e(x, t ) − e + p

n
n(x, t ) , (3.17)

which we recognize as the same quantity that represents the
heat mode in a classical fluid [24,25]. This is as it should
be, since the hydrodynamic arguments that lead to this mode
are completely general. One can discern the physical meaning
of q(x, t ) by considering the fluctuation of the entropy per
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particle. From the expression (A11) for the entropy density
of a Fermi liquid we obtain

δ(s/n)(x, t ) = 1

n
δs(x, t ) − s

n2
δn(x, t )

= 1

T n

1

V

∑
p

(εp − μ − sT/n)δ f (p, x, t )

= 1

T n

1

V

∑
p

(εp − (e + p)/n)δ f (p, x, t ).

(3.18)

We thus have〈
ψ

L(0)
5 (p)|φ(p, x, t )

〉 = T n δ(s/n)(x, t ) , (3.19)

which identifies the heat mode as the fluctuation of the entropy
per particle.

To determine the right eigenvector we consider the right
eigenproblem that corresponds to Eqs. (3.8). The relevant
matrix is

L̃(1)
βγ (k, p) = A2

β〈aβ (p)|L(1)
k (p)|aγ (p)〉 (3.20)

and the longitudinal submatrix is

L̃(1)
L = ik

⎛
⎜⎜⎝

0 A2
1

A2
2

1
m 0

A2
2

A2
1

(
∂ p
∂n

)
T,V

0 A2
2

A2
5

1
cV

(
∂ p
∂T

)
N,V

0 A2
5

A2
2

T
nm

(
∂ p
∂T

)
N,V

0

⎞
⎟⎟⎠.

(3.21)
The right eigenvector that corresponds to the eigenvalue
ω

(1)
5 = 0 is

ψ
R(0)
5 (p) = a5(p) − T

〈1|1〉
(∂ p/∂T )N,V

(∂ p/∂n)T,V
a1(p)

= a5(p) + T

〈1|1〉
(

∂n

∂T

)
p,V

a1(p) (3.22a)

= a5(p) − T

n

(
∂ p

∂T

)
N,V

1

1 + F0
a1(p) . (3.22b)

Here we have used Eqs. (A.20) to arrive at Eq. (3.22b). For
the normalization of the heat mode this yields〈

ψ
L(0)
5 (p)|ψR(0)

5 (p)
〉 = T cp (3.23)

where we have used Eqs. (A20b) and (A27b).
(c) Sound modes. For the left eigenvectors associated with

the eigenvalues ω
(1)
1,2 we find, from Eq. (3.12b),

ψ
L(0)
1,2 (p) = ±c1a2(p) + 1

cV

(
∂ p

∂T

)
N,V

a5(p)

+
(

∂ p

∂n

)
T,V

a1(p) (3.24a)

= ±c1a2(p) + 1

cV

(
∂ p

∂T

)
N,V

ψ
L(0)
5 (p) + mc2

1a1(p) . (3.24b)

Here we have used Eqs. (3.16) and (3.14) to arrive at the
second line. Combining Eqs. (2.19f), (2.19h), and (3.24a)
we see that the sound modes are linear combinations of

longitudinal velocity fluctuations, Eq. (2.19b), and pressure
fluctuations δp:〈

ψ
L(0)
1,2 (p)|φ(p, x, t )

〉 = ±c1m δuL(x, t ) + δp(x, t ) . (3.25)

The corresponding right eigenvector is obtained from
Eq. (3.21) as

ψ
R(0)
1,2 (p) = ±c1a2(p) + m∗

cV m

(
∂ p

∂T

)
N,V

a5(p)

+ nm∗

m

1

〈1|1〉 a1(p) , (3.26a)

and for the normalization we obtain〈
ψ

L(0)
1,2 (p)|ψR(0)

1,2 (p)
〉 = 2nm∗c2

1 (3.26b)

where we have used Eqs. (A20b) and (3.13).
All of these results are consistent with the corresponding

ones for a classical fluid [23,26]. Note that the hydrodynamic
modes are all orthogonal to one another, as they must be:〈

ψL(0)
α (p)

∣∣ψR(0)
β (p)

〉 = δαβ

〈
ψL(0)

α (p)
∣∣ψR(0)

α (p)
〉
. (3.27)

With the zeroth order eigenmodes ψ (0) in place, Eq. (3.7) now
constitutes a well-defined integral equation that determines
the modes at O(k). The solution of this equation is not unique
since one can add an arbitrary linear combination of the aα

to ψL(1)
α and still satisfy the equation. Uniqueness is achieved

by the requirement that ψL(1)
α be an element of the orthogonal

space L⊥. We can formally write this unique solution as〈
ψL(1)

α (p)| = 〈
ψL(0)

α (p)| [L(1)
k (p) − ω(1)

α (k)
]
�−1(p)P⊥ .

(3.28a)
Here the projection operator P⊥ projects onto the orthogonal
space L⊥, and the inverse collision operator formally exists
since it acts on a vector in L⊥. The formal expression (3.28a)
should be interpreted as the solution of the integral Eq. (3.7)
made unique by the orthogonality requirement that is enforced
by P⊥. The corresponding right eigenvector at this order is∣∣ψR(1)

α (p)〉 = P⊥�−1(p)
[
L(1)

k (p − ω(1)
α (k)

]∣∣ψR(0)
α (p)〉 .

(3.28b)

3. Shear diffusion, heat diffusion, and sound
attenuation coefficients

We now consider the eigenproblem, Eq. (3.1), at second
order in k. At this order we have

− 〈
ψL(2)

α (p)| �(p) + 〈
ψL(1)

α (p)|(L(1)
k (p) − ω(1)

α (k)
)

= 〈
ψL(0)

α (p)| ω(2)
α (k, p) . (3.29)

If we multiply with |ψR(0)
α 〉 from the right and use Eq. (3.28a)

this becomes

ω(2)
α (k) = 1〈

ψ
L(0)
α (p)

∣∣ψR(0)
α (p)

〉 〈ψL(0)
α (p)|(L(1)

k (p)

− ω(1)
α (k)

)
�−1(p)

(
L(1)

k (p) − ω(1)
α (k)

)|ψR(0)
α (p)〉 .

(3.30)

a. Shear diffusion.. We again first consider the shear
modes, α = 3, 4. In this case ω

(1)
3,4 ≡ ω

(1)
⊥ = 0, and we obtain
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for the shear eigenvalue at second order

ω
(2)
⊥ = 1

nm∗
〈
ψ

(0)
⊥ (p)|L(1)

k (p)�−1(p)L(1)
k (p)|ψ (0)

⊥ (p)
〉

(3.31a)

= νk2 . (3.31b)

Here ψ
(0)
⊥ stands for either ψ

(0)
3 or ψ

(0)
4 , and ν is the

kinematic viscosity, which is given by the matrix element
in Eq. (3.31a). It is related to the shear viscosity η via the
physical mass density:

ν = η/nm . (3.32)

This is an Einstein relation that relates the kinematic viscosity
ν, which is the shear diffusion coefficient, and the transport
coefficient η via the static transverse momentum susceptibil-
ity, which is given by nm.

Using the L(1,2)
k part of the kinetic operator in the form of

Eq. (3.4d) we find

L(1)
k (p)

∣∣ψ (0)
⊥ (p)

〉 = (1 + F1/3)
∣∣i(k · vp)(k̂⊥ · p)

〉
,

(3.33a)

〈
ψ

(0)
⊥ (p)

∣∣L(1)
k (p) = 〈i(k · vp)(k̂⊥ · p)

∣∣ , (3.33b)

where k̂⊥ stands for either k̂
1
⊥ or k̂

2
⊥. Note that both of these

vectors are orthogonal to all five vectors aα (p) that span the
zero-eigenvector space L0, as they must be, so the matrix
element in Eq. (3.31a) exists. We thus have

η = −〈
(k̂⊥ · p)(k̂ · vp)

∣∣�−1(p)
∣∣(k̂ · vp)(k̂⊥ · p)

〉
. (3.34)

That is, the shear viscosity is given by a transverse stress
correlation, as expected from classical kinetic theory at the
level of the Boltzmann equation [23].

If we replace the collision operator by the BKG model col-
lision operator from Appendix C, then �−1(p) in Eq. (3.34)
effectively becomes −τ , with τ the collision time. At T = 0
we then recover the expression for the kinematic viscosity and
the shear viscosity familiar from LFL theory [3]:

ν = 1
5 (v∗

F)2τ (1 + F1/3) , (3.35a)

η = nm

5
(v∗

F)2τ (1 + F1/3) . (3.35b)

(b) Heat diffusion. Equation (3.30) for α = 5 yields

ω
(2)
5 = 1

T cp

〈
ψ

L(0)
5 (p)|L(1)

k (p)�−1(p)L(1)
k (p)|ψR(0)

5 (p)
〉

(3.36a)

= DT k2 (3.36b)

where DT is the heat diffusion coefficient. It is related to the
thermal or heat conductivity κ via

DT = κ/cp . (3.37)

Using Eq. (3.4d) to calculate the vectors in the matrix
element in Eq. (3.36b) we find

〈
ψ

L(0)
5 (p)

∣∣L(1)
k (p) = ik

〈
ψ

L(0)
5 (p)(k̂ · vp)

∣∣ , (3.38a)

L(1)
k (p)

∣∣ψR(0)
5 (p)

〉 = ik
∣∣(k̂ · vp)ψL(0)

5 (p)
〉
. (3.38b)

Note that the kinetic operator L(1)
k turns the right eigenfunc-

tion, Eq. (3.22) into a current related to the left eigenfunction,
given by Eq. (3.16). We have used Eqs. (A4) and (A.20) to
arrive at this result. For the thermal conductivity this yields

κ = −1

T

〈
ψ

L(0)
5 (p)(k̂ · vp)

∣∣�−1(p)
∣∣(k̂ · vp)ψL(0)

5 (p)
〉
. (3.39)

Again, this is consistent with the corresponding result in clas-
sical kinetic theory [23], and Eq. (3.37) is an Einstein relation
that relates the heat diffusion coefficient DT to the transport
coefficient T κ via the heat susceptibility T cp.

If we replace �(p) by the BGK model collision operator
from Appendix C and evaluate Eq. (3.39) to lowest order in
the temperature, we find

κ = cp
1
3 (v∗

F)2τ , (3.40a)

DT = 1
3 (v∗

F)2τ , (3.40b)

which is the result familiar from LFL theory [3]. Note that
at this order there is no difference between cp and cV .

(c) Sound attenuation. We finally consider Eq. (3.30) for
α = 1, 2. We have

ω
(2)
1,2 = 1

2nm∗c2
1

〈
ψ

L(0)
1,2 (p)

∣∣(L(1)
k (p) ∓ ic1k

)
�−1(p)

× (
L(1)

k (p) ∓ ic1
)∣∣ψR(0)

1,2 (p)
〉

(3.41a)

= 1
2 � k2 (3.41b)

with � the sound attenuation coefficient.
Using various identities from Appendix A, as well as

Eq. (2.10a), we can write the relevant left vector in the form

〈
ψ

L(0)
1,2 (p)

∣∣(L(1)
k (p) ∓ ic1k

) = ik

[
± c1 k̂ik̂ j

〈
σ i j (p)| + 1

cV

×
(

∂ p

∂T

)
N,V

〈ψL(0)
5 (p)(k̂ · vp)| + mc2

1〈k̂ · (vp − p/m∗)|
]

,

(3.42a)

where we have used the sound mode in the form (3.24b). The
second term in Eq. (3.42a) we recognize as proportional to the
heat current density from Eqs. (3.38) and Appendix B 2. For
the corresponding right vector we find

(
L(1)

k (p) ∓ ic1k
)∣∣ψR(0)

1,2 (p)
〉 = ik

m∗

m

[
± c1 k̂ik̂ j |σ i j (p)〉 + 1

cV

×
(

∂ p

∂T

)
N,V

|ψL(0)
5 (p)(k̂ · vp)〉 + mc2

1|k̂ · (vp − p/m∗)〉
]

.

(3.42b)

The last term on the right-hand side of both Eq. (3.42a)
and (3.42b) is the component of the longitudinal QP velocity
in the orthogonal space L⊥. It thus vanishes for the model
interaction given by Eq. (3.4d), and we drop it. The stress
tensor σ i j is given by

σ i j (p) = σ
i j
1 (p) − δi j σ2(p) (3.43a)
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where

σ
i j
1 (p) = piv j

p − δi j 1

3
p · vp , (3.43b)

and

σ2(p) = 1

cV

(
∂ p

∂T

)
N,V

εp − 1

3
p · vp

+ n

〈1|1〉 − 1

cV

(
∂ p

∂T

)
N,V

〈εp〉w . (3.43c)

Note that σ1 and σ2 are separately orthogonal to the
zero-eigenvector space. To calculate the eigenfrequencies,
Eqs. (3.41), we use the fact that the collision operator is
isotropic in momentum space. As a result, the contributions
from σ1, σ2, and the heat current do not mix, and the contribu-
tion from σ1 can be related to the shear viscosity η, Eq. (3.34).
After a calculation that makes extensive use of the identities in
Appendix A, in particular Eqs. (A.20) and (A.27), we obtain

� = 1

nm

(
4

3
η + ζ

)
+ DT

(
cp

cV
− 1

)
. (3.44a)

Here DT is the heat diffusion coefficient, Eqs. (3.37) and
(3.39), η is the shear viscosity, Eq. (3.34), and

ζ = −〈σ2(p)|�−1(p)|σ2(p)〉 (3.44b)

is a contribution to the bulk viscosity [27]. The latter vanishes
in a Fermi gas, where p = 2e/3 and hence σ2(p) = 0. It also
vanishes in the model where the QP interaction is given by
Eq. (3.4d). This can be seen by realizing that −3|σ2(p)〉 =
P⊥|p · vp〉 is the projection of p · vp onto the orthogonal space
L⊥. But from Eq. (2.10b) it follows that p · vp ∈ L0, and
hence σ2(p) = 0. However, in the case of a more general QP
interaction it will be nonzero and of O(T 4) relative to the shear
viscosity, see the remarks in Ref. [19]. These properties of ζ

are consistent with the results of Ref. [28], and the expression
for the sound attenuation, Eq. (3.44a), is the same as the one
for a classical fluid [25].

The complete result for the eigenvalues ω1,2 that describe
first sound is

ω1,2(k) = ±ic1k + 1
2 � k2 + O(k3) , (3.45)

with c1 the speed of sound from Eq. (3.13), and � the sound
attenuation coefficient from Eq. (3.44a).

B. Long-ranged case

As mentioned in the context of Eq. (2.11), in a charged
Fermi liquid the interaction parameter F0 acquires an addi-
tional contribution that is due to the Coulomb interaction and
diverges for small wave numbers as 1/k2. The main effect
of this term is to turn the soft sound mode into the massive
(in d = 3) plasmon mode. It also affects the heat diffusion
coefficient, but does not change the diffusive nature of the heat
transport.

We define the plasma frequency ωp

ω2
p = 4πne2/m , (3.46a)

and the Thomas-Fermi screening wave number pTF,

p2
TF = nmχT ω2

p . (3.46b)

Here χT = (∂n/∂μ)N,V /n2 = N0/n2(1 + F0) is the isother-
mal compressibility in the SR case. The isothermal compress-
ibility of the Coulomb system takes the form

χLR
T = χT

k2

k2 + p2
TF

. (3.47)

Note that χLR
T is wave-number dependent and vanishes at k =

0, i.e., the system is incompressible with respect to uniform
deformations.

1. Hydrodynamic modes

The linearized kinetic operator is now given by

Lk(p) = L(−1)
k (p) − �(p) + L(1)

k (p) , (3.48)

with L(1)
k from Eqs. (3.4) and

L(−1)
k (p) = 4πe2

k2

∣∣ik · vp
〉〈

1
∣∣ (3.49)

Accordingly, the left eigenproblem from Eqs. (3.8) needs to
be augmented by a matrix

L(−1)
βγ (k, p) = 〈aβ (p)|L(−1)

k (p)|aγ (p)〉A2
γ (3.50)

whose only nonzero element is L(−1)
21 (k, p) = i ω2

p m/k. As a
result, the matrix LL for the longitudinal modes acquires a
contribution of O(1/k), and instead of Eq. (3.12b) we have

L(−1)
L +L(1)

L =ik

⎛
⎜⎝

0 1/m 0(
∂ p
∂n

)
T,V

+ mω2
p

k2 0 1
cV

(
∂ p
∂T

)
N,V

0 T
nm

(
∂ p
∂T

)
N,V

0

⎞
⎟⎠.

(3.51)
This again represents the linearized Euler equations, albeit in
the presence of a long-ranged interaction. The eigenvalue ω5,
which corresponds to the heat mode, is still zero at this level.
However, the eigenvalues ω1,2 are now given by

ω2
1,2 = −(

ω2
p + c2

1k2
)

(3.52a)

with c1 the speed of first sound in the SR case, Eq. (3.13).
They thus have a contribution at O(k0),

ω
(0)
1,2 = ±iωp , (3.52b)

and one at O(k2),

ω
(2)
1,2 = ±i k2 c2

1/2ωp , (3.52c)

as well as contributions at higher order. This reflects the fact
that the soft first-sound modes have been turned into massive
plasmon modes by the long-ranged interaction [29].

(a) Shear modes. The shear modes are unaffected by the
long-ranged interaction and are still given by Eqs. (3.15).

(b) Heat mode. Similarly, the heat mode, i.e., the left
eigenvector associated with the eigenvalue ω5 = 0, is unaf-
fected and still given by Eq. (3.16). However, the correspond-
ing right eigenvector, which we obtain from the modification
of Eq. (3.21) that corresponds to Eq. (3.51), now has one con-
tribution at O(k0) and another at O(k2), as can be seen from
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Eq. (3.22b) in conjunction with Eq. (2.11). The components
of the eigenvectors in the zero eigenvector space L0 thus are

ψ
L(0)
5 (p) = a5(p) − T

n

(
∂ p

∂T

)
N,V

a1(p) , (3.53a)

ψ
R(0)
5 (p) = a5(p) , (3.53b)

ψ
R(2)
5 (p) = −k2 T (∂ p/∂T )N,V

m ω2
p 〈1|1〉 a1(p). (3.53c)

Accordingly, the normalization of the heat mode to lowest
order in k is given by cV rather then cp:〈

ψ
L(0)
5 (p)|ψR(0)

5 (p)
〉 = T cV . (3.54)

(c) Plasmon modes. The plasmon modes are given by the
left eigenvectors of the matrix in Eq. (3.51) for the eigenvalues
ω1,2. If we normalize the modes such that the generalization
of Eq. (3.26b) is finite at k = 0, we have, up to O(k2),

ψ
L(−1)
1,2 (p) = 1

k
m ω2

p a1(p), (3.55a)

ψ
L(0)
1,2 (p) = ±ωp a2(p), (3.55b)

ψ
L(1)
1,2 (p) = k

[
1

nχT
a1(p) + 1

cV

(
∂ p

∂T

)
N,V

a5(p)

]
.

(3.55c)

ψ
L(2)
1,2 (p) = ±k2 c2

1

2ωp
a2(p) . (3.55d)

For the corresponding right eigenvector one finds

ψ
R(0)
1,2 (p) = ±ωp a2(p), (3.56a)

ψ
R(1)
1,2 (p) = k

m∗

m

[
n

〈1|1〉 a1(p) + 1

cV

(
∂ p

∂T

)
N,V

a5(p)

]
,

(3.56b)

ψ
R(2)
1,2 (p) = ±k2 c2

1

2ωp
a2(p) . (3.56c)

The normalization now is〈
ψL

1,2(p)
∣∣ψR

1,2(p)
〉 = 2nm∗ω2

p + O(k2) . (3.57)

This completes the determination of the components of the
hydrodynamic modes that are elements of L0. In contrast to
the SR case they do not all occur at the same order in the k
expansion. Note that all of the results so far can be obtained
from those for the SR case, Secs. III A 1 and III A 2, by using
the substitution (2.11) for the Fermi-liquid parameter F0.

2. Transport coefficients, and plasmon damping and dispersion

(a) Shear diffusion. As we have seen, the shear modes are
unaffected by the Coulomb interaction. Accordingly, the shear
viscosity and the shear diffusion coefficient are still given by
Eqs. (3.34) and (3.32), respectively.

(b) Heat diffusion. Consider the left eigenproblem,
Eq. (3.1), for α = 5 with the kinetic operator given by
Eq. (3.48). The parts of the eigenfunctions that are elements

of the zero eigenvector space are given by Eqs. (3.53).
Expanding in powers of k as in Sec. III A 1 we have at lowest
order 〈

ψ
L(0)
5 (p)

∣∣ L(−1)
k (p) = 0 , (3.58a)

which holds since the angular integration vanishes. At O(k0)
we have

−〈
ψ

L(0)
5 (p)

∣∣�(p) + 〈
ψ

L(1)
5 (p)

∣∣ L(−1)
k (p) = 0 . (3.58b)

Here the first term on the left-hand side vanishes due to the
conservation laws. The vector 〈ψL(1)

5 (p)| is orthogonal to the
zero eigenvector space, whereas the vector |k · vp〉 in the oper-
ator L(−1)

k is proportional to the zero eigenvector |a2(p)〉 due to
Eq. (2.10a). Hence this condition is also fulfilled. Anticipating
that the first nonzero contribution to the eigenvalue appears
only at O(k2), at O(k) we have

〈ψL(0)
5 (p)| L(1)

k (p) − 〈ψL(1)
5 (p)| �(p)

+ 〈ψL(2)
5 (p)| L(−1)

k (p) = 0 . (3.58c)

The last term on the left-hand side again vanishes since
ψ

L(2)
5 is orthogonal to the zero eigenvector space, and we

obtain a formal expression for ψ
L(1)
5 in analogy to Eq. (3.28a):

〈
ψ

L(1)
5 (p)| = 〈ψL(0)

5 (p)| L(1)
k (p) �−1(p)P⊥

= ik
〈
ψ

L(0)
5 (p)(k̂ · vp)| �−1(p)P⊥ . (3.59a)

Analogous arguments for the right eigenproblem yield∣∣ψR(1)
5 (p)

〉 = P⊥�−1
(
L(−1)

k (p)
∣∣ψR(2)

5 (p)
〉 + L(1)

k (p)

× ∣∣ψR(0)
5 (p)

〉)=ik P⊥�−1(p)
∣∣(k̂ · vp)ψL(0)

5 (p)
〉
.

(3.59b)

Note that linear combination of vectors on the right-hand
side of Eq. (3.59b) produces the same result for ψ

R(1)
5 as in the

SR case, see Eqs. (3.38).
In order to determine the eigenvalue at O(k2) we multiply

Eq. (3.1) from the right with |ψR
5 (p)〉 and expand order by

order in powers of k. The terms at O(k−1) and O(k0) vanish
due to a combination of L(−1)

k acting on the orthogonal space
and the conservation laws. At O(k) we find

ω
(1)
5 (k)

〈
ψ

L(0)
5 (p)|ψR(0)

5 (p)
〉 = 〈

ψ
L(0)
5 (p)|L(1)

k (p)|ψR(0)
5 (p)

〉
,

(3.60)
which vanishes due to the angular integration, so

ω
(1)
5 (k) = 0 (3.61)

as expected. At O(k2) we find

ω
(2)
5 (k)

〈
ψ

L(0)
5 (p)|ψR(0)

5 (p)
〉 = 〈

ψ
L(0)
5 (p)|L(1)

k (p)|ψR(1)
5 (p)

〉
− 〈

ψ
L(1)
5 (p)|�(p)|ψR(1)

5 (p)
〉 + 〈ψL(1)

5 (p)

× |L(1)
k (p)|ψR(0)

5 (p)〉 . (3.62a)

The first two terms on the right-hand side cancel by
Eq. (3.59a). To evaluate the third term we note that
L(1)

k (p)|ψR(0)
5 (p)〉 = ik|(k̂ · p)a5(p)〉 has a component in the

zero eigenvector space that is eliminated by the projection
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operator in Eq. (3.59a). This yields

ω
(2)
5 (k)

〈
ψ

L(0)
5 (p)

∣∣ψR(0)
5 (p)

〉 = −k2
〈
(k̂ · p)ψL(0)

5 (p)
∣∣�−1(p)

× ∣∣(k̂ · p)ψL(0)
5 (p)

〉
. (3.62b)

Using the normalization (3.54) we finally obtain

ω
(2)
5 (k) = DT k2 , (3.62c)

with the heat diffusion coefficient

DT = κ/cV (3.63)

The heat conductivity κ is given by the same expression as in
the SR case, Eq. (3.39), but the susceptibility in the Einstein
relation (3.63) is now cV instead of cp.

(c) Plasmon damping and dispersion. An analogous anal-
ysis for the α = 1, 2 channels confirms Eq. (3.52b) for the
eigenvalues at O(k0). The eigenvalues at this order combine
with the collision operator, and it is convenient to define

�̃1,2 = � + ω
(0)
1,2 . (3.64)

At O(k) we find contributions δψ
L,R(1)
1,2 in the orthogonal space

L⊥ that need to be added to Eqs. (3.55c) and (3.56b). These
are

〈
δψ

L(1)
1,2 (p)

∣∣ = 〈
ψ

L(0)
1,2 (p)

∣∣ L(1)
k (p) �̃−1

1,2 P⊥ ,

(3.65a)

∣∣δψR(1)
1,2 (p)

〉 = P⊥�̃−1L(1)
k (p)

∣∣ψR(0)
1,2 (p)

〉
. (3.65b)

These expressions need to be interpreted as the solutions
of the underlying integral equations, with uniqueness enforced
by the projection operator P⊥, see the comments in the context
of Eq. (3.28a). There is no contribution to the eigenvalues at
this order, but at O(k2) one finds a contribution in addition to
Eq. (3.52c):

δω
(2)
1,2 = −k2 ω2

p

2nm

〈
k̂ik̂ jσ

i j (p)
∣∣�̃−1

1,2

∣∣k̂l k̂mσ lm(p)
〉

(3.66a)

= −k2 ω2
p

2nm

4

3

〈
(k̂ · p)(k̂⊥ · vp)

∣∣�̃−1
1,2

∣∣(k̂ · p)(k̂⊥ · vp)
〉
(3.66b)

with σ i j (p) from Eq. (3.43a). In writing Eq. (3.66b) we have
used the fact that the contribution σ2 to the stress tensor,
Eq. (3.43c), vanishes for the model QP interaction we are
using, see the comment after Eq. (3.44b).

This contribution to the eigenfrequency has the structure
of a transport coefficient; it can be interpreted as a high-
frequency shear viscosity, see Appendix E in Paper II. It
has both a real part and an imaginary part, so it contributes
both to the plasmon dispersion and the plasmon damping. We

emphasize that these results can not be obtained from the SR
case by means of a simple substitution. In a low-temperature
expansion one can take advantage of the fact that the collision
operator scales as some positive power of the temperature and
separate the real and imaginary parts of δω

(2)
1,2,

ω1,2(k) = ±i�p(k) + 1
2 �p k2 + O(k4) . (3.67a)

Here

�p(k) = ωp

√
1 + c2

1k2/ω2
p + 2

3

1

nm∗ωp
〈(k̂ · p)(k̂⊥ · vp)

|1 + O(�2)|(k̂ · p)(k̂⊥ · vp)〉 k2 + O(k4) (3.67b)

is the wave-number dependent plasmon frequency, and

�p = −1

nm∗ω2
p

4

3
〈(k̂ · p)(k̂⊥ · vp)|� + O(�3)|(k̂ · p)(k̂⊥ · vp)〉

(3.67c)
is the plasmon damping coefficient. Note that the leading
contribution to the plasmon damping is linear in � ∼ 1/τ (T ),
with τ (T ) a relaxation time, and thus decreases with de-
creasing temperature, whereas the first-sound damping is
proportional to τ [see Eqs. (3.44) and (3.34), and thus in-
creases with decreasing temperature. A related observation is
that the plasmon damping coefficient in the low-temperature
limit is no longer given by the solution of an integral equation,
in contrast to the SR case, see Eqs. (3.41). If we use the model
BGK operator from Appendix C we find, to O(k2) and to
lowest order in the temperature,

�p(k) = ωp + 1

2ωp

[
c2

1 + 4

15
(v∗

F)2

]
k2 (3.68a)

�p = 4

15

(
v∗

F

ωp

)2 1

τ
. (3.68b)

C. The fate of the hydrodynamic modes
in the low-temperature limit

As we have seen, the hydrodynamic modes in a degenerate
Fermi liquid are essentially the same as those in a classical
fluid. With decreasing temperature the hydrodynamic regime
shrinks; it is confined to wave numbers smaller than

q∗ ≈ 1/vFτ (T ) , (3.69)

where 1/τ (T ) is a generic relaxation rate that vanishes as
T → 0. At low temperatures for fixed wave number, or at
larger wave numbers for fixed temperature, the system enters
a different regime where collisions between QPs are no longer
dominating the physics and the soft modes are of a very differ-
ent nature. It is sometimes said that the hydrodynamic modes
“cross over” to the collisionless ones. This is misleading for
various reasons. First, the hydrodynamic modes to not evolve
into something else; rather, they disappear since the regime
that supports their existence shrinks to zero. Second, there is
no one-to-one correspondence between soft modes in the two
regimes. The number of soft modes in the collisionless regime
is not limited by the number of conservation laws, and in some
sense are infinitely many of them, as we will discuss next.

The above discussion pertains to the five hydrodynamic
modes in the SR case, and to the modes that remain soft in
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the LR case. The plasmon is qualitatively different: It is not
a hydrodynamic mode, but rather a consequence of gauge
invariance [30]. Therefore, it exists, and actually becomes
better defined, even in the absence of collisions. The plasmon
excitation in the hydrodynamic regime is thus identical to the
one in the collisionless regime, as we will see in Sec. IV B
below.

IV. SOLUTIONS OF THE KINETIC EQUATIONS II:
COLLISIONLESS REGIME

So far we have discussed the hydrodynamic regime, where
the collision operator � dominates the kinetic operator Lk.
As we have seen, the soft modes in that case are controlled
by the five conservation laws. The soft modes are the zero
eigenfunctions that correspond to the five zero eigenvalues
of �, and their long-wavelength properties are given by the
operator L(1)

k , Eq. (3.4a), which perturbs the zero eigenvalues.
We now turn to the collisionless regime, which is defined
by the linearized kinetic operator L(1)

k dominating over the
collision operator. This realized for wave numbers larger than
q∗ in Eq. (3.69). At T = 0, where there are no collisions,
the collisionless regime extends all the way to zero wave
number. This regime has been discussed extensively in the
context of He-3 [3,31], and we will focus on aspects that are
either less well known or important for other applications.
In Appendix D we briefly discuss the relation, or rather lack
thereof, between the zero modes in the collisionless regime
and the hydrodynamic modes, in order to demonstrate the
different physical origins of these respective excitations.

A. Short-ranged case

Consider the kinetic equation (2.16a) at T = 0, where
�(p) = 0. Since the kinetic operator Lk is now linear in k,
the entire distribution function φ is soft. Consequently, all of
its moments with respect to the momentum p are soft, and
in this sense we have an infinite number of soft modes; see
Sec. V for an elaboration. For simplicity, let us first consider
the case where the only nonzero Landau parameter is F0. Then
Eq. (2.16a) yields

φ(p, k, z) = F0

N0

p̂ · k̂

ζ − p̂ · k̂
δn(k, z) + i φ(p, k, t = 0)

z − v∗
Fk ( p̂ · k̂)

,

(4.1)
where ζ = z/v∗

Fk. By summing over p we obtain a linear
equation for the density fluctuation δn:

δn(k, z)[1 − F0I1(ζ )] = 1

V

∑
p

w(p)
i φ(p, k, t = 0)

z − v∗
Fk ( p̂ · k̂)

(4.2a)

where

I1(ζ ) = 1

2

∫ 1

−1
dη

η

ζ − η
= −1 − ζ

2
log

(
ζ − 1

ζ + 1

)
. (4.2b)

Substituting this expression back into Eq. (4.1) yields an
explicit expression for φ. We see that all of the soft modes are
characterized by a propagator

P(k, z) = P(ζ ) = 1

1 − F0I1(ζ )
− 1 . (4.3)

FIG. 2. Spectrum P′′
L (solid red) and reactive part P′

L (dashed
green) of the longitudinal propagator, Eq. (4.6a), for F0 = F1 = 5.
The spectrum consists of the continuous unparticle contribution in
the center and the two zero-sound delta-function contributions. The
transverse propagator, Eq. (4.6b), is qualitatively the same except that
the zero-sound contributions to the spectrum exist only if F1 > 6. For
either propagator the entire spectrum is scale invariant.

Here the constant subtraction term serves to make P a proper
causal function that vanishes for ζ → ∞. The spectrum of
P, P′′(k, ω) = Im P(k, ω + i0), consists of a continuous part
and, in addition, delta-function contributions that correspond
to zeros of the denominator. Two such zeros exist for any
F0 > 0; they are the well known zero-sound modes [2]. The
resonance frequencies (which correspond to −i times the per-
turbed zero eigenvalues ω in Sec. III) are

z = ±c0k , (4.4a)

where the speed of zero sound is given by

c0 = σ0v
∗
F , (4.4b)

with σ0 the solution of

I1(σ0) = 1/F0 , (4.4c)

which exists and is unique for all F0 > 0.
If we add the Landau parameter F1, we obtain an expres-

sion for φ in terms of the density fluctuation δn and the
velocity fluctuation δu that is a generalization of Eq. (4.1):

φ(p, k, z) = F0

N0

p̂ · k̂

ζ − p̂ · k̂
δn(k, z) + F1

N0

n

v∗
F

× p̂ · k̂

ζ − p̂ · k̂
p̂ · δu(k, z) + i φ(p, k, t = 0)

z − v∗
Fk p̂ · k̂

.

(4.5)

Using this expression to calculate δn and δu via
Eqs. (2.17a) and (2.17b) we obtain a 2 × 2 system for δn and
δuL whose determinant generalizes the propagator P to

PL(ζ ) = 1

1 + F1/3 − [F0(1 + F1/3) + F1ζ 2]I1(ζ )
− 1 .

(4.6a)
The spectrum is qualitatively the same as for F1 = 0. In
addition, the equation for the transverse velocity yields a
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transverse propagator

PT (ζ ) = 1

1 − 1
2 F1

[
1
3 − (ζ 2 − 1)I1(ζ )

] . (4.6b)

The spectrum of PT also has a continuous part, and for F1 >

6 it contains, in addition, transverse zero-sound modes. For a
comparison between the latter and the hydrodynamic shear
diffusion modes, see Appendix D.

These results demonstrate that the soft modes in the col-
lisionless regime are qualitatively different from those in the
hydrodynamic regime: There always is a continuous part of
the spectrum, which represents a continuum of soft modes that
obey a linear scaling of the frequency with the wave number.
This continuous part is not particle-like and has no analog in
the hydrodynamic regime; in a particle-physics context such

continuous scale invariant excitations have been dubbed “un-
particles” [7]. In addition, there are particle-like zero-sound
modes that are unrelated to conservation laws; how many
of these there are depends on the QP interaction. Figure 2
demonstrates these features. We emphasize that the contin-
uum and the zero-sound poles are part of the same spectrum,
but the continuum is the more fundamental part in the sense
that it does not depend on the values of the Landau parameters
and exists even in a noninteracting Fermi system.

So far we considered only the Landau parameters F0 and
F1. If one keeps higher terms in the expansion of F (p, p′)
in Legendre polynomials, Eq. (2.8), additional zero-sound
modes can appear. To demonstrate this, we consider a model
that keeps the Landau parameter F2 and repeat the above
analysis. The longitudinal propagator then becomes

PL(ζ ) = 1(
1 + 1

3 F1
)[

1 − 1
20 (1 + 5F0)F2

] + 3
4 F2ζ 2 − d (ζ )I1(ζ )

− 1 , (4.7a)

where

d (ζ ) =
(

1 + 1

3
F1

)[
F0 + 1

4
(1 + 9

5
F0)F2

]
+

[
F1 − 3

2

(
1 + 1

2
F0(1 + 1

3
F1) + 1

30
F1

)
F2

]
ζ 2 + 9

4
F2ζ

4 . (4.7b)

An inspection shows that the denominator of PL has one
zero that is continuously related to the zero-sound pole in
Eq. (4.6a). It has a second zero, closer to the continuous part of
the spectrum, provided the following conditions are fulfilled:

F0 >
10

3

1 + F1/30

1 + F1/3
(4.8a)

and

F2 >
30F0

(
1 + 1

3 F1
)

9F0
(
1 + 1

3 F1
) − F1 − 30

. (4.8b)

While the existence of the additional collective mode re-
quires a rather large positive value of F2, it illustrates again
that the zero-sound modes are governed by the QP interaction
rather than by conservation laws.

At a low nonzero temperature the collision operator gives
all of the soft modes in the collisionless regime a mass. For
the zero-sound modes this takes the form of a damping term
that broadens the δ function in the spectrum of the propagator.
For an explicit example we use the BGK model collision oper-
ator from Appendix C, with τ (T ) the temperature-dependent
relaxation time. The infinitely many soft modes now couple,
and the kinetic equation is no longer exactly soluble even if
one keeps only the Landau parameter F0. In an approximation
that keeps only the density and the longitudinal momentum,
and ignores the coupling to the modes at higher angular mo-
menta, we find for the resonance frequencies that generalize
Eq. (4.4a) to linear order in 1/τ

z = ±c0k − iγ , (4.9a)

with c0 from Eq. (4.4b) and

γ = 1

τ (T )

[
1 − 1 + F0 + 3σ 2

0

F 2
0 σ0|I ′

1(σ0)|
]

, (4.9b)

which is positive for all F0 > 0. Here I ′
1 is the derivative of

the function I1 from Eq. (4.2b). Note that the damping coeffi-
cient γ is independent of the wave number, i.e., the mode is
massive for all T > 0. γ vanishes at T = 0, and increases with
increasing temperature. This is qualitatively different from the
damping of the first-sound mode in the hydrodynamic regime,
Eq. (3.41a), which is proportional to k2 and increases with
decreasing temperature.

The damping of other modes can be analyzed analogously.
In particular, the continuum unparticle excitation acquires a
mass that is proportional to 1/τ .

B. Long-ranged case

In the collisionless regime we can deduce the spectrum
in the LR case by substituting Eq. (2.11) into the results
for the SR case. We illustrate the result by performing this
substitution in the propagator P from Eq. (4.3), which now
reads

P(k, z) = 1

1 − [F0 + p2
TF(1 + F0)/k2]I1(ζ )

− 1 . (4.10)

The continuous part of the spectrum is qualitatively the same
as in the SR case, but instead of the zero-sound pole we now
have a plasmon pole at frequency

z = ±ωp + O(k2). (4.11)

The continuous excitation still displays scale invariance, but
the plasmon does not. This is illustrated in Fig. 3, which shows
the spectrum for two difference wave numbers.

The dispersion of the plasmon and its damping can be
obtained by keeping terms to O(k2). A calculation analogous
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FIG. 3. Spectrum of the propagator in Eq. (4.10) for F0 = 5
and k = 0.2 pTF (red) and k = 0.05 pTF (blue), respectively, showing
the continuous unparticle contribution and the plasmon poles. The
continuum is still scale invariant, with the frequency scaling linearly
with the wave number, whereas the plasmon poles are not and depend
only weakly on the wave number.

to the one that leads to Eq. (4.9b) yields

z = ±ωp

[
1 + 1

2

(
3

5
+ 1

3
F0

)(
v∗

F

ωp

)2

k2

]
− i

2
�p k2

+ O(k4) , (4.12a)

with

�p = 4

15
(v∗

F/ωp)2 1

τ (T )
(4.12b)

the plasmon damping coefficient. This is the same result as in
the hydrodynamic regime, see Eqs. (3.68).

We emphasize that the only zero-sound mode that becomes
massive in the LR case is the one that is present even with
F0 the only nonzero Landau parameter. For instance, the ad-
ditional soft mode discussed in connection with Eqs. (4.7)
remains soft, so does the transverse zero-sound mode de-
scribed by Eq. (4.6b), and so does the continuous unparticle
excitation.

C. The fate of the collisionless modes
with increasing temperature

The collisionless regime is complementary to the hydro-
dynamic one, it is confined to wave numbers larger than
q∗ defined in Eq. (3.69). The collisionless soft modes are
truly soft only at T = 0; for any nonzero temperature they
acquire a damping term that does not vanish in the limit of
zero wave number, but still is small for low temperatures.
With increasing temperature the relaxation time decreases,
and the collisionless regime gets pushed to larger wave num-
bers and frequencies, while the hydrodynamic regime grows.
At the same time, the damping of the modes increases and
they eventually become overdamped, while the hydrodynamic
modes emerge at low frequencies and wave numbers and their
damping decreases.

As already mentioned in Sec. III C, these observations do
not apply to the plasmon, which is governed by gauge invari-

ance and therefore is the same in both the hydrodynamic and
the collisionless regimes, see Eqs. (3.68) and (4.12).

V. DISCUSSION AND CONCLUSION

We conclude with a summary and discussion of some of
the salient points of the paper. We also add some remarks
regarding points that were mentioned only briefly, or not at
all, in the main text.

(1) We have addressed two very general questions regard-
ing Fermi liquids: First, we have shown that LFL theory,
which is often thought of as being valid only at low tempera-
tures, is fully consistent with Navier-Stokes hydrodynamics
irrespective of the temperature. We have done so by using
kinetic theory to explicitly solve the kinetic equation for the
hydrodynamic modes, by means of the method of perturbed
zero eigenvalues of the collision operator. Alternatively, one
can derive the Navier-Stokes equations for the LFL. This
program will be carried out in Paper II. For our explicit so-
lution we have used the model interaction given by Eq. (2.8),
which implies (2.10a). However, we have used Eq. (2.10a)
only twice: Once to eliminate the additional term on the right-
hand-side of Eq. (3.42a), and once to ascertain that the model
kinetic operator L(1)

k (p) is consistent with particle number
conservation. This, and the general structure of the theory,
strongly suggests that an analogous analysis is possible for a
completely general QP interaction. Carrying out this program
will lead to a qualitatively new effect, namely, a component of
the QP velocity in the orthogonal space L⊥. That is, physical
particles and quasiparticles will have the same density, but
different currents. The resulting hydrodynamic theory will
have a structure that is different from that of a simple classical
fluid and share some (but not all) aspects with a classical
binary mixture. Among the physical consequences will be a
nonzero bulk viscosity, and an additional contribution to the
sound attenuation.

It should be mentioned that the fact that LFL theory is inter-
nally consistent, and consistent with general hydrodynamics,
at all T does not imply that it is exact. For instance, nonlo-
calities in the collision operator (i.e., different single-particle
distributions occurring at different points in real space) will
lead to contributions at O(T 2) that are not included in LFL
theory.

Second, we have discussed the absence of a relation
between the soft modes in the hydrodynamic and colli-
sion regimes, respectively. With decreasing temperature the
damping of the hydrodynamic modes increases and the hy-
drodynamic regime shrinks until it disappears at T = 0. At
the same time, a completely unrelated family of soft modes
emerges in the collisionless regime. Their number is governed
by the QP interaction rather than by conservation laws, their
damping decreases with decreasing temperature, and they are
truly soft only at T = 0. We have demonstrated this explicitly
by means of a model calculation of the shear modes in Ap-
pendix D. Tables I and II summarizes the soft modes, as well
as the plasmon modes, in both regimes.

The soft modes in the collisionless regime fall into three
distinct classes. The first class consists of the modes that are
related to conserved quantities. These are the two longitudinal
� = 0, 1 zero-sound modes, and the two transverse zero-sound
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TABLE I. Modes in the hydrodynamic regime.

Short ranged Long ranged

Shear modes (2) Diffusive Diffusive
z ∼ −iD⊥k2 z ∼ −iD⊥k2

Heat mode (1) Diffusive Diffusive
z ∼ −iDT k2 z ∼ −iDT k2

First sound (2) Propagating None
z ∼ c1k − ivFk2τ

Plasmon (2) None Propagating
z ∼ ωp − i( vFk

ωp
)2 1

τ

modes. Their hydrodynamic counterparts are the two first-
sound modes and the two shear diffusion modes, respectively.
(The heat diffusion mode has no analog at T = 0.) The second
class consists of propagating zero modes for higher angular
momenta. They have no analogs in the hydrodynamic regime,
and their existence depends on the strength of the QP inter-
action. The third class is represented by the continuum or
unparticle mode, which also has no hydrodynamic analog. It
has important consequences for a variety of quantum phase
transitions, see Ref. [8] and the last paragraph of point (2) be-
low, and therefore is in some sense physically more important
than the propagating modes.

We have also discussed the special role played by the
plasmon in a charged Fermi liquid, which is not a hydrody-
namic mode and extends through both the collisionless and the
hydrodynamic regimes for reasons related to gauge invariance
[30]. We have discussed 3-d systems where the plasmon is
massive and its damping is independent of the wave number
in the homogeneous limit, see Eqs. (3.68) and (4.12). This
changes in 2-d systems, where both the plasmon frequency
and the damping go to zero as k → 0; the former as

√
k and

the latter as k2 [32].
We also note that “Fermi liquid”, in our context, can be

interpreted rather broadly: We have not specified the temper-
ature dependence of the relaxation rate 1/τ , and we have not

TABLE II. Modes in the collisionless regime.

Short ranged Long ranged

Unparticle (1) Continuous function Continuous function
of z/vFk of z/vFk

� = 0, 1 Propagating None
longitudinal z ∼ c0k − i/τ
zero sound (2)
Plasmon (2) None Propagating

z ∼ ωp − i( vFk
ωp

)2 1
τ

� = 1 Propagating Propagating
transverse z ∼ c0k − i/τ a z ∼ c0k − i/τ a

zero sound (2)
� � 2 zero Propagating Propagating
sound (many) z ∼ c0k − i/τ a z ∼ c0k − i/τ a

aThe zero sound velocities and the damping coefficients are different
for different modes. However, they all are proportional to those of
the longitudinal zero-sound mode given in Eqs. (4.4b) and (4.9b),
respectively.

made use of the concept of “well-defined quasiparticles”. For
instance, our analysis of the hydrodynamic regime applies to
what is known as a marginal Fermi liquid [33].

(2) The number of soft modes in the collisionless regime
(or, strictly speaking, at T = 0), is to some extent a matter
of interpretation. In the p − k momentum space, sometimes
referred to as μ-space in kinetic theory [23], there is only one
soft mode, viz., the fluctuation φ of the single-particle dis-
tribution function, whose denominator is given by z − p · k,
see Eq. (4.1). However, as a result of this denominator all of
the moments of φ with respect to p are soft, and in this sense
there is an infinite number of soft modes. This is true in a clean
Fermi system; in the presence of quenched disorder only the
zeroth moment with respect to p is soft, see Refs. [34–38], and
Ref. [39] for a review.

It should be emphasized that the spectrum of φ has
a continuous part and, in general, δ-function contributions
describing zero-sound modes that are both part of the same
spectrum (this supports the single-soft mode interpretation).
Our results are consistent with a quantum-field-theoretic anal-
ysis in Ref. [40], which kept only the equivalent of the Landau
parameter F0. It is interesting that kinetic theory, which uses
quantum mechanics only in the form of the equilibrium Fermi
distribution, and the field theory are equivalent. Following
Ref. [7], we have referred to the continuous part of the
spectrum as the unparticle excitation, whereas the zero-sound
poles represent particle-like excitations. We note that the
unparticle part of the spectrum, while an exotic idea in a high-
energy context, has been known since the earliest days of the
quantum theory of condensed matter, where it is usually re-
ferred to as the particle-hole continuum. For instance, it gives
the Lindhard function [41] its characteristic scale-invariant
structure. Neither the continuum nor the zero-sound poles are
related to conservation laws, and all of them acquire a mass
at any nonzero temperature. Some remarks to the contrary
related to zero sound in Ref. [40] were incorrect.

We have discussed only spinless Fermi liquids for sim-
plicity’s sake. It is well known how to incorporate spin in LFL
theory [2,3], and the generalization in the current context is
straightforward. The spin channel again supports the unparti-
cle continuum, and in addition spin-zero-sound modes whose
existence and number depends on the values of the Landau
parameters.

The importance of the unparticle continuum is often
downplayed in favor of the particle-like collective zero-sound
excitations. This ignores the fact that it has dramatic physical
consequences. For instance, in the spin channel (which we
have not explicitly discussed) it is responsible for a non-
analytic wave-number dependence of the spin susceptibility
[42], and for the ferromagnetic quantum phase transition to
be generically a first-order transition [8,43].

(3) The origin and interpretation of the soft modes in the
collisionless regime has been the subject of several studies.
The scale invariant unparticle continuum mode has been in-
terpreted as the Goldstone mode of a spontaneously broken
rotational symmetry in Matsubara frequency space; roughly
speaking, a broken symmetry between retarded and advanced
degrees of freedom [40]. This is in analogy to Wegner’s in-
terpretation of the diffusive soft mode in disordered Fermi
systems known as the “diffusion” [34]. Reference [44] has
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interpreted it as a Goldstone mode related to a spontaneously
broken Lorentz boost invariance. The relation between these
two interpretations is not clear.

(4) We have discussed clean fermion systems, but im-
purity scattering can easily be taken into account; see
Appendix C for the relevant collision integral. It qualitatively
changes the hydrodynamic modes: fermion momentum is no
longer conserved, and the density response is diffusive. In
bulk metals the clean hydrodynamic behavior we have dis-
cussed is very difficult to realize, since impurity scattering
tends to dominate even in the cleanest samples. In two-
dimensional systems the ultraclean hydrodynamic regime,
where momentum is conserved, is easier to realize [32,45].
Also, it recently has become possible to realize clean Fermi
liquids in cold-atom systems [9–14].

(5) We have discussed LFL theory at a level analogous to
the linearized Navier-Stokes equations of classical hydrody-
namics. An interesting problem is the generalization of this
treatment by adding a fluctuating Langevin force. This will
be analogous to the fluctuating hydrodynamics description
of classical fluids [1] and allow for the calculation of time-
correlation functions in both equilibrium and nonequilibrium
situations. This problem is considered in Paper II [16].
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APPENDIX A: THERMODYNAMIC RELATIONS

Here we list and explain various thermodynamic relations
that were used in Secs. II and III. We start with the normaliza-
tion factors in Eqs. (2.21).

1. Normalizations of the zero eigenvectors

To determine A1, consider the variation δ feq(p) of the equi-
librium distribution function due to a homogeneous variation
δμ of the chemical potential at fixed T and V :

δ feq(p)
∣∣∣
T,V

= −w(p)(δεp − δμ) . (A1)

δεp is related to δ feq by Eq. (2.6), and by symmetry only the
Landau parameter F0 contributes,

δεp = 1

N0
F0 δn . (A2)

For the variation of the number density, Eq. (2.1b), we thus
have

δn = N0

1 + F0
δμ (A3)

with N0 = 〈1|1〉 from Eq. (2.4c). Hence [3,4],
(

∂n

∂μ

)
T,V

= 〈1|1〉
1 + F0

, (A4)

which is the second equality in Eq. (2.21b). In the limit of low
temperature,

〈1|1〉 = N∗
F + O(T 2) . (A5)

The same line of reasoning for a variation of feq under a
variation δT at fixed μ and V yields(

∂n

∂T

)
μ,V

= 1

1 + F0

1

T
〈ξp|1〉 . (A6)

Combining this with Eq. (A4) we obtain

〈ξp〉w = 〈εp〉w − μ = −T (∂μ/∂T )N,V . (A7)

From Eq. (A7) we can obtain the normalization A3 as follows.
Consider a variation of the energy density, Eq. (2.1a). For
fixed number density n we have δεp = 0, and hence

δ feq(p)|N,V = w(p)

(
δμ + 1

T
ξp δT

)
, (A8a)

and therefore, from Eq. (2.1a),

δe = 〈εp|1〉δμ + 1

T
〈εp|ξp〉δT . (A8b)

For the specific heat at constant volume this yields

T cV = T

(
∂e

∂T

)
V,N

= T 〈εp|1〉
(

∂μ

∂T

)
V,N

+ 〈εp|ξp〉 . (A9)

By using Eq. (A7) we obtain

T cV = 〈εp|εp〉 − 〈εp〉2
w〈1|1〉 = 〈a5(p)|a5(p)〉 (A10)

with a5 from Eq. (2.20e). This is the second equality in
Eq. (2.21d). Alternatively, we obtain the same result by start-
ing with the entropy density of a Fermi liquid in the form [2,3]

s = −1

V

∑
p

[
feq ln feq + (1 − feq) ln(1 − feq)

]
, (A11)

using Eq. (A8a), and calculating the specific heat as cv =
T (∂s/∂T )V,N .

For A2, we need the same expression as for 〈1|1〉 with an
additional p2 in the integrand. At T = 0, the p2 gets replaced
by p2

F, and by using Eq. (A5) we have 〈p|p〉 = p2
FN∗

F + O(T 2).
Due to the f-sum rule this remains valid in general, i.e., there
are no explicit temperature corrections [4], and we have

〈p|p〉 = p2
FN∗

F = 3m∗n . (A12)

We finally list some of the above quantities explicitly in the
low-temperature limit. The normalizations are, in addition to
Eq. (A12), which is valid at all T ,

〈1|1〉 = N∗
F + O(T 2) , (A13a)

〈a5(p)|a5(p)〉 = cvT = sT + O(T 4)

= π2

3
N∗

F T 2 + O(T 4) . (A13b)

In Eq. (A13b) we have used the LFL theory expression for
the entropy at low temperature [3]. Also of interest is 〈εp〉w.
The chemical potential is [3]

μ(T ) = εF − π2

12

T 2

μ(T = 0)
+ O(T 4). (A14)
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Equation (A7) thus yields

〈εp〉w = μ + π2

6

T 2

μ
+ O(T 4)

= εF + π2

12

T 2

μ
+ O(T 4) . (A15)

2. Temperature fluctuations

In order to derive Eq. (2.19f) we start with Eqs. (A1) and
(A2) to write energy density fluctuations at constant T and V
as

δe|T,V = −1

V

∑
p

εpw(p)(δεp − δμ)

=
(

δμ − F0

〈1|1〉δn

)
〈εp|1〉. (A16)

With the help of Eq. (A4) this yields

(∂e/∂n)T,V = −cV (∂T/∂n)E ,V = 〈εp〉w . (A17)

The first equality is generally valid, the second one is valid
within LFL theory. Now consider

cV δT = cV

(
∂T

∂e

)
N,V

δe + cV

(
∂T

∂n

)
E ,V

δn

= δe − 〈εp〉wδn = 〈a5|φ〉 , (A18)

which is Eq. (2.19f). Here we have used cV = (∂e/∂T )V,N and
Eq. (A17) to go from the first line to the second one.

3. The matrix L(1)
L

Equation (3.12b) can be obtained from Eq. (3.12a) by
means of the following manipulations.

In order to calculate 〈vp|p〉, consider

〈vi
p|p j〉 = 1

V

∑
p

w(p) p j
∂

∂ pi
εp = −1

V

∑
p

p j
∂ feq

∂ pi

= δi j
1

V

∑
p

feq(p) = δi j n , (A19a)

where the second line is obtained from the first one by partial
integration. We thus have

〈vp|p〉 = 3n . (A19b)

This yields the (1,2) matrix element in Eq. (3.12b).
∂n/∂μ is related to the compressibility χ :

(∂n/∂μ)T,V = n2χT , (A20a)

where

χT = −1

V

(
∂V

∂ p

)
T,N

= 1

n

(
∂n

∂ p

)
T,V

(A20b)

is the isothermal compressibility, with p the pressure. These
identities follow from standard Jacobian manipulations [46]

combined with the fact that the particle number is an exten-
sive quantity, and hence (∂N/∂V )p,T = N/V = n. Combining
Eqs. (A20b) and (A19b) we obtain the (2,1) matrix element in
Eq. (3.12b).

To express 〈vp|p a5(p)〉 in terms of thermodynamic quan-
tities, we start with

〈
vi

p|p j εp
〉 = δi j

1

V

∑
p

εp feq(p) + 1

V

∑
p

feq(p) p j v
i
p

= δi j
1

V

∑
p

εp feq(p) + δi j
T

V

∑
p

ln(1 − feq) .

(A21)

For the first line we have integrated by parts as in Eq. (A19a),
and to obtain the second line we have used the identity from
the first line of Eq. (2.3b). The entropy, Eq. (A11), can be
rewritten as

s = −1

V

∑
p

ln(1 − feq) + 1

TV

∑
p

εp feq(p) − nμ/T .

(A22)
Combining this with Eq. (A21) yields

〈
vi

p|p j εp
〉 = δi j (T s + nμ) (A23a)

and hence

〈vp|p εp〉 = 3(T s + nμ) . (A23b)

Now the Duhem-Gibbs relation, μ = G/N with G the
Gibbs free energy, yields the general identity

(
∂μ

∂T

)
N,V

= −s

n
+ 1

n

(
∂ p

∂T

)
N,V

. (A24)

This allows us to write Eq. (2.6) as

〈
vi

p|p j εp
〉 = δi jn

[
μ − T

(
∂μ

∂T

)
N,V

+ T

n

(
∂ p

∂T

)
N,V

]
. (A25)

Combining this with Eq. (A7) yields
〈
vi

p|p j a5(p)
〉 = δi jT (∂ p/∂T )N,V (A26a)

and hence

〈vp|p a5(p)〉 = 3T (∂ p/∂T )N,V . (A26b)

From this result we obtain the (2,3) and (3,2) matrix ele-
ments in Eq. (3.12b).

We note that Eqs. (A19a) and (A26b) are valid for an ar-
bitrary QP velocity vp, i.e., and arbitrary interaction function
F (p, p′), not just for the particular form (2.10a).

4. The speed of first sound

To derive Eq. (3.13) we start with the following expression
for the ratio cp/cV [46]:

cp

cV
= 1 − T

V

[(∂V/∂T )p,N ]2

cV (∂V/∂ p)T,N
. (A27a)
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By means of general Jacobian identities we can rewrite this as

cp

cV
= 1 − T

cV

1

V

(
∂V

∂ p

)
T,N

[(
∂ p

∂T

)
V,N

]2

= 1 + T χT

cV

[(
∂ p

∂T

)
V,N

]2

, (A27b)

with χT the isothermal compressibility from Eq. (A20b). This
shows that the second equality in Eq. (3.13) follows form the
first one.

APPENDIX B: CONTINUITY EQUATIONS

In this Appendix we discuss the continuity equations as-
sociated with the conservation of the particle number, the
momentum, and the energy, respectively, in the context of our
kinetic theory.

1. Particle number conservation

Consider the kinetic equation as written in Eqs. (2.16).
Multiplying from the left with the constant function 〈a1(p)| =
〈1| we obtain

−iz δn(k, z) + ik · jn(k, z) = δn(k, t = 0) , (B1a)

where the divergence of the number-current density fluctua-
tion is given by

ik · jn(k, z) = 〈1|L(1)
k (p)|φ(p, k, z)〉. (B1b)

Since the number current density is given by n δu(k, z),
with δu from Eq. (2.17b), this implies

ik

m
〈a2(p)|φ(p, k, z)〉 = 〈1|L(1)

k (p)|φ(p, k, z)〉 . (B2)

Since this holds for arbitrary functions φ, we have

1

m
k̂ · p = k̂ · vp + 1

N0V

∑
p′

w(p′) F (p, p′) (k̂ · p′) , (B3)

which is the longitudinal part of Eq. (2.7). Equation (2.7) is
valid for any interaction function F . With the specific model
interaction given by Eq. (2.8) we obtain the longitudinal
part of Eq. (2.10a). We see that Eq. (2.10a) is necessary for
particle-number conservation to hold.

2. Energy conservation

The continuity equation related to energy conservation is
conveniently expressed in terms of the heat mode, Eq. (3.16),
which is a linear combination of the energy and the density.
Multiplying Eq. (2.16a) from the left with 〈ψ (0)L

5 (p)| we find

− iz
〈
ψ

(0)L
5 (p)

∣∣φ(p, k, z)
〉 + ik · jT (k, z)

= 〈
ψ

(0)L
5 (p)

∣∣φ(p, k, t = 0)
〉
. (B4a)

The heat current density is given by

jT (k, z) = 〈
vpψ

(0)L
5 (p)

∣∣φ(p, k, z)
〉

; (B4b)

it determines the heat conductivity via Eq. (3.39). As we
discussed in Sec. III A 2 b, the physical interpretation of the
heat mode is an entropy density. Accordingly, jT is an entropy
current density. We note that this identification of the entropy
density as a conserved quantity does not violate the Second
Law since the description of irreversibility requires going past
the linearized kinetic theory considered in this paper.

3. Momentum conservation

To obtain the continuity equation related to momentum
conservation we multiply Eq. (2.16a) from the left with 〈p|.
This yields

− iz nm δu(k, z) + ik〈p(k̂ · vp)|φ(p, k, z)〉

+ ik
F0

〈1|1〉 〈p|k̂ · vp〉 δn(k, z) = nm δu(k, t = 0) . (B5)

Here we have used the model interaction from Eq. (2.8);
this can be generalized if desirable. By using various iden-
tities from Appendix A, as well as the identity −3|σ2(p)〉 =
P⊥|p · vp〉 noted after Eq. (3.44b), this can be written

−iz nm δui(k, z) + ik jτ
i j (k, z) = nm δui(k, t = 0) . (B6a)

Here

τ i j (k, z) = δi jδp(k, z) + 〈
σ i j (p)|φ(p, k, z)

〉
(B6b)

is the stress tensor. The first term is the reactive part, which
is given by the pressure fluctuation δp, Eq. (2.19h). The sec-
ond term is the dissipative part, with σ i j (p) from Eqs. (3.43).

If we break up the momentum into its longitudinal and
transverse component, respectively, as in Eqs. (2.18) and
(2.19), this can be written

−iz nm δu⊥(k, z) + ik ju⊥(k, z) = nm δu⊥(k, t = 0) ,

(B7a)

−iz nm δuL(k, z) + ik juL(k, z) = nm δuL(k, t = 0),

(B7b)

for the transverse and longitudinal components, respectively.
The transverse momentum current

ju⊥(k, z) = k̂i
⊥k̂ j〈(σ1)i j (p)|φ(p, k, z)〉 (B7c)

agrees with Eq. (3.33b) and determines the shear viscosity via
Eq. (3.34). The longitudinal one,

juL(k, z) = δp(k, z) + k̂ik̂ j
〈
σ i j (p)|φ(p, k, z)

〉
(B7d)

combines with the remaining contributions to the sound mode
to form Eq. (3.42a). δu⊥ and k̂⊥ in Eqs. (B7a) and (2.5)
represent either of the two transverse directions.

APPENDIX C: LINEARIZED COLLISION OPERATORS

The linearized collision operator �(p) is in general a sum
of several terms that represent fermion-fermion interactions,
fermion-impurity interactions, and fermion-boson interac-
tions. The latter include, e.g., electron-phonon interactions or
electron-magnon interactions in metals. We will denote these
three contributions by �f-f, �f-b, and �f-i, respectively. They
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can be obtained by linearizing the more general expressions
given in Ref. [15].

The linearized fermion-fermion collision operator can be
written

�f-f(p) φ(p) = 1

1 − feq(p)

1

V 3

∑
p′,p1,p′

1

W (p, p1; p′, p′
1)

× δ(εp + εp1 − εp′ − εp′
1
) δ(p+ p1 − p′ − p′

1)

× feq(p1)[1 − feq(p′)][1 − feq(p′
1)] [φ(p′)

+ φ(p′
1) − φ(p) − φ(p1)] . (C1a)

Here W is the probability for two fermions in momentum
states p and p1 to be scattered into momentum states p′ and
p′

1. Time reversal symmetry implies

W (p, p1; p′, p′
1) = W (p′, p′

1; p, p1) . (C1b)

In order to obtain Eq. (2.7) from the general expression
given in Ref. [15] we have repeatedly used the energy-
conservation expressed by the first δ function as well as
the explicit form of the equilibrium distribution function,
Eq. (2.3a). Equation (2.7) makes explicit the five conservation
laws: �f-f(p) φ(p) = 0 if φ(p) = aα (p) with aα any of the five
functions defined in Eqs. (2.20).

The fermion-impurity collision operator is [47,48]

�f-i(p) φ(p) = 1

V

∑
p′

W (p′, p) δ(εp′ − εp)[φ(p′) − φ(p)] .

(C2)
Here the fermion particle number and energy are conserved,
but the momentum is not.

Finally, the fermion-boson collision operator can be writ-
ten

�f-b(p) φ(p) = 1

feq(p)(1 − feq(p))

1

V 2

∑
p′,k

δ(p′ − p − k) neq(k)[W (p′; p, k) feq(p)(1 − feq(p′)) δ(εp′ − εp − ωk )

+ W (p′,−k; p) feq(p′)(1 − feq(p)) δ(εp′ − εp + ωk )][φ(p′) − φ(p)] . (C3)

Here neq(k) = 1/( exp(ωk/T ) − 1) is the equilibrium Bose-
Einstein distribution function, and ωk is the energy of a boson
with wave number k. W is again a transition probability. If the
bosons are phonons, then umklapp processes can be taken into
account by adding a reciprocal lattice vector to the argument
of the momentum-conserving δ function. From Eq. (C3) we
see that the fermion particle number is still conserved, but the
fermion momentum and energy are not.

For explicit calculations a model fermion-fermion collision
operator that is the quantum version of the Bhatnagar-Gross-
Krook collision operator in classical kinetic theory [49] is also
useful. It uses a simple relaxation-time approximation with a
momentum-independent collision rate 1/τ that is temperature
dependent. For an ordinary Fermi liquid it is given, up to a
prefactor of O(1), by

1/τ ≈ T 2/εF (C4)

with εF the Fermi temperature. The five conservation laws are
taken into account by projecting on the orthogonal space L⊥:

�BGK
f-f (p) = −1

τ
P⊥ . (C5a)

Here

P⊥ = 1 −
5∑

α=1

|aα (p〉〈aα (p)|
〈aα (p)|aα (p)〉 , (C5b)

with 1 the unit operator and the aα (p) from Eqs. (2.20), is
the projection operator onto L⊥ that we have used, e.g., in
Eq. (3.28a). Acting with �BGK

f-f (p) on φ yields

�BGK
f-f (p) φ(p, x, t ) = −1

τ

[
φ(p, x, t ) − 1

N0
δn(x, t )

− m

m∗ p · δu(x, t ) − 1

T cV
[δe(x, t ) − 〈εp〉wδn(x, t )]a5(p)

]
.

(C6)

Substituting Eq. (C6) in (2.16b), and solving the resulting
kinetic equation (2.16a) in the hydrodynamic regime, one
obtains the same results as in Sec. III (as must be the case),
but with explicit expressions for the transport coefficients and
the speed of sound in terms of the parameter τ . Some of the
results have been quoted in the main text.

APPENDIX D: SHEAR MODES IN THE COLLISIONLESS
AND HYDRODYNAMIC REGIMES

Here we illustrate the different natures and origins of the
zero modes and the hydrodynamics modes, respectively, by
means of a discussion of the shear modes in the two regimes.
For simplicity and transparency we use the BGK collision
operator, Eq. (C6), for this purpose.

Consider the kinetic equation (2.16) with the collision op-
erator given by Eq. (C6), and focus on the transverse velocity
fluctuations, Eqs. (2.19c) and (2.19d). The integral over the
azimuthal angle then vanishes for the terms involving F0, δn,
and a5, and it suffices to consider[

−iz + ik · vp + 1

τ

]
φ(p, k, z) + ik · vp

F1

N0V

×
∑

p′
w(p′)

p · p′

〈p2〉w φ(p′, k, z) − 1

τ

m

m∗ p · δu(k, z)

= φ(p, k, t = 0) . (D1)

Here the relaxation time τ is understood to be T dependent.
The third term on the left-hand side reflects the conservation
law for the momentum, and the second term reflects the QP
interaction. If we divide by the term in angular brackets that
multiplies φ in the first term, multiply by k̂⊥ · p/nm, and sum
over p, we obtain an equation for δu⊥ of the form

δu⊥(k, z)[1 − f⊥(k, z)] = (IC)⊥(k, z) . (D2a)
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Here δu⊥ stands for either of the two transverse velocity
fluctuation, and (IC)⊥ is the initial-condition term involving
φ(t = 0) whose precise form is irrelevant for our current
purposes. The function f⊥ is given by

f⊥(k, z) = F1
1

4

∫ 1

−1
dη

η(1 − η2)

z/v∗
Fk − η + i/v∗

Fkτ

+ i

v∗
Fkτ

3

4

∫ 1

−1
dη

1 − η2

z/v∗
Fk − η + i/v∗

Fkτ
. (D2b)

The two terms on the right-hand side correspond to the
second and third term, respectively, on the left-hand side of
Eq. (2.5).

Now we analyze the term 1 − f⊥, which determines the
resonance frequency. In the hydrodynamic regime, v∗

Fkτ � 1,
we find for the resonance frequency

z = −iνk2 + O(k3) , (D3)

with ν the kinematic viscosity from Eq. (3.32). In this limit the
shear mode is diffusive, in agreement with Sec. III A 3 a. Note
that the soft nature of this mode is due to the structure of the
third term on the right-hand side of Eq. (2.7), which reflects
the conservation law. The Landau parameter F1 just provides
a contribution to the diffusion coefficient.

In the collisionless regime, v∗
Fkτ � 1, the resonance fre-

quency is

z = ±c0⊥k − iγ + O(1/v∗
Fkτ ) . (D4a)

Here c0⊥ = σ0⊥vF is the speed of transverse zero sound. It is
given by the solution of the transcendental equation

I1(σ0⊥) = F1 − 6

3F1
(
σ 2

0⊥ − 1
) , (D4b)

Here I1 is the integral defined in Eq. (4.2b), and the solution
exists and is unique for all F1 > 6. The existence of this soft
mode is due to the first term on the right-hand side of Eq. (2.7).
It thus is a consequence of the QP interaction rather than the
conservation law. This result agrees with Eq. (4.6b), and with
(9.24) in Ref. [31]. It has observable consequences in both
He-3 [57] and in electronic Fermi liquids [58,59]. For the
damping coefficient one finds

γ = 1

τ

[
1 + 1

1 + F1I1(σ0⊥)

(
1

2
σ0⊥ + 6 − F1

12F1

)]
, (D4c)

which is positive for all F1 > 6.
This simple examples illustrates various points: (1) The

hydrodynamic shear modes are a result of the conservation
law for the transverse momentum, whereas the transverse
zero-sound mode is due to the QP interaction and has nothing
to do with the conservation law. (2) The leading contribution
to the zero-sound damping is independent of the wave number,
in contrast to the behavior of hydrodynamic sound modes. (3)
The nature of the excitation changes qualitatively from one
regime to the other: it is diffusive in the hydrodynamic regime,
but propagating in the collisionless regime.
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