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Intertwined string orders of topologically trivial and nontrivial phases in an interacting
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By using the variational matrix product state method, we numerically study the interacting Kitaev chain
with spatially varying periodic and quasiperiodic potentials, and the latter follows the Fibonacci sequence.
The edge correlation functions of Majorana fermions and low-lying ground states are computed to explore the
robustness of topological superconducting phase. It is found that the original topologically nontrivial phase is
separated into two branches by an emergent topologically trivial phase, as a result of the competition among
spatially varying potential, electronic, Coulomb interaction, and chemical potential. The analysis of energy gap,
occupation number, and intertwined string order parameters together suggests that the lift of degeneracy in the
topologically trivial phase is enabled by a potential-induced fracton mechanism, namely, the pairing of four
Majorana fermions. The evolution from the emergent fractal structure of population to the original structure of
charge density wave is investigated as well.
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I. INTRODUCTION

In the last decade, Majorana zero mode (MZM), a special
kind of fermion, has attracted much attention in condensed
matter physics, quantum computations, and other related
fields [1–4], for both its quantum properties originating from
non-Abelian statistics [5] and the potential to be robust
qubits [6,7]. Consequently, the realization and control of
MZMs turn out to be an appealing subject. A number of re-
alistic systems have been proposed [8–18] for hosting MZMs
and extensive experiments [19–28] have been conducted on
them. On the theoretical side, the Kitaev chain was introduced
based upon spinless p-wave superconductivity in one dimen-
sion [8], which is one of the simplest but nontrivial models
to unveil MZM. The most exotic features of this Kitaev chain
are the exponential localization of Majorana edge modes at
the chain’s ends.

Up to date, researchers have devoted great effort to
the stable topological phase exhibiting the MZMs. The
studies extended to issues of nearest-neighboring repulsive
interactions [29–33], long-range interactions [34–36], quar-
tic interactions [37], dimerization [38], disorder [39–44],
quasiperiodicity [42,45], and so on. Considering interac-
tions, the phase diagram of the Kitaev chain has become
one of the most active topics. Various theoretical meth-
ods [30–32,37,46] have been achieving consensus on the
phase boundaries among trivial superconductor (SC), topo-
logical superconductor (TSC), commensurate charge density
wave (CDW), incommensurate charge density wave (ICDW),
and Schrödinger-cat state (CAT). Whereas, there are still more
phases to be found, as some of the hidden symmetries in
the model have not been uncovered. For example, a recent
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work [47] discovered a novel phase between the ICDW and
CDW phases, named “excited state charge density wave (es-
CDW),” in which the ground state resembles the excited states
of CDW phase. Furthermore, it was also found that moderate
interactions generally broaden the surviving window of chem-
ical potential for the TSC phase [30–33,37,46].

On the other hand, MZMs were also found to sur-
vive broader parameter regions in inhomogeneous chains
with disorder or quasiperiodicity than that in the ordered
cases [42,48,49]. The quasiperiodic potential will result in
the fractal structures in the wave function whose intrin-
sic topology will influence the MZMs [50]. The simplest
model for quasiperiodicity is the Harper model [51] with
a cosinelike shaped potential, which has been considered
in Kitaev chains [45,49,52] and a fractal structure simi-
lar to Hofstadter’s butterfly have been observed [42]. The
potential following Fibonacci sequence is another possible
realization for quasiperiodicity. It was proven that the Fi-
bonacci potential can be obtained using a superposition of
Harper potentials [53–56]. A new self-similar fractal struc-
ture was then found in the topological phase diagram of
the Kitaev chain with Fibonacci potential (Fibonacci-Kitaev
chain) [57].

Consequently, both interactions and inhomogeneous po-
tentials serve as the two most essential ingredients to the
relevant experiments. So far, it has been proven that ei-
ther moderate disorders or repulsive interactions are able
to stabilize the topological order, but when the disorders
are sufficiently strong, interactions always suppress the
topological phase no matter repulsive or attractive [58].
While comparable, however, the interplay of interactions and
disordered and quasiperiodic potentials is much less under-
stood [39,41,52,58]. As we always believe, nontrivial effects
on the topological phase could emerge in this parameter re-
gion, so more detailed studies are highly demanded.

2469-9950/2022/105(24)/245144(10) 245144-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1881-4099
https://orcid.org/0000-0002-4073-8240
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.245144&domain=pdf&date_stamp=2022-06-28
https://doi.org/10.1103/PhysRevB.105.245144


WEIJIE HUANG AND YAO YAO PHYSICAL REVIEW B 105, 245144 (2022)

In this paper, we study the Kitaev chain with both Fi-
bonacci potential and interactions. The Fibonacci potential is
composed of two tiles of different potential values. Specifi-
cally, we assign the one of the tiling potential to be zero and
leave the other nonzero. Additionally, we also consider sites
with zero potential following the periodic or other quasiperi-
odic sequences. By using the variational matrix product state
(VMPS) method, also known as the matrix product states
version of density-matrix renormalization group (DMRG), we
calculate several observables to study the phase transition.
The edge correlation function of the two Majorana operators
at the edges is used as a long-range-order parameter to char-
acterize the nontrivial TSC phase with MZMs. We find a
topologically trivial phase appears to divide the TSC phase
into two branches. By calculating the low-lying ground state
of two different parity sectors [59], we find this topolog-
ically trivial phase has a nondegenerate ground state with
intertwined orders and propose two kinds of string order
parameters to describe them. We also calculate the occupa-
tion with different parameters. Results are in good agreement
in the two cases: the potential of periodic sequence and
quasiperiodic Fibonacci sequence. These chains have adjacent
sites with zero chemical potential, so it may be closely rele-
vant to the fracton physics [60–64].

II. MODEL

A. Kitaev model and JW transformtion

Let us begin with the benchmarking Kitaev model for
spinless fermions with open boundary condition [8]. The
Hamiltonian is written as

H =
L−1∑
j=1

[−t (c†
j c j+1 + H.c.) + U (2nj − 1)(2n j+1 − 1)

−�(c†
j c

†
j+1 + H.c.)] −

L∑
j=1

μ j

(
n j − 1

2

)
, (1)

where the operator c†
j (c j ) creates (annihilates) a spinless

fermion on jth site, n j = c†
j c j is the corresponding fermion

occupation operator, t is the hopping amplitude, � is the
p-wave superconducting pairing potential, μ j is the chemical
potential on jth site, and U is the nearest-neighbor interaction.
Without loss of generality, we can assume that t and μ to be
real and positive since t → −t and μ → −μ and be realized
by the gauge transformation c j → i(−1) jc j and particle-hole
conjugation c j → (−1) jc†

j , respectively, and these transfor-
mations do not change other parameters.

It is well known that this Hamiltonian can be represented
in the Majorana fermion form. That is, a complex fermion
operator can be split into two Majorana fermion operators:

c j = 1
2

(
λ1

j + iλ2
j

)
, (2)

c†
j = 1

2

(
λ1

j − iλ2
j

)
. (3)

The Majorana fermion operators satisfy the Majorana condi-
tion (λa

j )
† = λa

j and also obey the anticommutation relation
{λa

j , λ
b
l } = 2δabδ jl , where a, b = 1, 2. So the Hamiltonian (1)

can be transformed to the following form:

H =
L−1∑
j=1

[
− i

2
(t + �)λ1

j+1λ
2
j − i

2
(t − �)λ1

jλ
2
j+1

−Uλ1
jλ

2
jλ

1
j+1λ

2
j+1

]
− i

2

L∑
j=1

μ jλ
1
jλ

2
j . (4)

Furthermore, one can use the Jordan-Wigner (JW) transfor-
mation to construct spin operators:

Sx
j = 1

2λ1
j e

iπ
∑

l< j nl , (5)

Sy
j = − 1

2λ2
j e

iπ
∑

l< j nl , (6)

Sz
j = i

2
λ1

jλ
2
j . (7)

When � = t , the Hamiltonian (4) can be further mapped to
a spin-chain Hamiltonian which is written in terms of spin
operators Sx

j and Sz
j , i.e.,

H =
L−1∑
j=1

−4tSx
j S

x
j+1 + 4USz

jS
z
j+1 +

L∑
j=1

μ jS
z
j . (8)

This form of Hamiltonian is friendly to the numerical
approaches.

B. Symmetries

In presence of the pairing term, the total fermion number
N̂ = ∑

j n j is not conserved. However, the Hamiltonian com-

mutes with the fermion number parity Z f
2 defined as

Z f
2 = eiπ

∑
j n j = (−1)N̂ . (9)

In addition, the particle-hole symmetry can be characterized
by the particle-hole conjugation operator defined as

Z p
2 =

∏
j

[c j + (−1) jc†
j ], (10)

which is also conserved if and only if μ = 0. We can use these
two symmetries Z f

2 and Z p
2 of the ground states to distinguish

different phases.
Usually there are three topologically trivial phases in-

cluding trivial superconductor, CDW, and ICDW. The
TSC phase has opposite fermion number parity Z f

2 in
the twofold-degenerate ground states while the CDW and
ICDW phase have the same Z f

2 . The CDW can be distin-
guished from ICDW by local occupation number distribu-
tion and its Fourier spectrum. The ground state changes
from trivial superconductor to TSC, ICDW, and CDW by
increasing U [59].

C. Quasiperiodic potential

The models under study in the next section are the inter-
acting Kitaev chains with different types of spatial varying
chemical potentials. We assign each μi by either μA or
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FIG. 1. (a) The first seven Fibonacci sequences depicted as hor-
izontal chains labeled by Jn. A and B represent that the relevant
chemical potentials are μA and μB, respectively. (b) The Fibonacci
chain can also be obtained by cutting the square lattice with a strip
and projecting it on a straight line.

μB. The periodicity and quasiperiodicity in μi are given
by making the order of A and B follow the periodic or
quasiperiodic sequences. We mainly focus on the lattices
with chemical potential following the quasiperiodic Fibonacci
sequence [57,65]. One can use the following recursion for-
mula to get the sequence composed of two symbols A and
B. That is, we use the recursion formula Jn+1 = {Jn, Jn−1},
n � 1, J0 = {A}, J1 = {B}, so we have J2 = {J1, J0} = {B, A},
J3 = {J2, J1} = {B, A, B}, . . . . The total number of symbols
in Jn is given by the Fibonacci numbers Fn+1 = Fn + Fn−1.
Figure 1(a) displays the first seven Fibonacci sequences and
Fig. 1(b) shows the Fibonacci chain with J6 which can be
obtained by the cutting approach [57,66]. All the dots within
the strip on the two-dimensional (2D) square lattice are con-
nected and projected orthogonally to a line parallel to the strip.
The projection of the red vertical lines and black horizontal
lines within the strip yield two values of distances in the
resultant line, representing the A symbols and B symbols in
the Fibonacci sequences, respectively.

For the actual value of μA and μB in the following cal-
culation, we will set one of them to be zero (μA = 0 or
μB = 0) and vary the other one. The chemical potential μi

at adjacent sites might both be zero in some situations. This
will presumably lead to unique results.

FIG. 2. Correlation function Gi j for the TSC ground state with
� = t , μ = 0, U = 0.5t , L = 100. The existence of the edge modes
is fingerprinted by the finite G1L value appearing at the bottom right
corner.

III. RESULTS

In this work, we use variational matrix product state
(VMPS) [67–69] to study the interplay of the nearest interac-
tion and quasiperiodic chemical potential. In the previous re-
searches, various fingerprints have been employed to quantify
the phase diagram, including entanglement entropy and en-
tanglement spectrum [37,47,58,70–73], Lyapunov exponent
[42,57,74], string correlation function [29,49,58,59,70,75],
many-body Majorana operator [76,77], Hartree-Fock analysis
[37], lowing-energy spectrum/gap [40,47,70,72,78–82], and
tunneling spectra [32]. Here, we compute several observables,
including the energy of low-lying states, local particle density,
and most importantly the edge correlation function [59]. The
correlation function between two sites i and j is defined as

Gi j = 〈
iλ1

i λ
2
j

〉
. (11)

In particular, when i = 1 and j = L it is the edge component
of Gi j , i.e.,

G1L = 〈
iλ1

1λ
2
L

〉
, (12)

which is straightforwardly related to the edge modes. A typ-
ical result of Gi j is shown in Fig. 2. It is worth noting that
the correlation function Gi j is a block matrix of electron or
hole density, which can be generalized to interacting systems
and reflects the site distribution of single-particle elementary
excitations in a many-body ground state. As long as the bulk
is homogeneous, in the thermodynamic limit a finite value of
G1L fingerprints the existence of edge modes since the corre-
lation can not be transferred site by site to such long distance.
One may then wonder how about the inhomogeneous lattice?
In this work, we thus calculate G1L with spatially varying
chemical potential, which will lead the bulk to be inhomo-
geneous. The nonvanishing edge correlation function G1L =
〈iλ1

1λ
2
L〉 characterizes the topological order, that is, the value
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FIG. 3. Edge correlation function G1L of the ground state of the
interacting Kitaev chain as a function of μ and U . The chemical
potential is uniform and � = t , L = 88.

G1L is finite in TSC phase and vanishes in other topologically
trivial phases, and also this order parameter is valid both in
noninteracting and interacting systems. Fixing � = t , we can
plot the ground-state edge correlation G1L of the interacting
Kitaev chains as a function of U .

A. Periodic chemical potential

We first calculate the edge correlation function of the in-
teracting Kitaev chain with 88 sites. Two cases without and
with periodic chemical potentials are considered, with the
results shown in Figs. 3 and 4, respectively, for comparison.
We notice that, since the model hosts MZMs on the edges, the
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0

0.2

0.4

0.6

0.8

1

=8

=0

=2

=4

=6

1 1.5 2 2.5
0

0.02

0.04

FIG. 4. Edge correlation function G1L of the ground state with
periodic chemical potential as functions of μ and U . L = 88, � = t ,
[μ, 0, 0] as the repeated form for the chemical potential on sites 1 to
87, and let the last site μL = μ. Region in the black box is zoomed
in and illustrated in the inset.
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FIG. 5. Energy with respect to the ground state E p
n − Eg. The

ground state (n = 0) and the first excited state (n = 1) of two parity
sectors of Z f

2 are calculated in the periodic chain with μ = 6, � = t ,
L = 88. We set [μ, 0, 0] as the repeated form for the chemical
potential on sites 1 to 87, and let the last site μL = μ.

chemical potential on the end site of the chain is extremely
important [47]. The periodic chemical potential is repeated
from site 1 to 87 with a period of [μ, 0, 0], and we set
μ88 = μ to make the last site the same as the first site. This
particular periodic potential pattern is chosen to make it easier
to compare with the quasiperiodic potential studied in the next
section.

The results shown in the two figures are remarkably dif-
ferent. In Fig. 3, increasing the chemical potential μ makes
the maximum value of G1L decrease and shifts the regions
with nonvanishing G1L to the right where the interaction is
stronger. In Fig. 4, however, G1L manifests its maximum
value with no interaction and survives even large chemical
potential. More importantly, for a given μ there is a valley
between two peaks, indicating the TSC phase is separated into
two branches. This phenomenon means the phase diagram
changes to a pattern which is rather different from that in
previous researches [29,31,32,47,59]. It is noteworthy that this
effect is more evident with larger chemical potential.

As the VMPS or DMRG method often encounter the
boundary problem, that will affect the accuracy of using the
edge correlation function to determine the phase transition
point. We then analyze the symmetries in the ground-state
phase transition for comparison. The fermion number par-
ity Z f

2 conserves in this model which means the Hilbert
space will be divided into two parity sectors denoted by
P = +1,−1. The TSC phase has opposite fermion num-
ber parity Z f

2 in the twofold-degenerate ground states while
the charge density wave (CDW) and incommensurate charge
density wave (ICDW) phase have the same Z f

2 . The low-
est two eigenstates, which are the ground state (n = 0) and
the first excited state (n = 1) in each parity sector, are
represented in Fig. 5. The analysis of symmetries of the
ground state consists with the results of the edge correla-
tion function that the TSC phase does split into two. No
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FIG. 6. Edge correlation function G1L of the ground state of the
interacting Fibonacci-Kitaev chain as functions of μ and U with
L = 88, � = t , μA = μ, μB = 0, and μ1 = μL = μ. The Fibonacci
sequence J10 containing 89 sites is used to generate quasiperiodic
potential with μ1 = 0, μ89 = μ. The first site with zero potential is
discarded to make potential nonzero at both ends of the chain, so
the chain has μ1 = μL = μ with L = 88. Region in the black box is
zoomed in and illustrated in the inset.

degeneracy is found between the two TSC phases which is
completely different from all the phases in the uniform inter-
acting Kitaev chain [59], which will be extensively discussed
below.

B. Quasiperiodic chemical potential

We are now interested in the situations if we use quasiperi-
odic sequences to substitute the periodic sequence. As it
equivalently introduces moderate disorders to the system, one
may image the split of the TSC phase probably would not
show up. To this end, we use the Fibonacci sequence J10

containing 89 sites to generate quasiperiodic chemical po-
tential and discard the first site in J10, so the chain contains
88 sites and has nonzero chemical potential on both ends. The
results are shown in Fig. 6. It is found that all the results are
similar with those in the periodic case displayed in Fig. 4.
The edge function G1L with μ > 3 also behaves a second
growth as the repulsive interaction increases, where G1L can
even decrease to around zero between two peaks for several
μ values. Fixing μ, there is a trivial region between two
topological regions that is completely identical to the periodic
case. Nonetheless, one can observe it more clearly in Fig. 6
that the TSC phase gradually breaks into two branches with
the chemical potential increasing. The quasiperiodicity does
not essentially kill or suppress the emergency of two topo-
logical regions. When the interaction is small, the TSC state
even becomes stabler in the periodic and quasiperiodic chains
than that in the uniform chain. The moderate disorder brought
by the quasiperiodic potential broadens the chemical potential
window in the noninteracting chain (U = 0), same with the
previous results [30–32,37,46].

Chains with more sites are calculated as well. That is, we
use J11 and J12 to generate Fibonacci chains with 144 and

0.2 0.4 0.6 0.8 1 1.2
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FIG. 7. Energy with respect to the ground state E p
n − Eg. The

ground state (n = 0) and the first excited state (n = 1) of two parity
sectors of Z f

2 are calculated in the interacting Fibonacci-Kitaev chain
with μ = 4, � = t , L = 88.

232 sites. The G1L near the phase boundaries are influenced
by the length of the chain. But, the location and the size
of the second TSC phase keeps the same for chains with
different length, suggesting the phase diagrams are all the
same for these chains. The G1L decreases to zero more quickly
in longer chains which makes the phase boundary more pre-
cise. Totally speaking, the exact phase boundary is difficult to
exactly identify by just looking at the vanishing G1L. For this
reason, it should be better to use the inflection point of G1L as
the phase boundary, following the normal treatment of Tc in
superconductors. We do not show results for more sites since
the numerical calculation is hard to converge even if we kept
bond dimension κ = 400 and run 100 sweeps.

The lowest two eigenstates of the Fibonacci-Kitaev chain
in both parity sectors are displayed in Fig. 7. Unlike the edge
correlation function, the eigenstates for the quasiperiodic case
is fairly different with the periodic case. For U � 0.5 and
1.0 � U � 1.1, the ground state is doubly degenerate with
opposite parity implying the chain is in a gapped topological
superconducting phase. For 0.5 � U � 1.0, the degeneracy is
lifted and the intertwined string orders emerge which might
prefer to a new topologically trivial phase without supercon-
ductivity. The appearance of this exotic phase leads to the split
of the TSC phase. The energy gap of this topologically trivial
phase is incredibly small, which is of the order 10−4 per site
in the unit of hopping amplitude t . For U � 1.1, the P = 1
sector has degenerate ground states while the other parity
sector has got a gap between the ground state and the first
excited state. But the unique ground state with the P = −1
has CDW ordering and this gap will eventually close while
U increases. In other words, the ground state will eventually
change into the CDW/ICDW phase having doubly degen-
erate states with different party if we keep increasing the
interaction U .

We notice that there has been a research focusing on
the region near the phase boundary and discussing the
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FIG. 8. Phase diagram for the interacting Fibonacci-Kitaev
chain. Data points obtained in the same quasiperiodic chain as Fig. 6
with L = 88, � = t , μA = μ, μB = 0, and μ1 = μL = μ. The edge
correlation function G1L of the blue dots is nonvanishing which is in
the topological superconductor phase and G1L of the red dots are less
than 10−6 that is in topologically trivial phase.

degeneracy and the parity of the ground state for different
system sizes [47]. Apart from the previously reported phases,
a newly observed “excited state charge density wave” (es-
CDW) phase is present in that work. They found the esCDW
exists between the ICDW phase and the CDW phase and had
been considered to be part of the CDW phase. They use “es”
because the ground state in this phase does not possess the
conventional CDW ordering but its properties resemble the
properties of the excited states in CDW phase. A more inter-
esting point is that the esCDW phase appears only for even
system sizes and is sensitive to the chemical potential at the
edges. Furthermore, the transition point from this new phase
to the CDW phase can actually be governed by the chemical
potentials at the two edges. More analysis of two lowest states
in each parity sector can be found in this research. An exotic
nondegenerate phase without the limitation of system size is
found when we use the nonuniform chemical potentials. Our
results turn out to be an exotic finding in addition to it.

C. String ordering

The stability of the topological order is related to all terms
in the model, and the exact phase boundary is pretty diffi-
cult to determine. The phase diagrams of the uniform chain
obtained by various methods have essentially the same pat-
tern [30–32,37,46]. Using the edge correlation function as
a criterion, different phases can be then quantitatively as-
signed. The resulting phase diagram of chains with Fibonacci
quasiperiodic potential is subsequently sketched in Fig. 8. It
has several fascinating differences from that for the uniform
chain. As displayed in Fig. 3, the TSC phase of the uniform in-
teracting Kitaev chain with larger μ tends to demand stronger
interaction, where the μ = 0 curve has got slight overlap with
the μ = 6 curve. But in Fig. 8 the TSC phase with different

μ is restricted within a small range in the horizontal axis and
piled up in the vertical axis. Especially, it is obvious in former
results that there is an upper limit of chemical potential for
the TSC phase to survive when the interaction strength is
zero (U = 0). However, this limit disappears in Fig. 8 and
the system can still stay in the TSC phase with Fibonacci
quasiperiodic chemical potential up to an extremely large
value. And also we can find for μ > 4.75, the topological
phase is divided into two branches with a topologically trial
phase in-between. That is to say the second peak in Fig. 6
will result in the peninsulalike area in the phase diagram,
which is the most distinctive difference from the uniform
chain [30–32,37,46].

As stated, the transition of these topological phases is
dominated by the parity symmetries Z f

2 and Z p
2 , which are

defined by string operators in product form. If we directly
calculate the expectation values of string operators, however,
the long-range ordering is not featured. This is because Z p

2 is
actually the alternating product of Sx and Sy operators, and the
action of Sy on X site vanishes. On the other hand, via JW
transformation, λ1 and λ2 operators are transformed to Sx and
Sy, respectively, so in the topological phases the nearest sites
are not exactly X-X pairing while the next nearest are. To this
end, we define two string order parameters as

Ox
ji = 〈

Sx
j I j+1Sx

j+2I j+3Sx
j+4 . . . Ii−1Sx

i

〉
, (13)

Oz
ji = 〈

Sz
jI j+1Sz

j+2I j+3Sz
j+4 . . . Ii−1Sz

i

〉
, (14)

where j < i and both of them are currently even or odd. We
then call them Z string and X string, respectively, to charac-
terize Z f

2 and Z p
2 symmetries.

For a simple interacting Kiteav chain with μ = 0, both
the symmetries Z f

2 and Z p
2 are conserved. It has been stated

that [75] in the topological phase (TSC) the degeneracy is
protected by edge modes so the ground state will fall into
different number parity sectors by spontaneous symmetry
breaking, while in topologically trivial phase (CDW/ICDW)
it goes to different electron-hole parity sectors. We further
observe that (not shown), the X-string order dominates with
U < 1.0 where the system is in topological phase. As U
increases, the X string order parameters will decrease while
the Z-string order parameters will increase. The X string and
Z string become nearly the same at U = 1.0, and the Z string
overtakes X string when U > 1.0. The system experiences
a phase transition at U = 1.0 from the topological phase to
the topologically trivial phase (CDW/ICDW phase). Thus, the
X-string order parameter can be used to measure the topo-
logical order and the Z-string order parameter can be used to
measure the topologically trivial order.

The expectation values of the X string and Z string in the
interacting Fibonacci-Kitaev chain are represented in Fig. 9.
For U < 0.5 or U > 1.0, one of the string order parameters
dominates so that the ground state is doubly degenerate with
opposite (TSC phase) or same (CDW/ICDW phase) fermion
number parity Z f

2 . But for 0.5 < U < 1.0, the X-string order
is compatible with the Z-string order, implying two kinds of
string orders are intertwined in this region. As a result, the
degeneracy of the ground state is lifted in this region. Outside
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FIG. 9. The expectation values of the Z string and X string in the
interacting Fibonacci-Kitaev chain with μ = 4.0, L = 88.

this region, one of the three terms in the Hamiltonian will
dominate and lead to a single string order.

D. Fractal structure

In the uniform interacting Kitaev chain, the occupation
number decays drastically following μ increasing. The re-
pulsive interaction prefers the ground states with occupation
number having patterns like (1010 . . . ) and (0101 . . . ), which
is expected to find in the phase of CDW. As the interaction
becomes stronger the total occupation number will approach
Ntot = L/2, the chemical potential will compete with the re-
pulsive interaction. From Fig. 10 one can see the sites with
μb = 0 are half-occupied. We observe that the adjacent sites
with μ = 0 collect four Majorana fermions as a group, al-
lowing the two fermions to move along the chain just like
the mechanism of fractons [60–64]. Consequently, the total

0

0.5

0

0.5

0

0.5

20 40 60 80
0

0.5

FIG. 10. Occupation number N ( j) = 〈nj〉 of Fibonacci-Kitaev
chain without interaction (U = 0) of μ = 1, 2, 3, 4. The system size
L = 88, � = t , μa = μ, μb = 0, and μ1 = μL = μ.

occupation number is larger than in the normal interacting
chain that the chemical potential window is broadened even
further. It is intriguing that one can find the occupation number
is nearly the same for U = 0.4, 0.8, 1.2 in Fig. 11, namely,
the topologically trivial phase with U = 1.2 has the same
occupation number distribution as the two branches of the
nontrivial phase adjacent to it. More thorough investigations
are needed for us to identify and understand properties of the
exotic topologically trivial phase.

The Fourier spectrum is thus obtained by taking fast
Fourier transformation of the local occupation number
N ( j) = 〈n j〉. The quasiperiodicity brought by the spatial
varying potential can be most readily seen in Fourier spec-
trum [83]. For the Fourier spectrum of the U = 0 chain
in Fig. 12, the intensity is symmetric about k = π and
exhibits a fractal structure originated from the Fibonacci
sequence. The fractal structure in the Fourier spectrum is

0
0.5

1

0
0.5

1

0
0.5

1

20 40 60 80
0

0.5
1

FIG. 11. Occupation number N ( j) = 〈nj〉 of interacting
Fibonacci-Kitaev chain with μ = 6 and interaction U = 0.4, 0.8,
1.2, 1.6. The system size L = 88, � = t , μa = μ, μb = 0, and
μ1 = μL = μ.
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FIG. 12. Fourier spectrum of the occupation number N ( j) =
〈nj〉 of interacting Fibonacci-Kitaev chain with μ = 4, L = 610,
� = t , and U = 0.0, 1.6, 10.0. The green pentagrams in the insets
are their corresponding positions on the phase diagram.

destroyed by the interaction and evolved to the CDW struc-
ture. Increasing the interaction U , the prominent peaks around
k = π will get closer and have stronger intensity, and subse-
quently there exists only a single peak in Fourier spectrum at
k = π corresponding to an occupation number distribution of
CDW phase.

The edge correlation function is more sensitive to the
chemical potential at the edge rather than the system size.
In order to examine it, we use different length of Fibonacci
sequence (up to J13) and conclude that the chains with μ = 0
at both boundaries have edge correlation function G1L ≈ 1
when the interaction is small, which is distinct from the other
three sets shown in Fig. 13. This is also valid to the chain with
quasiperiodic chemical potential following other sequences
such as the Thue-Morse sequence as shown in Fig. 13. For
the Thue-Morse lattice, we use recursion formula Sn+1 =
{Sn, S−1

n }, n � 1, S0 = {A, B}, so we have S1 = {S0, S−1
0 } =

{A, B, B, A}, S2 = {S1, S−1
1 } = {A, B, B, A, B, A, A, B}, . . . .

The total number of symbols is Sn is Gn = 2Gn−1 = 2 × 2n. It
is found that, although there are some differences for the four
kinds of chemical potentials at the edge, respectively, follow-
ing the Fibonacci sequence and the Thue-Morse sequence, the
latter leads to equivalent results and the exotic topologically
trivial phase does survive all of them.

Generally speaking, all the three potentials we are studying
exhibit almost the same behaviors with negligible distinctions.
It means the configuration of potential and disorder almost
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FIG. 13. Edge correlation function G1L of ground state of the
interacting Kitaev chain with different types of chemical poten-
tials. Whereas � = t , μA = μ, μB = 0. (a) Fibonacci lattice, L =
143, μ1 = μ, μL = 0. (b) Fibonacci lattice, L = 232, μ1 = μL = μ.
(c) Fibonacci lattice, L = 144, μ1 = μL = μ. (d) Fibonacci lattice,
L = 233, μ1 = 0, μL = μ. (d) Thue-Morse lattice, L = 233, μ1 = 0,
μL = μ. (d) Thue-Morse lattice, L = 233, μ1 = 0, μL = μ.

does not matter. The competition between the interaction and
the chemical potential by itself can not explain the emergence
of the intertwined string orders which is different from all
other known situations. It deserves to imply adjacent sites with
zero potential play the essential role. Namely, the occupation
number on adjacent sites with zero potential in the chains
suggests that the emergence of the intertwined string orders
are enabled by the pairing mechanism of fracton [60–64].

FIG. 14. Schematic of motions of a single excitation and paired
excitations in a 1D antiferromagnetic chain. A pair of excitations
sketched in (b) can move smoother than a single excitation in (a) [60].
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Fracton is a novel topological elementary excitation in fractal
structures with dimension-limited mobility. Figure 14 illus-
trates the motions of excitations in a 1D antiferromagnetic
chain as an example of fracton mechanism. In our situation,
the spin will be oriented in the X direction for the sites with
μ = 0, and in the Z direction for the other sites. A single spin
in the X direction is not perfectly immobile but less mobile
than paired spins. So, we suggest that adjacent sites with zero
potential can form a fracton pair which may make it easier to
host a long-range X-string order giving rise to the intertwined
string orders. Hence, the degeneracy of the ground states is
lifted and the TSC phase turns into the trivial phase with four
nondegenerate low-lying states. Here in this work, we do not
consider to calculate the dc conductivity on the lattice, so we
are currently not able to determine whether the topologically
trivial phase is explicitly the fracton phase. More investiga-
tions are reserved for future dynamic researches.

IV. CONCLUSION

In summary, we have studied the interacting Kitaev chains
with periodic and quasiperiodic chemical potential by using

the variational matrix product state (VMPS) method. In our
innovative way to introduce the nonuniform chemical poten-
tial, we calculate the edge correlation function G1L and find
an emergent topologically trivial phase. Notably, symmetry
is spontaneously broken in the topological superconducting
(TSC) phase which is then split into two branches. This
appealing phenomenon together with the intertwined string
orders can be found in all the considered cases of spatially
varying potentials. The two lowest states in each parity sector
and occupation number are also calculated. The adjacent sites
with zero chemical potential might be the key ingredient for
the emergent phase.
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