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Recent experiments on Kitaev spin liquid candidate materials reported nonmonotonic behavior of thermal
conductivity as a function of magnetic field, which lead to conflicting interpretations of its origin. Motivated
by this development, we study the magnetic field dependence of thermal conductivity of a generalized Kitaev
model, which allows the phase transitions between different flux sectors as a function of the magnetic field.
The thermal conductivity due to Majorana fermions shows dip-bump structures as the magnetic field increases,
which is caused by either the transitions between different flux sectors of Kitaev spin liquids or the topological
transitions that change the Majorana Chern number within the same flux sector. It is shown that the change of
Chern number is closely related to the four-Majorana-fermion interaction induced by the magnetic field. The
nonmonotonic behavior in thermal conductivity emerges at finite temperature, and it becomes weaker when
temperature decreases toward zero. Our model provides a generic mechanism for the Kitaev spin liquids to
develop nonmonotonic magnetic-field dependence of thermal conductivity while the comparison to realistic
materials remains an open question for future investigation.
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I. INTRODUCTION

Quantum spin liquid is an exotic phase of quantum mag-
nets that has drawn great attention since it was initially
proposed [1]. Contrary to conventional magnetic phases,
quantum spin liquids are not magnetically ordered down to
zero temperature, and the spins are fractionalized into spinon
quasiparticles coupling to emergent gauge fields, exhibiting
a lot of interesting collective phenomena including fraction-
alized excitations, ground-state degeneracy and long-range
entanglement [2–8]. The celebrated Kitaev honeycomb model
[9] is exactly solvable with quantum spin liquid ground state.
Kitaev spin liquids arise from the bond-dependent spin inter-
actions that frustrate the spin orientation at each site, which
can be generated from t2g orbitals with jeff = 1

2 in materials
with strong spin-orbit coupling [10]. The Kitaev honeycomb
model provides a plausible platform for the experimental re-
alization of quantum spin liquid, which leads to significant
experimental and theoretical efforts in studying Kitaev materi-
als [10–22], and many Kitaev spin liquid candidates including
(Na,Li)2IrO3 [23–29] and α-RuCl3 [30–38] are identified.

Recent thermal transport experiments on Kitaev spin liquid
candidate α-RuCl3 have reported nonmonotonic dependence
of longitudinal thermal conductivity on magnetic field similar
to quantum oscillations [39,40]. There exist several explana-
tions for the reason of this nonmonotonic behavior, e.g., from
the quantum oscillation from spinon Fermi surface [39] or
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from phase transitions in the spin liquid [40,41]. Contrary
to ordinary quantum oscillations in fermionic systems which
arise from quantized Landau levels, the spinons in quantum
spin liquids are charge neutral and they cannot directly couple
to orbital magnetic field to give Landau levels. Therefore, the
mechanism of this nonmonotonic behavior in thermal conduc-
tivity remains an open question.

Motivated by these experiments, in this work we explore
what mechanism can lead to nonmonotonic dips and bumps
in thermal conductivity as a function of magnetic field. We
consider a generalized Kitaev model and demonstrate that
dips and bumps in thermal conductivity can arise naturally
due to phase transitions induced by the magnetic field. Two
important ingredients are included in this generalized Kitaev
model, the frustrated further-neighbor Majorana hopping from
spin interactions [42,43] and the four-Majorana interaction
induced by the magnetic field.

The frustrated further-neighbor Majorana hopping allows
different flux sectors to be the ground state. In Kitaev spin
liquids, spinons are coupled to an emergent Z2 gauge field
and each plaquette can have Z2 flux 0 or π , where π flux
corresponds to a vison. Based on the density and distribution
of visons, the quantum spin liquid can be classified into differ-
ent flux sectors. Each flux sector has distinct spinon spectrum
and free energy. The original Kitaev honeycomb model has its
ground state in the 0-flux sector where all plaquettes have 0
flux by Lieb’s theorem [44]. If further-neighbor Kitaev spin
interactions are considered, frustrated third-neighbor Majo-
rana hopping terms [42,43] can arise. These terms commute
with the Z2 gauge field and hence they preserve the exact
solubility of the model. With these terms, different flux sectors
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can be stabilized as the ground state, which opens up the
possibility for phase transitions between flux sectors. The
magnetic field perturbatively generates both Majorana hop-
ping terms and four-Majorana interaction terms. We consider
both types of terms and applied self-consistent mean field
theory to decouple the Majorana interaction. We found that
the Majorana interaction can effectively rescale the frustrated
hopping and lead to transitions that can change Majorana
Chern number.

We take into account these frustrated hopping terms and the
four-Majorana interaction in the generalized Kitaev model.
We show that external magnetic field can lead to transitions
between different flux sectors as well as topological transi-
tions within each flux sector that change the Majorana Chern
number. Because different flux sectors have distinct spinon
spectrum and thermal conductivity, and because thermal con-
ductivity is sensitive to the spinon band gap which must close
when Chern number changes, these phase transitions will lead
to dips and bumps in thermal conductivity as a function of
magnetic field.

This paper is organized as follows. In Sec. II, we establish
the generalized Kitaev model that includes the four-Majorana
interaction terms induced by magnetic field and the frus-
trated Majorana hopping terms. In Sec. III, we utilize
self-consistent mean field theory to compute Majorana inter-
action. In Sec. IV, we present our computation of thermal
conductivity and show that it is a nonmonotonic function of
magnetic field with dips and bumps. In Sec. V, we show that
this dip-bump feature in thermal conductivity originates from
phase transitions induced by magnetic field. Further relation
between our results and the experiments are discussed in the
discussion section.

II. GENERALIZED KITAEV MODEL WITH MULTIPLE
FLUX SECTORS

The Hamiltonian of the original Kitaev honeycomb model
[9] with nearest neighbor (NN) spin interactions is given by

H1 = −K1

∑
〈 jk〉

σα
j σα

k = iK1

∑
〈 jk〉

u jkc jck, (1)

where j, k denote lattice sites, the spin operator at each site
is represented by σα

j = ibα
j c j , and the Z2 gauge field u jk =

ibα
j b

α
k , where α ∈ {x, y, z} is fixed by the direction of bond jk.

We choose the gauge such that in the 0-flux sector ujk = +1 if
j (k) is at A (B) sublattice, where A, B sublattices are labeled
in Fig. 1(a). The original Kitaev model H1 considers nearest
neighbor interaction and the ground state is in the 0-flux
sector. In real materials, further-neighbor spin interactions
exist in general. These longer range interactions are allowed
by symmetry, and they can stabilize different flux sectors as
the ground state and lead to phase transitions between differ-
ent flux sectors. Therefore, we consider a generalized Kitaev
model with additional third-neighbor spin interaction terms
proposed in Refs. [42,43]:

H3 = K3

∑
〈 jklm〉∈R3

σα
j σ

γ

k σα
l σγ

m

− K ′
3

∑
〈 jklm〉∈R′

3

σα
j σ

β

k σ
β

l σα
m . (2)

(a) (b)

(c)
(d)

FIG. 1. Illustration of terms in the Hamiltonian. A and B sublat-
tices are labeled as red and blue dots. The dashed arrows in panels
(a), (b), and (c) represent R3, R′

3, and R2 respectively. (d) Relative
locations of the sites in RI . The sites at A and B sublattices are labeled
by red and blue dots.

Here R3 and R′
3 denote the sets of vectors shown in Figs. 1(a)

and 1(b) respectively, and 〈 jklm〉 ∈ R3 means the sites j and
m are connected by the zigzag line passing through jklm with
rm − r j ∈ R3. The summation is over all such zigzag lines. α

is along the direction of bond jk, γ is along bond lm, and β is
distinct from the directions of jk and kl . In terms of Majorana
fermions, H3 can be rewritten as

H3 = − iK3

∑
〈 jklm〉∈R3

u jkukl ulmc jcm

− iK ′
3

∑
〈 jklm〉∈R′

3

u jkukl ulmc jcm.

These terms commute with gauge field ujk , hence they pre-
serve the exact solubility of the model and the ground state can
still be labeled by flux sectors as the original Kitaev model.
Note that each vector in R3 corresponds to two zigzag lines
[marked by colors in Fig. 1(a)], and the contribution from
these two paths will cancel out if there is a π flux inside the
hexagon. Hence the π -flux sector in which every hexagon has
flux π is not affected by the K3 term. It has been shown that
by varying K3 and K ′

3, different flux sectors can be stabilized
as the ground state [42,43].

The external magnetic field can generate three-spin inter-
actions in the Kitaev model as follows [9]:

Hh = −h
∑

〈 jlk〉∈R2

σα
j σ

β

k σ
γ

l −h
∑

〈 jlk〉∈RI

σα
j σ

β

k σ
γ

l . (3)

Here R2 and RI are shown in Figs. 1(c) and 1(d) respectively.
The choice of α, β, γ for the first term is along jl, lk, lm
respectively and for the second term is along jm, km, lm
respectively. These terms arise from the leading order pertur-
bation of magnetic field and h ∼ BxByBz

K2
1

. When these terms are
rewritten as Majorana fermions, the first term becomes a NNN
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hopping term and the second term becomes a four-Majorana
interaction term:

Hh = H2 + HI , H2 = −ih
∑

〈 jlk〉∈R2

u jl ulkc jck, (4)

HI = −h
∑

�

u jmukmulmcmc jckcl

−h
∑

�

u jmukmulmcmc jckcl . (5)

Here the relative locations of sites in HI are shown in Fig. 1(d).
The total Hamiltonian for the generalized Kitaev model is

H = H1 + H2 + H3 + HI . (6)

This Hamiltonian is symmetric under space inversion and
threefold rotation. It also has a gauge symmetry indicated by
c j → (−1)n j c j , u jk → (−1)n j−nk u jk where n j ∈ {0, 1}. Time-
reversal maps h ∼ BxByBz

K2
1

to −h, and hence time-reversal
symmetry is broken by H2 and HI terms induced by the
magnetic field. Without the magnetic field, the Hamiltonian
describes a system of free Majorana fermions for each given
flux sector, and different flux sectors can be stabilized as
the ground state when we vary parameters K3 and K ′

3. The
magnetic field breaks time-reversal symmetry and brings in
interactions between Majorana fermions. We show below that
the magnetic field can induce first-order transitions between
different flux sectors, and within the same flux sector the
increasing magnetic field can also induce topological transi-
tions that changes the Chern number of occupied bands. Both
effects can lead to jumps and bumps in physical observables
including thermal conductivity.

III. MEAN-FIELD THEORY FOR
MAJORANA INTERACTIONS

We handle the four-Majorana interactions HI in Eq. (5) by
self-consistent mean field theory. For each flux sector, HI con-
tains terms like ±|h|cmc jckcl . Denote the center of each � or �

by site m. Note that ±|h|cmc jckcl = −|h|
2 (±icmc j + ickcl )2 +

|h|, we can make a Hubbard-Stratonovich (H-S) transforma-
tion to decouple the square term. To preserve the threefold
rotational symmetry, we introduce three real auxiliary fields
� jk,�kl ,�l j . Define ηm jkl = −sign(h)u jmukmulm = ±1, and
then the H-S transformation is given by

− hu jmukmulmcmc jckcl

= |h|ηm jkl cmc jckcl → 3�2
kl

2|h| − i�kl (ηm jkl cmc j + ckcl )

+ 3�2
l j

2|h| − i�l j (ηm jkl cmck + clc j )

+ 3�2
jk

2|h| − i� jk (ηm jkl cmcl + c jck ) + |h|. (7)

Here the factor of 3 is to ensure integrating out the �’s re-
covers the original four-fermion interaction, and ηm jkl keeps
track of the overall sign of the four-Majorana term. We apply
Eq. (7) to HI with distinct �’s for each term, and then we have
decoupled the Majorana interaction into free Majorana cou-

(a) (b)

(c) (d)

FIG. 2. (a) π -flux sector in which every hexagon has flux π . The
Z2 gauge field ujk flips sign at the thick black bonds to give rise to
π flux in the hexagons near it. The extended unit cell is denoted by
the parallelogram. (b) 1

4 π -flux sector where white (gray) hexagons
have 0 (π ) flux inside it. ujk flips sign at the thick black bonds.
The extended unit cell is denoted by the parallelogram. In the mean
field solution, all the �’s labeled by the blue (red) bonds have the
same magnitude, which preserves the symmetry of the flux sector.
(c) Different terms in the mean field Hamiltonian with � and �′ are
labeled by blue and red bonds respectively. (d) � as a function of h
for 0-, π -, and 1

4 π -flux sectors computed at K1 = 1, K3 = 0.3, K ′
3 =

0.34, T = 1
24 . For the 1

4 π -flux sector, the � at the blue bonds in panel
(b) are used. � increases with h as magnetic field increases, and the
� becomes linear in h when h is large.

pled to auxiliary fields. We further require the terms related
by a translation of (extended) lattice vector have the same �;
then the decoupling preserves the translational symmetry. The
number of independent �’s is three times the number of sites
in the extended unit cell for each flux sector. For example, the
0-flux sector has two sites in the unit cell and it needs six �’s.
The π -flux sector is shown in Fig. 2(a), where the signs of the
Z2 gauge field u jk at the thick black bonds are flipped. The
extended unit cell of the π -flux sector has four sites and it
needs twelve �’s.

The mean field solution is obtained by finding the set of
�’s that minimizes the free energy. This is also equivalent to
finding �’s that satisfy the self-consistency equations:

�kl = |h|
3

〈iηm jkl cmc j + ickcl〉,

�l j = |h|
3

〈iηm jkl cmck + iclc j〉,

� jk = |h|
3

〈iηm jkl cmcl + ic jck〉. (8)

Here the average denotes the thermal average at the same
temperature as the temperature under which the free en-
ergy is computed. It is evident from Eq. (8) that the �’s
are real. Our mean field theory is different from that in
Ref. [45] in that our decoupling ensures the mean field so-
lution obtained by solving the self-consistency equations and
minimizing free energy agree with each other. We have
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computed the mean field solutions for different flux sectors
with flux 0, π, 1

2π, 1
3π, 2

3π, 1
4π, 3

4π .
Our solutions show that the �’s respect the symmetries of

each flux sector. For example, the 0-flux sector has uniform
flux distribution in space, and all the �’s in Eq. (7) have the
same magnitude in the mean field solution. We can label each
� term by a colored bond with half the length of a NN bond
as in Fig. 2(c). The sign of �’s are distributed in such a way
that it modifies the NN hopping strength from K1 to K1 + 2�,
where the factor of 2 is because each NN bond is shared by
two �’s as in Fig. 2(c), and the NNN hopping strength is
modified from h to h + �. The uniform magnitude of �’s also
appears in the π -flux sector. For other flux sectors whose flux
distribution in space is not uniform, e.g., the 1

4π -flux phase
in Fig. 2(b), only the symmetry-related �’s have the same
magnitude. Here all the �’s at the blue bonds in Fig. 2(b)
have the same value �a, and all �’s at the red bonds have
another value �b. As the magnetic field increases, � also
increases and the ratio �/h becomes a constant at large h, as
shown Fig. 2(d). With this mean field solution, we are able to
compute the Majorana spectrum and the evolution of thermal
conductivity with magnetic field.

IV. THERMAL CONDUCTIVITY

Thermal conductivity can be computed from the mean
field Hamiltonian for each flux sector. The Hamiltonian in
momentum space is H = ∑

k ψ
†
k,iH

�(k)i jψk, j , where ψk, j =
1√
2N

∑
j eik·r j c j is the Fourier transform of Majorana opera-

tors and H�(k) is the Hamiltonian matrix that also depends
on �’s. The system has zero chemical potential, and the heat
current operator is given by [46]

JQ =
∑

k

ψ
†
k,i

(
1

2
∂k(H�(k)2)

)
i j

ψk, j . (9)

The current-current correlation in Matsubara frequency is

�μν (in) = −
∫ β

0
dτeinτ

〈
Tτ JQ

μ (τ )JQ
ν (0)

〉
. (10)

The thermal conductivity κxx can be computed by [47–49]

κxx = − lim
→0

Im �xx( + iδ)

T

= lim
→0

π

∫
d2k

(2π )2

∫ ∞

−∞
dω

nF (ω) − nF (ω + )

T

× Tr
[
JQ

x (k)A(k, ω)JQ
x (k)A(k, ω + )

]
, (11)

where nF is the Fermi distribution function, JQ
x (k) is the

matrix of heat current operator, A(k, ω) = − 1
π

ImGret(k, ω) =
γ

(ω−H�(k))2+γ 2 is the matrix of spectral function, and we have
added a small impurity scattering rate γ = 0.03K1. Equa-
tion (11) involves the derivative of nF which is peaked at
the Fermi energy with a width proportional to temperature
T , and hence only the states with energy close to the Fermi
level within the scale of T can contribute to κxx. This indicates
thermal conductivity will be small if the density of states near
the Fermi energy is low.

The thermal conductivity as a function of h/K1 for 0-
and π -flux sectors with parameters K1 = 1, K3 = 0.3, K ′

3 =

(a) (b)

(c) (d)

FIG. 3. Physical quantities as a function of h/K1 for 0- and π -
flux sectors with parameters K1 = 1, K3 = 0.3, K ′

3 = 0.34, T = 1
24 .

We only show the results for these two flux sectors because they have
lower free energy than other flux sectors. (a) Thermal conductivity.
(b) Free energy. (c) Chern number. (d) Thermal conductivity of
the flux sector with the lowest free energy. The maxima of κxx in
panel (a) coincide with the changes of Chern number in panel (c).
The red dashed lines in panel (d) represent the transition from π -
to 0-flux sector and the topological transition that changes Chern
number. These transitions give rise to dip-bump features in thermal
conductivity as a function of magnetic field.

0.34, T = 1
24 are plotted in Fig. 3(a). We only show these

two flux sectors because they have lower free energy than the
other flux sectors, and the results for the other flux sectors are
shown in the Appendix. Figure 3(a) shows that the κxx curves
develop dips and bumps as a function of magnetic field. The
detailed shape of the curves depend on the parameters, but
the appearance of dip-bump features in each flux sector is
generic. The free energy with the same parameters is shown
in Fig. 3(b). It shows the ground state is in the π -flux sector
for small h and it goes through a transition to the 0-flux
sector at large h. This first-order transition can lead to a
jump in physical observables. Figure 3(d) shows the thermal
conductivity of the flux sector with the lowest free energy.
The red dashed line represents the phase transition from the
π - to 0-flux sector, which is accompanied by a dip in κxx.
The temperature dependence of thermal conductivity for 0-
and π flux sectors are shown in Fig. 4, where in Figs. 4(b)
and 4(d) the curves are normalized by κxx at h = 0. It shows
that the dips and bumps become weaker at low temperature,
because thermal conductivity is a transport property at finite
temperature which will decrease when temperature is low.

V. DIPS AND BUMPS IN THERMAL CONDUCTIVITY
INDUCED BY PHASE TRANSITIONS

The dips and bumps of thermal conductivity as a function
of magnetic field shown in Figs. 3(a) and 3(d) is a generic
feature that exists in a wide range in the parameter space.
These phenomena can be understood from the transition be-
tween different flux sectors and the gap closing accompanied
by the topological transitions that changes the Chern number.
When the magnetic field is small, it tends to open a gap in

245142-4



MAGNETIC FIELD INDUCED TOPOLOGICAL … PHYSICAL REVIEW B 105, 245142 (2022)

(a) (b)

(c) (d)

FIG. 4. Thermal conductivity as a function of h/K1 for 0- and
π -flux sectors at different temperature with K1 = 1, K3 = 0.3, K ′

3 =
0.34. Panels (a) and (b) are for 0-flux sector and panels (c) and (d) are
for π -flux sector. Panels (b) and (d) are rescaled by κxx at h = 0. The
dips and bumps become weaker at low temperature.

the Majorana fermion bands for 0- and π -flux sectors. The
low-energy band structure E (k) of 0- and π -flux sectors for
the parameters in Fig. 3(a) at zero and small h are shown
in Fig. 5. The spectrum at h = 0 without magnetic field is
gapless for both flux sectors. When a small magnetic field is
added, the spectrum in both flux sectors open a gap. From
Eq. (11), the thermal conductivity is related to the density of
states near the Fermi energy, and therefore this gap reduces the
thermal conductivity, leading to the decrease of κxx at small h
for 0- and π -flux sectors in Fig. 3(a).

When magnetic field increases, there is a transition from
π - to 0-flux sector, which leads to a dip in thermal conductiv-
ity at h/K1 = 0.165. As the magnetic field further increases,
it can induce topological transitions that change the Chern
number for the Majorana bands. The Chern number for each
flux sector is shown in Fig. 3(c), and a comparison with
Fig. 3(a) shows that the local maxima of thermal conductivity
coincide with the change in Chern number. This is because
the gap needs to close near transitions that change the Chern
number, which leads to an increase in the density of states

FIG. 5. Dispersion of Majorana bands near the Fermi energy for
0- and π -flux sectors with K1 = 1, K3 = 0.3, K ′

3 = 0.34. For both
flux sectors, the spectrum are gapless at h = 0, and a small h induced
by magnetic field can open a gap. The gap in the π -flux sector is
much smaller than that for the 0-flux sector.

FIG. 6. Chern number of the 0-flux sector with finite H2 and
vanishing HI . This phase diagram is independent of the magnitude of
H2 as long as H2 is finite. Interaction HI induced by the magnetic field
can rescale the effective K3 and K ′

3 along the white arrow, leading to
a phase transition that changes the Chern number.

near Fermi energy. Because κxx is related to the density of
state, this change in Chern number leads to an increase of κxx,
which is the origin of the bump of thermal conductivity near
h/K1 = 0.3.

The Majorana interaction term HI induced by the magnetic
field also plays an important role in the change of Chern num-
ber. Consider the 0-flux sector for simplicity in which all the
�’s have the same value in the mean field solution. If we turn
off interaction HI but keep a finite H2 [see Eq. (4)], the phase
diagram of Chern number for the 0-flux sector with different
K3 and K ′

3 is shown in Fig. 6. From Eq. (7) the auxiliary field
� modifies the NN hopping terms in the mean field Hamilto-
nian by changing K1 to K1 + 2�. Because an overall scaling
of Hamiltonian does not modify the Chern number, a sys-
tem with parameters {K1 + 2�, K3, K ′

3} has the same Chern
number as the one with parameters {K1, K3

K1
K1+2�

, K ′
3

K1
K1+2�

}.
Therefore, the interaction term effectively rescales K3 and K ′

3

by a factor K1
K1+2�

. The mean field solution shows � is a
positive number that grows with h. Therefore, if the system
without magnetic field has K3, K ′

3 located at, e.g., the red
dot in Fig. 6, then as the magnetic field increases, h and
� will increase and the effective K3 and K ′

3 will follow the
white arrow in Fig. 6. When the effective K3 and K ′

3 cross a
phase boundary between different Chern numbers, the Chern
number will change and the gap will close, leading to an
increase in κxx. This explains the bump of κxx in the 0-flux
sector in Figs. 3(a) and 3(d) at h/K1 = 0.3. As long as K3 and
K ′

3 are chosen to be at C = 4 or C = −2 region close to the
phase boundary, the bump in Kxx is expected to occur, which
is not sensitive to the exact choice of K3 and K ′

3. Therefore,
the change of Chern number induced by magnetic field is a
robust feature of this Majorana system which is independent
of the detailed parameter choice.

VI. DISCUSSION

We have shown that in quantum spin liquids an external
magnetic field can induce dips and bumps in thermal conduc-
tivity κxx via phase transitions between different flux sectors
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(a) (b) (c)

FIG. 7. Free energy (a), thermal conductivity (b), and Chern number (c) as a function of h induced by magnetic field for various flux sectors
with K1 = 1, K3 = 0.3, K ′

3 = 0.34, T = 1
24 . In panel (c) the overlapped curves are slightly shifted for better visibility.

and different Chern numbers. It is tempting to compare our
results to the recent experiments where oscillations of κxx

with magnetic field was observed. The dip-bump features that
we found in κxx become weaker at lower temperature, as
shown in Fig. 4, which could be consistent with the report
in Ref. [39] of a weakening trend of the oscillatory features
at lower temperatures. Our model is a possible mechanism
for the nonmonotonic behavior in thermal conductivity, but
it is difficult for a direct comparison between our model and
realistic materials. Our model predicts the change in Chern
number accompanies the local maxima of thermal conductiv-
ity, which will lead to a jump in thermal Hall conductivity κxy

because κxy is related to Chern number, and this change in κxy

will be sharper at lower temperature. The change of κxy near
the bump of κxx has not been reported in candidate materials.
The relation between κxy and the nonmonotonic behavior of
κxx are left as an open question for future investigation.
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APPENDIX: THERMAL CONDUCTIVITY IN OTHER
FLUX SECTORS

We have computed the thermal conductivity for various
flux sectors including 0, π, 1

2π, 1
3π, 2

3π, 1
4π , and 3

4π . The
plots for 0- and π -flux sectors are shown in the main text. Here
we show the results for all these flux sectors in Fig. 7. The
free energy for each flux sector as a function of h induced by
magnetic field is plotted in Fig. 7(a). It shows the ground state
with the lowest free energy is in 0- or π -flux sector. The ther-
mal conductivity κxx is plotted in Fig. 7(b), which shows the
dependence of κxx on the magnetic field is nonmonotonic in
general within each flux sector. This nonmonotonic behavior
is related to the change in Chern number as shown in Fig. 7(c).
Within each flux sector, each local maximum of κxx coincides
with a topological transition that changes the Chern number.
This is because the change in Chern number accompanies the
closure of Majorana band gap and an increase in density of
states, which leads to increased thermal conductivity. Since
the transitions that change the Chern number within each flux
sector generically exist, and the transitions between different
flux sectors driven by free energy can also lead to jumps
in thermal conductivity, these transitions provide a generic
mechanism to induce nonmonotonic dependence of thermal
conductivity on the magnetic field.
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