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Hypergrid subgraphs and the origin of scarred quantum walks in many-body Hilbert space
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Following the recent observation of wave function revivals in large Rydberg atom quantum simulators, much
effort has focused on understanding the emergence of many-body scars in nonintegrable quantum systems. Here
we explore the origin of scarred wave function revivals in a family of models obtained by deforming the graph
adjacency matrix of the PXP model—the effective model of Rydberg atoms in the strong Rydberg blockade
regime. We consider deformations that either enhance the Rydberg constraint, ultimately resulting in an effective
tight-binding model of two hypercubes joined at a single vertex, or relax the constraint until reaching the free
spin-1/2 model. In the former case, we argue that the model of two joined hypercubes captures the essential
features of many-body scarring present in the PXP model. On the other hand, relaxing the constraint leads to
a sequence of new scarred models, some with more robust scarring signatures than the PXP model, as can be
understood from the graph-theoretic viewpoint. Our results shed light on the nature of scarring in the PXP model
by identifying its simple parent model, while also highlighting its distinction from the free-spin precession.
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I. INTRODUCTION

Quantum revival, a phenomenon where the wave function
|ψ (T )〉 at some time t = T returns to its value at initial
time t = 0 [1,2], i.e., |〈ψ (0)|ψ (T )〉|2 ∼ O(1), has played an
important role in understanding coherence properties of few-
body or weakly interacting quantum systems [3–14]. The
ability to engineer recurrent behavior in more complex quan-
tum systems is an important task as it allows one to study
their long-term coherent evolution beyond the initial relax-
ation, while on the other hand, it also provides insight into
the emergence of statistical ensembles in closed systems that
evolve according to the Schrödinger unitary dynamics.

Beyond material systems, it has been fruitful to study
wave function revivals in a more abstract setting of quantum
walks on various types of graphs [15]. In physics, one of
the ubiquitous graphs is the hypercube graph, which arises as
the adjacency matrix of a system of free spin-1/2 degrees of
freedom,

H =
N∑

j=1

Xj, (1)

where Xj is the standard Pauli-x matrix on site j. This graph
has 2N vertices which are product states of spins, usually
taken to be oriented along the z axis, |σ1, σ2, . . . , σN 〉, with
σi = 0, 1. Moreover, this graph is unweighted, i.e., all edges
of the graph are equal to 1 because the Hamiltonian matrix
elements between different basis states are all the same. The
hypercube graph is known to support perfect state transfer
(and thus perfect quantum revival) from any vertex—a fact
that has attracted significant attention in both graph theory
[15] and physics community [16–18] where it is used as a
starting point for designing quantum network architectures;

e.g., see a recent realization in superconducting qubits in
Ref. [19]. More generally, there has been growing interest
in using graph theory to describe universal properties of
quantum many-body systems [20,21] and their thermalization
dynamics [22].

Intriguingly, even the simple quantum systems, such as
a free particle hopping on a 1D lattice, require careful tun-
ing of the hopping amplitudes in order to sustain perfect
quantum state transfer [17]. In generic many-body systems,
perfect state transfer is expected to be exceptionally rare, if
not impossible, once the wave function is allowed to spread
across an exponentially large Hilbert space. Nevertheless, as
recent experiments on arrays of Rydberg atoms have shown
[23–25], in certain “quantum many-body scarred” systems,
some initial states can undergo robust state transfer, despite
the fact that the system overall is nonintegrable, i.e., does not
have any global conserved quantities apart from total energy.
This phenomenon is now understood to be a consequence of
a small set of nonthermal eigenstates dispersed throughout
the many-body energy spectrum [26,27]. These eigenstates
were shown to form an approximate representation of an su(2)
algebra [28], thus they can be visualized as basis states of an
emergent “big spin.” The underlying su(2) algebra gives rise
to an equal energy separation between the special eigenstates,
and the observed revival dynamics can be understood as semi-
classical spin precession [29]. This phenomenology forms the
core of quantum many-body scarring—a many-body version
of the phenomena associated with a single particle confined
to a chaotic stadium billiard [30]. For recent introductions to
many-body quantum scars, see Refs. [31–33].

From a graph point of view, the prototype model of
quantum many-body scarring in Rydberg atom chains—the
so-called PXP model [34,35]—is a partial cube, i.e., a hyper-
cube with some of the vertices removed (without changing the
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DESAULES, BULL, DANIEL, AND PAPIĆ PHYSICAL REVIEW B 105, 245137 (2022)

FIG. 1. Two families of constrained models, obtained by either
strengthening or weakening the PXP constraint. The Hamiltonian ad-
jacency graphs of the models are (from left to right): two hypercubes
joined at a single vertex, Eq. (10), with N = 6 spins; PXP model
in Eq. (2) with N = 6; a new model we refer to as a “(2,3) model”
with N = 4 introduced in Eq. (15); and the free spin-1/2 model in
Eq. (1) with N = 4. The red vertices denote the two Néel states. The
black vertices in the PXP graph highlight the embedded subgraph
corresponding to two hypercubes. The two hypercubes are connected
via “bridges” (green vertices), i.e., vertices and edges present in
the PXP model but not contained within the two hypercubes. The
behavior of the wave function fidelity revivals |〈ψ (0)|ψ (t )〉|2 for
three different system sizes N1 < N2 < N3 is sketched below the
models, along with the system-size scaling of the first revival peak
f0.

distance between any two vertices). The PXP Hamiltonian is

HPXP = P
(

N∑
j=1

Xj

)
P, (2)

where we assume periodic boundary conditions (PBC) as we
will do in the rest of this work. P = ∏

i[1 − (1 + Zi )(1 +
Zi+1)/4] is a global projector expressed in terms of the Z Pauli
matrix. This projector removes vertices that contain nearest-
neighbor pairs of atoms that are simultaneously excited, i.e.,
any spin configurations of the form | . . . 11 . . .〉. In analogy
with the Rydberg atom case, we will use the terms “excita-
tion” and “spin-up” interchangeably in the rest of this paper.
The number of vertices corresponding to the states violating
the constraint scales exponentially with system size, and their
removal profoundly alters the behavior of the model: unlike
the free spin-1/2 model in Eq. (1), which is a (noninteracting)
integrable model, the PXP model in Eq. (2) is chaotic [26].

Indeed, for most initial states that are product states of
spins in the computational basis (i.e., vertices of the partial
cube), the PXP model exhibits fast equilibration without re-
vivals. However, for special initial states, such as the Néel or
“Z2” state, |Z2〉 ≡ |101010 . . .〉, the PXP model undergoes
a significant (albeit not perfect) state transfer to the trans-
lated Néel state, |010101 . . .〉. These states feature a robust
quantum revival with return probability on the order ∼70% in
relatively large systems of N = 32 spins [27] (see also Fig. 1
for an example). While the existence of quantum revivals in

the PXP model has been been accounted for by an emergent
su(2) spectrum-generating algebra [28], the origin of the effect
remains unclear: what is it about the PXP model that allows
this effective su(2) spin to arise in the first place? In particular,
why are the constrained models predisposed towards this type
of behavior? Here we explore the previous questions by
taking a graph point of view. We demonstrate the existence
of large regular subgraphs, embedded in the Hamiltonian
adjacency graph, which capture the essential physics of the
revivals. In the PXP model, we will show that the relevant
subgraph consists of two large hypercubes of dimension N/2
each, whose corners are the two Néel states; see Fig. 1 for an
example. The two hypercubes share a single vertex, the polar-
ized state |000000 . . .〉, and the opposite corners to this state
are the two Néel states. Thus, the state transfer between the
two Néel states can be schematically understood as corner-to-
corner transmission from |101010 . . .〉 to |000000 . . .〉 in the
first hypercube, and then from |000000 . . .〉 to |0101010 . . .〉
in the second hypercube. Given the strong link between per-
fect state transfer and hypercube graphs, we seek explanation
of the revivals in the PXP model as due to the existence of two
large hypercubes embedded in it, which support finite revival
on their own in the thermodynamic limit, as shown below.

Specifically, our discussion of quantum revivals below will
focus on three typical scenarios that are illustrated in Fig. 1.
The free paramagnet in Eq. (1) exhibits perfect revivals at
arbitrarily late times and its fidelity of the first revival peak
f0 = 1 for any system size N . Other models, such as the
two-hypercube model, which will be shown to have an ef-
fective single-particle description, display imperfect revivals
with a certain decay timescale. Nevertheless, such models
still exhibit finite revival peaks with a fixed period T in
the thermodynamic limit, i.e., f0→const as N→∞. Finally,
for the many-body models we consider, including the PXP
model in Eq. (2), the fidelity generically decays exponentially
with system size, f0 ∝ exp(−cN ), thus the return probability
vanishes in the thermodynamic limit. However, the fidelity
density, ln( f0)/N , for such models and special initial states
considered, takes a value much closer to 0 than expected in
a generic thermalizing system, this signaling weak ergodicity
breaking. We focus on these three classes of regular fidelity
revivals with a well-defined frequency and finite period, as
opposed to other types of “accidental” revivals at irregular
times or revivals due to finite-size effects, for which the period
increases drastically with N .

In this paper we investigate two families of constrained
models described by Hamiltonians of the form in Eq. (2) with
different choices of projectors P . The projector P is further
restricted to only forbid excitations, meaning that it must
always be possible to de-excite an atom. As a consequence,
all graphs considered are not only partial cubes but so-called
daisy cubes [36]. The first family, studied in Sec. II, is ob-
tained by strengthening the PXP constraint to turn it into the
two-hypercube model. These models exhibit revivals from the
Néel state and a band of scarred eigenstates. The latter span a
subspace that evolves “adiabatically” as the constraint is tuned
between different models belonging to this family. In contrast,
the models investigated in Sec. III are obtained by weakening
the constraint in a way that smoothly interpolates between
the PXP model and the free spin-1/2 model. Interestingly, the
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many-body scarring properties of the models in this family are
found to vary nonmonotonically: while some models exhibit
enhanced scarring compared to the PXP model, other mod-
els “closer” to the free spin-1/2 model actually have poorer
scarring properties. This family of models thus illustrates
the many-body nature of scarring in the PXP model and its
lack of a simple adiabatic continuity with the free spin-1/2
model. Finally, in Sec. IV we demonstrate the robustness of
our results by sampling random models with the same graph
structure and showing they yield the same phenomenology.
Our conclusions are presented in Sec. V, while Appendixes
contain further results including different ways of joining the
hypercubes and random sampling of models.

II. THE MODEL OF TWO CORNER-SHARING
HYPERCUBES AND INTERPOLATION

TO THE PXP MODEL

A single hypercube of dimension N represents a nonin-
teracting chain of N spins defined in Eq. (1). As we explain
below, although the solution of the hypercube is well known
from the theory of angular momentum in quantum mechanics,
the same problem can also be solved by mapping to a tight-
binding chain with N+1 sites. The latter approach, known as
the Forward Scattering Approximation (FSA), will be used
throughout this paper. We first provide a brief overview of
this formalism for a single hypercube, following Refs. [26,27].
After this, we turn to the study of a model of two hypercubes
joined at a single vertex, demonstrating that it provides a
simplified description of scarred dynamics in the PXP model.

A. Forward scattering approximation for the hypercube

The FSA method is a version of the Lanczos recurrence
[37] whereby one projects the Hamiltonian into a Krylov sub-
space. The usual Lanczos iteration starts with a given vector in
the Hilbert space, |v0〉, usually chosen to be random. The or-
thonormal basis is constructed by recursive application of the
Hamiltonian H to the starting vector. The basis vector |v j+1〉 is
obtained from |v j〉 by applying H and orthogonalizing against
|v j−1〉:

β j+1|v j+1〉 = H |v j〉 − α j |v j〉 − β j |v j−1〉, (3)

where α j = 〈v j |H |v j〉 and β > 0 are chosen such that ‖v j‖ =
1. Here we observe that the action of H results in the next vec-
tor |v j+1〉 (“forward propagation”) but also gives some weight
on the previous basis vector, |v j−1〉 (“backward propagation”).

For a single hypercube in Eq. (1), the above scheme is
fully analytically tractable. Let us choose the Néel state |v0〉 =
|Z2〉 = |1010 . . .〉 as the initial vector. Moreover, we split the
Hamiltonian in Eq. (1) as H = ∑

j Xj = H+ + H−, i.e., into
a sum of the forward and backward propagators,

H+ =
∑

j∈ odd

σ−
j +

∑
j∈ even

σ+
j , (4a)

H− =
∑

j∈ odd

σ+
j +

∑
j∈ even

σ−
j , (4b)

where σ± are the standard Pauli raising/lowering operators.
For a single hypercube, it can be seen that H+ and H− obey

the standard algebra of spin raising and lowering operators.
This can be used to immediately write the Hamiltonian matrix.
Nevertheless, we will show the same result can be obtained
via a slightly different procedure, which directly generalizes
to the two-hypercube and PXP models.

Consider the first step of the recurrence (3). Operator
H− annihilates the state |1010 . . .〉, and we obtain the vector
β1|v1〉 = H+|Z2〉, which is an equal-weight superposition of
all single-spin flips on top of |Z2〉,
β1|v1〉 = |001010 . . .〉 + |111010 . . .〉 + |100010 . . .〉 + · · · .

(5)
Hence, H+ implements forward propagation while the ac-
tion of H− has vanished. The vector |v1〉 is automatically
orthogonal to |v0〉, thus we set α0 = 0, and β1 = √

N by
normalization, where N is the number of spins.

In the second step, we observe that the action of H+ on |v1〉
will produce a state containing a pair of defects atop the Néel
state, which is thus orthogonal to both |v1〉, and |v0〉. On the
other hand, the action of the backward-scattering part gives
us the original state v0, H−|v1〉 = β1|v0〉, where we explicitly
used the value of β1. For a hypercube, one can show that

H−|v j〉 = β j |v j−1〉 (6)

holds more generally at every step of the iteration. This allows
us to cancel H−|v j〉 with the last term in Eq. (3), yielding the
FSA recurrence:

β j+1|v j+1〉 = H+|v j〉, (7)

where we also omitted the α j |v j〉 term since all α j = 0. This
follows from the fact that H± operators change the Hamming
distance from |Z2〉 state by ±1. Hence, the new state |v j+1〉 is
always orthogonal to |v j〉. Moreover, by the same argument,
the FSA recurrence closes after N+1 steps as it reaches the
vector |vN 〉 = |Z′

2〉 = |0101 . . .〉, which is the translated Néel
state that vanishes under the action of H+.

Finally, using induction one can show

β j =
√

j(N − j + 1), (8)

which, as anticipated, is the well-known matrix element of a
spin ladder operator. This results in the effective tridiagonal
matrix form in the basis of |v j〉:

Hhypercube =
N∑

j=1

β j |v j〉〈v j−1| + H.c. (9)

This allows one to reduce the dynamics from the Néel state
to that of a tight-binding chain with the corresponding hop-
ping strength, as shown in Fig. 2(a). Taking into account the
expression for β j , we see that this matrix coincides with the
2Sx operator for a spin of size N/2, resulting in a set of N+1
equidistant energy levels. Likewise, the wave functions in the
basis of |v j〉 can be obtained from the Wigner rotation matrix.

Beyond the elementary hypercube example described
above, generalizations of the FSA, Eq. (7), were shown to
be a useful scheme for approximating many-body scarred
eigenstates in PXP and similar models [27,38–40]; see
Appendix A for more details. For the model of two hyper-
cubes joined at a single vertex, the FSA is also numerically
exact for certain initial states. Finally, in the PXP model the
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FIG. 2. Tight-binding chain describing the dynamics from the
Néel initial state for (a) the free paramagnet and (b) the two-
hypercube model in Eq. (10). In both cases, the many-body dynamics
can be reduced to a single-particle hopping on a 1D tight-binding
chain, with the site-dependent hopping amplitudes indicated on the
chains. From these amplitudes, it can be seen that the two-hypercube
model with N sites (N-even) simply corresponds to “sewing” to-
gether two free paramagnets with N/2 sites each.

FSA is no longer exact, meaning that H−H+|v j〉 is not propor-
tional to vector |v j〉 for some values of j. This in turn implies
that the FSA subspace is not disconnected form the rest of the
Hilbert space. However, the FSA still yields highly accurate
approximations of scarred eigenstates for the PXP model [27],
and it forms the foundation for algebraic understanding of
many-body scars [28].

B. From one to two hypercubes

Now we consider in detail the problem of two hypercubes
(of dimension N/2 each), sharing a single vertex, as in Fig. 1.
This two-hypercube model can be written as a translation-
invariant spin Hamiltonian:

H2HC =
∑

j

· · · 1j−4Pj−31j−2Pj−1XjPj+11j+2Pj+31j+4 · · · ,

(10)

obtained by dressing each Pauli matrix Xj by an infinite string
of operators alternating between identity 1 and local projector
Pj = (1 − Zj )/2. For a finite system, the length of the string
can be limited to N/2 on each side.

We can express the Hamiltonian in Eq. (10) in the form
of Eq. (2), where global P now annihilates any state with
excitations on both the odd and even sublattices. Thus, only
one of these two sublattices can have excitations for any given
state, but there is no further constraint within each sublattice.
We are then left with two free spin-1/2 models with N/2 states
(one for each sublattice) that share a single state, namely,
the polarized state |00 . . . 00〉. Hence the corresponding graph
consists of two hypercubes of dimension N/2 sharing a single
vertex. This formulation of the two-hypercube model also
makes it more transparent why it physically emerges in the
PXP model (and in the free spin-1/2 model) in the first place,
as can be seen in Fig. 1. The constraint is similar in both mod-
els, but in the case of two hypercubes it encompasses all sites

FIG. 3. Dynamics in the two-hypercube model in Eq. (10).
(a) Time evolution of the return probability, |〈ψ (0)|ψ (t )〉|2, for the
Néel state, |ψ (0)〉 = |1010 . . .〉 and several system sizes N . The
insets zoom in on the first revival at time T and on the reflection
peak at T/2. (b, c) Finite-size scaling analysis of the first revival
amplitude f0 (b) and period T0 (c). Extrapolation to N→∞ yields a
finite revival peak f0.

on the other sublattice instead of just the nearest neighbors in
the PXP model. Thus, all states in the two-hypercube model
satisfy the PXP constraint but not the other way round.

For the two-hypercube model, the FSA introduced in
Sec. A remains exact for certain initial states. Indeed, when
starting from the |Z2〉 = |1010 . . .〉 state (which is the ver-
tex at the maximal distance away from the shared vertex),
the FSA procedure mirrors that in a single hypercube un-
til the shared vertex is reached (after N/2 steps). At that
point, the second half of the FSA procedure happens exclu-
sively in the second hypercube until the translated |Z̄2〉 =
|0101 . . .〉 state is reached; see Fig. 2(b) for an illustration.
As a consequence, the FSA for the model in Eq. (10) is
exact for the |Z2〉 initial state and the tridiagonal Hamilto-
nian corresponds to two copies of Eq. (9) joined together.
Unfortunately, analytical diagonalization of this Hamiltonian
in the FSA subspace is no longer trivial. Nevertheless, due to
the complexity of the problem growing only linearly with N ,
numerical simulations on large systems N�105 are possible.
The finite-size scaling analysis in Fig. 3 for the two-hypercube
model in Eq. (10) shows that this model supports revival of
the wave function in the thermodynamic limit. We evaluated
the quantum fidelity, |〈ψ (0)|e−iH2HCt |ψ (0)〉|2, which is seen
to rapidly decay to zero and then rise to a value f0 ≈ 0.7159
around the time T = 6.282, corresponding to the first revival.

Another interesting feature of the revivals in Fig. 3 is the
presence of a small but visible peak at half the revival period.
In order to understand this, it is convenient to decompose the
problem into a symmetric superposition of the two hypercubes
and their antisymmetric superposition. The symmetric sector
has N+1 states and its Hamiltonian is the one from Eq. (9)
except that the last term of the sum is multiplied by a factor
of

√
2. In the antisymmetric sector, the contribution of the

two chains cancel at the middle vertex |000 . . .〉. Therefore,
this sector has only N states, and its Hamiltonian is the one
of Eq. (9) without the last term in the sum. On their own,
both sectors revive (although imperfectly) with a period close
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to T = π . However, at each revival the antisymmetric sector
picks up a phase of −1. This is why the first revival of the
full system happens only at T ≈2π . The symmetric sector also
has a slightly longer revival period that the antisymmetric one.
The difference of frequency and amplitude of revivals means
that they do not exactly cancel at T ≈π , hence the reflection
peak.

Alternatively, this reflection can also be understood as be-
ing caused by reflection on the shared vertex ”bottleneck.” See
Appendix D for more details.

C. Interpolating between two hypercubes and the PXP model

As shown in the previous section, the PXP model con-
tains two embedded hypercubes of dimension N/2, which,
on their own, support a revival from the |Z2〉 state in the
thermodynamic limit. Here we explore a possible connection
between the two-hypercube model and the full PXP model.
Interpolation between the two models can be done naturally
by varying the range of the projectors dressing the Pauli X
operator in Eq. (10). Specifically, the class of models inter-
polating between the PXP and two hypercubes are defined by

Hr =
∑

j

Pj−2r+1 · · · Pj−3Pj−1XjPj+1Pj+3 · · · Pj+2r−1, (11)

where r labels the number of projectors to the one side of
X . Setting r = 1 simply gives back the PXP model, whereas
r � N/4 corresponds to the two-hypercube model in Eq. (10).
As r = 0 corresponds to the free spin-1/2 model, we can also
consider this procedure as an interpolation between the two-
hypercube and the free spin-1/2 model where PXP is just one
of the intermediate steps.

All the models in Eq. (11) have the two-hypercube as a
subgraph, and we compare the revivals from the Néel state in
all of them in Fig. 4(a) for a fixed value of N = 32. We observe
the fidelity at the first revival peak remains in the ballpark of
f0∼0.7–0.8 for all values of r, with a slight increase of the
revival period with r. Moreover, for all values of r, we can
identify a band of N+1 eigenstates with anomalously high
overlap on |Z2〉 [see Figs. 4(b)–4(d)]. The energy separation
between these eigenstates is approximately constant in the
middle of the spectrum and matches the frequency of revivals
in Fig. 4(a). For r = N/4, the Hamiltonian exactly corre-
sponds to the two-hypercube model and the spectrum contains
only N+1 states. As r is decreased, this band of states evolves
smoothly, while an increasing number of thermal eigenstates
start to appear in the system [see Figs. 4(c) and 4(d)].

In Figs. 4(e) and 4(f) we compare the revivals from all
states in the computational basis, i.e., we probe the revivals
from all graph vertices. To make a fair comparison between
different models, instead of fixing the system size, we take
a different value of N for each model that gives roughly the
same Hilbert space dimension. While for the Néel states there
are few changes with r, this is not the case for most other
initial states, whose revivals get worse as the constraint is
relaxed. This can be understood by considering new vertices
and edges that appear in the graph as r is decreased. In the rest
of this work we will refer to these graph elements (vertices
and corresponding edges) as “bridges” as they are effectively

FIG. 4. Revivals and scarred eigenstates in models defined in
Eq. (11) for different values of r. (a) Fidelity for the |Z2〉 initial
state for N = 32. The inset shows the fidelity at the first revival
peak f0 as a function of r. (b–d) Overlap between |Z2〉 and the
energy eigenstates for three different values of r with N = 32. Panel
(b) corresponds to the two-hypercube model, while (d) is PXP. The
red crosses highlight the top band of N+1 eigenstates with anoma-
lously high overlap with the |Z2〉 state. (e, f) f0 and revival period T
for different r values. In panels (e) and (f) we compare the revival
period and the first revival peak f0 for |Z2〉 initial state with the
computational basis state having the highest f0 (“best state”) as well
as the average over all initial basis states (with the standard deviation
shown by an error bar). The value of N changes with r in order
to keep the Hilbert space dimensions comparable and in the range
105<D<1.5 × 105.

bridging between the hypercubes. When only the two hyper-
cubes are present, the dynamics for the majority of states
consists of state transfer in a single hypercube with a small
leakage to the other hypercube. However, if a bridge is added
close to a vertex, this will drastically enhance the state transfer
to the other hypercube. Thus the dynamics is no longer well
described by perfect state transfer with some leakage, and the
revivals consequently get worse. On the other hand, for the
Néel state the dynamics is relatively unchanged as we always
have state transfer to the translated Néel state and back. Due
to the form of the constraint, no bridge is added closer than
at Hamming distance equal to 2 measured from that state.
Because of this, during the interpolation the dynamics is left
relatively unchanged by the bridges. It also means that the first
two steps of the FSA are identical and exact for all values of
r � 1.

For all values of r, the top band of N+1 states is present,
and states belonging to it are decoupled from the bulk of
the spectrum. These states can be well approximated by the
FSA. As we change r, we see that the magnitude and period
of the revival smoothly varies. These results suggest there
is a form of “adiabatic continuity” that protects the scarred
subspace in the family of models in Eq. (11). However, unlike
the usual notion of adiabatic continuity, where the energy gap
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FIG. 5. Revivals in models with a blockade radius d described by
Eq. (12). (a) The initial state |ψ (0)〉 = |Zd+1〉 shows no revivals for
d>1. In panels (b) and (c), we compare the revival period T and the
first revival peak f0 for the |Zd+1〉 initial state with the computational
basis state having the highest f0 (“best state”) as well as the average
over all initial basis states (with the standard deviation shown as an
error bar). In order to compare different models at approximately the
same Hilbert space dimension, the system sizes are chosen according
to the value of d in such a way that the Hilbert space dimension
is in the range 3.5 × 104<D<1.1 × 105. Each system size is also a
multiple of d+1 in order for |Zd+1〉 to exist in the Hilbert space.

protects the smooth evolution of the ground state, here we
are looking at a subspace spanning a finite range of energy
densities, which remains protected due to a combined effect
of constraint and many-body scarring.

D. Alternative ways of enhancing the constraint

The persistence of revivals and scarred states as we vary r
in Eq. (11) should be contrasted with perhaps a more intuitive
way of strengthening the PXP constraint by simply increasing
the Rydberg blockade radius:

Hd =
∑

j

PP . . . P︸ ︷︷ ︸
d

Xj PP . . . P︸ ︷︷ ︸
d

. (12)

This family of models prevents an excitation in any contigu-
ous block of d+1 sites and it has been realized in Rydberg
atom arrays [23]. While d = 1 reduces to the PXP constraint,
for d>1 this clearly results in a different class of models
compared to Eq. (11) above. We note that, similar to the PXP
model, models with d>1 are also nonintegrable and host a
few exact many-body scarred eigenstates [41]. The latter can
be expressed in matrix product state form, analogous to PXP
exact scars in Ref. [42]. However, these exact scar states are
not directly related to the band of N+1 scarred eigenstates
illustrated in Fig. 4, and they are unimportant for the revival
dynamics that we focus on below.

In Fig. 5 we study dynamics for Hd models in Eq. (12).
Because of the stronger constraint, models with d>1 do not
contain the |Z2〉 state in their Hilbert space, hence we consider
its generalization

|Zd+1〉 = |1 0 . . . 0︸ ︷︷ ︸
d

1 0 . . . 0︸ ︷︷ ︸
d

. . .〉. (13)

Figure 5(a) shows that only the PXP model with d = 1 sup-
ports a discernible revival from the |Zd+1〉 states. While other
initial states start to develop nonzero revival amplitude as d is
increased [Fig. 5(b)], the revivals are generally worse than in
the PXP model and the family of models studied in Fig. 4.

To understand the lack of continuity between the models
in Eq. (12) as d is varied, we need to identify the relevant
subgraph associated with the initial states |Zd+1〉. Similar to
the Néel state in all models described by Eq. (11), |Zd+1〉 state
holds the largest density of excitations in the corresponding
model Hd in Eq. (12). These excitations can be removed or
added in any order as long as they are far enough from each
other so that they are not affected by the constraint. Conse-
quently, each of the d+1 states obtained by translations of
|Zd+1〉 is situated at one of the corners of a hypercube of di-
mension N/(d+1), and these hypercubes form a “star” pattern
as they share a single vertex corresponding to the polarized
state |000 . . . 00〉. On their own, these d+1 hypercubes in a
star configuration have good revivals from the |Zd+1〉 state,
with state transfer to all the translated copies of |Zd+1〉 at half
the revival period (see Appendix E).

However, the full Hamiltonian Hd in Eq. (12), has addi-
tional bridges in its graph that introduce connections between
the hypercubes. The effect of these bridges for different values
of d is hard to quantify; however, a relatively simple argument
allows us to set the case d = 1 apart from all d>1. Indeed, just
as PXP can be viewed as an intermediate step in the interpola-
tion between the two-hypercube and the free spin-1/2 model,
the models with a Rydberg blockade of radius d can be viewed
as a step in the interpolation between d+1 hypercubes and the
free spin-1/2 model. In order to understand the effect of the
interpolation it is instructive to look a the dynamics at the two
end points. For d+1 hypercubes in a star pattern, the revivals
occur because of state transfer between the state |Zd+1〉 and
a symmetric superposition of all its translations. Meanwhile,
for the full hypercube, state transfer occurs between |Zd+1〉
and its opposite corner where all the spins are flipped:

1 0 . . . 0︸ ︷︷ ︸
d

1 0 . . . 0︸ ︷︷ ︸
d

. . . ↔ 0 1 . . . 1︸ ︷︷ ︸
d

0 1 . . . 1︸ ︷︷ ︸
d

. . . . (14)

For d = 1 this process is identical to swapping between the
two Néel states related by translation. For d>1, however,
this is no longer true and the dynamics must be significantly
altered by bridges. The FSA does not yield a good approx-
imation for the dynamics away from the end points of the
interpolation. For example, the FSA subspace dimension for
d+1 hypercubes is 1+ 2N

d+1 while for the free spin-1/2 model
it is simply N+1. It is clear from this alone that the subspace
structure must change if d �=1.

While this change in the dynamics could be better captured
by an approximation scheme more complex than the FSA,
numerical simulations of models with blockade radius d do
not show significant revivals for d > 1 (see Fig. 5). This
shows that the presence of bridges in these models strongly
affects the dynamics. This can be contrasted with the much
weaker effect of bridges on the models studied in Fig. 4. In the
latter case, the bridges added at each step do not change the
dimension of the reviving FSA subspace. While these bridges
still affect the revivals, they do it in a much less drastic way
when their density is low, allowing a smooth transition from
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FIG. 6. Revival fidelity for (k, k+1) models in Eq. (15). (a) Fi-
delity time series for the initial Néel state and various k. (b, c) Fidelity
at the first revival f0 and the associated revival period T , for the
initial Néel state, the best reviving basis state, and the average over
all computational basis states (with the standard deviation shown as
an error bar). The discontinuity between k = 2 and k = 3 is clearly
visible in the revival dynamics. In order to compare different models
at approximately the same Hilbert space dimension, the system sizes
are chosen according to the value of k in such a way that the Hilbert
space dimension is in the range 1.3 × 105 < D < 2.8 × 105.

the two hypercubes to the PXP model. This suggests that
the FSA is indeed the relevant approximation to capture the
scarred dynamics, and that the failure of this approximation
correlates very well with the absence of revivals.

III. WEAKENING THE CONSTRAINT: INTERPOLATION
BETWEEN PXP AND FREE SPIN-1/2 MODEL VIA THE

(k, k+1) MODELS

Instead of making the constraint stronger, one may wonder
if by weakening the constraint it might be possible to relate
the many-body scarring in the PXP model with the free spin-
1/2 model. This can be achieved by introducing a class of
(k, k+1) models with the constraint that each cell of k+1 sites
can contain at most k excitations. The Hamiltonian for this
series of models is given by the Rabi flip term compatible with
the constraint, i.e.,

H(k,k+1) = Pk

(∑
j

Xj

)
Pk, (15)

where Pk projects out any configuration with more than k
contiguous excitations anywhere in the chain. Varying k then
allows one to tune the effective strength of the constraint, with
k = 1 corresponding to the PXP model and k = N being the
free spin-1/2 model.

Figure 6 summarizes the dependence of revivals in the
models defined by Eq. (15) as a function of k. In the limit
of large k, the behavior is dominated by the proximity to the
free spin-1/2 model, where many basis states revive. Intrigu-
ingly, we observe that the PXP model (k = 1) is not smoothly
connected to this large-k limit. For example, the fidelity at the
first revival peak, Fig. 6(b), first increases in going from k = 1
to k = 2, but then drops precipitously from k = 2 to k = 3.

The drop is sharp for the Néel initial state, but somewhat less
pronounced if we look at all initial basis states and choose the
“best” one. Nevertheless, this implies that scarred |Z2〉 dy-
namics in the PXP model cannot be understood by smoothly
turning off the constraint to reach the free spin-1/2 model.

From the FSA point of view, we expect 1<k � N models
to support poorer revivals compared to the PXP model. In-
deed, as more and more configurations are allowed, the graph
starts to differ from the one of the two hypercubes as we get
closer to the Néel state. This means that the FSA steps will
start to become inexact due to backscattering after fewer steps
(see Appendix A for more details). For k>3, new states appear
in the graph already in the first Hamming layer, and this is
expected to strongly destabilize the revivals [28]. Similarly,
for k = 2 new states will appear in the second Hamming layer,
in theory causing similar effects. However, this expectation
is clearly not in agreement with Fig. 6 which shows that the
k = 2 model has more robust revival compared to the PXP
model, for the same |Z2〉 initial state. In the remainder of
this section, we study in detail the k = 2 model and show
that its scarring behavior is a special case as it emerges from
an underlying hypergrid subgraph. This will serve as further
evidence to the lack of continuity between the PXP model and
the free spin-1/2 model, at least in the sense of Eq. (15).

A. Quantum many-body scars in the (2,3) model

The (2,3) model—a special case of Eq. (15) where each
consecutive triplet of sites can have at most two excitations—
bears many similarities with the PXP model. For example,
we will show that the (2,3) model is nonintegrable yet it
hosts a band of N+1 scarred eigenstates with large sup-
port on the Néel state, |1010 . . . 10〉, reminiscent of the
PXP model. However, despite this similarity between the
two models, we find the revivals and scarred eigenstates are
more robust in the (2,3) model, even though the Hilbert
space is larger in the latter model for the same size N .
A more striking difference, which arises in sizes N divis-
ible by 4, is the existence of additional reviving states,
|11001100 . . .〉 and its three translated equivalents in the
(2,3) model.

The (2,3) model is constrained and we first derive its quan-
tum dimension, which determines the asymptotic scaling of
the size of its Hilbert space. Following the method described
in Appendix B, the Hilbert space dimension DN,k=2 for the
(2,3) model obeys the recurrence relation

DN,2 = DN−1,2 + DN−2,2 + DN−3,2, (16)

for N>3, with D1,2 = 1, D2,2 = 3, and D3,2 = 7 for PBC. The
quantum dimension α2 must satisfy α3

2 − α2
2 − α2 − 1 = 0,

which gives

α2 = 1

3

(
1+ 3

√
19−3

√
33+ 3

√
19+3

√
33

)
≈1.839. (17)

Thus, the dimension of the Hilbert space of the (2,3) model
grows asymptotically as ∼1.8N .

We next demonstrate that the (2,3) model is nonintegrable,
and it supports revivals due to the existence of N+1 towers
of scarred eigenstates. The average energy level spacing 〈r〉
[43] is found to approach 0.53 in large systems [see Figs. 7(a)
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FIG. 7. (a) Statistics of energy level spacings P(s) in the (2,3)
model in a large system size N = 24 is consistent with the Wigner-
Dyson ensemble. The average r value is close to 0.53. The level
statistics is computed in the momentum sector K = 0 and inversion
sector I = +1, after performing the spectrum unfolding. (b) Conver-
gence of 〈r〉 with system size. (c) Fidelity density at the first revival
from the Néel state in the (2,3) model saturates to a nonergodic
value −0.00591. For comparison, we also show the fidelity density
of |11001100 . . .〉 initial state. Both fidelity densities are much larger
than expected for a random initial state, signaling they are strongly
atypical initial conditions for the (2,3) model.

and 7(b)], as expected from a thermalizing system. Moreover,
the distribution of energy level spacings is consistent with
the Wigner-Dyson ensemble [44], demonstrating that physical
properties of the model cannot be explained by its proximity
to the full hypercube.

The fidelity density at the first revival, ln( f0)/N , is com-
puted for the Néel and |11001100 . . .〉 initial states and several
values of N in Fig. 7(c). For the Néel state, the fidelity density
quickly saturates to ≈−0.00591, indicating weak finite-size
effect. For a random initial state one would expect the sat-
uration value to be −ln(α2)≈−0.609. As this is two orders
of magnitude larger than the actual value, it shows that the
revivals are not simply fluctuations due to a small finite size
of the system. For comparison, we also study the other reviv-
ing state, |1100 . . . 1100〉, whose fidelity density converges to
≈−0.0304. While larger than for the Néel, this value is still an
order of magnitude smaller than for a random state, signaling
that this initial state is also atypical for the (2,3) model.

In Fig. 8(a) we study the overlap between the reviving Néel
state and the eigenstates of the (2,3) model. Similar to the
PXP model studied in Ref. [27], we observe that eigenstates
form tower structures. At the top of each tower is a scarred
state with high overlap on the Néel state. The FSA subspace
provides a very good estimate of the energy of each tower, as
indicated by crosses in Fig. 8(a). The FSA also captures the
revival dynamics, as shown in Fig. 8(c); in particular it accu-
rately estimates its frequency, while somewhat overestimating
the amplitude of the revival.

Moreover, scarred eigenstates can also be identified as
having much lower entanglement than other eigenstates
at the similar energy density. To quantify entanglement,
we compute the von Neumann entanglement entropy, S =
−TrρN/2 ln ρN/2, where ρN/2 is the reduced density matrix for

FIG. 8. Dynamics and eigenstate properties in the (2,3) model.
(a) Overlap of eigenstates with |Z2〉 state. N+1 scarred eigenstates
with anomalously high overlap are labeled by red squares. The FSA
approximates well the energies of scarred eigenstates (black crosses).
(b) Entanglement entropy of all eigenstates in momentum sectors
K = 0 and K = π , with the same N+1 scarred eigenstates high-
lighted in red. (c) The FSA provides a good estimate of the revival
frequency from |Z2〉 initial state, although it somewhat overestimates
the revival amplitude. For comparison, we also show the dynamics
from |1100 . . .〉 initial state. All data are for system size N = 24. In
(a) and (b) the color scale indicates the density of data points.

one half of the chain. Entanglement entropy of eigenstates of
the (2,3) model in momentum sectors K = 0 and K = π is
shown in Fig. 8(b). Entanglement entropy reveals the scarred
eigenstates as some of the most weakly entangled states in
the spectrum. While in smaller systems entropy distribution
shows a large spreading, similar to the PXP model as pointed
out in Ref. [45], in larger system sizes like N = 24 shown
in Fig. 8(b), we observe that entropy distribution becomes
quite narrow, starting to look more similar to models such as
AKLT [46] and constrained clock models [38]. In particular,
constrained clock models exhibit very narrow towers densely
populated with eigenstates, as also seen in Fig. 8(a). Such tow-
ers enhance the hybridization between the top N+1 scarred
eigenstates and the rest of the spectrum, resulting in relatively
high entropy of scarred eigenstates [Fig. 8(b)].

B. Hypergrid subgraphs in the (2,3) model

The key difference between the PXP and (2,3) models
can be traced to the underlying subgraph associated with
the revivals from the Néel and |11001100 . . .〉 initial states.
While in the PXP and other models studied up to this point the
relevant subgraph was a union of hypercubes sharing a single
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FIG. 9. Adjacency graph of the (2,3) model for system size N =
6. The subgraph associated with many-body scarring is outlined in
black, while the Néel states are shown in red. Blue vertices denote
bridges connecting vertices in the subgraph. The subgraph is isomor-
phic to a hypergrid GN/2

3 . Note that there are two such hypergrids, but
for clarity only one of them is highlighted here.

vertex (Sec. II), in the (2,3) model we find a different type
of subgraph consisting of two hypergrids of dimension N/2.
In this section, we provide analytical and numerical evidence
that the hypergrid subgraphs are indeed responsible for the
atypical dynamics and many-body scarring in the (2,3) model.

1. Proof of the existence of two hypergrids in the (2,3) graph

A hypergrid graph Gd
m is defined as the Cartesian product

Gd
m = Lm�Lm� . . .�Lm︸ ︷︷ ︸

d

, (18)

where Lm stands for a linear graph of order m (with m vertices)
and we are interested only in hypergrids with the same order
in all dimensions. For example, the hypergrid Gd

2 is simply
the hypercube of dimension d . Similarly, the hypergrid graph
Gd

2S+1, having 2S + 1 states in each dimension, is isomorphic
to an unweighted graph of a free spin model with d spin-S
degrees of freedom. This is because each vertex of Gd

m can
be labeled by a m-ary string {1, 2, . . . m}d , and only vertices
with a single site differing by 1 are connected by an edge.
Note that for S>1 the matrix elements of the free spin-S
model Hamiltonian are no longer equal, and the model can
no longer be described solely by an unweighted graph. We
will not consider such cases in this paper.

Next we show that there are two distinct hypergrids GN/2
3

that can be identified as subgraphs of the (2,3) model. One of
these hypergrids is sketched in Fig. 9. The proof is based
on grouping sites into pairs [42,47]. Let us first define the
states |o〉 = |00〉, |L〉 = |10〉, |R〉 = |01〉, |2〉 = |11〉. In this
formulation, the only forbidden configurations are |2L〉, |R2〉,
and, of course, |22〉. The Hamiltonian acting on the N/2 pairs
of sites can be written as

H(2,3) =
N/2∑
b=1

hb−1,b,b+1, (19)

where the local Hamiltonian term is

hb−1,b,b+1 = 1 ⊗ (|o〉〈R| + |R〉〈o|) ⊗ (1 − |2〉〈2|)
+ (1 − |2〉〈2|) ⊗ (|o〉〈L| + |L〉〈o|) ⊗ 1

+ (|o〉〈o|+|L〉〈L|)⊗[|L〉〈2|+|2〉〈L|
+ |R〉〈2|+|2〉〈R|]⊗(|o〉〈o|+|R〉〈R|). (20)

Let us take N = 8 as an example. Start from the Néel state
|Z2〉 = |10101010〉 and group the cells into pairs (1,2), (3,4),
(5,6), and (7,8). Then |Z2〉 = |LLLL〉 and every pair of sites
can be freely flipped |L〉 � |o〉 � |R〉, like a spin 1. This
means that there is a hypergrid graph G4

3 between the Néel
state |LLLL〉 and the anti-Néel |RRRR〉. It is important to
note that while in the (2,3) model under some condition the
flips |L〉 � |2〉 and |R〉 � |2〉 are possible, they correspond
to bridging out of this hypergrid graph. Beyond the Néel
states, we would expect to also see revivals from other corners
of this hypergrid, i.e., from states in which all cells have
an extremal value (either L or R). Indeed, this would mean
that all cells would precess freely with the same frequency.
However, the only other corners of this graph that have no
edges going out of the hypergrid are |LRLR〉 = |10011001〉
and |RLRL〉 = |01100110〉. Indeed, from Eq. (20) one can see
that any LLR or LRR configuration can be changed to an L2R
one which is not in the hypergrid.

Alternatively, the sites can be paired up as (8,1), (2,3),
(4,5), and (6,7). In this case the Néel state is |RRRR〉 and
the same spin-1 argument holds. However, this hypergrid
graph G4

3 is different from the last one, as can be seen by
looking at the corners |LRLR〉 = |00110011〉 and |RLRL〉 =
|11001100〉. In the first formulation these states would be
|o2o2〉 resp. |2o2o〉, which are not in the corresponding hy-
pergrid graph.

The two hypergrids identified above are not equivalent
but share several vertices, and their union can be taken as a
model on its own, which we refer to as the “2HG” model. In
fact all states with no neighboring excitations belong to both
hypergrids, so their intersection gives back the PXP graph.
Because of this, the total number of states in the 2HG model
is asymptotically given by 3N/2 − φN , where φ is the golden
ratio.

A single hypergrid has perfect state transfer and revivals
from any corner state. While the revivals in the 2HG graph
are no longer perfect, they are still present with a similar
frequency. The two Néel states are corners of both hypergrids,
and they are the best reviving basis states in the (2,3) model,
while the states |110011 . . . 1100〉 are all corner of only one
of the hypergrids and their revivals are found to be weaker,
as expected from their position in the graph. All other basis
states are either not corners of these hypergrids or they have
additional edges extending out of the 2HG, and thus they are
not expected to revive. Finally, if N is even but not a multiple
of 4, the two Néel states are the only reviving ones, as all other
corners of the hypergrid have edges going outside of it.

2. Numerical evidence for the relevance of hypergrids
for many-body scarring

In Fig. 10 we numerically test the relevance of the 2HG
subgraph for many-body scarring in the (2,3) model. We
compare the dynamics and eigenstate properties in the (2,3)
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FIG. 10. Scarred dynamics and eigenstate properties in the (2,3)
model and its 2HG subgraph. (a) The revivals from the Néel state
have very close frequency in the two models, but their decay is more
pronounced in 2HG model. This can be attributed to the absence of a
well-separated band of scarred eigenstates for this model, as can be
seen in (b). Data are for system size N = 24.

model with their projection into the 2HG model. In both
models, we observe revivals of the wave function, with similar
frequencies [see Fig. 10(a)]. However, the amplitude of re-
vivals decays more rapidly in the 2HG model compared to the
(2,3) model. This difference can be related to the eigenstate
overlap with the Néel state shown in Fig. 10(b). The overlap
between the Néel state and the eigenstates of the (2,3) model
shows clear tower structures with an energy spacing close to
that in the 2HG model. However, in the 2HG model there is no
top band of states that is well separated from the bulk like in
the (2,3) model or the PXP model in Fig. 4. Thus, the revivals
decay faster as more states participate in the dynamics.

The hypergrids also seem to play an important role in
stabilizing the first step of the FSA. Indeed, because of the
constraint it is possible to add excitations to a state already
in the second Hamming layer. This means that only the first
step of the FSA is the same as in the two-hypercube model.
Based on that we would expect to only have a single exact
FSA step and thus poor revivals as in (3,4) and (4,5) models
(see Appendix A for more details). However, in practice we
observe that the first two FSA steps are exact, as is also the
case in the 2HG model.

The bridges added on top of 2HG to form the (2,3) model
seem to stabilize the revivals from the Néel state. The exact
mechanism by which this happens is unclear to us, however
we believe that the mechanism is nongeneric as the addition
of random bridges is found to consistently lead to poorer
revivals. At the same time, the revivals from most other states
are destroyed by additional bridges. As we demonstrate in the
next section, this mechanism of revival stabilization due to a
small density of bridges is also realized in the two-hypercube
model describing the many-body scarring in the PXP model.

FIG. 11. (a) Revival fidelity density when random bridges of
density λ are added to the two-hypercube model in a few system
sizes N . The shaded areas represent standard deviation over differ-
ent realizations of the bridges with the given density. This analysis
reveals that the PXP model falls in the middle of the distribution,
thus it is a “generic” model with the given density of bridges. The
behavior of most (k, k+1) models is also close to the expected
average, with k = 2 being a notable outlier. (b) Revival fidelity for
random bridges added to the two-hypercube model with N = 12. The
subspace variance of the FSA, σE , correlates well with the fidelity at
the first revival.

IV. CONNECTING TWO HYPERCUBES VIA BRIDGES

In Secs. II and III we studied two classes of models with
the structure of partial cubes which were shown to contain
hypergrid subgraphs. We now turn towards building new
constrained models directly from their graph. We start from
two hypercubes and add back states from the unconstrained
spin-1/2 chain of the same length. All models sampled in
this procedure will have the form of Eq. (2), with the addi-
tional constraint that P only prevents exciting new sites and
never removing excitations. Beyond this property, all models
sampled will also be invariant under translation. Thus, when
we grow the graph, a new basis state with m excitations is
randomly chosen. After that, all vertices corresponding to
this state, its translations, or states that can be obtained by
removing excitations from these, are added along with the
relevant edges. After each addition, the first revival and the
revival period are computed. The value of m is initialized at 2
and increased after a step if some conditions are met. Details
of the algorithm can be found in Appendix C.

In order to monitor closeness to the two hypercubes or
to the free spin-1/2 model, we introduce the bridge-density
parameter λ defined as

λ = ln(|G|) − ln(2N/2+1 − 1)

ln(2N ) − ln(2N/2+1 − 1)
, (21)

where |G| is the number of states in the graph. For the two
hypercubes joined at a vertex, λ = 0, while for a single large
hypercube λ = 1. The logarithms ensure that λ is properly
normalized in large systems. The result of adding bridges is
summarized in Fig. 11 for chains of length N = 10, 12, 14.
Figure 11 shows that the PXP model represents a typical
model with the given density of bridges added to the two
hypercubes. The presence of the two hypercubes explains why
this model revives, and the bridges only weakly affect the
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fidelity and period of the revivals. For larger values of k, the
corresponding (k, k+1) models generally fall very close to the
average of random models for the same value of λ due to their
proximity to the free spin-1/2 model. A notable exception is
k = 2, which has significantly better revivals than expected
from our random sampling analysis. As we argued previously,
this is likely due to the presence of the 2HG subgraph and the
special structure of the bridges in that model.

Another notable feature of Fig. 11 is that there is always an
improvement of the revivals when a small number of bridges
are added to the two hypercubes. Intuitively, we would expect
the fidelity to decay as the graph gets further away from the
two hypercubes, until it becomes close enough to the full
hypercube of a larger size, which also has good revivals. The
enhancement of revivals at low values of λ can be under-
stood as “correcting” the frequency mismatch between the
symmetric (resp. antisymmetric) superpositions of the two
hypercubes, as we discussed in Sec. II B. In this regime the
bridges only affect the frequency of the symmetric sector,
bringing it closer to the frequency of the antisymmetric sector,
thus improving the revival fidelity (see Appendix D for further
details). It is also important to note that the range of λ where
this improvement happens goes to zero in the thermodynamic
limit, meaning that the slope of the curve in the limit λ→0 in
Fig. 11(a) becomes steeper with the increase in system size.

For all graphs sampled during the process in Fig. 11 the
dimension of the FSA subspace remains unchanged. Indeed,
the FSA process from the Néel states always terminates on the
anti-Néel state after N steps, leading to N+1 states. In addi-
tion, for the two joined hypercubes and for the full hypercube
this subspace is exact, meaning that it is disconnected from
the rest of the Hilbert space. For the random graphs sampled,
the FSA is generally not exact, and this can be quantified
using the subspace variance σE , as explained in Appendix A.
Among all graph properties, the subspace variance was found
to best correlate with the existence of revivals [see Fig. 11(b)].
This correlation implies that the FSA revivals are generally
good, and that the leakage out of it is the main factor that
destabilizes the revivals in the full system. As the algorithm
adds back states with incrementally more excitations, these
new vertices can get closer and closer to the Néel state. This
means that they can affect the FSA at earlier steps and thus
exert a stronger effect on the revivals.

We also performed the sampling procedure of adding
bridges to three and four hypercubes GN/3

2 (resp. GN/4
2 ), all

joined at a single vertex. These structures are found in the
longer-range Rydberg blockades models in Eq. (12). In con-
trast to two hypercubes, the models with λ≈0.5 showed very
poor revivals. We understand this difference as emanating
from a much bigger change of the FSA subspace. Indeed, for
the two cubes the FSA subspace always has dimension N+1,
whereas for more hypercubes this dimensions changes from
2N/3+1 (resp. N/2+1) to N+1 as more bridges are added.
More details can be found in Appendix E.

V. CONCLUSIONS AND DISCUSSION

In this paper we explored a possible origin of many-body
scars and associated wave function revivals in the PXP model
describing arrays of Rydberg atoms. We studied the properties

of the Hamiltonian adjacency graph, in particular the exis-
tence of large regular subgraphs, as we varied the constraint
in the PXP model. We considered two simple limiting cases,
the free spin-1/2 model and the model of two hypercubes
joined at a single vertex, which naturally arise when the
constraint is either completely turned off or made stronger to
penalize not only nearest-neighbor excitations, but an entire
sublattice of the chain. While both of these limits support
revivals in the thermodynamic limit, we argued that only
the two hypercube model faithfully captures the many-body
scarring phenomenology in the PXP model. To demonstrate
the connection between the two, we introduced a family of
models with a variable range of the constraint, showing that
the scarred subspace remains preserved under this interpola-
tion. By contrast, such a smooth interpolation was not found
between PXP and the free spin-1/2 model. Nevertheless, the
exploration of this connection led us to new constrained mod-
els, such as the (2,3) model, which were shown to have unique
scarring phenomenology of their own.

We note that the Hamiltonian adjacency graph has recently
been linked to quantum many-body scars in a few models
[48–52]. However, these studies focus on regular subgraphs
with weak connectivity to the the rest of the Hilbert space.
In contrast, the subgraphs identified in this work do not have
this property. For example, in the PXP and (2,3) models, the
bridges form an essential part of the scarred dynamics and
even enhance it, as opposed to simply destabilizing revivals.

Our analysis suggests that large families of scarred quan-
tum networks can be generally built according to the following
three steps: (i) We start from a highly structured graph ob-
tained by joining two or more fundamental components, each
of which individually features perfect state transfer. One ex-
ample of this is two hypercubes joined at a single vertex,
but other arrangements are also possible, such as more than
two hypercubes (e.g., a linear array) or a union of hyper-
grid graphs. The composite graph should retain robust, if
imperfect, revivals. In several examples studied in this paper,
the composite graph in fact has many reviving vertices; for
example, in the two-hypercube model, many reviving vertices
exist away from the axis which passes through the two Néel
corners and the joint vertex (000 . . .); recall Fig. 1. (ii) Next,
we add bridges that connect the fundamental components.
These bridges will typically destroy the revivals from many
of the vertices, but they can stabilize the revival in a small
number of the remaining vertices. (iii) The final graph defines
a quantum model. A typical caveat is that this model is not
necessarily expressed in terms of a local Hamiltonian, but we
showed that there are examples resulting in a local model. A
notable example of this is the PXP model, where the bridges
between the two hypercubes are realized by a simple local
constraint on neighboring excitations. Our approach sheds
light on the relation between constrained systems and many-
body scarring. Indeed, constraints have the effect of removing
vertices and edges from the graph. If the constraint removes
enough bridges while leaving the substructure intact, then it
can create the right conditions for scarring and revivals.

In much of the existing literature, quantum many-body
scars and other kinds of nonstationary dynamics have been
understood from the su(2) algebra point of view, where
the nonthermalizing eigenstates form a representation of the
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algebra [46,53–57]. This eigenstate-based picture, however,
does not directly allow us to predict the existence of many-
body scars without diagonalization of the Hamiltonian—an
exponentially difficult task. Our approach instead focuses on
the Hamiltonian matrix and its properties in the computa-
tional basis. While in general we expect there is no easy way
to directly relate the two points of view, we found that in
many scarred models the existence of regular subgraphs, ju-
diciously perturbed by bridges, correlates with the emergence
and enhancement of su(2) algebra, as captured by the forward
scattering approximation. While our analysis has been primar-
ily numerical, it would be interesting to analytically affirm
the connection between the emergent su(2) algebra and the
underlying regular subgraph in future work.

Note added. During the completion of this manuscript, we
became aware of Ref. [58] which also investigated some of
the constrained models introduced here and of Ref. [59] which
solved the two-cube model analytically in the thermodynamic
limit. Our results are in agreement where they overlap.
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APPENDIX A: FORWARD SCATTERING
APPROXIMATION FOR OTHER MODELS

For the model of two hypercubes joined at a vertex, the
PXP model and the (k, k + 1) model, the FSA scheme in-
troduced in Sec. II A needs to be modified to include the
constraint. Once again, we start the FSA from |v0〉 = |Z2〉
state but we redefine the forward and backward propagating
parts. For all models that can be written as Eq. (2), it follows:

H± =
∑

j∈ even

Pσ±
j P +

∑
j∈ odd

Pσ∓
j P, (A1)

with P the global constraint for the particular model studied.
Similar to the case of the free spin-1/2 model in Sec. II A,
in such a decomposition H+ always increases the Hamming
distance from the Néel state and H− always decreases it, and
their sum corresponds to the full Hamiltonian. In the graphs of
the two-hypercube and the PXP models, |Z2〉 state is special
and occupies the leftmost vertex of the graph (see Fig. 1). The
action of H+ then corresponds to moving from left to right in
the graph. This implies that the FSA recurrence closes after
N+1 steps once forward propagation reaches the opposite
edge of the graph, |Z′

2〉.
For a generic partial cube, the raising operator H+ can be

obtained directly from the graph. Indeed, once the starting ver-
tex j is chosen, all other vertices can be assigned a “distance”
di = dist(i, j) corresponding to the shortest path length from
i to j. For partial cubes, the graph is bipartite and the distance
is simply the Hamming distance. Because of this, there are no
edges between states with the same index d . The graph can be

turned into a directed graph by making all edges go towards
the vertex with the higher index d . The adjacency matrix of
this graph is then the FSA raising operator H+.

Now, the key property that enabled the FSA recurrence in
the single hypercube case, Eq. (6), continues to hold in the
two hypercube model, but it is only satisfied approximately
in the PXP model. More specifically, if one starts from the
Néel state, Eq. (6) is exact for j = 1, 2, but at the third step
of the recurrence this property does not hold any more in
the PXP model. Nevertheless, we can still enforce the FSA
recurrence as defined in Eq. (7) and keep track of the in-
curred error. The resulting vectors |v j〉 ∝ (H+) j |v0〉 obtained
from the FSA recurrence, Eq. (7), starting from |v0〉 = |Z2〉,
form an orthonormal subspace because each state belongs
to a different Hamming distance sector and the recurrence
closes after N+1 steps. Diagonalizing the tridiagonal matrix
of size (N+1)×(N+1) with β j determined either directly
from Eq. (7) or via linear recurrence method explained in
Ref. [27], one can obtain a set of approximate eigenenergies
and eigenvectors. These eigenpairs turn out to be precisely the
ones corresponding to N+1 scarred eigenstates in the PXP
model and their analogues in the model of two hypercubes
joined at a vertex. In Ref. [26] it was demonstrated that the
eigenenergies agree within a few percent with exact diag-
onalization data for the largest available system of N = 32
spins in the PXP model. Similarly, the expectation values of
local observables and the entanglement entropy of scarred
eigenstates are well captured within the FSA [27].

1. FSA and the emergent su(2) algebra

The FSA for the PXP model described above provides
a foundation for understanding many-body scarred eigen-
states as forming an approximate representation of a weakly
“broken” su(2) Lie algebra [28,39]. The consequence of this
algebra is an approximately decoupled su(2) subspace in
which revivals primarily take place, while the wave function
amplitude slowly leaks into the thermal bulk (orthogonal sub-
space). The commutator of FSA operators H± allows us to
define Hz ≡ 1

2 [H+, H−]. The set {H+, H−, Hz} then forms a
“broken” su(2) Lie algebra [39] if they satisfy

[Hz, H±] = ±H± + δ±, (A2)

provided that the operator norm of the correction term
||δ±||�1. Intuitively, this means that, up to a small error
||δ±||, we can view H± as the spin raising and lowering
operators. Since the PXP Hamiltonian in Eq. (2) is a sum
of the raising and lowering operators, HPXP = H+ + H−, it
plays the role of a magnetic field in the x direction, hence the
emergent spin will undergo precession when initialized in the
z-polarized state |Z2〉.

Once a suitable raising operator and its corresponding
FSA have been identified, there are two competing factors
which influence the wave-function revivals. First, the FSA
couplings β j must resemble those of an exact su(2) algebra
in Eq. (8), which in turn dictates that the eigenvalues of the
Hamiltonian, projected to the FSA subspace, must be approx-
imately equidistant. In the two-hypercube model in Eq. (10),
the FSA is exactly disconnected from the rest of the Hilbert
space but the couplings do not exactly match the su(2) values,
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FIG. 12. Number of exact FSA steps NFSA, FSA subspace vari-
ance σE and couplings β for two families of models defined in
Eq. (11) and Eq. (15). These models interpolate between the two-
hypercube model (r = ∞) and the free spin-1/2 model (k = ∞).
The subspace variance remains relatively low for sufficiently strong
constraint (k<3). This threshold value of k coincides with the first
step of the FSA changing.

hence the revivals are not perfect. Second, even if couplings
in the projected subspace are equivalent to an exact su(2)
subspace, revivals may still decay if the wave function ampli-
tude rapidly leaks into the orthogonal thermalizing subspace.
The quality of the FSA subspace can be characterized by the
subspace variance:

σE = Tr{PFSA(H2) − [PFSA(H )]2}, (A3)

where PFSA is the projector to the FSA subspace. In
Refs. [28,39,45] it was shown that the variance of the PXP
scarred subspace can be suppressed by many orders of mag-
nitude if certain perturbations are added to the PXP model,
resulting in nearly perfect revivals over long times [28].

2. Effect of bridges on the FSA

The FSA couplings β j , subspace variance σE , and the
number of exact FSA steps NFSA (i.e., steps where applying
H−H+ leads back to the same state up to a multiplicative
factor) are evaluated in Fig. 12 for two families of constrained
models defined by Eq. (11) and Eq. (15) in the main text. The
subspace variance can be seen to negatively correlate with the
number of exact FSA steps, with a much higher value when
only one step is exact. The number of exact steps can be well
understood by the proximity to the two hypercubes or to the
free spin-1/2 model, with the notable exception of k = 2.

Indeed, for large values of r the system is strongly con-
strained and the only difference with the two-hypercube
model is the presence of states with a low density of ex-
citations on both sublattices. These states are located near
the shared vertex, which means that most FSA steps will be

similar to the two-hypercube model and therefore exact. As
r is decreased, it is possible to add more excitations to one
sublattice while still having a few excitations in the other.
Consequently, the new states appearing in the system are
increasingly closer to the Néel state. This means the number of
FSA steps which are similar to the ones in the two-hypercube
model (and thus exact) decreases. Thus, the subspace variance
also increases, as can be seen in Fig. 12. This trend continues
until k = 3, where it is possible to add excitations directly to
the Néel state and so even the first step of the FSA is unlike
in the two-hypercube model. This change in the first step can
be clearly seen in the FSA coupling in Fig. 12(c). However,
as it is now possible to remove any present excitation and to
add any excitation on unexcited sites from the Néel state, the
first FSA step is as in the free spin-1/2 model, and so it is still
exact. As k is increased, it is possible to add more excitations
on a sublattice even when the other is fully occupied. As a
consequence, the number of FSA steps similar to the ones in
the free spin-1/2 model increase and the subspace variance
decreases.

One case that needs to be addressed separately is k = 2.
Indeed, as excitations can already be added in the second
Hamming layer, we expect the corresponding FSA step to be
inexact as it differs from the two-hypercube one. However, in
practice we find that it is still exact. This supports the physical
relevance of the 2HG subgraph, as it is only possible to branch
out of this substructure at the third FSA step.

APPENDIX B: SYSTEM SIZE AND QUANTUM DIMENSION

In this Appendix, we derive quantum dimensions for the
various families of models studied in the main text. To take
the constraint into account, we make use of the transfer matrix
M. Given a decomposition of states into classes, this matrix
encodes how the class sizes for N depend on the class sizes
for N−1. The total number of states simply correspond to the
sum of the class sizes. This subdivision of states allows one to
make the effect of the constraint explicit.

Let us take the PXP model as an example. We need to
know how to “glue” a new site to one end of the chain. As the
constraint forbids neighboring excitations, we need to know
the value of the leftmost site in the chain. Hence we will have
two classes: states that end with an unexcited site and states
that end with an excited site. The transfer matrix M will thus
be 2 × 2. The only forbidden process is adding an excited state
next to an already excited, and the resulting transfer matrix is

M =
(

1 1
1 0

)
. (B1)

The Hilbert space dimension DN can be simply computed as
Tr[MNB] for N � 1, where B is a matrix implementing the
boundary conditions such that

B = 1 for PBC, and B =

⎛
⎜⎝

1
0
. . .

0

⎞
⎟⎠(1 . . . 1) for OBC.

(B2)
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Indeed, inserting the identity lets the trace connect the right-
most and leftmost ends of the chain. For OBC, the column
vector with a single nonzero entry represents the only state
allowed past the right end of the chain, which is an infinite
trailing chain of unoccupied sites. The row vector has ones in
all entries, as all possible configurations are allowed at the left
end of the chain.

We can then directly derive the recursion relation for both
OBC and PBC by computing the ordinary generating function

F (z) =
∞∑

N=0

zNDN =
∞∑

N=1

zN Tr[MN B]

= Tr[(1 − zM )−1B] − Tr[B]. (B3)

The recursion relation for DN can be read off the denominator
of the rational form of F . For the PXP model we find that

FPBC(z) = z(1 + 2z)

1 − z − z2
, FOPBC(z) = z(2 + z)

1 − z − z2
. (B4)

It ensues that for both boundary conditions the recursion re-
lation for the Hilbert space dimension of the PXP model is

DN = DN−1 + DN−2, (B5)

which is the well known Fibonacci recurrence. The difference
between boundary conditions stems from the initial condi-
tions, as for PBC we have D1 = 1 and D2 = 3, while for OBC
D1 = 2 and D2 = 3.

The quantum dimension

α = lim
N→∞

DN

DN−1
(B6)

can be found from the recursion relation by replacing DN

by αN and finding the largest root. For the PXP model we
arrive at the equation α2 − α − 1 = 0, which has the golden
ratio φ = (1 + √

5)/2 as its largest-magnitude solution. Note
that the quantum dimension can also be found as the largest-
magnitude eigenvalue of the transfer matrix M. Below we
use this transfer matrix and generating function formalism to
derive the recursion relations and quantum dimensions for the
various models investigated in this paper, whose summary is
presented in Fig. 13.

1. Models interpolating between the two hypercubes
and PXP model

For models defined in Eq. (11), we need to take into ac-
count the 2r − 1 leftmost sites in order to glue a new one
as this is the range of the constraint. However, as a single
excitation is enough to saturate the constraint, we do not
have to monitor the 22r−1 combinations but only to track the
position of the leftmost excitation. Because of this, the transfer
matrix Mr has size 2r × 2r and the matrix elements are given
by

Mi, j = δi,1δ j,1+δi,1δ j,2r+δi, j+1+δi,1

�r/2�∑
l=1

δ j,2l+1, (B7)

FIG. 13. Quantum dimension α for various constrained models
studied in the paper. The dashed black lines correspond to αk=∞ =
2, and αr=∞ = √

2. For the (k, k+1) and the models interpolating
between PXP, and the two hypercubes we see the same exponential
convergence towards the asymptotic value.

giving

Mr=2 =

⎛
⎜⎝

1 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

⎞
⎟⎠,

Mr=3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 0 1 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, (B8)

for r = 2 and r = 3. For both boundary conditions, by using
Mathematica to compute the denominator of the rational form
of the generating function up to r = 80, we found it to be
1 − z − z2 − ∑2r

j=3(−1) j z j . Hence the recursion relation is

DN,r = DN−1,r + DN−2,r +
2r∑

j=3

(−1) jDN− j,r . (B9)

For the initial conditions N � 2r, for PBC we have DN,r = 1
if N is odd and DN,r = 2N/2+1 − 1 if N is even, while for OBC
DN,r = 2m + 2N−m − 1, where m = �N/2�.

From the recursion relation, the quantum dimension is the
largest root of the equation

α2r
r − α2r−1

r − α2r−2
r −

2r∑
j=3

(−1) jα2r− j
r = 0. (B10)

As r→∞, it must hold that αr→
√

2 as the corresponding
model is the two-hypercube one with DN,r=∞ = 2

N
2 +1 + 1, as

we indeed see in Fig. 13.
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2. Larger blockade radius

When the Rydberg blockade radius is extended to the
neighboring d sites, Eq. (12), it is fairly easy to derive the
transfer matrix. Indeed, we only need to know if there is an
excitation in the leftmost d sites and, if yes, its position. Hence
the transfer matrix now has size d + 1 × d + 1 and the matrix
elements are given by

Mi, j = δi,1δ j,1 + δi,d+1δ j,1 + δi+1, j . (B11)

Specifically,

Md=2 =
⎛
⎝1 1 0

0 0 1
1 0 0

⎞
⎠, Md=3 =

⎛
⎜⎝

1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎠. (B12)

The denominator of the rational generating function is then
1 − z − zd+1 for both boundary conditions. This was tested
using Mathematica for d up to 100. The recursion relation is
then

DN,d = DN−1,d + DN−d−1,d . (B13)

The initial conditions N � d + 1 are simple to derive, as for
OBC DN,d = N + 1 while for PBC it is DN,d = 1 for N <

d + 1 and DN,d = N + 1 for N = d + 1.
Alternatively, there is a simple argument for the OBC

recursion relation. The term DN−1,d trivially counts all con-
figurations with a leftmost nonexcited site. On the other hand,
all models with a leftmost excited state must have the d next
sites unexcited, and so the number of configuration of the
N − 1 − d remaining sites is equal to DN−d−1,d .

The recursion relation implies that the quantum dimension
is the largest root of the equation

αd+1
d − αd

d − 1 = 0. (B14)

As d → ∞, αd → 1 as the corresponding model can only
hold a single excitation at a time and so DN,d=∞ = N + 1.

3. (k, k+1) models

Finally, for (k, k+1) models in Eq. (15), we need to keep
track of the exact number and location of excitations in the k
leftmost sites. As a consequence, we need to have 2k classes
corresponding to the individual configurations. The resulting
transfer matrix has size 2k × 2k and its matrix elements are
given by

Mi, j = δ j,�i/2� + (1 − δ j,2k )δ j,2k−1+�i/2�. (B15)

For example, for k = 1, 2 we have

Mk=1 =
(

1 1
1 0

)
, Mk=2 =

⎛
⎜⎝

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 0

⎞
⎟⎠. (B16)

The numerator of the generating function is found to be
1 − ∑k+1

j=1 z j for both OBC and PBC boundary conditions. We
were able to compute it up to k = 9 using Mathematica. As a
consequence the recursion relation is

DN,k =
k+1∑
j=1

DN− j,k . (B17)

The values of DN,k for N � k do change with the boundary
conditions, as with OBC we have DN,k = 2N while for PBC it
is DN,k = 2N − 1. For N = k + 1 we have DN,k = 2k+1 − 1 in
both cases. As k → ∞, αk → 2 as the corresponding model
is the free spin-1/2 model with DN,k=∞ = 2N .

Equation (B17) implies that the quantum dimension αk

must satisfy

αk+1
k −

k∑
j=0

αk
k = 0. (B18)

APPENDIX C: RANDOM BRIDGES ON TWO
CONNECTED HYPERCUBES

In order to test how sensitive our conclusions in the main
text are to the details of the graph structure, we devised a pro-
tocol for random sampling of models that interpolate between
two joined hypercubes and the full hypercube. As two joined
hypercubes of dimension N/2 are contained in a hypercube of
dimension N , the protocol works by adding back states from
the full hypercube to the two smaller hypercubes. In order to
match the constraints in the considered models, at each step
the Hamiltonian can be written as Eq. (2) with constraints only
on excitations (meaning that it is always possible to remove
excitations) and with translation symmetry conserved. The
process also ensures that the graph remains unweighted, i.e.,
the matrix elements of the Hamiltonian are all equal.

To formalize the protocol, let us denote each basis state
by a binary string u∈BN , with B = 0, 1. Consider two states
u and v; we say that u�v if ui�vi for i = 1 through N . This
is strictly equivalent to saying that u can be obtained by only
removing excitations from v. Then, in all these models, if v∈G
and u�v, then u∈G as well. Because an excitation can always
be removed, all these models are “daisy cubes” [36]:

Definition 1. A daisy cube is defined by a N dimensional
hypercube graph GN

2 and a set of states X , such that all
elements of X are in GN

2 . Then the set of vertices in the corre-
sponding daisy cube is defined as V [GN

2 (X )] = {v ∈ GN
2 |∃x ∈

X s.t v � x}. The graph GN
2 (X ) is the subgraph of GN

2 induced
by V [GN

2 (X )]. Equivalently, there is an edge between two
states in GN

2 (X ) if their strings differ by a single element.
This formulation also implies that different sets X can

correspond to the same graph. In particular, if x, y ∈ X and
y � x, then GN

2 (X ) = GN
2 (X \ {y}). However, it is clear that

there exists a unique set X̂ of maximal vertices such that it
has the minimum cardinality of all sets representing the same
daisy cube. For the PXP model in Eq. (2) with N = 6, for
example, the maximal vertices set is

X̂PXP,N=6 = {101010, 010101, 100100, 010010, 001001}.
The graph which has H as its adjacency matrix is the daisy
cube G6

2(X̂PXP,N=6). Importantly, daisy cubes are all partial
cubes [36].

We will use the binary string and daisy cubes notations
to define the sampling algorithm. The translation operator
T acts on the strings as (Tu)i = ui−1, with periodic bound-
ary conditions such that uN = u0. Because of translation
symmetry, the two stitched hypercubes correspond to the
daisy cube GN

2 (X ), X = {Z2, TZ2}, where Z2 is the Néel
state 1010 . . . 10. The hypercubes are added in increasing
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dimension from k = 2 to k = N , and after each addition the
revivals from the Néel state are computed. The interpolation
parameter λ is also computed at each step, as defined in
Eq. (21). The exact algorithm is the following:

Algorithm 1. Random bridges on two hypercubes

Set X = {Z2, T Z2}
Set the graph as G = GN

2 (X )
Set k = 2
while k � N do

Pick u ∈ GN
2 such that

∑N
i=1 ui = k, u � Z2 and u � T Z2

if u ∈ G then
k = k + 1

else
for r = 0 to N − 1 do

X = X ∪ {T ru}
end for
Update the graph as G = GN

2 (X )
Get the Hamiltonian as H = Adj(G)
Compute λ(G)
Compute the revivals from the Néel state

end if
end while

APPENDIX D: THE EFFECT OF LOW-DENSITY BRIDGES
ON THE TWO CONNECTED HYPERCUBES

In the main text we showed that adding bridges to the
two-hypercube model at first leads to an increase of revival
fidelity at small λ, before a decrease at larger λ values. In
this section we examine in detail the former regime and show
that it can be understood as a tuning of the symmetric and
antisymmetric sectors of the two-hypercube model.

We focus on the first steps of the algorithm described in
Appendix C, when the number of excitations of the vertices
added is equal to 2. We will refer to these as bridges of
dimension 2. As all states with two excitations on the same
sublattice are already in the two hypercubes, all vertices added
will have one excitation on each sublattice. These states are all
located on the Hamming layer N+1, the same Hamming layer
as the shared vertex that contains no excitations. Intuitively,
in the many-body picture one can think these new states as
helping “spread” the support of the wave function on several
states instead of just “funneling” the wave function onto a
single state, |000 . . . 000〉. This means that even if the wave
function still reflects from this vertex, the reflected part of
the wave function will have smaller magnitude, as there is no
longer a high concentration of the wave function on this vertex
[see Fig. 14(a)]. However, as more bridges of dimension two
are added, the degree of the vertices in the Hamming layers N
and N + 2 increases, and this could lead to reflection in this
layer. In order to completely get rid of reflection one would
need a smooth coupling profile, which can be achieved by
also adding vertices in other Hamming layers, like in the PXP
model. This would help get rid of reflection but at the price of
having an inexact FSA. This is in line with what we observe as
random bridges are added: no reflection but a leakage outside
the FSA subspace.

For two-dimensional bridges, enforcing translation sym-
metry has the effect of modifying the edges between the

FIG. 14. Fidelity of revivals and reflection for two linked hyper-
cubes of dimension N = 300 as two-dimensional bridges are added.
(a) Maximum fidelity of the reflection peak. (b) Fidelity of revivals
with respect to the period difference between the symmetric and
antisymmetric sectors.

Hamming layers N , N+1, and N+2 in an isotropic fashion.
As a consequence, the FSA remains exact but the middle
couplings are changed. Normally, both of these couplings are
equal to βmiddle = √

N ; however, adding V vertices changes
the coupling to βmiddle = √

N + V/N . In order to simplify
computations, let us assume that N is even. Then there are N/2
bridges that can be added such that they are not equivalent
under translation, and adding any of these implies adding
2N vertices. This means that the middle FSA couplings
can take values βmiddle = √

N + n, n = 0, 2, 4, . . . , N , hence√
N�βmiddle�

√
2N . Furthermore, it means that details of the

bridges do not matter, but only their number. So all random
processes will be identical if only hypercubes of dimension 2
are added. The results of this process for two joined hyper-
cubes of different sizes can be seen in Fig. 14(b), where the
color indicates the density of these bridges.

The results in Fig. 14 can be understood in terms of the
the two symmetry sectors mentioned in Sec. II B. Indeed,
the bridges considered here only affect the symmetric sector,
changing its coupling between the last two states from

√
2N

to
√

2(N + n). This reduces the revival period of this sector,
making it closer to the period of the antisymmetric sector until
it overshoots and makes them further apart. This can be seen in
Fig. 14, where the correlation between the density of bridges
n/N , the revival fidelity, and the period difference between the
sectors is apparent. This also makes the reflection peak much
smaller, as the two sectors almost exactly cancel out at T ≈ π .
The only thing preventing the reflection to be exactly 0 is the
difference of revival amplitude between them.

APPENDIX E: MORE THAN TWO HYPERCUBES
IN A STAR CONFIGURATION

In the main text we mentioned that models with a Rydberg
blockade radius d , Eq. (12), naturally realize d + 1 hyper-
cubes joined at a single vertex, forming a starlike pattern.
Like in the two connected hypercubes, the Hamiltonian of
d + 1 hypercubes arranged in this manner can be reduced to
d + 1 tight-binding chains linked at a single site. If we label
these chains Lj , then we can reorganize the Hilbert space
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FIG. 15. (a) Revivals for d + 1 joint hypercubes in the sym-
metric sector in the thermodynamic limit from finite-size scaling.
(b) Evolution of the first revival peak f0 upon the addition of bridges
in the symmetric sector of multiple hypercubes arranged in a star
pattern. The case with two hypercubes (2HC or d = 1) is seen to
be radically different from three hypercubes (3HC, d = 2) and four
hypercubes (4HC, d = 3).

into d + 1 symmetry sectors Sk = ∑d
j=0 e2π ik j/(d+1)Lj , with

k = 0, 1, . . . , d . The only difference between the symmetry
sectors is the shared vertex. The totally symmetric sector has
N+1 states and its Hamiltonian is the one from Eq. (9) except
that the last term of the sum is multiplied by a factor of

√
d + 1. In the nonsymmetric sectors, the contribution of the

d + 1 chains cancel at the middle vertex, so these sectors are
all identical. As the symmetric sector is the only one affected
by the blockade range we focus on it. Finite size scaling
indicates that in the thermodynamic limit revivals are present
in it for all values of d , even though the first revival fidelity is
nonmonotonic in d (see Fig. 15).

We also studied the effect of bridges in the symmetric
sector. Doing this for two, three and four hypercubes in a star
pattern shows a clear difference between two hypercubes and
other cases [see Fig. 15(b)]. This difference is attributed to the
change in the reviving subspace. As we discussed in Sec. II D,
for d joined hypercubes the revivals occur because of state
transfer between the state |Zd〉 in Eq. (13) and its translations.
Meanwhile, for the full hypercube the state transfer is gener-
ally different; recall Eq. (14). Thus, the subspace in which the
revivals happen changes drastically during the interpolation.
For a large value of lambda (λ ≈ 0.5) the dynamics is no
longer restricted to an almost closed subspace but can spread
into the Hilbert space. In contrast, for d = 1 the reviving
subspace stays relatively unchanged. Indeed, the new states
added do not change the dimension of the reviving subspace
(the FSA), but only modify the couplings and the subspace
variance. While this naturally affects the revivals, it does it in a
much less drastic way than changing the subspace altogether.
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