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Low-density phase diagram of the three-dimensional electron gas
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Variational and diffusion quantum Monte Carlo methods are employed to investigate the zero-temperature
phase diagram of the three-dimensional homogeneous electron gas at very low density. Fermi fluid and body-
centered cubic Wigner crystal ground-state energies are determined using Slater-Jastrow-backflow and Slater-
Jastrow many-body wave functions at different densities and spin polarizations in finite simulation cells. Finite-
size errors are removed using twist-averaged boundary conditions and extrapolation of the energy per particle
to the thermodynamic limit of infinite system size. Unlike previous studies, our results show that the electron
gas undergoes a first-order quantum phase transition directly from a paramagnetic fluid to a body-centered cubic
crystal at density parameter rs = 86.6(7), with no region of stability for an itinerant ferromagnetic fluid.
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I. INTRODUCTION

The three-dimensional homogeneous electron gas (3D-
HEG) has been of fundamental interest in physics and
chemistry since the early days of quantum mechanics because
it is the simplest realistic bulk electronic system capable of ex-
hibiting strong correlation effects [1–6]. The electron-electron
interaction strength, and therefore the coupling between the
electrons, is controlled by the electron density. The 3D-HEG
models the electrons in bulk metals, but more importantly
it has long provided a testbed for the development of ideas,
concepts, and methods in condensed matter physics. For ex-
ample, the ground-state energy of the 3D-HEG provides the
starting point for most of the exchange-correlation functionals
that have enabled the widespread success of density functional
theory (DFT). In this work we focus on the low-density energy
and phase behavior of the 3D-HEG.

Theory plays a crucial role in the study of dilute 3D-HEGs
due to the lack of a material platform that supports a 3D
electron system with both very high quality (homogeneity)
and low density. It is convenient to characterize the density
of the 3D-HEG by the dimensionless parameter rs defined as
the radius of the sphere that contains one electron on average
in units of the Bohr radius. In Hartree atomic units, the 3D-
HEG Hamiltonian is Ĥ = −(1/2)

∑
i ∇2

i + ∑
i> j 1/|ri − r j |,

where ri is the position of electron i and the electron-electron
Coulomb interaction is in practice evaluated using Ewald
summation in a finite cell. The Coulomb interaction scales
as 1/rs, while the kinetic energy operator scales as 1/r2

s . At
high to intermediate density (small rs), the kinetic energy
dominates, leading to the well-known Fermi fluid behavior
of the 3D-HEG at typical metallic densities. On the other
hand, the Coulomb energy dominates the kinetic energy at
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low density (large rs), fundamentally altering the physics of
the 3D-HEG. In the low-density limit, the ground-state wave
function is an antisymmetrized product of δ-functions cen-
tered on body-centered cubic (bcc) lattice sites to minimize
the Coulomb energy, as first predicted by Wigner [2]. Here,
we calculate the critical density parameter rs at which there
is a zero-temperature phase transition from a Fermi fluid
to a Wigner crystal. Furthermore, Bloch suggested that the
spin-unpolarized (paramagnetic) Fermi fluid should make a
spontaneous transition to a spin polarized (ferromagnetic)
Fermi fluid at large rs before crystallization [1], because align-
ing the electron spins causes the spatial wave function to be
fully antisymmetric, so that electrons do not approach each
other and the Coulomb energy is reduced.

Quantum Monte Carlo (QMC) methods have long been
used to provide accurate estimates of properties of 3D-
HEGs [7–14]. For example, ground-state QMC energies of
the 3D-HEG [9] are employed in parametrizations of the
local-density approximation to the DFT exchange-correlation
functional [15]. However, calculating the phase diagram is
challenging because of the tiny energy differences between
competing phases. Previous QMC simulations have indicated
that decreasing the density of a 3D-HEG causes a continu-
ous transition from a spin-unpolarized (paramagnetic) fluid
to a fully spin-polarized (ferromagnetic) fluid at a density
of about rs = 50(2) [11]. The phase transition to a Wigner
crystal was predicted to take place at density parameter rs =
106(1) [11,16]. Because of the fundamental role of the 3D-
HEG in condensed matter physics, the determination of its
zero-temperature phase diagram and ground-state energy is
a problem that should be revisited from time-to-time using
state-of-the-art computational methods.

In this work we have used the continuum variational and
diffusion Monte Carlo (VMC [7,17] and DMC [9]) methods
in real space to obtain 3D-HEG ground-state energies at dif-
ferent densities and spin polarizations. In the VMC method,
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parameters in a trial wave function are optimized according
to the variational principle, with energy expectation values
calculated by Monte Carlo integration in the 3N-dimensional
space of electron position vectors. In the DMC method, the
imaginary-time Schrödinger equation is used to evolve a
statistical ensemble of electronic configurations towards the
ground state. Fermionic antisymmetry is maintained by the
fixed-phase approximation, in which the complex phase of
the wave function is constrained to equal that of an approx-
imate wave function optimized within VMC. For real wave
functions (which occur when the system has time-reversal
symmetry, e.g., under pure periodic boundary conditions), the
fixed-phase approximation reduces to constraining the nodal
surface of the wave function. Henceforth we refer to “fixed
nodes” rather than “fixed phases” to avoid confusion with
thermodynamic “phases”; our actual fluid calculations used
complex wave functions and the fixed-phase approximation,
while our crystal calculations used real wave functions and
the fixed-node approximation.

Fixed-node DMC finds the variational lowest-energy state
with the same nodal surface as the trial wave function. Thus
the topology of the trial wave function’s nodal surface selects
the quantum state under study. The DMC energy with an
antisymmetric trial wave function is an upper bound on the
fermionic ground-state energy; furthermore, the error in the
DMC energy of any quantum state approximated by the trial
wave function is second order in the error in the trial nodal
surface.

In a finite cell the eigenfunctions of the 3D-HEG Hamil-
tonian must all be homogeneous (i.e., must satisfy the
many-body Bloch theorems [18,19] with an infinitesimal
“primitive cell”) and hence eigenvalue crossings as a func-
tion of the single parameter rs are avoided by the von
Neumann-Wigner theorem. The true ground-state energy per
electron E (rs) of the 3D-HEG in a finite periodic cell of
a given shape, electron number N , and spin-polarization
ζ = (N↑ − N↓)/N is therefore a smooth function of rs. The
ground-state static structure factor S(G) = 〈ρ̂(−G)ρ̂(G)〉 −
〈ρ̂(−G)〉〈ρ̂(G)〉, where ρ̂(G) = ∑

i exp(iG · r̂i ), describes
the Fourier components of the pair density and therefore
shows whether the 3D-HEG is fluidlike or crystal-like; this too
is a smooth function of rs in a given finite cell. In fact there is a
different E (rs) curve for each system size N , spin polarization,
cell shape, and choice of twisted boundary conditions. For
example a bcc simulation cell with N a cubic number strongly
favors crystalline behavior. The fluid energy per particle fluc-
tuates quasirandomly with system size N , cell shape, and
twisted boundary conditions due to momentum quantization
effects. For a sufficiently large periodic cell of a given shape,
there must be a narrowly avoided crossing of energy levels as
a function of rs near the crystallization density, with S(Gprim)
changing significantly near the avoided crossing, where Gprim

is a primitive-cell reciprocal lattice point of the bcc Wigner
crystal, resulting in a smooth crossover from Fermi fluid to
“floating” [20,21] crystal behavior. For the infinite 3D-HEG,
however, the center-of-mass kinetic energy per electron van-
ishes and hence broken-translational-symmetry crystal wave
functions are degenerate with floating crystal wave functions.
The avoided crossing of energy levels therefore becomes a
true crossing of energy levels with different symmetry. Fur-

thermore, E (rs) ceases to depend on the simulation cell shape
and choice of twisted boundary conditions. At rs → 0, the
interaction potential is negligible and we have a homogeneous
ground-state fluid wave function. At rs → ∞, the kinetic en-
ergy is negligible and we have a bcc crystal. The symmetry
of the ground state of the infinite 3D-HEG must therefore
change at some finite rs, i.e., there is a zero-temperature phase
transition [2]. The charge density ρ(Gprim) = 〈ρ̂(Gprim)〉 is an
appropriate order parameter for the fluid-to-crystal transition,
being zero in the fluid phase and nonzero in the crystal phase.
The crystallization transition is expected to be first order, cor-
responding to a crossing of crystal and fluid energy levels as
functions of rs with the order parameter being nonzero at the
crossing point in the crystal phase. The following numerical
results provide some evidence confirming that the Wigner
crystal charge density is nonzero at the crystallization density.

II. CALCULATING THE ZERO-TEMPERATURE
PHASE DIAGRAM

A. QMC methodology

In QMC studies of the phase diagram of the 3D-HEG, we
look for a first-order phase transition by calculating the DMC
energy as a function of density parameter rs for trial wave
functions that model the ground-state fluid and the ground-
state crystal. For the fluid phases we use Slater determinants
of plane-wave orbitals, multiplied by Jastrow correlation fac-
tors that do not alter the nodal surface [7–9]. We evaluate
the orbitals at quasiparticle coordinates related to the actual
electron coordinates by continuous backflow (BF) transforma-
tions [22–25], allowing variational optimization of the nodal
surface without changing its topology. The nodal topology of
the fluid trial wave function is therefore the same as that of
a Slater determinant of plane waves, i.e., the wave function
of a free electron gas. This model is not exact: as directly
revealed by full configuration interaction QMC calculations,
the exact ground-state wave function of the 3D-HEG is in
fact a linear combination of many ground- and excited-state
Slater determinants of plane waves [13,26]. Nevertheless,
the single-determinant Slater-Jastrow-BF (SJB) model of the
fluid phase is reasonably accurate because, by construction,
it always leads to a significantly lower variational energy
than the Hartree-Fock wave function (a single determinant of
plane waves), and Hartree-Fock theory itself becomes arbi-
trarily accurate at high density (rs → 0), where it provides the
first two terms in the high-density expansion of the 3D-HEG
energy [27]. Furthermore, Landau’s Fermi liquid theory [4]
requires that low-lying excited states of the Fermi fluid are
adiabatically connected to the corresponding excited states of
a free electron gas, implying that the relevant parts of the
nodal surface of the Fermi fluid must be qualitatively the
same as that of a single determinant of plane waves. The
release-node method [9], in which walkers are equilibrated
in fixed-node DMC and then briefly allowed to cross nodes
and change the sign of their weights, is able to move nodes
but is unlikely to be able to change the nodal topology; we
expect this approach to give similar results to the fixed-node
SJB-DMC method.

Our model of the Wigner crystal is a Slater determinant of
single-Gaussian orbitals centered on bcc lattice sites and made
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periodic by summing over images, multiplied by a Jastrow
correlation factor. It therefore explicitly breaks translational
symmetry, leading to an O(N−1) finite-size (FS) error due
to the center-of-mass kinetic energy [28]. The Gaussian ex-
ponent was determined using a formula that minimizes the
fixed-node DMC energy in a large 216-electron cell [16,28].
The Slater determinant of Gaussian orbitals describes the
ground state of an Einstein model of a vibrating electron
lattice. In principle a better model of the ground state of
a vibrating electron lattice would be provided by an anti-
symmetrized product of Gaussian functions of quasiharmonic
normal coordinates [29,30]. However, our Jastrow factor and
BF function allow an approximate description of this quasi-
harmonic behavior, with additional flexibility.

Our Jastrow factor and BF functions contained polyno-
mial and plane-wave expansions in electron-electron sepa-
ration [25,31]. For the Wigner crystal, the Jastrow factor
also contained a plane-wave expansion in electron position.
The wave functions were optimized by variance minimiza-
tion [32,33] followed by energy minimization [34]. The
CASINO package was used for all our QMC calculations [35].

Monte Carlo sampled canonical twist-averaged boundary
conditions (TABC) were used to reduce quasirandom single-
particle FS errors in Fermi fluid energies due to momentum
quantization effects [36,37]. Twist averaging is unnecessary
for Wigner crystals, which have localized orbitals and do not
have Fermi surfaces. Systematic FS errors due to the use of the
Ewald interaction rather than 1/r to evaluate the interaction
between each electron and its exchange-correlation hole and
the neglect of long-range two-body correlations were removed
by fitting E (N ) = E (∞) + b/N to the twist-averaged DMC
energy data at different system sizes [38]. This also removed
the FS bias in Wigner crystal energies due to the center-of-
mass kinetic energy. We examine the performance of analytic
expressions [38,39].

We studied the fluid phase at rs = 30, 40, 50, 60, 70, 80,
and 100. For each density, QMC calculations were performed
for simulation cells with 130 � N � 274. The energies were
calculated for spin polarizations ζ = 0, 0.25, 0.5, 0.75, and 1.
Antiferromagnetic and ferromagnetic bcc crystalline phases
were investigated at rs = 80, 90, 100, and 125 for simulation
cells with N = 64, 216, and 512 electrons. Our DMC energies
were extrapolated linearly or quadratically to zero time step,
with the target walker population being varied in inverse pro-
portion to the time step. The energies and variances calculated
using Slater-Jastrow (SJ) and SJB wave functions for different
system sizes are reported in Ref. [28]. The computational and
technical details are discussed in the following sections.

B. Fluid phase wave function

For the fluid phase of the three-dimensional homogeneous
electron gas (3D-HEG) we used a Slater-Jastrow-backflow
(SJB) trial spatial wave function �(R) = eJ (R)S(X(R)),
where R = (r1, . . . , rN ) is the 3N-dimensional vector of elec-
tron coordinates. The antisymmetric Slater part S is a product
of determinants of single-particle orbitals for spin-up and
spin-down electrons. The single-particle orbitals in S are of
the free-electron form ψk(r) = exp(ik · r), where wave vector
k is a reciprocal lattice vector of the simulation cell offset by

twist vector ks, where ks lies in the supercell Brillouin zone.
The Jastrow exponent J , which is symmetric under electron
exchange, takes the form

J (R) =
N∑

i< j

u(ri j ) +
N∑

i< j

p(ri j ), (1)

where u is a smoothly truncated, isotropic polynomial func-
tion of minimum-image electron-electron distance ri j , and
p is a plane-wave expansion in electron-electron separation
ri j [31]. The u term is of form

u(r) = (r − Lu)C�(Lu − r)

×
(

α0 +
[

	

(−Lu)C + α0C

Lu

]
r +

Nu∑
l=2

αl r
l

)
, (2)

where the cutoff length Lu is less than or equal to the radius
of the largest sphere that can be inscribed in the Wigner-Seitz
cell of the simulation cell, C = 3 specifies how smooth the
function is at the cutoff length, � is the Heaviside step func-
tion, and {αl} are optimizable parameters, which differ for
parallel- and antiparallel-spin electrons. To satisfy the Kato
cusp conditions [40], 	 = 1/2 for opposite-spin electrons and
	 = 1/4 for same-spin electrons. We chose Nu = 8. The p
term has the symmetry of the simulation-cell Bravais lattice
and allows a description of correlation in the “corners” of the
simulation cell. Its form is

p(r) =
∑

A

aA

∑
G∈A+

cos(G · r), (3)

where A represents a star of symmetry-equivalent, nonzero,
simulation-cell reciprocal-lattice vectors G, and A+ is a subset
of A that consists of one out of each ±G pair. The {aA} are
optimizable parameters. We used 46 stars of G vectors in p.

Including a backflow transformation in the trial wave func-
tion, the Slater part of the wave function S is evaluated at
transformed “quasiparticle” coordinates X(R) = R + ξ(R),
where

ξi(R) =
N∑

j 
=i

η(ri j )ri j +
N∑

j 
=i

π(ri j ) (4)

is the backflow displacement of electron i. η is a cusp-
less, smoothly truncated, isotropic polynomial function of
minimum-image electron-electron distance ri j . The polyno-
mial coefficients are optimizable parameters, and are different
for parallel- and antiparallel-spin electrons [25]. The form
of η(r) is mathematically equivalent to that of the Jastrow
u(r) term [Eq. (2), with 	 = 0 for same-spin electrons and
optimizable for opposite-spin electrons]. Typically we used
Nη = 8 in the polynomial expansions. The π term has the form
of the gradient of a Jastrow p term [Eq. (3)]:

π(r) = −
∑

A

cA

∑
G∈A+

sin(G · r) G, (5)

where the cA are optimizable parameters. As the gradient of
a scalar field, the π term is irrotational. We used 44 stars of
G vectors in π. The backflow transformation preserves the
antisymmetry of the Slater wave function. The parameters in
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TABLE I. Convergence of variational Monte Carlo (VMC) en-
ergy with respect to a parameter g controlling the number of periodic
images retained in the Wigner crystal orbitals of Eq. (6). We only
retained those Gaussian functions exp(−C|r − Rp − Rs|2) whose
value at the closest point of the Wigner-Seitz simulation cell contain-
ing r was greater than 10−g. Results are shown for a ferromagnetic
bcc Wigner crystal at rs = 90 with N = 27 electrons in the simu-
lation cell and Gaussian exponent C = 0.000148 a.u. An SJB wave
function optimized with g = 7 was used in each case.

g No. terms in Eq. (6) SJB-VMC energy (Ha/el.)

1 8 −0.0084224(3)
2 24 −0.00849361(7)
3 27 −0.00849268(7)
5 27 −0.00849263(7)
7 27 −0.00849253(7)
15 46 −0.00849254(7)
25 91 −0.00849253(6)

the Jastrow factor and backflow function were optimized by
variance minimization and energy minimization.

C. Crystal phase wave function

The trial wave functions for our Wigner crystal calculations
were of later-Jastrow (SJ) form, apart from some test calcu-
lations with SJB wave functions. The orbitals in the Slater
determinants consisted of Gaussian functions centered on
body-centered cubic (bcc) lattice sites within the simulation
cell, made periodic by summing over simulation-cell images:

φRp (r) =
∑
Rs

exp(−C|r − Rp − Rs|2), (6)

where Rp is a primitive-cell lattice point within the supercell
(which indexes the orbital) and Rs is a simulation-cell lattice
point. In practice the sum contained only those Gaussian func-
tions exp(−C|r − Rp − Rs|2) whose value at the closest point
to Rp + Rs in the Wigner-Seitz simulation cell containing
r was greater than 10−7. It was verified that truncating the
sum in this manner does not introduce statistically significant
errors at the densities considered in this work: see Table I and
note that the effects of truncating the sum are reduced in larger
simulation cells; our production Wigner crystal calculations
used cell sizes of N = 64, 216, and 512 electrons.

In Fig. 1, we plot diffusion Monte Carlo (DMC) energy
against the logarithm of the Gaussian exponent C for bcc
Wigner crystals at rs = 100 and 125. It is clear that the for-
mula [16]

C = 0.11r−3/2
s (7)

provides near-optimal exponents, especially for antiferromag-
netic Wigner crystals. By using Eq. (7), we achieve greater
consistency between system sizes and densities than would
result from separately optimizing C in each case. At small
system size, there is a tendency for C to be underestimated rel-
ative to the thermodynamic limit, to reduce the center-of-mass
kinetic energy. For both ferromagnetic and antiferromagnetic
crystals, the error in the DMC energy from using the formula
is comparable with the statistical error bars on the data, and is
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FIG. 1. DMC energy against logarithm of Gaussian exponent C
for ferromagnetic and antiferromagnetic bcc Wigner crystals (a) at
rs = 100 and (b) at rs = 125, using SJ trial wave functions. The en-
ergy has been extrapolated to zero time step and infinite system size
in each case. The solid curves show quadratic fits to the energies of
ferromagnetic and antiferromagnetic crystals as functions of ln(C),
while the dashed curve shows a quartic fit. The horizontal line in
(a) shows the twist-averaged paramagnetic Fermi fluid energy (with
the dotted lines indicating error bars), while the vertical line shows
the Gaussian exponent given by Eq. (7).

clearly much smaller than the difference between the fluid and
crystal energies, even at rs = 100, close to the crystallization
density. A slightly more accurate expression for the opti-
mal Gaussian exponent for ferromagnetic crystals would be
Cferro = 0.068r−3/2

s ; however, for consistency, we have used
Eq. (7) for all our production calculations. By contrast, within
Hartree-Fock (HF) theory the low-density Gaussian exponent
is CHF = 1/(2r3/2

s ) [3,16].
Our Wigner crystal Jastrow factors were of the same form

as the Fermi fluid Jastrow factors described in the previous
section, except that we used 7 stars of reciprocal lattice vectors
in the plane-wave two-body term p, and we also used a plane-
wave one-body term of the form

q(r) =
∑

B

bB

∑
G∈B+

cos(G · r), (8)

where B represents a star of symmetry-equivalent, nonzero
primitive-cell reciprocal-lattice vectors G, and B+ is a subset
of B that consists of one out of each ±G pair. The {bB} are

245135-4



LOW-DENSITY PHASE DIAGRAM OF THE … PHYSICAL REVIEW B 105, 245135 (2022)

TABLE II. VMC energy and variance and DMC energy for a ferromagnetic Wigner crystal at density parameter rs = 100 with N =
64 electrons, using SJ and SJB wave functions and using either Eq. (7) or VMC energy minimization to determine the Gaussian orbital
exponent C.

Wave function C (a.u.) VMC energy (Ha/el.) VMC variance (Ha2) DMC energy (Ha/el.)

SJ 0.00011 [Eq. (7)] −0.0076719(3) 0.00000329 −0.00769616(8)
SJ 0.0001553 (opt.) −0.0076737(2) 0.00000274 −0.0076957(2)
SJB 0.00011 [Eq. (7)] −0.0076786(2) 0.00000252 −0.00769619(9)
SJB 0.0001503 (opt.) −0.0076803(2) 0.00000201 −0.0076960(1)

optimizable parameters. We used 7 stars of G vectors in q.
The q term has the symmetry of the Wigner crystal lattice and
allows a description of anisotropic warping of the Gaussian
orbitals.

For a ferromagnetic bcc Wigner crystal at rs = 100 with
N = 64 electrons, we performed test calculations using a
backflow function of the form described in Sec. II B, but with
8 stars in the π term. The VMC and DMC energies and the
VMC variances obtained with SJ and SJB wave functions, us-
ing either Eq. (7) or VMC energy minimization to determine
the orbital Gaussian exponent C, are shown in Table II. Op-
timizing the Gaussian exponent and backflow function lower
the VMC energy and variance. However, we cannot assume
that optimizing an overall wave function leads to an improved
nodal surface. In fact the DMC energies obtained using SJ
and SJB wave functions and either Eq. (7) or VMC energy
minimization to determine C are all in statistical agreement
with each other. Because SJ quantum Monte Carlo (QMC)
calculations are much cheaper and allow us to explore larger
system sizes, we have used SJ wave functions in our produc-
tion calculations.

D. Finite-size effects in fluid phases

For twist averaging we used random twists {ks} rather than
a grid of twists for the following reasons. (i) Using random
twists is similar to adding three more dimensions to the 3N-
dimensional integrals evaluated in QMC, and Monte Carlo
integration is efficient in high-dimensional spaces. (ii) A truly
systematic approach to twist averaging should use ks in each
supercell Brillouin zone (BZ) defined by the reoccupancies of
the plane-wave orbitals, and the corresponding results should
be weighted by the size of that BZ. However, the complexity
of the nested BZs grows very rapidly with the number of
electrons N [36], making this approach infeasible for large
system sizes. On the other hand, a regular grid-based approach
effectively gives a random sampling of the nested BZs. (iii)
Monte Carlo sampling of ks is easily extensible: if the error is
too large, it can be reduced by including more random twists.

To twist average, we used the HF kinetic energy (THF) and
exchange energy (XHF) as correlators and fit

E (ks) = 〈E〉TA + c[THF(ks) − 〈THF〉TA]

+ d[XHF(ks) − 〈XHF〉TA] (9)

to the DMC energy per particle at a given system size, where
ks is the twist, and 〈E〉TA, c, and d are fitting parameters.
The twist-averaged (TA) HF energies 〈THF〉TA and 〈XHF〉TA are
cheap to evaluate and were obtained using billions of twists.

Analytical expressions have been derived for the leading-
order [38] and next-to-leading-order [39] systematic finite-
size (FS) corrections to the energy per particle of a 3D
homogeneous electron gas in a finite periodic cell in which
the interaction between the particles is of Ewald form and the
system is assumed to be well-described by a SJ wave function.
The leading-order and next-to-leading-order FS corrections to
the energy per electron of a Fermi fluid are

�E =
√

3

2Nr3/2
s

− C3D

πr2
s (2N )4/3 [(1 + ζ )2/3 + (1 − ζ )2/3],

(10)
where C3D = 5.083 in a face-centered cubic simulation cell
(for fluid phases) and 5.086 in a bcc simulation cell (for
crystal phases). As explained in Ref. [41], backflow correla-
tions lead to additional, negative O(r−2

s N−1) FS corrections
to the energy per particle, approximately given by �EBF =
−THF/(3N ), where THF is the HF kinetic energy per particle.
There is also a nonsystematic FS error in the canonical ensem-
ble TA energy per particle of a Fermi fluid due to the incorrect
shape of the TA Fermi surface; this error has an envelope that
decays as O(r−2

s N−4/3) [36].
It is reasonable to assume that Eq. (10) holds approxi-

mately for Wigner crystals, although the static structure factor
differs between fluids and crystals, so the corrections should
not really be exactly the same.

The TA SJB-DMC energy of a paramagnetic Fermi fluid
at rs = 100 is plotted against the reciprocal of system size in
Fig. 2. The results of adding in the leading-order correction
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FIG. 2. TA SJB-DMC energy against inverse of system size for
a paramagnetic Fermi fluid at rs = 100. Also shown are the effects
of applying the first and second terms of Eq. (10), and the effects of
fitting various FS scaling laws to the resulting data.
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FIG. 3. SJ-DMC energy against inverse of system size for a
ferromagnetic bcc Wigner crystal at rs = 100. Also shown are the
effects of applying the first term of Eq. (10) and of subtracting an
estimate of the center-of-mass kinetic energy, together with fits of
E (N ) = E (∞) + bN−1 to the resulting energy data.

of Eq. (10) and the leading-order plus next-to-leading-order
FS corrections are also shown. At these low densities the
next-to-leading-order correction is negligible in comparison
with the leading-order correction (and also the backflow cor-
rection is relatively small). Nevertheless, the leading-order
FS correction does not remove all the systematic FS errors.
Near the crystallization density the single-determinant wave
function form is increasingly inappropriate, and it is possi-
ble that other FS effects may be present in the correlations
implicitly described by DMC. It is clear from Fig. 2 that
the leading-order analytic corrections do not remove all FS
effects at rs = 100. We therefore believe the most accurate
treatment of systematic FS effects is to extrapolate to infinite
system size using the O(N−1) FS-error scaling implied by the
leading-order theory.

The SJ-DMC energy of a ferromagnetic Wigner crystal at
rs = 100 is plotted against system size in Fig. 3. It appears
that the leading-order O(N−1) behavior is not completely
eliminated by either the long-range FS correction of Eq. (10)
or the subtraction of the center-of-mass kinetic energy. Equa-
tion (10) was derived for a fluid phase; the static structure
factor and long-range two-body Jastrow factor are different
in a crystal phase, which would lead to a different prefactor.
Once again the best policy would appear to be to regard the
theory of FS effects as providing the appropriate scaling law
to fit to the data.

FIG. 4. TA Fermi fluid SJ-DMC energies as functions of system
size N at different spin polarizations ζ . The dotted line represents the
extrapolation to infinite system size. These SJ-DMC energies have
not been extrapolated to zero time step.

SJ-DMC energies as functions of system size N for dif-
ferent spin polarizations (ζ = 0, 0.25, 0.5, 0.75, and 1) are
illustrated in Fig. 4. The SJ-DMC energies in the infinite
system size limit for different densities and polarizations are
listed in Table III. The TA SJB-DMC energies of the fluid
phase for various density and polarization are plotted in Fig. 5
against system size. The SJB-DMC energies extrapolated to
infinite system are presented in Table IV.

E. Finite-size effects in crystal phases

In our broken-symmetry model of a Wigner crystal, there
is an additional FS error due to the center-of-mass kinetic
energy.

At low density, individual electrons occupy Gaussian
orbitals φRp (r) = exp(−C|r − Rp|2), where Rp is a bcc

TABLE III. TA SJ-DMC energy of the Fermi fluid extrapolated from different system sizes (130 < N < 274) with 300 random twists at
each N to the thermodynamic limit. Energies are in mHa/el. The numbers in parentheses indicate statistical errors. The DMC energies were
not extrapolated to zero time step.

rs/ζ 0.0 0.25 0.50 0.75 1.0

30 −22.5336(7) −22.534(3) −22.522(1) −22.500(4) −22.446(3)
40 −17.5518(4) −17.551(4) −17.552(1) −17.550(2) −17.523(1)
50 −14.4003(4) −14.4034(1) −14.4046(4) −14.407(2) −14.399(1)
60 −12.2235(2) −12.2237(1) −12.2286(1) −12.231(2) −12.2303(8)
70 −10.6278(5) −10.629(1) −10.6310(4) −10.634(3) −10.6374(5)
80 −9.404(1) −9.406(1) −9.4101(6) −9.413(1) −9.4161(5)
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FIG. 5. TA SJB-DMC energies against system size N for differ-
ent spin polarizations ζ . The dotted lines represent extrapolations to
infinite system size. The DMC energies were not extrapolated to zero
time step.

primitive-cell lattice vector, and C is a Gaussian exponent.
Let s be the offset to the center-of-mass position. Assuming
a rigid displacement of the lattice by s, the center-of-mass
wave function is �(s) = exp(−NCs2). The resulting center-
of-mass kinetic energy is

TCM = − 1

2N

∫
�∗∇2

s � d3s∫ |�|2 d3s
= 3C

2
. (11)

Hence the center of mass kinetic energy per particle falls off
as 3C/(2N ). There is therefore an additional FS correction, on
top of those discussed in Sec. II D, to be applied to the energy
per particle of a Wigner crystal:

�TCM = −TCM

N
= − 3C

2N
≈ − 0.33

2Nr3/2
s

, (12)

TABLE IV. TA SJB-DMC energies of the Fermi fluid extrapo-
lated to the thermodynamic limit from different system sizes (130 <

N < 274). Energies are in mHa/el. The numbers in parentheses
indicate statistical errors. The DMC energies were not extrapolated
to zero time step.

rs/ζ 0.0 0.50 1.0

30 −22.617(8) −22.5862(5) −22.4804(6)
40 −17.612(4) −17.597(2) −17.555(2)
60 −12.254(3) −12.2492(4) −12.2413(1)
80 −9.4250(9) −9.421(1) −9.4242(2)
100 −7.6702(4) −7.669976(7) −7.6717(9)

FIG. 6. SJ-DMC energy against the inverse of system size N
for the crystal phase. The dotted line shows the extrapolation to
infinite system size. ζ = 0 and 1 are the spin polarizations of the
system (antiferromagnetic and ferromagnetic crystals, respectively).
The DMC energies have been extrapolated to zero time step.

where in the last step we have inserted the approximate ex-
pression for the Gaussian exponent C in a bcc Wigner crystal
obtained by minimizing the DMC energy in a large simu-
lation cell [16], Eq. (7). The center-of-mass kinetic energy
correction partially offsets the leading-order FS correction of
Eq. (10).

Where the crystal orbitals are highly localized within the
supercell, twist averaging cannot have much effect on the
energy per particle. If the simulation-cell Bloch vector ks is
nonzero then the crystal orbitals are

φRp (r) =
∑
Rs

exp(−C|r − Rp − Rs|2) exp(iks · Rs), (13)

where Rp is a primitive-cell lattice point within the supercell
(which indexes the orbital) and Rs is a simulation-cell lattice
point. This is the usual prescription for creating Bloch orbitals
from localized functions; one can easily check that φRp (r +
R′

s) = exp(iks · R′
s)φRp (r).

For a large simulation cell at low density, at most one of
the Gaussian functions exp(−C|r − Rp − Rs|2) in Eq. (13) is
non-negligible at any given point r in the simulation cell. So
the exp(iks · Rs) factor just contributes an unobservable phase
to each orbital within the simulation cell. Hence we do not
twist average our crystal energies.

The SJ-DMC energies of ferromagnetic Wigner crystals at
different densities rs = 80, 90, 100, and 125 as functions of
system size are plotted in Fig. 6. The energies extrapolated to
infinite system size are listed in Table V.

The electronic charge densities of antiferromagnetic and
ferromagnetic crystals are plotted in Fig. 7. The charge den-
sities were extrapolated to infinite system size by fitting
ρ∞(r) + b(r)N−1 to the charge density data ρN (r) at each
point r. Here, ρ∞(r) and b(r) were fitting parameters at each
point r. O(N−1) FS errors in the charge density arise due to
the center-of-mass kinetic energy, which leads to a tendency
for the orbitals to delocalize in a finite cell.
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TABLE V. SJ-DMC energy of the crystal phase extrapolated to
zero time step and the thermodynamic limit of infinite system size.
The numbers in parentheses indicate statistical and fitting errors.

Energy (mHa/el.)

rs Antiferromagnetic Ferromagnetic

80 −9.4200(2) −9.41999(9)
90 −8.4585(1) −8.4581(1)
100 −7.6769(1) −7.6774(1)
125 −6.24472(6) −6.24508(6)

It is clear that the charge density is nonuniform at the
crystallization density, providing some numerical evidence
that the phase transition is first order. The differences between
ferromagnetic and antiferromagnetic crystals are too small
to resolve, but it is clear that increasing rs has the effect of
making the charge density relatively localized, as expected.

F. DMC time-step bias

The variation of the DMC energy with time step is inves-
tigated in this section. Figure 8 shows TA SJB-DMC energies
against time step. The population is varied in inverse propor-
tion to the time step. For all the studied system sizes, densities,
and spin polarizations the bias at finite time step is always
positive. Our final results were linearly extrapolated to zero
time step (and hence infinite population) in every case.

Figure 9 shows SJB-DMC energies of paramagnetic and
ferromagnetic fluid phases, extrapolated to zero time step, at
three different system sizes. TA SJB-DMC energies extrapo-
lated to infinite system size and zero time step are listed in
Table VI.

FIG. 7. Extrapolated estimates of the electronic charge densities
of antiferromagnetic (AF) and ferromagnetic (F) bcc Wigner crys-
tals plotted along a straight line in the [100] direction. Results are
shown for two density parameters in the vicinity of the crystallization
density. The charge densities have been obtained by extrapolated
estimation (twice the DMC charge density minus the VMC charge
density), which largely removes errors that are linear in the error in
the trial wave function. Furthermore, the charge densities have been
extrapolated to infinite system size, assuming the FS error goes as
N−1. The shaded regions indicate one standard error about the mean.

FIG. 8. TA SJB-DMC energy against time step τ for the param-
agnetic (ζ = 0) and ferromagnetic (ζ = 1) fluid phases at different
system sizes N .

The SJ-DMC energy of bcc Wigner crystals is plotted
against time step in Fig. 10. Time steps in the range 10–80
Ha−1 were used in our calculations. At rs = 80, the data are
better fitted by a quadratic function of time step than a linear
function of time step; however, the quadratic fit is no better
than the linear fit at rs = 100. However, even at rs = 80, the

FIG. 9. TA SJB-DMC energies against system size N for dif-
ferent spin polarizations ζ . The DMC energies are extrapolated to
zero time step. The dotted line represents the extrapolation to infinite
system size.
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TABLE VI. TA SJB-DMC energies of the fluid phases of the
3D-HEG extrapolated to the thermodynamic limit from different sys-
tem sizes (130 < N < 274). Energies are in mHa/el. The numbers
in parentheses indicate statistical errors. The DMC energies were
extrapolated to zero time step.

rs/ζ 0.0 1.0

30 −22.6191(7) −22.4819(7)
40 −17.6143(3) −17.5558(7)
60 −12.2556(3) −12.2418(5)
80 −9.4259(4) −9.4246(3)
100 −7.6709(3) −7.6720(4)

difference between the results of linear and quadratic time-
step extrapolation is not statistically significant.

III. RESULTS AND DISCUSSION

A. SJ-DMC magnetic phase diagram for the fluid phases

The SJ-DMC phase diagram (Fig. 11, left panel) shows
that the spin polarized state ζ = 0.5 has lower energy than
the paramagnetic phase at rs � 40. The fluid with ζ = 0.75
becomes more stable than the fluid with ζ = 0.5 at rs ≈ 46,
and the 3D-HEG system adopts a fully polarized state ζ = 1
at rs ≈ 62.

The correlation energy of a Fermi fluid is defined as the
difference between the Hartree-Fock energy per electron and
the exact ground-state energy per electron, where the latter is
approximated by our DMC results. The procedure developed
by von Barth and Hedin [42] and Perdew and Zunger [15]
to interpolate between ζ = 0 and ζ = 1 was applied to our
SJ-DMC correlation energies (Fig. 12, top panel). The well-
known Perdew-Zunger expression for the correlation energy
per electron of the 3D-HEG is [15]

Ec(rs, ζ ) = Epara
c (rs) + [

E ferro
c (rs) − Epara

c (rs)
]

f (ζ ), (14)

which has the same ζ dependence as the exchange en-
ergy [42], f (ζ ) = (1+ζ )4/3+(1−ζ )4/3−2

2(21/3−1) . This interpolation is
exact for the exchange part of the energy and is likely to be
reasonable for the correlation energy too. The interpolation
scheme is very successful at low densities, as illustrated in
Fig. 12.
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FIG. 10. SJ-DMC energy against time step for bcc Wigner
crystals at (a) rs = 80 and (b) 100. Results are shown for both anti-
ferromagnetic and ferromagnetic crystals. The system size is N = 64
electrons. The target population is varied in inverse proportion to the
time step.

FIG. 11. (Left) SJ-DMC spin polarization energy of the 3D-HEG
multiplied by r3/2

s against density parameter rs. (Right) SJ-DMC spin
polarization energy of the 3D-HEG multiplied by rs

3/2 against spin
polarization ζ at various densities.

Following Ceperley [8], we fit

Epara,ferro
c (rs) = γ para,ferro

1 + β
para,ferro
1

√
rs + β

para,ferro
2 rs

(15)

to our Fermi fluid correlation energies.
The fitting parameters γ , β1, and β2 for different polariza-

tions are listed in Table VII.

B. SJB-DMC magnetic phase diagram for the fluid phases

According to our SJB-DMC results for the fluid phases, the
paramagnetic fluid phase (ζ = 0) is stable for the entire den-
sity range rs < 85.5(2) (Fig. 13, left panel). There is no room
for stability of the partially polarized ζ = 0.5 fluid phase.

Figure 14 shows the SJB-DMC correlation energy of the
fluid phase as a function of spin polarization at different den-
sities. BF correlations lower the energy of the paramagnetic
fluid more than the ferromagnetic fluid. SJ-DMC predicts
that a fully spin-polarized fluid phase becomes stable at rs =
63(1), whereas our SJB-DMC results do not show a statis-
tically significant region for the ferromagnetic fluid phase.
Same-spin electrons are kept apart by the antisymmetry of
the many-body wave function, while opposite-spin electrons
are only separated by correlation effects, so that an accurate
treatment of correlations lowers the energies of paramagnetic
phases more than ferromagnetic phases. Hence any future im-
provements in QMC trial wave functions are expected further
to stabilize the paramagnetic fluid relative to spin-polarized
fluids. In a Wigner crystal electrons are kept apart by the
localization of orbitals on lattice sites, so there is relatively

FIG. 12. Correlation energies obtained in SJ-DMC calculations
for the fluid phase (symbols), together with the fit to Eq. (1) of the
main text (lines). Error bars on the QMC data are shown, but are
smaller than the symbols. The DMC energies were not extrapolated
to zero time step.
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TABLE VII. Parameters in Eq. (15) of the main text, obtained by
fitting to SJ-DMC data that have been TA and extrapolated to infinite
system size, but not to zero time step.

ζ γ β1 β2 χ 2

0.0 −0.122(5) 0.923(45) 0.287(10) 1.25
0.25 −0.104(7) 0.758(67) 0.252(15) 10.573
0.5 −0.110(5) 0.937(51) 0.275(10) 3.137
0.75 −0.091(14) 0.938(189) 0.250(36) 0.412
1.0 −0.052(5) 0.808(97) 0.166(13) 6.58

little scope for BF correlations to lower the DMC energy sig-
nificantly. Indeed, the DMC energy data in the Supplemental
Material confirm that the effects of BF on Wigner crystal
DMC energies are small and do not significantly alter the
phase diagram [28]. Our final energies are obtained using
SJB-DMC for Fermi fluid phases and SJ-DMC for Wigner
crystal phases. The fitting parameters of Eq. (15) obtained by
DMC-SJB are reported in Table VIII.

C. Phase diagram

The DMC energies of different phases of the 3D-HEG,
extrapolated to the thermodynamic limit, are plotted against rs

in Fig. 15. Our Wigner crystal energies are in good agreement
with the results reported in Ref. [16]. However, our Fermi
fluid energies are substantially higher than those of Ref. [11],
leading to a significant revision of the crystallization density,
which is now predicted to occur at rs = 86.6(7). We inves-
tigate possible reasons for the disagreement with Ref. [11] in
the next section, finding that the treatment of finite-size effects
is the most likely source of disagreement.

The ferromagnetic fluid becomes more stable than the
paramagnetic fluid in the immediate vicinity of the crystal-
lization density; hence we do not predict a region of stability
for itinerant ferromagnetism in the 3D-HEG. The absence of a
region of stability for the ferromagnetic fluid has also recently
been predicted by Holzmann and Moroni, who performed
DMC calculations for the fluid phases of the 3D-HEG in a 66-
electron simple cubic cell and applied finite-size corrections

FIG. 13. (Left) SJB-DMC relative energies of fluid phases of the
3D-HEG are plotted against rs for different spin polarizations ζ in
the thermodynamic limit of infinite system size. (Right) SJB spin
polarization energy of the 3D-HEG multiplied by rs

3/2 at various
densities. The DMC energies were not extrapolated to zero time step.

TABLE VIII. Parameters in the interpolation formula of Eq. (15)
for the correlation energy of a Fermi fluid, obtained by fitting to our
SJB-DMC energy data at different spin polarizations ζ . The reduced
χ 2 values for the fits are also shown.

ζ γ (Ha/el) β1 β2 χ 2

0 (para.) −0.13(1) 1.0(1) 0.32(3) 0.92
0.5 −0.15(1) 1.3(1) 0.36(2) 10.96
1 (ferro.) −0.062(6) 0.97(8) 0.19(1) 5.51

to their data [43]. The curves fitted to our DMC energy data
for ferromagnetic and antiferromagnetic bcc crystals cross at
rs = 93(3), which is just inside the region of stability for
the Wigner crystal. However, in the region of stability, the
differences between our ferromagnetic and antiferromagnetic
crystal DMC energies are statistically insignificant.

FIG. 14. Correlation energies obtained in SJB-DMC calculations
for the fluid phase (symbols), together with the fit of Eq. (14) (lines).
Error bars on the QMC data are shown, but are smaller than the size
of the symbols.
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FIG. 15. Energies per particle of the Fermi fluid and Wigner
crystal phases at low density. The Madelung energy of the bcc lattice
has been subtracted off and the resulting energies have been rescaled
by r3/2

s to highlight the differences between phases.

Path integral Monte Carlo calculations of the exchange
coupling constants of bcc Wigner crystals [44] show that at
rs = 100 the energy difference between ferromagnetic and
antiferromagnetic configurations is only 1.2 × 10−8 Ha/el
(an order of magnitude smaller than our DMC error bars),
and demonstrate that the 3D Wigner crystal is antiferro-
magnetic [45]. Given that the energy difference between
antiferromagnetic and ferromagnetic crystals is significant at
high density and exponentially small at low density, fitted
energy-density curves are liable to cross spuriously.

D. Investigation of disagreement with F. H. Zong,
C. Lin, and D. M. Ceperley [11]

As can be seen in Fig. 15, our SJB-DMC energies in the
thermodynamic limit are higher than those of Ref. [11]. Here
we try to identify the cause of the disagreement.

According to Ref. [11], the energy of a paramagnetic
(ζ = 0) 3D-HEG at rs = 40 computed using TA SJB-DMC
simulations and extrapolated to the thermodynamic limit from
N = 54 and N = 108 is −0.0176187(3) Ha/el. To try to
reproduce this result we used SJB wave functions for the para-
magnetic (ζ = 0) 3D-HEG at rs = 40 and the same system
sizes as Ref. [11]. The DMC time step was 10 Ha−1. We used
1200 walkers for N = 54 and 2400 walkers for N = 108. The
numbers of twists for N = 54 and 108 were 700 and 110,
respectively. Our DMC energy at the thermodynamic limit,
which is obtained by extrapolation of the TA DMC energies
in Table IX, is −0.0176038(1) Ha/el. This is 14.9(3) μHa/el.
higher than the result obtained in Ref. [11].

To investigate further, we have studied 54-electron 3D-
HEGs at rs = 50 with the same set of spin polarizations
as Ref. [11]. We used our SJB wave function with several
hundred twists to reach a precision of 10−7 Ha/electron. Fig-
ure 16 shows our VMC and DMC energies compared with
data extracted from Fig. 1 of Ref. [11]. Because they used
a three-body term in their Jastrow factor, their VMC ener-
gies are ∼0.02 mRy/electron lower than our VMC energies.

TABLE IX. Energies and energy variances (σv
2) of the para-

magnetic (ζ = 0) 3D-HEG at rs = 40. The TA DMC energies are
calculated using an SJB wave function in which the Jastrow factor
and backflow function were optimized at ks = 0. Energies are in
Ha/el. and variances are in Ha2.

N EVMC σv
2 EDMC

54 −0.0175860(9) 0.0000553(6) −0.01766933(6)
108 −0.0175770(5) 0.0000898(8) −0.01763656(7)

However, the three-body Jastrow term does not directly affect
the nodal surface of the wave function and indeed our DMC
energies agree well with those of Ref. [11]. We performed two
test calculations in which a polynomial three-body term was
included in our Jastrow factor. The resulting SJB-VMC ener-
gies for the paramagnetic and ferromagnetic fluid phases are
−0.028913(1) and −0.028906(1) Ry/electron, respectively,
which are lower than the corresponding VMC energies of
Ref. [11] (see Fig. 16). However, including the three-body
term did not change our DMC energies significantly. Indeed,
Fig. 16 shows that the source of the discrepancy between our
final SJB-DMC results and those of Ref. [11] is neither the
form of our trial wave function nor the optimization scheme,
because the SJB-DMC results agree at N = 54.

We calculated the energy of the 3D-HEG at rs = 50 in the
infinite system size limit using TA and extrapolation from
data at N = 54 and 108; these are the system sizes used in
Ref. [11]. According to Ref. [11], the TA SJB-DMC ener-
gies of paramagnetic fluids at rs = 50 at a system size of
N = 54 and at the thermodynamic limit are −0.028967(1)
and −0.0288990(6) Ry/electron, respectively. Hence they
find the absolute difference between the SJB-DMC energy at
infinite system size and in a 54-electron cell to be just 0.068(1)
mRy/electron.
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FIG. 16. Twist-averaged SJB-VMC and SJB-DMC energies per
electron E against spin polarization ζ at rs = 50 for N = 54
electrons. Our results were obtained using a face-centered cubic
simulation cell. The results reported in Ref. [11] [“PRE (2002)”]
may have been obtained in a simple cubic simulation cell, although
the difference between the ground-state energies in face-centered and
simple cubic cells is small, as shown in Table XI.
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FIG. 17. Energy per electron as a function of spin polarization ζ

at rs = 50. The energies are obtained using extrapolation from TA
energies at N = 54 and N = 108 to infinite system size.

Our SJB-DMC energies of the paramagnetic fluid at rs =
50 at a system size N = 54 and at the thermodynamic limit
are −0.0289755(1) and −0.0288756(4) Ry/electron, respec-
tively, and the absolute difference between them is 0.1000(4)
mRy/electron, much larger than predicted in Ref. [11].

According to Ref. [38], the leading order correction for
systematic long-range FS errors in the energy is �N =
ωp/(2N ) = √

3/r3
s /(2N ) in atomic units, where ωp = √

3/r3
s

is the plasma frequency. Using N = 54 and rs = 50 gives
�N = 0.09072 mRy/electron, which is relatively close to our
estimate of the difference between the energy per particle at
infinite system size and in a 54-electron cell.

Figure 17 compares our DMC energies with those of
Ref. [11] for 3D-HEGs at rs = 50 in the thermodynamic limit.
The differences between our DMC energies and those of
Ref. [11] at ζ = 0.0, 0.185, 0.333, 0.519, 0.667, 0.852, and
1.0 are 0.023(7), 0.023(7), 0.0280(7), 0.0247(6), 0.0203(6),
0.0212(9), and 0.013(1) mRy/electron, respectively.

We investigated other factors that could affect our DMC
energies. (1) We reoptimized the backflow function and Jas-
trow factor at different twist vectors ks for the paramagnetic
fluid. The SJB-DMC energies at infinite system size, which
are obtained by extrapolation from TA data at N = 54 and
108, show that the energy change due to optimizing the back-
flow function at different twists is small (see Table X).

TABLE XI. TA SJB-DMC energy of the paramagnetic fluid
phase at rs = 50 using fcc and sc simulation cells. Energies are in
Ha/electron.

Simulation cell N = 54 N = 108 N → ∞
fcc −0.0144878(1) −0.0144628(1) −0.0144378(1)
sc −0.0144832(1) −0.0144592(1) −0.0144352(1)

(2) All the results of this section were obtained with a fixed
DMC time step τ = 10 a.u., which is appropriately small at
density parameter rs = 50. As shown in Sec. II F, the resulting
time step errors are much smaller than the difference between
our energy data and those of Ref. [11].

(3) The shape of the simulation cell affects the DMC en-
ergy at finite system size. We used face centered cubic (fcc)
simulation cells for our fluid calculations. It is not clear to us
what shape of simulation cell was used in Ref. [11]. N = 54
is a magic number of electrons for paramagnetic 3D-HEGs
in both simple cubic (sc) and fcc cells subject to periodic
boundary conditions. We compare TA SJB-DMC energies for
the paramagnetic fluid phase in fcc and sc cells at rs = 50 in
Table XI. The difference between these DMC energies in the
thermodynamic limit is negligible, as expected.

Since our SJB-DMC results agree with Ref. [11] at N =
54 but not in the thermodynamic limit, and since Ref. [11]
states that finite-size effects are small in contradiction with
the analytic theory of finite-size effects [38], we conclude that
FS extrapolation is the most likely cause of the disagreement
between our results and Ref. [11].

E. Comparison with M. Holzmann and S. Moroni [43]

Reference [43] disagrees with Ref. [11] and agrees with
our finding that the ferromagnetic fluid has no region of sta-
bility. Nevertheless, there remains a quantitative disagreement
over the crystallization density. Reference [43] uses com-
putationally expensive recursive backflow wave functions in
SJB-DMC calculations at a fixed, relatively small system size
(N = 66, in an sc cell). Furthermore, they extrapolate their
SJB-DMC energy data to zero VMC energy variance. In gen-
eral such an extrapolation is error-prone, possibly introducing
nonvariational errors (consider, for example, the effects of
switching between optimizing wave functions by variance
and energy minimization); however, in Ref. [43] great care
has been taken to ensure the extrapolation is as reliable as

TABLE X. SJB-DMC energy in Ha/electron of a paramagnetic fluid at rs = 50 in the thermodynamic limit of infinite system size (N → ∞)
using three different simulation-cell Bloch vectors ks for the optimization of the backflow function and Jastrow factor. The SJB-DMC energies
were obtained by extrapolation from TA SJB-DMC energies obtained at system sizes of N = 54 and N = 108.

SJB-DMC energy (Ha/electron)

ζ = 0 ζ = 1

ks N = 54 N = 108 N → ∞ N = 54 N = 108 N → ∞
	 −0.0144877(1) −0.0144628(1) −0.0144378(1) −0.0144561(2) −0.0144373(3) −0.0144185(3)
L −0.0144870(1) −0.0144627(1) −0.0144383(1) −0.0144553(2) −0.0144369(3) −0.0144185(3)
X −0.0144866(1) −0.0144622(1) −0.0144378(1) −0.0144555(2) −0.0144366(3) −0.0144178(3)
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TABLE XII. TA SJB-DMC energies for a 66-electron paramag-
netic Fermi fluid of density parameter rs = 100 in a sc cell. The
results without citation were obtained in the present work. “BFn”
denotes an SJB wave function obtained using n recursive backflow
transformations.

Trial wave function SJB-DMC energy (mRy/el.)

BF0 [43] −15.37588(9)
No three-body Jastrow term −15.37721(11)
With three-body Jastrow term −15.37810(8)
BF1 [43] −15.38345(7)
BF4 [43] −15.38683(4)
Extrap. to zero var. [43] −15.38914(17)

possible. On the other hand, rather than extrapolating energy
data to infinite system size, Ref. [43] relies on analytic FS
correction formulas.

In Table XII, we compare our TA SJB-DMC energies for
the paramagnetic 66-electron Fermi fluid in a sc cell at rs =
100 with the results reported in Ref. [43]. Our (nonrecursive)
SJB trial wave function gives a lower TA DMC energy than
their nonrecursive SJB wave function (“BF0” in Table XII).
However, the recursion of backflow transformations followed
by extrapolation to zero VMC variance results in lower TA
SJB-DMC energies than ours. This difference between the
fluid energies in our work and Ref. [43] is sufficient to explain
about half the difference between the predicted crystallization
densities [rs = 86.6(7) and 113(2), respectively]. The rest of

the difference can be ascribed to the fact that we extrapolate
to infinite system size from larger simulation cells.

IV. CONCLUSION

In conclusion, we have revisited the phase diagram of the
3D-HEG using state-of-the-art QMC methods. The energies
of Wigner crystals are similar to previous QMC calcula-
tions. However, we find ferromagnetic fluid energies that are
significantly higher than previous calculations, leading to a
higher crystallization density, at rs = 86.6(7). We find no
statistically significant region of stability for itinerant fer-
romagnetism. The zero-temperature phase diagram of the
3D-HEG is therefore found to be qualitatively similar to that
of the two-dimensional homogeneous electron gas [46].
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