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Fractionalization of strongly correlated electrons as a possible route to quantum
Hall effect without magnetic field
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We show that the fractionalization of the constrained lattice electrons into charge/spin degrees of freedom
driven by strong electron correlation can recover the anomalous quantum Hall effect that is similar to an integer
quantum Hall effect in the absence of an external magnetic field.
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I. INTRODUCTION

At sufficiently low temperatures, a system of free charged
particles hopping in a square lattice and subjected to a strong
perpendicular magnetic field B is characterized by a Landau-
band energy spectrum. In case all the bands below a certain
gap are completely filled, the system exhibits the lattice in-
teger quantum Hall effect (IQHE) [1]: the Hall conductance
is quantized as integer ×e2/h. Those integers are essentially
the so-called Chern characters of the U (1) complex line bun-
dle over the base manifold which is a Brillouin torus—a
compact closed manifold. In this framework single-electron
Bloch wave functions serve as the sections of that bundle. The
bundle is twisted giving rise to nonzero Chern characters and
then out of that the IQHE becomes manifest.

In a seminal paper [2] Haldane showed that an external
magnetic field is not a necessary ingredient to realize the
IQHE. This phenomenon is rather driven by the breaking
of time-reversal symmetry, which is not necessarily linked
to the existence of an external magnetic flux. In a bipar-
tite honeycomb lattice the time-reversal symmetry breaking
in the absence of the external magnetic field can instead
be accounted for by the presence of phenomenological
complex-valued next nearest neighbor (NNN) hopping elec-
tron amplitudes. In this case the Hamiltonian is no longer real
valued and this by itself breaks time-reversal symmetry. Hal-
dane’s theory is constituted in the framework of an electronic
band structure. In view of that strong electron correlations are
naturally excluded in this scenario.

By contrast, in the present work we consider a system
of strongly correlated electrons hopping in a 2d lattice as
described by the Hubbard model at an infinitely strong on-site
repulsion U = ∞. In this case, the quantum numbers of the
electron break apart, implying that the latter is not a sharply
defined quasiparticle and the system can no longer be framed
by a conventional electronic band structure [3].

Strong correlations modify the underlying on-site Hilbert
space by forbidding doubly occupied sites. The constrained
electron operators are isomorphic to the Hubbard operators
[4], X pq

i = |p〉〈q|, with p, q = σ, 0 and σ =↑,↓ . Those oper-

ators appear as the generators of the su(2|1) superalgebra. As
a result, charge and spin degrees of freedom are intertwined
in this representation under the action of the SU (2|1) super-
group.

Within a conventional framework, Hubbard operators can
be split (factorized) into a product of well-defined operators
that correspond to spin and charge degrees of freedom. For
example, within a standard slave-boson representation one
gets X σ0

i = f †
iσ bi, where fiσ stands for a fermion spinful op-

erator and bi denotes a boson operator that keeps track of
the charge degrees of freedom. However, this representation
introduces auxiliary degrees of freedom and it must be accom-
panied with a local no double occupancy (NDO) constraint∑

σ f †
iσ fσ + b†

i bi = 1. This constraint generates a gauge field
with no free Maxwell term that strongly couples the fi and bi

modes to each other. As a result, the fi and bi modes are gauge
dependent and they do not represent real physical excitations.
As a matter of fact all known slave-particle representations of
the Hubbard operators effectively result in strongly coupled
compact U (1) lattice gauge theories.

Here we employ instead the Hubbard-operator fractional-
ization based directly on the su(2|1) superalgebra representa-
tion, with the NDO constraint being explicitly resolved prior
to any approximations. This provides a description that is free
from such auxiliary degrees of freedom. The su(2|1) fraction-
alization appears then as a dynamical outcome that cannot in
general be represented in terms of operator equalities. It is
rather formulated in terms of the su(2|1) path-integral action
variables. A correspondence with the physical observables can
be established in terms of the su(2|1) phase-space correlators.

We first formulate an effective low-energy su(2|1) path-
integral action to describe strongly correlated electrons in
terms of the factorized spinless charged fermionic ξi fields—
the holons(dopons)—and the spinful bosonic zi fields—the
spinons. The zi field describes spin degrees of freedom incor-
porated in the su(2|1) superalgebra. In fact, this superalgebra
can be thought of as just the simplest extension of the spin
su(2) algebra to incorporate fermions described by the ξi

Grassmann numbers. Our second step is to restrict the spin
dynamics by fixing a classical spin background to break
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time-reversal symmetry. This is produced by the addition of
a new term that includes a direct Heisenberg spin interaction
which determines exclusively the emerging magnetic struc-
ture. The resulting magnetic order is assumed to be fixed. In
this way, we arrive at a topological band insulator formed by
the ξ quasiparticles with no electronic band structure being
involved. Our main result is thus this: strong correlations can
indeed drive the IQHE without external magnetic field, pro-
vided the holons acquire a band structure of their own which,
if gapped, can be classified by a Chern character. This is the
case provided the other fractionalized degree of freedom—the
spinons—allow for a mean-field treatment. Such an approach
might be relevant for a description of strongly correlated
electrons, due to the presence of a large on-site Coulomb
repulsion, provided quantum spin fluctuations can be fully
suppressed.

It should be noted that the physics described here does not
occur for the “standard” Hubbard model referred to as the
Hubbard model at half filling with nearest neighbor tunneling
on the square lattice. In the limit of an infinitely strong on-site
Coulomb repulsion, the electronic hopping at half filling is
strictly forbidden. The fractionalization couples spinons to
spinless charged fermions. At finite filling and in the case of
a frustrated underlying lattice, integrating out the fermionic
degrees of freedom results in an effective spin action that may
exhibit spontaneously broken time-reversal symmetry. At a
mean-field level, such an action determines a classical spin
configuration that exhibits a nonzero spin chirality. However,
this is a rather involved technical procedure to be discussed
elsewhere. In the following we just postulate the magnetic
spin texture in a given ground state. Our aim here is to show
that there exists a scenario in which the topological properties
of itinerant electrons may arise directly from strong correla-
tion. Two simple examples are considered in Sec. III.

On the other hand, incorporating both quantum spin and
fermion dynamics on the same footing might presumably
result in a fractional lattice quantum Hall effect in the absence
of an external magnetic field [3]. The emergent quasiparti-
cles would obey the fractional statistics and carry fractional
charge and the band theory considerations would again fail to
account for the underlying physics. In that case the su(2|1)
fractionalization could provide a way to calculate the Hall
conductance without any reference to the Fermi-liquid band
theory approach. However, an explicit theory to deal with that
is still under construction and it will be presented elsewhere.

II. THEORETICAL FRAMEWORK

For the reader’s convenience we briefly outline a few basic
steps to work out a path-integral representation of the partition
function for a Hamiltonian given as a polynomial function of
the Hubbard operators, H = H (X ).

To start with, the fermionic Hubbard operators X 0σ =
(X σ0)† along with the bosonic ones, X σσ ′

, X 00, are closed
under commutation/anticommutation relations into the super-
algebra su(2|1) [4]. The su(2|1) superalgebra can be thought
of as the simplest possible extension of the conventional spin
su(2) algebra to incorporate fermionic degrees of freedom.
Namely, the bosonic sector of the su(2|1) consists of three

bosonic superspin operators,

Q+ = X ↑↓, Q− = X ↓↑, Qz = 1
2 (X ↑↑ − X ↓↓), (1)

closed into su(2), and a bosonic operator X 00 that generates
a u(1) factor of the maximal even subalgebra su(2) × u(1)
of su(2|1). The fermionic sector is constructed out of four
operators X σ0, X 0σ that transform in a spinor representation
of su(2).

The important ingredient in constructing a corresponding
partition function path-integral representation is the su(2|1)
coherent state (CS) parametrized by the points of the un-
derlying phase space. Acting with the “lowering” superspin
operators X ↓↑ and X ↓0 on the “highest weight” state | ↑〉 we
get the normalized su(2|1) coherent state in the 3d fundamen-
tal representation,

|z, ξ 〉 = (1 + z̄z + ξ̄ ξ )−1/2 exp
(
zX ↓↑ + ξX 0↑)| ↑〉

= (1 + z̄z + ξ̄ ξ )−1/2(| ↑〉 + z| ↓〉 + ξ |0〉), (2)

where z is a complex number and ξ is a complex Grass-
mann parameter. The Grassmann parameter appears here
due to the fact that X ↓0 is a fermionic operator in contrast
with the operator X ↓↑. The product ξX 0↑ represents there-
fore a bosonic quantity as required. The set (z, ξ ) ∈ CP1|1
parametrizes the underlying phase space, the complex projec-
tive superspace CP1|1 = SU (2|1)/SU (2) × U (1). At ξ = 0,
the su(2|1) CS reduces to the ordinary su(2) CS, |z, ξ =
0〉 ≡ |z〉, parametrized by a complex coordinate z ∈ CP1. In
contrast, at z = 0, it represents a pure fermionic CS.

The CS symbols of the X operators, Xcs = 〈z, ξ |X |z, ξ 〉,
read

X 0↓
cs = − zξ̄

1 + |z|2 , X ↓0
cs = − z̄ξ

1 + |z|2 ,

X 0↑
cs = − ξ̄

1 + |z|2 , X ↑0
cs = − ξ

1 + |z|2 ,

Q+
cs = X ↑↓

cs = z

1 + |z|2
(

1 − ξ̄ ξ

1 + |z|2
)

,

Q−
cs = X ↓↑

cs = z̄

1 + |z|2
(

1 − ξ̄ ξ

1 + |z|2
)

,

Qz
cs = 1

2
(X ↑↑

cs − X ↓↓
cs ) = 1

2

1 − |z|2
1 + |z|2

(
1 − ξ̄ ξ

1 + |z|2
)

. (3)

There is a one-to-one correspondence between the su(2|1)
generators and their CS symbols [5].

The corresponding imaginary time phase-space action
takes on the form

Ssu(2|1) = −
∫ β

0
〈z, ξ | d

dt
+ H (X )|z, ξ 〉dt, (4)

with the kinetic term given by

〈z, ξ |
(

− d

dt

)
|z, ξ 〉 = 1

2

˙̄zz − z̄ż + ˙̄ξξ − ξ̄ ξ̇

1 + |z|2 + ξ̄ ξ
. (5)

Consider now the U = ∞ 2d Hubbard model:

H = −t
∑
〈i j〉,σ

X σ0
i X 0σ

j + μ
∑

i

X 00
i . (6)
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The chemical potential term is added to fix the total number
of dopons. Taking into account Eqs. (3)–(5) and making the
change of variables zi → zi, ξi → ξi

√
1 + |zi|2, we are led

to the partition function in the form of the su(2|1) CS path
integral [6]:

Z =
∫

Dμ(z, ξ ) eS, (7)

where the measure

Dμ(z, ξ ) =
∏
i,t

d z̄i(t )dzi(t )

2π i(1 + |zi|2)2
d ξ̄i(t )dξi(t )

splits into the SU (2) invariant spin measure factor and the
U (1) fermion measure. Here zi is a complex number that
keeps track of the spin degrees of freedom, while ξi is a
complex Grassmann parameter that describes the charge de-
grees of freedom. As ξ 2

i = 0, the NDO constraint is resolved
explicitly. In contrast to the slave-particle representations, the
su(2|1) dynamical variables are gauge independent: no auxil-
iary degrees of freedom are introduced.

The effective action

S =
∑

i

∫ β

0

(
ia(0)

i − ξ̄i
(
∂t + ia(0)

i

)
ξi

)
dt −

∫ β

0
H dt (8)

involves the u(1)-valued connection one-form of the magnetic
monopole bundle [7] that can formally be interpreted as a spin
“kinetic” term,

ia(0) = −〈z|∂t |z〉 = 1

2

˙̄zz − z̄ż

1 + |z|2 ,

with |z〉 being the su(2) coherent state. This term is also
frequently referred to as the Berry connection. The dynamical
part of the action takes the form

H = −t
∑
〈i j〉

ξ̄iξ je
ia ji + H.c. + μ

∑
i

ξ̄iξi, (9)

where

ai j = −i ln〈zi|z j〉, 〈zi|z j〉 = 1 + ziz j√
(1 + |z j |2)(1 + |zi|2)

and zi(t ) and ξi(t ) are the dynamical fields.
The Hamiltonian function (9) cannot be identified with

a certain operator expressed in terms of the conventional
fermion and spin operators. For instance the CS (or covariant)
symbol of the Gutzwiller projected electron operator c̃†

↑ =
c†
↑(1 − n↓) = X ↑0 takes the form

X ↑0
cs = − ξ√

1 + |z|2
.

There is no such su(2) spin operator whose covariant symbol
is

√
1 + |z|2. In other words the su(2|1) fractionalization of

the Hubbard operators into the spin/charge entities occurs
in terms of the su(2|1) phase-space coordinates that trans-
form through each other, rather than in terms of the standard
spin/fermion operators subjected to the NDO constraint.

Under a global SU (2) rotation,

zi → uzi + v

−vzi + u
, (10)

we get

a(0)
i → a(0)

i − ∂tθi, ai j → ai j + θ j − θi, (11)

where

θi = − i

2
ln

−vzi + u

−vzi + u
,

(
u v

−v u

)
∈ SU(2). (12)

Note that the θi is an angular variable,

θi = −arg(−vz̄i + u).

The effective action (8) is invariant under the SU (2)
rotation given by Eqs. (11) accompanied by the U (1) trans-
formation of the fermionic field,

ξi → eiθiξi. (13)

A “flux” through a plaquette
∑

plaq ai j generated by the SU (2)
transformation remains invariant under (11).

For further convenience let us consider separately the real
and imaginary parts of ai j :

a ji = φ ji + iχ ji, φ̄ ji = φ ji, χ̄ ji = χ ji.

We get

φ ji = i

2
ln

1 + z̄iz j

1 + z̄ jzi

= i

2
ln

( 1
2 + Sz

i )( 1
2 + Sz

j ) + S−
i S+

j

( 1
2 + Sz

i )( 1
2 + Sz

j ) + S−
j S+

i

(14)

and

χ ji = −1

2
ln

(1 + z̄iz j )(1 + z̄ j zi )

(1 + |zi|2)(1 + |z j |2)

= −1

2
ln

(
2�Si · �S j + 1

2

)
, (15)

where �Si stand for the coherent-state symbols of the su(2) gen-
erators, �Si = �Qi |ξ̄i,ξi=0. It can be checked that the φ ji potential
transforms under (10) in the same way as the a ji does, i.e.,

φ ji → φ ji + θi − θ j, (16)

whereas, in contrast, χ ji remains intact. This transformation
appears as a gauge fixing by choosing a specific rotationally
covariant frame. The dynamical fluxes do not depend on that
choice.

The low-energy physics is governed by the fluctuations of
the phase variable,

φ ji = −arg(1 + z̄iz j ) = arg(1 + z̄ j zi ),

defined modulo (2π ). It is clear that φ ji = −φi j . The poten-
tials φ

(0)
i := ia(0)

i and φ ji formally recall those gauge fields
that define a compact U (1) lattice gauge theory. This is due
to the fact that both theories are formulated as U (1) complex
line bundles. The gauge potentials (local connections in these
bundles) in both theories transform formally in the same way
under a change in the local trivialization [8]. In our case,
such a change is caused by a rotation of the underlying base
space—a canonical transformation of the phase space.
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Topology

Substituting representations (14) and (15) into Eq. (9), the
Hamiltonian function takes on the form

H = −t
∑
〈i j〉

ξ̄iξ je
iφ ji

√
2�Si · �S j + 1

2

+μ
∑

i

ξ̄iξi. (17)

This Hamiltonian describes the interaction between a spin
texture and the itinerant spinless fermions, with the local NDO
constraint being automatically incorporated since ξ 2

i = 0. The
model may display nontrivial topology—a nonzero Chern
number—only provided that there are at least two available
bands. This is because the Chern number of a full set of bands
is zero—the corresponding vector bundle being always trivial
[9].

The simplest insulator possesses two bands, the empty one
above the gap and the filled one (or valence band) below
the gap, with the chemical potential lying inside the gap. We
consider examples of such a two-band model that may display
a topologically insulating phase. To characterize the topology
of the valence band bundle we only focus on the one-particle
eigenstates of (17). In this case the chemical potential term
just shifts the corresponding eigenvalues, which has no effect
on topological properties, provided the system remains insu-
lating. As we focus only on the topological behavior of the
filled band, we from now on ignore the explicit μ dependence
of the Hamiltonian.

We restrict ourselves to the two-band case with two oppo-
site Chern numbers. To this end, let us consider a bipartite 2d
lattice L, which is a direct sum of two sublattices A and B, i.e.,
L = A ⊕ B. We then make the following change of variables
on the sublattice B:

zi → − 1

z̄i
, ξi → ξie

iθ (0)
i , i ∈ B. (18)

Here θ
(0)
i = θi|u=0,v=1 . Under this transformation, φ ji →

φi j + θ
(0)
j − θ

(0)
i . The CS image of the on-site electron spin

operator changes sign, �Si → −�Si [6].
An important remark is in order at this stage. Haldane’s

theory is based on electronic band structure for fully polarized
electrons. The spin degrees of freedom are simply ignored.
Freezing the spin degrees of freedom within the mean-field
theory is somehow equivalent to ignoring spins in the problem
or fixing it to provide the correct Chern number, as in the case
of noncollinear spin textures [10]. We just want to note that
in our approach we deal with the fractionalization into the
effective holon/spinon degrees of freedom. The freezing of
the spinon degrees of freedom results in the band structure
displayed by the holons rather than by the spin polarized
physical electrons.

To proceed further we note that the phase φ ji enters the
hopping terms on the A and B sublattices with opposite signs.
This in turn means that the dynamical fluxes through elemen-
tary plaquettes in the A and B within a unit cell are opposite
to each other. The Hall conductance σxy by definition changes
sign under the time-reversal transformation. A nonzero value
can only occur if time-reversal invariance is broken. To real-

ize a finite quantum Hall response, it is therefore necessary
to break time-reversal symmetry. In the Haldane model for
graphene, this is done by inserting local fluxes which sum up
to zero over a unit cell. These fluxes can be described by in-
troducing homogeneous c-valued phase factors in the second
neighbor hopping amplitude, t2 → t2e±φ. In our dynamical
model (17) this can be achieved by fixing the underlying
spin background to enforce the breaking of the time-reversal
symmetry.

III. EXAMPLES

In a system of lattice electrons, the topological Hall effect
may be viewed as arising from the electron hopping in a non-
trivial classical spin background that exhibits a nonzero scalar
spin chirality. The corresponding topological spin quantum
numbers can be related to the anomalous Hall conductivity
in the absence of any externally applied magnetic field. The
simplest examples come from a mean-field treatment of the
Kondo-lattice interaction (the double exchange model) of the
localized spins and itinerant electrons yielding noncoplanar
spin textures [11–14]. In this way the underlying topolog-
ical spin structures are composed of multiple spin density
waves with a spin scalar chirality defined by the triple product
of three neighboring sites, 〈�Si · �S j × �Sk〉 
= 0, in the ground
states. Typical postulated spin textures are chiral stripes, spi-
ral spin configurations, and skyrmion spin structures [15]. In
particular, the experimentally observed skyrmion lattice can
be viewed as a lattice of topologically stable knots in the
underlying spin structure [16,17].

In the present work we propose an alternative way to ad-
dress the topological properties of the hopping electrons in the
nontrivial spin background. We show that the entanglement
between the itinerant fermion degrees of freedom and that of
the localized spins is actually built in a very definition of the
Hubbard operators. Instead of the double exchange model to
describe electron dynamics to account for the emergence of
nonzero topological quantum numbers, the Hubbard model
in the strong coupling limit is employed. The established
charge/spin fractionalization plays, in this limit, an essential
role in driving the system into a topologically nontrivial phase.
The emergent band topology may thus be viewed as arising
from strong correlation.

In this section we consider two examples to illustrate our
approach. Both of them are based on the classical treat-
ment of the underlying spin textures. In view of that, the
ground state in the spin sector is always classical. If mag-
netic frustration (geometric or dynamic due to doping) is
sufficiently strong, a spin system may evade spontaneous sym-
metry breaking at low temperatures and instead form a highly
entangled state where the spins fluctuate in a cooperative
manner. Below we consider strongly correlated electrons on
top of different classical spin backgrounds. This results in
both topologically trivial and nontrivial models. We consider
the simplest possible models that however can be discrimi-
nated from each other by their topological properties. The
first example is based on considering a coplanar spin struc-
ture, whereas the second one deals with a noncoplanar spin
texture.
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A. Spin spirals

Let us consider first the classical coplanar spin spirals of
the form [18]

�Si = S(cos �q · �ri, sin �q · �ri, 0) |S=1/2

= 1
2 (cos �q · �ri, sin �q · �ri, 0). (19)

The emergence of the spin-spiral periodic structure with vec-
tor �q that differs from the BZ sizes can be related to magnetic
structures in antiferromagnetic metals [19]. An issue of the
stability of the spiral phase against thermal and quantum fluc-
tuation was considered in [20].

We get

2�Si · �S j + 1

2
= cos2

( �q · �ai j

2

)
, �ai j = �ri − �r j, i, j ∈ A.

On the other hand,

2�Si · �S j + 1

2
= sin2

( �q · �ai j

2

)
, i ∈ A, j ∈ B.

On the sublattice A the phase factor φi j takes on the form

φ ji = i

2
ln

1 + e−i �q·�ai j

1 + ei �q·�ai j
= arctan

sin �q · �ai j

1 + cos �q · �ai j

= arctan

(
tan

�q · �ai j

2

)
= �q · �ai j

2
, i, j ∈ A, (20)

whereas

φ ji = −π

2
+ �q · �ai j

2
, i ∈ A, j ∈ B.

The Hamiltonian function (17) then becomes

H = it1
∑
〈i j〉

ξ̄iξ j | sin φi j |e−iφi j

− t2
∑

〈i j〉∈A

ξ̄iξ j | cos φi j |e−iφ ji + (A → B)

+ H.c., φi j = �q · �ai j

2
. (21)

In contrast to a general representation where the phase factors
φ ji enter sublattices A and B with the opposite signs, in the
present case these factors are the same. This is due to the fact
that φi j + θ

(0)
j − θ

(0)
i = φ ji provided Sz

i = 0. Because of this
the fluxes are generated by the nonzero z components of the
total on-site spins. At Sz

i = 0 those phases can be eliminated
through appropriate unitary transformations of the ξi fields.
Finally we arrive at the operator Hamiltonian

H = t1
∑
〈i j〉

f †
i f j | sin φi j |

− t2
∑

〈i j〉∈A

f † f j | cos φi j | + (A → B) + H.c. (22)

It is clear that H∗ = H so that the time-reversal symmetry
remains intact: in 2d , spatial inversion is contained in the
connected part of the spatial rotation group. This in turn means
that this model does not exhibit a Hall response and it is
topologically trivial. This fully agrees with the fact that the
spin chirality is absent in a coplanar spin configuration.

B. Spin precession: Honeycomb lattice

Let us now consider a classical noncoplanar spin spiral
configuration:

�Si = (ε cos fi, ε sin fi,
√

S2 − ε2), ε � S. (23)

It describes a precession of the spin �Si with an amplitude ε

around the z axis. Here fi(t ) = ωt − 2�q · �ri. At Si = 1/2 we
get

2�Si · �S j + 1
2 = 1 − 4ε2 sin2 fi j, i, j ∈ A

and

e−χi j = 1 − 2ε2 sin2 fi j + O(ε4).

Here fi j = �q · (�ri − �r j ). The phase factor φ ji on the sublat-
tice A becomes

φ ji = i

2
ln

1 − 2ε2 + ε2e−2i fi j

1 − 2ε2 + ε2e+2i fi j

= arctan
ε2 sin 2 fi j

1 + ε2 cos 2 fi j
= ε2 sin 2 fi j + O(ε4). (24)

On sublattice B, �Si → −�Si. Since

( 1
2 − Sz

i )( 1
2 − Sz

j ) + S−
i S+

j

( 1
2 − Sz

i )( 1
2 − Sz

j ) + S−
j S+

i

= ( 1
2 + Sz

i )( 1
2 + Sz

j ) + S−
j S+

i

( 1
2 + Sz

i )( 1
2 − Sz

j ) + S−
i S+

j

· S+
j S−

i

S+
i S−

j

, (25)

we get φ ji → −φ ji + 2 fi j . Explicitly

φ ji = −ε2 sin 2 fi j + 2 fi j + O(ε4), i, j ∈ B, (26)

and χi j remains intact.
In case i ∈ A and j ∈ B one gets

2�Si · �S j + 1
2 = 4ε2 sin2 fi j,

so that

e−χi j = 2ε| sin fi j |, φ ji = −π/2 + fi j .

Combining all the factors together we finally get the Hamilto-
nian

H = 2t1ε
∑

i∈A, j∈B

f †
i f j | sin fi j |

+ t2
∑
i, j∈A

f †
i f j (1 + 2iε2 sin fi je

i fi j )e−i fi j

+ t2
∑
i, j∈B

f †
i f j (1 − 2iε2 sin fi je

−i fi j )ei fi j+ H.c. (27)

The NN hoping amplitude ∼t1 is a real quantity, whereas the
NNN ones ∼t2 are complex numbers. An inversion symmetry
breaking on-site energy +M on A sites and −M on sites
can also be added to this Hamiltonian, M

∑
i(−1)iX 00

i , with
its CS symbol being M

∑
i(−1)iξ̄iξi. Here (−1)i = ±1 on A

and B sublattices, respectively. Representation (27) implies
that (ti j∈A)∗ = ti j∈B, whereas Im ti∈A, j∈B = 0. Here i, j denote
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FIG. 1. Honeycomb lattice and associated displacement vectors.

the NN sites. This is a necessary condition to enforce time-
reversal symmetry breaking. In the momentum space,

H =
∑
�k∈BZ

ψ
†
�k H�kψ�k . (28)

Here, BZ stands for the Brillouin zone and ψ
†
�k = ( f †

�k,A
, f †

�k,B
).

On a honeycomb lattice the Hamiltonian becomes

H�k = t2

3∑
i=1

cos(�q · �bi ) cos(�k · �bi ) · I

+ t1ε
3∑

i=1

| sin �q · �ai| cos(�k · �ai ) · σ1

− t2(1 − 2ε2)
3∑

i=1

sin(�q · �bi ) sin(�k · �bi ) · σ3. (29)

A honeycomb lattice is defined (see Fig. 1) by a set of
the NN displacement vectors, �a1 = (

√
3/2, 1/2), �a2 =

(−√
3/2, 1/2), �a3 = (0,−1, ), �a1 + �a2 + �a3 = 0, and a set

of the NNN vectors, �b1 = �a2 − �a3 = (−√
3/2, 3/2), �b2 =

�a3 − �a1 = (−√
3/2,−3/2), �b3 = �a1 − �a2 = (

√
3, 0), �b1 +

�b2 + �b3 = 0. As usual, �σ = (σ1, σ2, σ3) denote the Pauli
matrices. The term ∼σ3, being odd in �k, breaks time reversal
symmetry, provided ε 
= 0 and �q 
= 0.

At t2 = 0 and ε 
= 0, the system is an insulator if the term
∼σ1 is nonzero. In case it is zero the two bands are degenerate
at the corresponding points of the BZ. This degeneracy can be
lifted by adding the NNN interaction. The emergent gap ∼t2
protected by time-reversal symmetry breaking is enforced by
the σ3 dependent contribution. In case we choose qx = q/

√
3

and qy = q this occurs at the BZ points �K = (π/2
√

3, π/2)
and − �K . As a result,

c1 = sgn(sin q), (30)

where c1 is the first Chern character of the corresponding U (1)
Bloch bundle. At ε = 0 we get instead

H�k ∼ diag

[∑
i

cos[�bi · (�q + �k)],
∑

i

cos[�bi · (�q − �k)]

]
.

(31)

By an appropriate change �k → �k ± �q on the A and B sublat-
tices we end up with

H�k ∼ cos kx cos ky · I.

This is the time-reversal invariant Hamiltonian that exhibits
no topological properties and c1 = 0.

We thus see that a noncoplanar spin configuration on a
frustrated (honeycomb) lattice results in the nontrivial band
topology. However, it is still unclear whether these conditions
are both necessary or/and sufficient.

IV. DISCUSSION

In this section, we would like to clarify some limitations of
our work and to touch upon some issues to be discussed in a
future work.

We start with the U = ∞ Hubbard model (6). The Hubbard
operators Xi incorporate both the charge (spinless fermion)
as well as the su(2) spin degrees of freedom. If we vary
the doping regime, different magnetic ground-state structures
can emerge from representation (6). Those structures are gen-
erated by the so-called kinetic magnetism since there is no
direct exchange magnetic term in the U = ∞ Hubbard model.
Although an itinerant electron-driven chiral magnetic ordering
can be derived from (6) on a triangular lattice [10], the spon-
taneously formed noncoplanar topological magnetic textures
used in our paper and in other related publications cannot be
accounted for by just such kinetic magnetism. Such structures
necessarily require the presence of a direct exchange spin
interaction as well. For this reason we add to (6) a new spin
exchange term,

Hcl = Hcl (�Si, �S j ), (32)

that includes the classical Heisenberg (anisotropic) exchange
interactions. The emergent magnetic phases are determined
exclusively by Hcl . In our work we make a further assumption
that the magnetic degrees of freedom are much slower than
the degrees of freedom of the itinerant electrons. In view
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of that H and Hcl can be decomposed without affecting the
low-energy physics. The resulting magnetic order is treated
as being essentially static. The connection one-form in (9) is
then replaced with its classical counterpart given by Eqs. (14)
and (15). As a result, the energy bands are renormalized by
the underlying spin texture and the Hamiltonian (6) reduces
to an effective tight-binding model given by Eq. (17). The un-
derlying spin background has no feedback from the fermionic
dynamics and remains fixed as initially postulated. If the spin
ordering opens a full gap in the charge excitation spectrum the
conditions are given for the topological Hall effect to be fully
manifest. The doping is then fixed to allow the insertion of the
Fermi level in the interband gap and the resulting state is a
topological insulator driven by the local no double occupancy
constraint.

Of course, such an approach is not self-consistent since
it ignores quantum spin fluctuations. However, provided the
theory is stable against such fluctuations our approach demon-
strates explicitly in what way strong correlation can directly
affect topology, which is one of the goals of the present work.

In a full dynamical theory, the possible magnetic phases
described in the paper could presumably be accounted for
by the development of doping-dependent magnetic states. To
derive this explicitly, the fermionic fields in path integral (7)
must be integrated out in order for us to work out an effective
spin action which could determine the average spin values as
functions of doping.

Here we postulate instead a given fixed classical spin
background. The relevant magnetic structures under analysis
have been widely seen in itinerant magnets on various lattices
(e.g., chiral stripes, spin spirals, skyrmion textures, etc.) [15].
Since the localized classical spins are taken to be fixed and
bear no dynamics of their own they do not exhibit a doping
dependence. The textures being dealt with affect instead the
connection one-form ai j . In a sense this amounts to threading
an effective “flux” through a unit cell as discussed in the
present work.

Our work leaves open the possibility of a more integrated
approach which can describe the emergence of quantum state
of matter with a nonzero first Chern number as a result of
the intertwining of fully dynamical magnetic structures and
strongly correlated electrons. We intend to explore this route
in the near future.

V. CONCLUSION

In conclusion, we show that the anomalous quantum Hall
effect can be placed in the context of phenomena associ-
ated with strongly correlated electron systems. This can be
achieved via the dynamical fractionalization of strongly cor-
related electrons into spin/charge degrees of freedom driven
by the su(2|1) superalgebra representation of the strongly
coupled Hubbard model. The necessary ingredients for that
to happen are (i) the fermionic gapped bundle structure
related to holons and (ii) the underlying su(2) spin tex-
ture that explicitly enforces time-reversal symmetry breaking.
While it is not clear whether the particular model pre-
sented here can be directly physically realizable, the classical
spin spiral/precession structures highlighted above can arise
in some models that describe localized spin configurations
coupled with conduction electrons [19]. Among possible
topologically nontrivial spin textures that might essentially
affect the topological properties of itinerant electrons of a spe-
cial interest are those driven by dynamical models that display
experimentally observed skyrmion [21] and hedgehog [22]
spin structures. This problem will be discussed elsewhere.
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