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Doping phase diagram of a Hubbard model for twisted bilayer cuprates
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We study the twisted Hubbard model of a cuprate bilayer at a fixed twist angle θ = 53.13◦ and as a function
of doping, using the variational cluster approximation, a method that treats short-range dynamical correlations
exactly. At intermediate interlayer tunneling, we observe a sudden change of the relative sign of the d-wave
order parameters of two layers between the underdoped and overdoped regimes. At strong interlayer tunneling,
we observe a clear time-reversal symmetry breaking phase near optimal doping, in which the relative phase of the
two layers changes continuously from 0 to π . However, this phase has trivial topology. We also apply a cluster
extension of dynamical mean field theory to the same problem, but fail to detect a time-reversal breaking phase
with that method, probably owing to the very small energy difference between the different states involved.
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I. INTRODUCTION

The experimental discovery of correlated insulators and
unconventional superconductivity in twisted bilayer graphene
(TBG) [1,2] has opened up the new field of twistronics [3,4].
By twisting two graphene sheets by a small relative an-
gle, a long-period moiré pattern forms in the bilayer. At
special magic angles, the moiré band structure of TBG
exhibits isolated flat bands near charge neutrality [5–7],
which lead to a variety of strongly correlated phenomena.
Following this discovery, various twisted van der Waals het-
erostructures have been constructed and investigated [8],
including transition metal dichalcogenides [9–12], double bi-
layer graphene [13–15], and trilayer graphene [16–19].

Recently, twistronics concepts have been extended to
high-temperature superconductors [20,21], which are strongly
correlated materials by themselves. This was motivated by the
experimental realization of two-dimensional (2D) monolayer
Bi2Sr2CaCu2O8+δ (Bi2212), whose transition temperature is
shown to be very close to that of bulk samples [22,23]. It
is theoretically predicted that, at large twist angles (close to
45◦), a fully gapped d + id superconducting phase emerges,
which spontaneously breaks time-reversal symmetry (TRS)
and is topologically nontrivial [20]. This TRS breaking super-
conducting phase is also predicted to be stable at small twist
angle, due to the strong renormalization of Bogoliubov-de
Gennes (BdG) quasiparticles near the nodes [21]. In order to
determine the pairing symmetry of cuprate superconductors,
c-axis twisted Josephson junctions, formed by stacking two
Bi2212 crystals along the c axis, have been realized [24–29].
However, most experimental works did not observe the angu-
lar dependence of the Josephson current [24,25,29]. Owing to
the novel technique of van der Waals stacking, high-quality
twisted Bi2212 Josephson junctions with an atomically sharp
interface have been successfully fabricated recently [29,30].

Previous theoretical work on twisted bilayer cuprates are
mainly based on Bogoliubov-de-Gennes mean-field theory

[20,21,28,31,32], which does not take into account the ef-
fects of strong correlations. To overcome this, a twisted t-J
model of cuprates has been proposed and studied within
slave-boson mean-field theory [33], in which a topological-
trivial time-reversal symmetry breaking superconductor is
also found, but within a small range of twist angles around
45◦, questioning the possibility of topological superconduc-
tors in this region. In spite of this work, the stability of the
novel superconducting phases against doping has not been
fully addressed before in the literature. In this paper, we
will numerically study the twisted Hubbard model of bilayer
cuprates using the variational cluster approach (VCA) and
cluster dynamical mean field theory (CDMFT). These ap-
proaches have been successfully used in the past to study
high-temperature superconductors and the Hubbard model
at intermediate coupling is arguably a better representation
of these materials. We will focus on a fixed twisted angle
θ = 53.13◦, at which these cluster methods are easily ap-
plicable, and investigate the superconducting phase diagram
as a function of doping for two different sets of interlayer
tunneling.

This paper is organized as follows. In Sec. II, we introduce
the Hubbard model for the twisted bilayer. In Sec. III, we re-
view the variational cluster approximation (VCA) and present
our main results obtained from this method, e.g., the phase
diagram of bilayer as a function of hole doping. In Sec. IV we
refine the VCA analysis by adding interlayer pairing as vari-
ational parameters. In Sec. V, we present the corresponding
results from cluster dynamical mean field theory (CDMFT).

II. MODEL

A. Hamiltonian

We assume that each of the two layers of the system
can be described by the one-band Hubbard model (the sites
correspond to the location of copper atoms). The bilayer
is then described by the following tight-binding Hubbard
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FIG. 1. Unit cell of the bilayer twisted by an angle θ =
2 arctan 1

2 = 53.13◦. The ten sites within the unit cell are labeled
and their color (orange or blue) indicates the layer. The three most
important interlayer tunneling terms (V1,2,3) are illustrated in gray.
(the red-dashed enclosures are the clusters used in VCA; see below).

model [20,33]:

H = H (1) + H (2) + H⊥, (1)

where the intralayer Hamiltonian H (�) is

H (�) =
∑

r,r′∈�,σ

trr′c†
r,�,σ cr′,�,σ +U

∑
r

nr,�,↑nr,�,↓−μ
∑
r,σ

nr,�,σ ,

(2)

where cr,�,σ (c†
r,�,σ ) is the annihilation (creation) operator of

an electron at site r on layer � (� = 1, 2) with spin σ =↑,↓,
and nr,�,σ is the associated number density operator. The
labels r, r′ run over the possible sites of a square lattice
(each layer has its own). We will keep nearest-neighbor (t)
and next-nearest-neighbor (t ′) hopping terms only, so that the
dispersion relation on a square lattice is ε(k) = −2t (cos kx +
cos ky) + 4t ′ cos kx cos ky − μ. Only on-site interactions are
considered here. For Bi2212, the nearest-neighbor hopping
is t = 126 meV [34]. In the remainder of this paper, we set
t as the energy unit, and choose the other parameters to be
t ′ = −0.3 and U = 8.

The interlayer tunneling is represented by

H⊥ =
3∑

n=1

Vn

∑
〈r,r′〉⊥,n,σ

[c†
r,1,σ cr′,2,σ + H.c.], (3)

where the notation 〈r, r′〉⊥,n (n = 1, 2, 3) stands for the set of
square lattice sites r on layer 1 and r′ on layer 2 such that their
projection on the plane are nth neighbors. This is illustrated on
Fig. 1 for V1, V2, and V3. For instance, V1 is the interlayer tun-
neling between sites located exactly on top of each other, V2

for sites that are first neighbors when projected on a common
plane, etc. Such an interlayer tunneling model is obviously
oversimplified, as it ignores the complexity of the CuO2 layers
and of the rare-earth layers that will intervene between the
twisted CuO2 layers. In this paper we will use two sets of

TABLE I. The two sets of interlayer hopping terms used in this
paper.

Set V1 V2 V3

I 0.1 0.05 0.03
II 0.4 0.2 0.12

values for Vn, shown in Table I. These values can be fitted to

the formula Vi = t⊥ exp(−
√

d2 + r2
i /a), where ri is the lateral

distance between sites involved in the interlayer hopping, d
an interlayer distance and a a decay constant. Those of set II
in Table I correspond to t⊥ = 1.53t , a = 0.29, and d = 0.39,
the latter values being defined in units of the lattice spacing of
each layer. These values have been chosen heuristically, those
of set II being four times larger than those of set I and certainly
unrealistic, but necessary in order to unravel TRS breaking,
as we will see below. Given the accepted values of hopping
along the c axis in bulk cuprates, even the values of set I
are large, and will be referred to as intermediate tunneling,
whereas those of set II will constitute strong tunneling.

In order to simplify as much as possible our numerical
work, we will restrict our analysis to a twist angle of θ =
2 arctan 1

2 = 53.13◦. The unit cell of the twisted bilayer at
that angle is illustrated on Fig. 1 and contains ten sites (five
per layer).

B. Symmetries

The bilayer system is invariant under a π/4 rotation around
the z axis (perpendicular to the bilayer plane) and under the
π rotations Cx, Cy, Cd , and C′

d illustrated on Fig. 2, which
make up the D4 point group, the same as for an isolated
layer. Possible superconducting gap functions for this system
should in principle be classified according to the irreducible
representations of D4. Table II shows the character table and
the simplest gap functions associated with each irreducible
representation. Representations B1 and B2 correspond to what
is usually called dx2−y2 and dxy, respectively. Representations
A1 and A2 correspond respectively to s wave (or extended
s wave) and f wave, and the two-dimensional representation

FIG. 2. Symmetries on the bilayer system. The axes of the two
layers are indicated in blue and red, respectively. The rotations Cx ,
Cy, Cd , and C′

d are indicated; the rotations C2 and C4, within each
plane, are not.

245127-2



DOPING PHASE DIAGRAM OF A HUBBARD MODEL FOR … PHYSICAL REVIEW B 105, 245127 (2022)

TABLE II. Character table of D4, with a list of the simplest gap
basis functions. The rotation C′

d is defined about the other diagonal
axis, at right angle from Cd .

e 2C4 C2 Cx,y Cd,d ′ Gap functions

A1 1 1 1 1 1 1
A2 1 1 1 −1 −1 sin kx sin ky(cos kx − cos ky )
B1 1 −1 1 1 −1 cos kx − cos ky

B2 1 − 1 1 − 1 1 sin kx sin ky

E 2 0 − 2 0 0 (sin kx, sin ky )

E would correspond to (triplet) p wave, with basis (px, py).
Thus, the only possibility of a (pure) chiral representation is
px + ipy, a triplet state that will not occur in this cuprate sys-
tem. We rather expect representations B1 and B2 to be realized
here, owing to the d-wave character of superconductivity in
single layers. In principle, according to the Landau theory of
phase transitions, one of those two should prevail just below
Tc, but there is always the possibility that, the two states (B1

and B2) being very close in energy, a second phase transition
occurs below Tc and a complex combination dx2−y2 + idxy is
present at zero temperature. This is the scenario anticipated
in Ref. [20] and investigated here. Figure 3 illustrates rep-
resentations B1 and B2 in terms of the phases (±1) of the
superconducting pairings on nearest-neighbor links, for the
specific case of the 53◦ twist angle. This twist can also be
regarded from the complementary angle π/2 − θ = 37◦. In
the B1 representation, links separated by the large angle (53◦)
have the same sign, whereas in the B2 representation this holds
for links separated by the small angle (37◦).

III. RESULTS FROM THE VARIATIONAL CLUSTER
APPROXIMATION

High-temperature superconductors have strong correla-
tions. There is a limited number of numerical methods that
can tackle such systems, and methods based on small clusters
of sites embedded into an effective medium are amongst the
most successful. These so-called quantum cluster methods
are approximation strategies for the electron Green function
G(k, ω), by which the electron self-energy 	 on the infinite
lattice is approximated by that of a small cluster. In this

FIG. 3. Schematics of pairing in representations B1 and B2 for the
53◦ twist angle. Pairing occurs on links, blue and red mean positive
and negative amplitudes, respectively. In the B1 representation, links
with the same pairing sign are separated by 53◦. In the B2 represen-
tation, they are separated by the complementary angle 37◦.

FIG. 4. Schematics of cluster methods. Left panel: The lattice is
tiled into identical 2 × 2 clusters with Hamiltonian H ′. Right panel:
The reduced Brillouin zone (RBZ) is then four times smaller than the
original Brillouin zone.

paper we will apply two of these methods to the bilayer
Hamiltonian (1).

The first of these methods is the variational cluster approx-
imation (VCA) [35–37]. It is based on a variational principle
proposed by Potthoff [35] and can be seen as a variational
extension of cluster perturbation theory (CPT) [38,39]. Let us
start by briefly summarizing the latter. In CPT, the lattice is
tiled into identical clusters, and the Hamiltonian is written as
H = H ′ + V , where H ′ is the restriction of H to the clusters
and V only contains hopping terms between different clusters.
If the model contains Nb bands and each cluster contains L
lattice sites, then LNb must be small enough to allow for an
exact numerical solution of H ′, and the associated one-particle
Green function Gc(ω) on the cluster is a 2LNb × 2LNb matrix
(the factor of 2 because of spin). The tiling into clusters
defines a superlattice, and the corresponding Brillouin zone is
L times smaller than the original Brillouin zone (see Fig. 4).
We call it the reduced Brillouin zone and its wave vectors
are noted k̃. The hopping matrix in H can be expressed as
a 2LNb × 2LNb matrix t(k̃), a function of k̃, which is the sum
of a k̃-independent part tc and of the intercluster part V(k̃)
: t(k̃) = tc + V(k̃). The self-energy �c(ω) associated with
the cluster Green function Gc(ω) is thus defined by Dyson’s
equation on the cluster:

G−1
c = ω − tc − �c(ω) (4)

In CPT, the electron self-energy is approximated by that of the
restriction H ′ of the Hamiltonian to the cluster. In the mixed
momentum-cluster site basis, the electron Green function is
then given by the following relation:

G−1(k̃, ω) = ω − t(k̃) − �c(ω) = G−1
c (ω) − V(k̃). (5)

We assume here that the chemical potential μ is included in
the hopping matrix t(k̃).

CPT is unable to describe broken symmetry states: It is
not a self-consistent approach, nor is it based on a variational
principle. The VCA adds a variational aspect to CPT: the
cluster Hamiltonian H ′ is augmented by a certain number of
Weiss fields:

H ′ → H ′ +
∑

a

haÔa (6)

where the operators Ôa are defined on the cluster only,
and possibly represent broken symmetries. These additional
terms are in turn subtracted from V , so that the original
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Hamiltonian H is unaffected. The values ha of these Weiss
fields are not arbitrary, but set by Potthoff’s variational princi-
ple: The following function:


(ha) = 
′ −
∫

dω

2π

∑
k̃

ln det[1 − V(k̃)Gc(ω)] (7)

should be stationary with respect to these fields ha. In that
expression, 
′ is the ground-state energy of the cluster
Hamiltonian H ′ and Gc(ω) is the electron Green function
derived from the cluster Hamiltonian H ′ that includes the
Weiss fields haÔa.

In the problem at hand, it might seem natural to use the
10-site unit cell shown in Fig. 1 as the repeated cluster, es-
pecially since 10 sites is an easily manageable size for an
exact-diagonalization solver. However, the set of numbered
sites in Fig. 1 does not have the D4 symmetry of the full
Hamiltonian, and this complicates the VCA computations
[40] We will rather use a slight refinement of the method
described above, assuming that the repeated unit is a super-
cluster of 10 sites obtained by assembling an octagonal cluster
of 8 sites and a point-like cluster of 2 sites, each delimited by
a red dashed line in Fig. 1. The self-energy of the supercluster
is then a direct sum of the self-energies of an 8-site and of a
2-site cluster. Otherwise, the method is unchanged from the
general approach described above. Although it might seem
that the 2-site cluster plays little role in the computation, it is
essential to properly tile the lattice model and its self-energy
is nontrivial, even though it has no anomalous part; in par-
ticular, it contributes to the Mott character of the solutions at
half-filling.

On the octagonal cluster, we will define Weiss fields as-
sociated with d-wave superconductivity on each layer. On
each layer of the lattice, we can define an operator field that
describes d-wave superconductivity:

�̂(�) =
∑
r∈�

{cr,�,↑cr+x(�),�,↓ − cr,�,↓cr+x(�),�,↑

− cr,�,↑cr+y(�),�,↓ + cr,�,↓cr+y(�),�,↑} (8)

where x(�) and y(�) are the orthogonal lattice vectors on layer
� (see Fig. 2). These operators do not fall into the irreducible
representations of Table II, but the following combinations do:

B̂1 = �̂(1) + �̂(2) B̂2 = �̂(1) − �̂(2) (9)

(we use the same symbols for the operators and the associ-
ated irreducible representations, hoping that the context will
dissipate any ambiguity between the two).

To each of these operators we associate an order parameter,
the average of the operator per site: Bi = 〈B̂i〉/N and �(i) =
〈�̂(i)〉/N , N being the total number of sites (atoms). These
order parameters are in general complex and have a phase
φ(i) = arg �(i). The relative phase φ between the d-wave op-
erators on the two layers is then defined as φ = φ(1) − φ(2).
It is always possible to set the phase of B1 to zero (hence
Im B1 = 0) and, in the coexistence phase dx2−y2 + idxy, we
have correspondingly Re B2 = 0. It is then a simple matter to
show from Eq. (9) that

tan
φ

2
= Im B2

Re B1
(10)

FIG. 5. Top panel: Order parameter as a function of electron den-
sity n, as obtained in VCA, for interlayer hopping set II. The dashed
blue (red) curve is obtained when only the B1 (B2) representation is
allowed. The full curves are obtained by allowing these two repre-
sentations to coexist, leading to a TRS breaking phase when they
do. Lower panel: The corresponding relative phase φ of the order
parameters on the two layers. At intermediate interlayer hopping, the
system jumps from φ = 0 to φ = π at n ≈ 0.93. At strong interlayer
hopping, the switch is gradual.

The value φ = 0 corresponds to the pure B1 case (the links
separated by 53◦ are in phase), and φ = π to the pure B2 case
(the links separated by 53◦ are in antiphase). Note that looking
at the system as a twist of 37◦ instead would exchange these
two pictures, because of the d-wave nature of superconductiv-
ity on each layer; thus the phase φ only has physical meaning
modulo π .

Given the definition (9) We can add the following combi-
nations to the cluster Hamiltonian:

H ′ → H ′ +
∑
�=1,2

d�B̂�c + H.c. (11)

where B̂�c is a restriction to the cluster of the lattice opera-
tor (9) and d� is a complex amplitude. The real and imaginary
parts of d� are then Weiss fields in the sense of the coefficients
ha of Eq. (6). Again, because of the overall phase symmetry,
one can always assume that d1 and d2 are real when studying
the two representations separately, and we can assume d1 to
be real and d2 to be purely imaginary when the two represen-
tations are in coexistence.

We applied the VCA method on this cluster system, using
the two sets of interlayer tunneling defined in Table I. In
practice, this means computing the cluster Green function
Gc(ω) repeatedly while adjusting the Weiss fields d� so as to
make the Potthoff functional stationary (in fact, minimum).
Once the stationary values are found, the Green function (5)
can be used to compute the ground-state average of any one-
body operator, in particular the order parameters B1 and B2.
The electron density n can be likewise computed from the
Green function (the chemical potential μ is the actual control
parameter that is varied).
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Figure 5 (top panel) shows the order parameter |B1,2| as a
function of electron density n for hole doping at strong inter-
layer tunneling. The dashed curves are obtained by studying
the two representations B1 and B2 independently. By contrast,
the full curves are obtained by allowing coexistence between
the two phases. For the pure phases, we note the characteris-
tic dome shape that is typically obtained in quantum cluster
methods, qualitatively agreeing with the known properties
of cuprates. The electron density computed from the Green
function (5) has some systematic error, as can be seen from the
fact that the order parameter vanishes not at n = 1, as it should
from Mott physics, but at n = 1.006. In the coexistence phase,
the value of the Potthoff functional as a function of chemical
potential 
(μ) is lower than those obtained in either of the two
pure phases. The values of 
(μ) for the two pure phases cross
near the point where the two phases are equal in magnitude,
near n = 0.94.

The bottom panel of the figure shows the relative phase φ

of the d-wave order parameters on the two layers [Eq. (10)].
It is either 0 or π in the pure phases, and interpolates between
them in the coexistence region. At intermediate interlayer tun-
neling (V1 = 0.1), the coexistence region is too narrow to be
visible, and the phase switches abruptly from 0 at low doping
(B1 representation) to π at high doping (B2 representation)
at about n ≈ 0.93. There is thus a doping-induced transition
of the bilayer superconducting state, which coincides with
the passage from underdoped to overdoped, judging by the
location of optimal doping on the upper panel of the figure.

A more detailed view of how this is happening from the
VCA perspective is shown on Fig. 6. On the top half of the
figure, we show the profile of the Potthoff functional (7) as a
function of the relative phase φ. For n = 0.89 and n = 0.91,
the minimum is at φ = ±π (B2 representation). Near n =
0.93, the profile changes suddenly to one where the minimum
is at φ = 0 (B1 representation). Note that the vertical scale
is tiny (10−5), in multiples of t , which defines the energy
unit here. This means that the energy difference between the
two representations B1 and B2 might just be too small to be
of consequence experimentally (∼10−2 meV or ∼10−1 K in
terms of temperature), at an intermediate interlayer tunneling
of V1 = 0.1.

On the bottom half of Fig. 6, the same type of data is
shown at strong interlayer tunneling (V1 = 0.4). There the
transition between B2 and B1 is gradual as the position of the
minimum moves continuously from φ = ±π to φ = 0, with a
spontaneous breaking of the φ → −φ symmetry. Even though
this TRS breaking state is what we are looking for, such a
strong value of interlayer tunneling is unrealistic.

Does this TRS breaking state have nontrivial topology? In
a strongly correlated system, this question may be answered
through the properties of the approximate interacting Green
function (5) [41,42]. The key idea is to define a “topolog-
ical Hamiltonian” ht (k) = −G−1(k, ω = 0), which can be
diagonalized:

ht (k)|α, k〉 = μα (k)|α, k〉 (12)

One can then define a generalized Chern number just like in
noninteracting systems:

C1 =
∫

d2k

2π
Fxy(k) Fxy(k) = ∂Ay

∂kx
− ∂Ax

∂ky
(13)

FIG. 6. Potthoff functional as a function of interlayer phase φ,
for different values of the chemical potential, for intermediate (top)
and strong (bottom) interlayer tunneling.

with the Berry connection

A j (k) = −i
∑

μα (k)<0

〈α, k|∂k j |α, k〉, ( j = x, y). (14)

When applying this formula to the TRS states found by VCA,
we find the topology to be trivial (the Chern number vanishes).
This results from a compensation between different regions of
the Brillouin zone, with opposite Berry curvature.

IV. INTERLAYER PAIRING IN VCA

In this section we bring refinements to our VCA analysis
by adding variational parameters based on interlayer pairing.
interlayer pairing operators too fall in irreducible representa-
tions of D4h. Much like the interlayer hopping operators V1,2,3,
they can be defined for each lateral distance d‖. Let us first
define elementary singlet pairing operators between sites i
and j as �̂i j = ci,↑c j,↓ − ci,↓c j,↑. In terms of these, we define
the following interlayer pairing operators, here conveniently
defined in the unit cell using the orbital numbering shown
in Fig. 1:

Â1⊥
1 = �̂16, (15)

Â2⊥
1 = �̂4,10 + �̂3,7 + �̂2,9 + �̂5,8, (16)
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FIG. 7. Same as Fig. 5, but with solutions using 4 Weiss fields:
the real parts of B̂1 and B̂2⊥

1 , and the imaginary parts of B̂2 and B̂3⊥
2 .

Â3⊥
1 = �̂2,7 + �̂5,10 + �̂4,9 + �̂3,8, (17)

B̂2⊥
1 = �̂4,10 + �̂3,7 − �̂2,9 − �̂5,8, (18)

B̂3⊥
2 = �̂2,7 + �̂5,10 − �̂4,9 − �̂3,8. (19)

The symbol of each operator indicates the D4h representation,
and the superscript indicates the neighbor (1st, 2nd, etc.), like
for the interlayer tunneling amplitudes V1,2,3. Even though
these operators are defined within the unit cell with this nota-
tion, this is naturally extended to the whole lattice, since sites
indices within the unit cell are in practice orbital indices for
the full lattice.

Naturally, we expect these operators to have nonzero ex-
pectation values in a superconducting state within the same
irreducible representation, even if they are not used as VCA
Weiss fields, just because pairing correlations propagate from
the cluster self-energy via the hopping terms of the model
(both within and between clusters). In other words, interlayer
pairing is present in our solutions even when it is not explicitly
used to expand the set of VCA variational parameters. Explic-
itly, we verified that the expectations values 〈Ai⊥

1 〉 (i = 1, 2, 3)
vanish in the superconducting states with B1 or B2 symmetry,
and so forth.

However, it is tempting increase the variational space using
these operators. For instance, when probing a solution in the
B1 representation, we could supplement the cluster Hamilto-
nian with two Weiss fields:

H ′ → H ′ + d1B̂1c + d⊥
1 B̂2⊥

1 + H.c. (20)

and likewise for solutions in the B2 representation, or mixed
solutions belonging to dx2−y2 + idxy.

Figure 7 shows the results of applying the VCA with four
independent Weiss fields: the same two as in Fig. 5, plus
two interlayer pairing operators: the real part of B̂2⊥

1 , and the
imaginary part of B̂3⊥

2 . As we can see, there still is a TRS
breaking phase, between n = 0.91 and n = 0.98. However, in
contrast to the results presented in Fig. 5, the representation

B1 seems to win on both sides of this coexistence dome. This
defies our intuition, gained from Sec. III that the coexistence
phase is the result of a single-energy crossing between the
B1 and the B2 phase as doping increases. A possible reason
for this discrepancy is that the two representations B1 and
B2 are not exactly treated on the same footing here. Whereas
operators B̂1 and B̂2 are defined from the same sites and differ
only by the signs of some pairings, operators B̂2⊥

1 and B̂3⊥
2

are not defined from the same sites. There is no interlayer
singlet pairing operator belonging to B2 defined from the
pairings involved in B̂2⊥

1 , and vice versa. Given the very small
energy difference between the B1 and B2 solutions, this may
be enough to bias the results and eliminate the small energy
advantage that the B2 representation had at higher doping.

Another reason to prefer the results of Fig. 5 is that we
naturally expect representation B2 to dominate at large doping.
Indeed, in this representation, the pairing amplitudes on links
separated by the small angle (37◦) have the same sign—see
Fig. 3—as we would naturally expect for small angles in
a weakly correlated system, and at large doping the system
becomes weakly correlated.

This lowers the degree of confidence we have in using
interlayer pairing operators as additional VCA Weiss fields.
Note that the expectation values 〈B̂2⊥

1 〉 has the same order
of magnitude whether the corresponding operator is used as
an additional Weiss field or not. Again, we insist that the
motivation for additional Weiss fields is strictly to increase
the variational space and access to slightly lower-energy so-
lutions, not actually allow interlayer pairing, which occurs
anyway in the solutions of Sec. III.

V. RESULTS FROM CLUSTER DYNAMICAL
MEAN FIELD THEORY

In order to test the robustness of our predictions, we have
also studied the same system using cluster dynamical mean
field theory (CDMFT) [43–46] with an exact diagonalization
solver at zero temperature (or ED-CDMFT). Here the Weiss
fields of VCA are replaced by a bath of uncorrelated orbitals
whose parameters are determined self-consistently. Because
the presence of this bath increases the size of the problem, the
cluster cannot be as large as in VCA and typically contains no
more than 4 sites.

FIG. 8. Impurity models used in CDMFT. On the left, the 4-site
cluster used for sites (2,3,4,5) and (7,8,9,10) of the unit cell, as
labeled in Fig. 1. On the right, the 2-site cluster used for sites (1,6).
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Each cluster, together with the associated bath, defines an
Anderson impurity model (AIM):

Himp = Hc +
∑
μ,α

θμ,α (c†
μaα + H.c.) +

∑
αβ

εαβa†
αaβ , (21)

where aα annihilates an electron in the bath orbital labeled
α. The Nambu formalism must be used to incorporate pairing
between bath sites, within the matrix εαβ , or within the hy-
bridization θμ,α , depending on the impurity model. The index
μ then labels different sites of the cluster, together with the
Nambu index, and takes 2L values in a cluster with L sites.

The bath parameters θμ,α and εαβ are determined by an
approximate self-consistent procedure, as proposed initially
in [47], that goes as follows: (i) Initial values of these param-
eters are chosen on the first iteration. (ii) For each iteration,
the cluster Hamiltonian (21) is solved, i.e., the cluster Green
function Gc(ω) is computed. The latter can be expressed as

Gc(ω)−1 = ω − tc − �(ω) − �c(ω) (22)

where �(ω) is the bath hybridization matrix:

�i j (ω) =
∑
α,α′

θiα

(
1

ω − ε

)
αα′

θ∗
jα′ . (23)

(iii) The bath parameters are updated, by minimizing the dis-
tance function:

d (ε, θ) =
∑
iωn

W (iωn)[Gc(iωn)−1 − Ḡ(iωn)−1] (24)

where Ḡ(ω), the projected Green function, is defined as

Ḡ(ω) = 1

N

∑
k

G(k, ω), G(k, ω) = 1

ω − tk − �c(ω)
.

(25)

Ideally, Ḡ(ω) should coincide with the impurity Green func-
tion Gc(ω), but the finite number of bath parameters does
not allow for this correspondence at all frequencies, and so
a distance function d (εr, θir ) is defined, with emphasis on low
frequencies along the imaginary axis. The weight function
W (iωn) is where the method has some arbitrariness; in this
paper W (iωn) is taken to be a constant for all Matsubara
frequencies lower than a cutoff ωc = 2t , with a fictitious tem-
perature β−1 = t/50. (iv) We go back to step (ii) and iterate
until the bath parameters or the bath hybridization function
�(ω) stop varying within some preset tolerance.

In the current problem, the 10-site unit cell was separated
in three impurity problems: a 4-site cluster on each layer
(which together are equivalent to the 8-site cluster used in
VCA in the last section), made respectively of the orbitals
(2,3,4,5) and (7,8,9,10) as labeled on Fig. 1, and a 2-site
cluster made of orbitals (1,6). These clusters are illustrated on
Fig. 8. The 4-site cluster is connected to 8 uncorrelated bath
orbitals, and contains 6 independent parameters: Two bath en-
ergies ε1,2, two hybridization θ1,2 and two pairing amplitudes
�1,2 between bath orbitals, with signs appropriate for describ-
ing d-wave superconductivity. This way of parametrizing the
bath is not the most general possible, but has been success-
fully used in the past [48–50]. The 2-site cluster connects the
two layers and also contains 6 bath parameters, except that
the anomalous part is contained in the hybridization, i.e., it
connects the bath sites to the cluster sites, not the bath sites
themselves. In order to allow for a relative phase between the
pairing on the two layers, the pairing bath parameters �1,2

on the square cluster of the second layer are allowed to take
complex values, whereas those on the first layer are assumed
to be real. Once a converged CDMFT solution is found, the
same order parameters �(�) as in the previous section are
computed.

FIG. 9. Order parameter as a function of electron density n, as found in CDMFT, for the two sets of interlayer hopping. The anomalous
bath parameters were initially set to have opposite (top) or identical (bottom) signs.
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FIG. 10. Same as Fig. 5, but for a unit cell made of two 4-site
clusters (one on each layer) plus one 2-site cluster. The TRS-breaking
phase is present, but surrounded by the B1 phase, in contrast to the
results of Fig. 5.

Figure 9 shows the results of CDMFT applied to this sys-
tem, for both intermediate (left) and strong (right) interlayer
tunneling. The results depend on the initial set of bath param-
eters. On the top panels, the bath pairing parameters were
initialized with opposite values on the two layers, whereas
on the bottom panels, they were initialized with the same
values. At intermediate interlayer tunneling (V1 = 0.1), the
order parameters stay opposite throughout the doping range
if the bath pairings are initialized this way; in other words, if
the system is primed in the B2 representation, it will stay in
that representation. At strong interlayer tunneling (V1 = 0.4),
this only occurs if doping is large enough. In other words, for
doping 12% or less, the system primed in the B2 representa-
tion will either not converge, or converge to a normal solution,
indicating its incompatibility with the B2 initial conditions. On
the other hand, if the system is primed in the B1 representation,
then it stays in the B1 representation, except that, at strong
interlayer tunneling, it converges for larger values of doping,
and converges to a normal solution at very small doping.

It is thus difficult to discriminate between the B1 and B2

representations within CDMFT, which does not have the fine
energy resolution that VCA has. Nevertheless, we sense from
the above results that the B1 representation is preferred at
low doping and the B2 representation at higher doping, but
a strong interlayer tunneling is needed for that. Also, despite
allowing in principle for an arbitrary complex phase between
the anomalous bath parameters of the two layers, only the
phases 0 and π are found: No state with spontaneous breaking
of time reversal is found in CDMFT. A possible explanation
is that the main 4-site impurity model in CDMFT is confined
to each layer, i.e., the complex, twisted interlayer structure
has an impact only through the self-consistency relation. One
way to check whether this is a correct explanation is to go
back to VCA, this time with the same cluster structure as
in CDMFT (two 4-site clusters and one 2-site cluster). The
results are shown in Fig. 10. We still observe a TRS-breaking
phase between n = 0.88 and n = 0.96, except that the B1

representation wins at higher doping, contrary to what was
obtained in Sec. III using a 8-site cluster with interlayer
tunneling operators within the cluster. This shows that the
absence of such operators in the cluster does not preclude the
emergence of a TRS-breaking phase. In the case of CDMFT,
we are therefore led to blame the lower energy resolution of
the method. In studying such systems, it seems that the VCA
is a better choice.

VI. CONCLUSIONS

In a one-band Hubbard model for a cuprate bilayer twisted
by an angle of 53.13◦, the relative phase of the superconduct-
ing order parameter in the two layers depends on hole doping
away from half-filling. In the underdoped regime, the relative
phase vanishes, whereas it is π in the overdoped regime. If
the interlayer tunneling is strong, then there is an intermediate
phase between those two in which this phase varies contin-
uously from 0 to π . Time reversal symmetry is broken in
that intermediate phase, but the topology is trivial, at least as
computed from the electron Green function. At intermediate
interlayer tunneling, this TRS breaking phase does not exist.
These conclusions are reached with the VCA method, using a
symmetric 8-site cluster and a 2-site cluster to form the 10-site
unit cell, and using similar variational parameters falling in
the B1 and B2 representations of D4h, the point group of the
system. Variants of the VCA procedure using additional Weiss
fields for interlayer pairing, or smaller, 4-site clusters without
interlayer operators, also produce a TRS breaking phase at
strong interlayer tunneling, but no B2 representation at higher
doping. The CDMFT method does not reveal a TRS-breaking
field, a fact that we attribute to the lower energy resolution of
the method.

It is possible that this TRS breaking phase survives at
weaker interlayer tunneling if the twist angle is closer to 45◦.
Indeed, we naturally expect that a twist closer to 45◦ would
favor the dx2−y2 + idxy mixed state, maybe enough to compen-
sate a drop in the interlayer coupling. A twist angle of 43.60◦
corresponds to a unit cell of 58 copper sites [20] and might
be amenable to a similar VCA study, albeit markedly more
complex numerically. Work in this direction will be necessary
in order to assess whether this putative phase is realistic in
strong-coupling superconductivity.
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