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Antisymmetric thermopolarization by electric toroidicity
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We investigate electric polarizations that emerge perpendicular to an applied thermal gradient in insulating
systems. The thermally induced electric polarization, known as thermopolarization, has been studied conven-
tionally in the case where an electric polarization appears along the thermal gradient. Here, we focus on the
antisymmetric component of the thermopolarization tensor, and we reveal that it becomes nonzero due to the
ferrotype order for electric-toroidal dipole moments. To describe local electric polarizations originating from
the disproportionation of localized electronic clouds, we introduce a two-dimensional three-orbital model with
localized s and two p orbitals, where the electric polarization at each site interacts with the neighboring one
as dipole-dipole interactions. We find that a vortex-type configuration of local electric polarizations appears
as a mean-field ground state, corresponding to a ferrotype electric-toroidal dipole order. By taking account
of collective modes from this ordered state, we calculate the coefficient of the thermopolarization based on
the linear-response theory. The antisymmetric component is nonzero in the presence of the electric-toroidal
dipole order. We clarify that fluctuations in the p orbitals are crucial in enhancing the antisymmetric ther-
mopolarization. We discuss the appearance conditions based on the symmetry argument and the relevance to
real materials.
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I. INTRODUCTION

The study of cross-correlations in condensed-matter
physics has a long history since the discovery of the mag-
netoelectric effect in Cr2O3 [1–4]. Even now, the coupling
between quantities with distinct symmetries has attracted con-
siderable attention in the fields of strongly correlated electron
systems and multiferroics as it strongly reflects the nature of
symmetry breaking [5–10]. While most of the studies have
focused on the coupling between electricity and magnetism,
other properties such as elastic and thermal properties are
also expected to contribute to cross-correlations. For exam-
ple, the thermal gradient trivially induces a thermal current
in the system, but it can also generate an electric polariza-
tion and magnetization in systems with particular symmetries
[11–15]. The thermally induced electric polarization is known
as thermopolarization [16–26], where the difference of the
temperatures at two opposite edges yields disproportionation
of electronic clouds or lattice positions, and thereby a macro-
scopic electric polarization appears in the system. In this
case, it is natural to consider that the direction of the electric
polarization is parallel to that of the thermal gradient. Nev-
ertheless, one cannot exclude the possibility of the emergent
polarization perpendicular to the thermal gradient, which is
an anomalous contribution whose response tensor is not only
off-diagonal but also antisymmetric, similar to the Hall effect.

To elucidate in what cases cross-correlation occurs,
multipole-based research has developed [27–30]. It tells us the
necessary conditions for the emergence of a cross-correlation

response based on the symmetries of the lattice geome-
try, electronic structure, and order parameter. Among them,
toroidal-type orders have recently attracted increasing interest
[10,27,31,32]. In particular, a magnetic-toroidal dipole mo-
ment is crucial for magnetoelectric effects because it is odd
for both time and spatial reversal operations. The electric
counterpart of the magnetic-toroidal multipoles can also be
introduced; they are referred to as electric-toroidal multi-
poles [33–37]. The multipoles are given by the time-reversal
even and axial tensors. Recently, it was pointed out that the
bond-length modulation emergent in the pyrochlore oxide
Cd2Re2O7 [38–49] can be interpreted as an electric-toroidal
quadrupole order, which is spatial (time) reversal parity-odd
(-even) [50,51]. Nonetheless, an electronic order involving the
electric-toroidal dipoles, simpler than the quadrupole ones,
remains elusive. This is because the dipole component is
both spatial and time-reversal parity-even, complicating its ex-
perimental observation, while the longitudinal dissipationless
spin-current generation was proposed recently, originating
from electric-toroidal octupoles [52].

On the other hand, an electric-toroidal dipole order caused
by lattice distortions has been studied as a ferroaxial order
[35]. The ferroaxial (ferrorotational) order was initially in-
troduced as a ferrotype order described by an axial vector
without the time and spatial symmetry breakings. Recently,
an attempt was made to observe the domains of the ferroaxial
order by light. In the ferroaxial order, the mirror symmetry
is preserved on the plane perpendicular to the ordering vec-
tor. Once the electric field parallel to this vector breaks the
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mirror symmetry, a chirality appears in the system. The optical
rotation can identify the direction [53]. This scheme directly
observes the chirality induced by the electric field rather than
the electric-toroidal dipole order. Moreover, a ferroaxial order
was also observed by using the second-harmonic generation
via its electric quadrupole component [54]. Therefore, the
direct observation of the electric-toroidal dipole is desired as
a linear response. However, this is not expected to couple
linearly with electric and magnetic fields.

In this paper, we propose that the thermal response can
be an appropriate probe to observe the electric-toroidal
dipole originating from electronic orbitals. We introduce a
three-orbital model with localized s and two p orbitals ca-
pable of generating an electric polarization. To consider
the electric order of the local polarizations constituting
a ferrotype electric-toroidal dipole configuration, we de-
fine the model Hamiltonian on a square-octagon lattice.
This is one of the simplest lattice structures to stabilize
the electric-toroidal dipole order induced by the dipole-
dipole interaction. We examine the three-orbital model
using the mean-field approximation, and we calculate the
thermal response by applying excitation-wave theory. The
ferrotype electric-toroidal dipole order appears when the
energy gap between the s and p orbitals is small com-
pared with the energy scale of the dipole-dipole interaction.
We find that the macroscopic polarization appears per-
pendicular to the applied thermal gradient, and its linear
response coefficient is antisymmetric for their directions.
This effect is regarded as an antisymmetric thermopolariza-
tion, which is an intrinsic one unrelated to the relaxation
time of the thermal transport. We also clarify that the
thermopolarization is strongly enhanced when the p or-
bital level is lower than the s orbital one. This implies
that fluctuations on the two p orbitals play a crucial role
in enhancing the thermopolarization. We demonstrate the
presence of the fluctuations by calculating the excitation
spectrum, in which the low-energy excitations changing the
direction of the local electric moment exist. We also dis-
cuss the relevance to real materials and the origin of the
antisymmetric thermopolarization based on the symmetry
argument.

This paper is organized as follows. In the next section, we
introduce a three-orbital model on a two-dimensional lattice
with local electric dipole moments. The method used in this
study is presented in Sec. III. In Sec. III A, we describe
the mean-field theory applied to the model Hamiltonian and
the way to address the fluctuations from the mean fields as
elementary excitations. The formulation of the thermopolar-
ization is given in Sec. III B. The results are shown in Sec. IV.
In Sec. IV A, we present the mean-field results where the
electric-toroidal dipole order appears when the orbital level
splitting is small compared with the dipole-dipole interac-
tions. We also show that the antisymmetric thermopolarization
emerges in the electric-toroidal dipole ordered phase in
Sec. IV B. In Sec. IV C, we show the elementary excitations,
which are crucial for the emergence of the nonzero thermopo-
larization. In Sec. V, we discuss the relevance to real materials
and the origin of the antisymmetric thermopolarization from
the viewpoint of the symmetry. Finally, Sec. VI is devoted to
the summary.
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FIG. 1. Schematic figure of the two-dimensional square-octagon
lattice. The vectors a1 and a2 shown in purple represent primitive
translational vectors, and there are four sites in a unit cell. The
blue arrows stand for the local electric polarizations arranged with
a toroidal-type configuration. The inset on the right side shows the
four unit vectors, each of which is parallel to the blue arrow located
on the corresponding site.

II. MODEL

We introduce a simple model with local electric dipole
moments to address the thermopolarization induced by the
electric-toroidal dipole moment. We consider three states—s,
px, and py orbitals—at each site on a two-dimensional square-
octagon lattice, where the edges of neighboring squares are
connected by lines as shown in Fig. 1. Using these states, the
local electric dipole moment on the xy plane is given by Pi =
(Px

i , Py
i ), with Pγ

i ∝ |s〉i〈pγ |i + H.c. (γ = x, y). Here, we as-
sume that the constant of the proportionality is 1, namely, the
elementary electric charge e is regarded as unity in addition
to the reduced Planck constant h̄, the Boltzmann constant
kB, and the length of the primitive translational vectors. The
electric dipoles interact as the dipole-dipole interaction. The
dominant contributions come from interactions on nearest-
neighbor bonds, which are given by

Hint =
∑
〈i j〉

Ji j[Pi · P j − 3(Pi · ei j )(P j · ei j )], (1)

where 〈i j〉 stands for neighboring sites connected by the vec-
tor ei j on the bonds of the square-octagon lattice, and Ji j = J0

(J1) for the intrasquare (intersquare) interaction, which is pos-
itive (see Fig. 1). In addition to the dipole-dipole interaction,
we consider the energy difference � between the s and p
orbitals, and the local anisotropy, where the energy level of the
p orbital spread along the direction to the center of the square
to which the site belongs is higher than the perpendicular
orbital by A (> 0). We refer to the former (latter) p orbital
as |p⊥〉 (|p‖〉). These contributions are written as

Hloc =
∑

i

[(� + A)|p⊥〉i〈p⊥|i + �|p‖〉i〈p‖|i]. (2)

245125-2



ANTISYMMETRIC THERMOPOLARIZATION BY ELECTRIC … PHYSICAL REVIEW B 105, 245125 (2022)

The model Hamiltonian H = Hint +Hloc is expected to ex-
hibit the electric-toroidal dipole moment in a unit cell shown
in Fig. 1 within the nearest-neighbor interactions. If this
electric-polarization configuration is present, the first (second)
term in Eq. (1) disappears on the intrasquare (intersquare)
bonds, and the ferrotype (antiferrotype) contribution survives,
which stabilizes the assumed configuration in addition to
the positive anisotropy A. Thus, we believe that the present
Hamiltonian provides a simple and appropriate model to dis-
cuss the effect of electric-toroidal dipole moments.

III. METHOD

A. Mean-field theory and elementary excitations

To examine the electric-toroidal dipole order appearing
in the Hamiltonian, we apply the mean-field approximation
and linear excitation-wave theory. The present system is sim-
ilar to that with quantum paraelectricity, which has been
discussed using the transverse Ising model [55–57]; in this
study, Hloc is regarded as a transverse field because the lo-
cal electric moment describes the mixing of the s and p
orbitals. One of the simplest ways to deal with the dynamics
of the high-dimensional transverse Ising model is the linear
excitation-wave approximation introduced later, and we apply
this method to the present model.

The dipole-dipole interaction is symbolically written as

Hint =
∑
〈i j〉

∑
γ γ ′

Jγ γ ′
i j Pγ

i Pγ ′
j . (3)

The mean-field approximation applied to it gives

HMF
int =

∑
〈i j〉

∑
γ γ ′

Jγ γ ′
i j

(〈
Pγ

i

〉
Pγ ′

j + Pγ

i

〈
Pγ ′

j

〉 − 〈
Pγ

i

〉〈
Pγ ′

j

〉)
, (4)

where the different mean fields are prepared for four sublattice
sites (M = 4) in the unit cell of the square-octagon lattice (see
Fig. 1). We determine the mean fields 〈Pγ

i 〉 by solving the
single-site HamiltonianHMF

i inHMF = HMF
int +Hloc, and the

expectation value is calculated for the ground state of HMF
i ,

|0〉i.
Next, we introduce the linear excitation-wave theory. The

deviation from the mean-field Hamiltonian is written as

H ′ = Hint −HMF
int =

∑
〈i j〉

∑
γ γ ′

Jγ γ ′
i j δPγ

i δPγ ′
j , (5)

where δPγ
i = Pγ

i − 〈Pγ
i 〉. In the linear excitation-wave theory,

δPγ
i is approximated by extracting the matrix elements involv-

ing the ground state ofHMF
i as [58–64]

δPγ
i �

∑
m=1,2

a†
im〈m|iδPγ

i |0〉i + H.c., (6)

where |m〉i, with m = 1, 2, is the excited state of the local
mean-field Hamiltonian HMF

i at site i, and a†
mi = |m〉i〈0|i is

assumed to be a creation operator of a boson, corresponding
to the Holstein-Primakoff quasiparticle. Applying this approx-
imation, we rewrite the Hamiltonian as a bilinear form of the
bosonic operators:

H � H̃ = 1

2

∑
kll ′

Hkll ′A†
klAkl ′ , (7)

where A†
k = (a†

k1, . . . , a†
k,2M , a−k1, . . . , a−k,2M ) whose el-

ement is assigned by l = 1, 2, . . . , 4M, and a†
k(s,m) =√

M/N
∑

i∈s a†
imeik·ri for sublattice s. The 4M × 4M matrix

Hk is diagonalized by the Bogoliubov transformation with the
paraunitary matrix Tk as [65]

H̃ = 1

2

∑
kn

EknB†
knBkn + const, (8)

where Ek = (εk1, . . . , εk,2M , ε−k1, . . . , ε−k,2M ) and B†
k =

(b†
k1, . . . , b†

k,2M , b−k1, . . . , b−k,2M ) = A†
kT −1†

k . The parauni-
tary matrix satisfies the following equation:

TkIT †
k = T †

k ITk = I, (9)

where I is the paraunit matrix, which is diagonal and defined
such that Inn = In = +1 for n � 2M and In = −1 for n >

2M.

B. Formalism of thermopolarization

Here, we introduce the coefficient of the off-diagonal ther-
mopolarization, βxy, defined as

〈Px〉∇yT

V
= βxy(−∇yT ), (10)

where 〈Px〉∇yT stands for the polarization under the thermal
gradient, and V is the volume. When the thermal gradient is
absent, the averaged macroscopic polarization 〈Px〉 becomes
zero, i.e., 〈Px〉 = 0 in equilibrium because of the toroidal-
type configuration of the local electric polarizations shown in
Fig. 1. Since Px should vanish without bosonic excitations, the
total polarization is approximately written as a bilinear form
of the bosons:

Px =
∑

i

Px
i � 1

2

∑
knn′
Px

knn′B†
knBkn′ , (11)

where Px
k is a 4M × 4M Hermitian matrix. The velocity ma-

trix is given by

Vy
k = T †

k

∂Hk

∂ky
Tk. (12)

Using these quantities, the coefficient βxy is represented
as [66–68]

βxy = − 1

V

∑
k

2M∑
n=1

c1(n(εkn))�xy
kn, (13)

where the temperature-independent part �
xy
kn is given by

�
xy
kn = −2

4M∑
n′( �=n)

Im
[
Px

knn′Vy
kn′n

]
InIn′

(Inεkn − In′εkn′ )2
. (14)

The temperature dependence of βxy originates from its co-
efficient c1(n(εkn)), where n(ε) = (eε/T − 1)−1 is the Bose
distribution function, and

c1(x) = (1 + x) ln(1 + x) − x ln x. (15)

We only consider the antisymmetric part, i.e., βxy = −βyx,
which is an intrinsic contribution independent of the relax-
ation time, because the off-diagonal symmetric part should
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FIG. 2. � dependence of the order parameter of the toroidal-type
configuration for the electric dipole moments at A/J0 = 100.

vanish for the toroidal-type configuration shown in Fig. 1 with
C4 symmetry.

IV. RESULT

A. Electric-toroidal dipole order

First, we show the mean-field results at zero temperature.
In the present calculations, we only find the toroidal-type
electric dipole order depicted in Fig. 1, as expected. The order
parameter is given by

〈G〉 = 1

N

∑
p=1,2,3,4

êp ·
∑
i∈p

〈Pi〉, (16)

where we define the following unit vectors: ê1 = (0, 1), ê2 =
(−1, 0), ê3 = (0,−1), and ê4 = (1, 0) (see the inset of Fig. 1).
Figure 2 shows the � dependence of 〈G〉 for several values of
J1 at A/J0 = 100. This quantity is nonzero around � = 0, in-
dicating the electric-toroidal dipole order, and it continuously
decreases and becomes zero by increasing |�|. As discussed
in Sec. III A, the present model is similar to the transverse
Ising model. For the case of large anisotropy, the local s and p‖
orbitals with the energy difference � dominate the low-energy
properties, and nonzero 〈G〉 is a consequence of the mixing
between these orbitals. The symmetric and domelike behavior
of 〈G〉 as a function of � is understood as an analogy of the
transverse Ising model. The thermopolarization in this model
on the zigzag chain is discussed in Appendix.

As shown in Fig. 2, the region of the electric-toroidal
dipole order becomes large with increasing J1. The critical
value of � is given by �c = 6J0 + 2J1, which is understood
from the magnitude of the mean field yielded by the electric
dipoles surrounding a certain site. Note that �c is independent
of the local anisotropy A. To confirm this clearly, we show the
A dependence of the order parameter 〈G〉 in Fig. 3(a). In this
figure, 〈G〉 as a function of � is presented for several values
of A, but all the lines appear to overlap with each other. This
result indicates that the anisotropy does not affect the phase
boundary and the � dependence of 〈G〉 even for small A.

FIG. 3. (a) Toroidal order parameter and (b) the coefficient of
the thermopolarization, βxy, as functions of � for several A. In (b),
the temperature is set at T/J0 = 0.3. The inset of (b) shows the �

dependence of βxy for several temperatures at A/J0 = 100. J1/J0 is
fixed to 0.5. We show the data only for the region where the ground
state is stable against the creation of elementary excitations.

B. Thermopolarization

Although the ground-state phase diagram remains largely
intact for the anisotropy, it is expected to change the excitation
spectra. The low-energy excitations from the ground state
contribute to the transport phenomena. In particular, we focus
on the off-diagonal thermopolarization, which was introduced
in the previous section. Figure 3(b) shows the � dependence
of the coefficient βxy for several A at T/J0 = 0.3. As shown in
this figure, βxy is almost zero at A/J0 = 100, but it increases
with decreasing A. We find that βxy takes a large value near
the critical point in the region of negative �. Note that the �

dependence of βxy shown in Fig. 3(b) appears to be uncorre-
lated with that of 〈G〉 in Fig. 3(a) at first glance. This is due
to the contribution from the excitation structure depending on
�. The coefficient of antisymmetric thermopolarization, βxy,
is considered to be approximately proportional to the product
of the electric-toroidal dipole moment and the function of the
excitation structure. We can see this relationship in the simpler
model given in Appendix as Eq. (A16).

The enhancement around the critical point of � is also
observed in the temperature dependence. As shown in Fig. 4,
βxy increases with increasing temperature and takes a large
value when � approaches the critical value −�c = −7J0 for
A/J0 = 1. In particular, at �/J0 = −6.99, βxy grows around
T/J0 = 0.12, which is lower than the temperatures in the other
cases. This suggests that the enhancement of βxy around the
critical region originates from the small gap in the low-energy
excitations. On the other hand, around the critical point in the
positive �, the enhancement of βxy is not observed even for
small A [βxy is almost zero for � > 0 at A/J0 = 1, as shown
in Fig. 3(b)]. The asymmetry is due to the presence of the p
orbital degeneracy; the local level of the doubly degenerate p
orbitals is lower than that of the s orbital for � < 0 at A = 0,
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FIG. 4. Temperature dependence of the coefficient of the ther-
mopolarization at J1/J0 = 0.5 and A/J0 = 1.

but the nondegenerate s orbital is the local ground state for
� > 0.

To examine the impact of the fluctuating p orbitals on
enhancing the thermopolarization, we introduce a simple
transverse Ising model on a zigzag chain,HTI (see the details
in Appendix). There are two local states at each site in this
model, unlike the present Hamiltonian with three local states.
We find that the coefficient of the off-diagonal thermopolar-
ization is symmetric for the transverse field as well as the
order parameter in the transverse Ising model (Fig. 9). This
is in stark contrast to the present three-orbital model with
small A, as shown in the main panel of Fig. 3(b). Moreover,
the absolute value of the coefficient in the transverse Ising
model is significantly small compared with the energy scale
of the interaction, even in the vicinity of the critical points.
Indeed, similar behavior is observed in the three-orbital model
with large anisotropy, regarded as a two-orbital model like the
transverse Ising model. The inset of Fig. 3(b) shows βxy for
A/J0 = 100 at several temperatures. The symmetric � depen-
dence and the order of the peak value around the critical points
appear to be common to those of the transverse Ising model.
These results indicate that the p orbitals play an essential role
in enhancing the thermopolarization.

C. Elementary excitation spectrum

The effect of the fluctuating p orbitals can be clari-
fied by examining the excitation spectrum from the ground
state. Figure 5 shows the dispersion relations εkn of the
collective modes and contributions from the corresponding
branch to the thermopolarization, �

xy
kn. The dispersion re-

lations for the small and large values of the anisotropy at
�/J0 = −6 are presented in Figs. 5(a) and 5(b), respec-
tively. At A/J0 = 1, there are four high-energy branches
above 3J0 and low-energy excitations below 2J0 with small
dispersions. The former are almost unchanged by the large
anisotropy, but the latter disappear in the case with A/J0 =
100, which are located around the higher-energy region
scaled by A. These results indicate that the four dispersive
branches around 6J0 are interpreted as longitudinal modes
varying the amplitude of the electric dipoles, which orig-
inate from transitions between the s and p orbitals. This
contribution is insensitive to the anisotropy because the

FIG. 5. (a),(b) Dispersion relations of the collective modes
from the toroidal-type electric dipole order for (a) A/J0 = 1 and
(b) A/J0 = 100 at �/J0 = −6. The color of the lines represents the
value of �kn for the corresponding excitation. (c),(d) Corresponding
plots for �/J0 = −6.99. J1/J0 is fixed to 0.5. The wave-vector points
X and M denote k = (π, 0) and (π, π ), respectively.

local level splitting between the s and p‖ is independent
of A.

On the other hand, the anisotropy A lifts the degeneracy of
the local p orbitals and yields the energy splitting between the
p‖ and p⊥ orbitals. Since the energy gap of the low-energy
modes below 3J0 in Fig. 5(a) depends on the anisotropy A,
these modes are understood as the fluctuation between the two
orbitals, corresponding to the transverse modes changing the
direction of the electric dipoles. The low-energy transverse
modes are associated with nonzero �

xy
kn, which leads to a

significant value of βxy compared to that in the case with the
large local anisotropy. Moreover, we also find the negative
�

xy
kn in the lowest energy branch in Fig. 5(a). This results

in a positive value of βxy because of the negative sign in
Eq. (13).

Next, we focus on the vicinity of the critical point at
�/J0 = −7. Figure 5(c) shows the excitation spectrum at
�/J0 = −6.99 and A/J0 = 1. In this case, there are four al-
most nondispersive branches at � J0, which are transverse
modes. This energy corresponds to the value of the anisotropy
A, and these branches are not observed at A/J0 = 100 in the
energy window of Fig. 5(d). We find that the averaged value
of �

xy
kn for the transverse modes at A/J0 = 1 is almost zero,

and hence these modes have only a limited effect on βxy.
However, around the crossing points between the transverse
and longitudinal modes, �

xy
kn takes a large value. The low-

energy transverse modes yield this effect as it is not observed
in Fig. 5(d). In particular, �

xy
kn for the low-energy longitudinal

mode below ε/J0 ∼ 1 takes a considerable negative value due
to the suppression of the denominator value in Eq. (14), which
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FIG. 6. Contour map of �xy(ε) on the plane of � and ε for
A/J0 = 1 and A/J0 = 100. J1/J0 is fixed to 0.5.

results in a substantial enhancement of the thermopolarization
in the vicinity of the critical point.

To see this effect more clearly, we calculate the � depen-
dence of the density of �

xy
kn, which is temperature-independent

and defined as

�xy(ε) = 1

V

∑
k

2M∑
n=1

�
xy
knδ(ε − εkn). (17)

Using this spectral representation, the coefficient of ther-
mopolarization is given as

βxy = −
∫

c1(n(ε))�xy(ε)dε. (18)

Figures 6(a) and 6(b) show the � dependence of �xy(ε) at
A/J0 = 1 and 100, respectively. In Fig. 6(b), we find four
branches around ε/J0 = 7. These are spread when |�| is large,
but they merge into a single line at � = 0. The high-energy
structure originates from the longitudinal modes of the local
electric dipoles. In the case of the small anisotropy (A/J0 = 1)
in Fig. 6(a), we find the low-energy structure in addition to
the high-energy branches. The energy increases linearly for
the negative � region. Note that the low-energy structure is
asymmetric for � while the high-energy one is symmetric.
This is because the former originates from the transverse
modes related to the p-orbital fluctuation, which is eliminated
by the positive �, but the latter originates from the excitation
from the s to p orbital. In both cases, the lowest-energy part
of �xy(ε) is negative, leading to the positive βxy. In the case
of small anisotropy, the transverse modes exist at the lower
energy, and therefore the large thermopolarization is observed
in the vicinity of the phase boundary.

V. DISCUSSION

Here, we estimate the magnitude of the off-diagonal ther-
mopolarization in the present mechanism, and we discuss the
emergence of the electric-toroidal dipole using the symmetry
argument. First, we estimate the magnitude of the thermopo-
larization. We assume that the order of the local electric dipole
Pi is scaled by ea, where a is the length of the primitive
translational vectors. Then, βxy should be scaled by ekB/aJ0.
When J0 ∼ 1 meV, βxy is approximately given as the order of
10−10 C K−1 m−1. In this situation, the thermal gradient with
|∇T | ∼ 1 K/cm is expected to induce the electric polarization
density with the order of 10−2 μC/m2. It might be relatively
small to observe the emergent polarization experimentally.
However, since the polarization originating from the dispro-
portionation of a local electronic cloud is often accompanied
by the lattice distortion, we expect a more significant value
of βxy in real materials. Moreover, the value might also be
enhanced by increasing the thermal gradient and consider-
ing systems with smaller energy scales. This effect could be
observed in the materials with the ferrotype electric-toroidal
dipole order.

In the present setup, we can intuitively understand anti-
symmetric thermopolarization induced by the toroidal-type
electric order in Fig. 1 as follows: When one applies the
thermal gradient along the y direction, the thermal fluctu-
ations of the electric dipole moments at sites 2 and 4 are
different, which leads to the macroscopic polarization along
the x direction. We provide here a general discussion on
the appearance of antisymmetric thermopolarization using the
symmetry argument. The present two-dimensional system on
the square-octagon lattice belongs to the D4h symmetry. Under
the symmetry, a time-reversal even A2g irreducible representa-
tion includes the components of electric-toroidal dipoles and
electric hexadecapoles [27]. Nevertheless, the former should
mainly participate in the thermopolarization coefficient be-
cause it is a rank-2 tensor. In general, only monopole, dipoles,
and quadrupoles contribute to rank-2 linear-response tensors.
Among them, electric-toroidal dipoles contribute to the anti-
symmetric part of the thermopolarization response tensor, but
electric hexadecapoles do not. Therefore, the electric-toroidal
dipole is crucial for antisymmetric thermopolarization, even in
cases without isotropic symmetry. A similar argument has also
been made in the context of the linear magnetoelectric effect,
widely accepted in the community of multiferroics [31,69,70].

Here, we discuss the origin of the A2g irreducible repre-
sentation of the D4h symmetry in the present system. Under
this symmetry, the local s and p orbitals correspond to A1g and
Eu, respectively, at each site. The local electronic degrees of
freedom are represented by a 3 × 3 Hermitian matrix based
on the real wave functions, the s, px, and py orbitals, and it
is decomposed by eight traceless matrices in addition to the
unit matrix with the A1g symmetry. Note that five of them
are real, and three are pure-imaginary matrices. The former
are time-reversal even, and the latter are time-reversal odd.
The local electronic degrees of freedom are decomposed into
the following irreducible representations:

(A1g ⊕ Eu) ⊗ (A1g ⊕ Eu)

= 2A+
1g ⊕ A−

2g ⊕ B+
1g ⊕ B+

2g ⊕ E+
u ⊕ E−

u , (19)
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FIG. 7. Staggered-type orbital orders composed of (a) p and
(b) d orbitals, which are expected to cause the antisymmetric
thermopolarization.

where the suffix + (−) denotes a time-reversal even (odd)
representation. Among them, E+

u corresponds to the local
electric dipole Pi = (Px

i , Py
i ) at site i.

In addition to the local symmetry, we need to consider
the symmetry of the four-sublattice structure. This degree of
freedom is written as irreducible representations as follows:

A1g ⊕ B1g ⊕ Eu. (20)

These correspond to sublattice modulations (+,+,+,+) for
A1g, (+,−,+,−) for B1g, and (+, 0,−, 0) and (0,−, 0,+)
for Eu in the labels of the sublattice, (1,2,3,4), presented
in Fig. 1. The direct product of the irreducible represen-
tations in Eqs. (19) and (20) corresponds to the possible
on-site four-sublattice order parameters. Here, we consider
the direct product of E+

u in Eq. (19) and Eu in Eq. (20),
which is decomposed into A+

1g ⊕ A+
2g ⊕ B+

1g ⊕ B+
2g. In these

irreducible representations, A+
2g corresponds to the electric-

toroidal dipole. This is intuitively understood as follows: Py

appearing with the sublattice modulation (+, 0,−, 0) and Px

appearing with (0,−, 0,+) correspond to the polarization
arrangement shown in Fig. 1.

On the other hand, the A+
2g symmetry also appears in the

direct product of B+
2g in Eq. (19) and B1g in Eq. (20). The

B+
2g symmetry is derived from the direct product Eu ⊗ Eu

within the p-orbital sector of the local electronic degrees of
freedom, and B1g originates from the sublattice structure. This
suggests that a simple staggered p orbital order on a tetragonal
(or square) lattice, which leads to the symmetry lowering
from D4h to C4h in Fig. 7(a), also includes the component of
an electric-toroidal dipole order. Moreover, under this p or-
bital order, the antisymmetric off-diagonal thermopolarization
should emerge if an s orbital is present near the p orbitals for
nonzero matrix elements of the local polarization operator.
This leads to a nonzero value of �

xy
kn in Eq. (14) and the

occurrence of antisymmetric thermopolarization in the present
formalism. Indeed, we could introduce the electric polariza-
tion spanning a bond for neighboring sites, which is nonzero,
even without the s orbital. Thus, interacting p models with the
staggered orbital order at low temperatures have a potential to
exhibit nonzero antisymmetric thermopolarization. Moreover,
a similar argument can be made in d-orbital systems with local
Eg symmetry [see Fig. 7(b)], which will enlarge the range of
candidate materials.

While the model addressed in the present study is
somewhat artificial, we have discussed the magnitude of
the antisymmetric thermopolarization and introduced more

realistic orbital orders resulting in the thermopolarization
using the symmetry argument. Since we have found that
the antisymmetric thermopolarization is attributed to the ap-
pearance of the ferrotype electric-toroidal dipole order, the
compounds with the ferroaxial order for lattice distortions po-
tentially exhibit nonzero antisymmetric thermopolarization.
The candidate materials are listed as CaMn7O12 [34], NiTiO3

[53], RbFe(MoO4)2 [54], and Ca5Ir3O12 [71]. It is desired
to search other materials exhibiting electric-toroidal dipole
orders in the electronic origin, which might be controllable via
the degrees of freedom intrinsic to electrons, such as charge
and spin. The candidates are not only transition-metal oxides
but also organic salts.

Finally, we comment on an approach to distinguishing the
antisymmetric part of βxy from its symmetric part, which is
not addressed in the present study. The off-diagonal symmet-
ric part is taken to be zero by rotating the coordinate axes such
that the 2 × 2 matrix βμν (μ, ν = x, y) is diagonalized. Even
if the off-diagonal symmetric part is observed in real materi-
als, we can vanish it by applying the thermal gradient along
a high-symmetric crystal axis. This setup will be achieved by
considering the crystal symmetry of the target material unless
the crystal structure belongs to exceptionally low symmetries
such as triclinic.

VI. SUMMARY

In summary, we elucidated that the ferrotype electric-
toroidal dipole order induces the antisymmetric thermopo-
larization by introducing a three-orbital model with s and p
orbitals on a two-dimensional lattice. The mean-field theory
suggests that this order emerges when the energy levels of
the three local orbitals are close to each other. By taking
account of the fluctuations from the mean fields, we calcu-
late the antisymmetric part of the thermopolarization based
on the linear-response theory. This quantity is strongly en-
hanced around the phase boundary, where the electric-toroidal
dipole order disappears, and the p-orbital level is lower than
that of the s orbital. The low-energy spectrum clarifies that
fluctuations of the p orbitals are crucial for enhancing the
thermopolarization. We also estimated the magnitude of the
thermopolarization, and we discussed the origin based on
the symmetry argument. The present results suggest that the
thermal gradient can unveil the electric-toroidal dipole order
as a linear response and stimulate further investigations on the
electric toroidicity in materials. On the other hand, our model
might be too simple to compare the real compounds directly.
A more realistic model is desired to be proposed, but it is a
future issue.
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FIG. 8. Schematic picture of the zigzag lattice on which the
transverse Ising model is defined. The blue arrows represent the elec-
tric dipole moments, which exhibit a staggard-type ordering along
the x direction. a is the primitive translational vector, and ρ1 and ρ2

are the vectors connecting between neighboring sites.

APPENDIX: TRANSVERSE ISING MODEL ON A ZIGZAG
CHAIN

In this Appendix, we consider the transverse Ising model
on a zigzag lattice as one of the simplest models exhibiting
electric-toroidal dipole order. The Hamiltonian is written as

HTI = J
∑
〈i j〉

σ x
i σ x

j − �
∑

i

σ z
i , (A1)

where σ x
i and σ z

i are the Pauli matrices for two local bases
with different parity at site i, and the antiferrotype interaction
with J > 0 is assumed. We regard σ x

i as a local electric dipole
along the x direction, which appears by mixing the two local
states. This means that the two local bases are given by s and
px orbitals. The first term means the interactions between elec-
tric dipoles, and the second term represents the level splitting,
which suppresses the electric dipole moment.

Here, we apply the two-sublattice mean-field approxima-
tion to Eq. (A1), where the two types of local moments are
given as

−〈σ x〉A = 〈σ x〉B ≡ X, (A2)

〈σ z〉 ≡ Z, (A3)

where we assume the staggered order shown in Fig. 8 for the
A and B sublattices when X �= 0. In this case, the mean-field
energy is given by

EMF/N = −JX 2 − �Z, (A4)

and the mean-field solution is obtained as

Z = �/�c, X =
√

1 − Z2 for |�| � �c,

Z = sgn(�), X = 0 for |�| > �c, (A5)

where �c is the critical field given by �c = 2J .
The elementary excitations from the mean-field ground

state are described by bosons as

H � H̃ = EMF + �E
∑

i

a†
i ai − JZ2

×
∑
〈i j〉

(a†
i a j + aia j + H.c.), (A6)

where �E = 4JX 2 + 2�Z . By applying the Fourier transfor-
mation given as

ai =
⎧⎨
⎩

√
2
N

∑
k akeik·ri for i ∈ A,√

2
N

∑
k bkeik·ri for i ∈ B,

(A7)

the low-energy Hamiltonian is represented as

H̃ = EMF − �EN

2
+ 1

2

∑
k

A†
kHkAk, (A8)

where Ak = (ak, bk, a†
−k, b†

−k)T and Jk = −JZ2 ∑
γ=1,2 eik·ργ

with ρ1 = (1/2,−1.2) and ρ2 = (−1/2,−1.2). The Hamilto-
nian matrix Hk is given by

Hk =

⎛
⎜⎜⎜⎜⎜⎝

�E Jk 0 Jk

J∗
k �E J∗

k 0

0 Jk �E Jk

J∗
k 0 J∗

k �E

⎞
⎟⎟⎟⎟⎟⎠

. (A9)

This matrix is diagonalized by applying the Bogoliubov trans-
formation with paraunitary matrix Tk, and the energies of the
two corrective modes are calculated as

ε±
k =

√
�E (�E ± 2|Jk|). (A10)

The velocity defined in Eq. (12) is represented as

Vy
k = T †

k

∂Hk

∂ky
Tk = − i�E |Jk|

2
√

ε+
k ε−

k

⎛
⎜⎝

1 1
−1 −1

1 1
−1 −1

⎞
⎟⎠.

(A11)

Moreover, we introduce the polarization defined by

Px =
∑

i

σ x
i . (A12)

This is rewritten by using the bosons and is approximately
given by

Px � 2X
∑

k

(a†
kak − b†

kbk) = 1

2

∑
k

A†
kPx

kAk, (A13)

where we neglect the linear terms of bosonic operators as
they change the parity of the number of bosons. Px

k is a 4 × 4
matrix given as

Px
k =

⎛
⎜⎝

2X
−2X

2X
−2X

⎞
⎟⎠. (A14)

The matrix Px
k defined in Eq. (11) is evaluated by Px

k =
T †

k Px
k Tk. Using the representations of Vy

k and Px
k, we can

calculate �
xy
k± in Eq. (14) as

�
xy
k± = ± X

2|Jk| . (A15)

Thus, the coefficient of the transverse thermopolarization, βxy,
is represented as

βxy = 1

V

∑
k

X

2|Jk| {c1(n(ε−
k )) − c1(n(ε+

k ))}. (A16)

Figure 9 shows the � dependence of βxy. We find that βxy

is an even function of � and increases with increasing temper-
ature. Moreover, this quantity is enhanced around the critical
points �/J = ±2, but it takes a small value compared to the
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FIG. 9. The transverse field dependence of βxy in the transverse
Ising model on a zigzag lattice at several temperatures. We assume
that the volume of the unit cell is unity.

energy scale of J . The behavior of βxy is distinctly different
from that in the three-orbital model on the square-octagon
lattice, which is shown in Fig. 3(b), while 〈G〉 as a function of
� shown in Fig. 3(a) is similar to the � dependence of the or-
dered moment X given in Eq. (A2), where X = √

1 − �2/�2
c

in the ordered phase with |�| < �c.
Finally, we discuss the appearance of the electric-toroidal

dipole order in the transverse Ising model on the zigzag chain
from the viewpoint of the symmetry. Under the D2h symmetry,
the localized s and px orbitals belong to Ag and B3u. Then,
the local electronic degrees of freedom are given by the 2 × 2
matrix, which is decomposed into 2A+

g ⊕ B+
3u ⊕ B−

3u. The sub-
lattice degree of freedom is described as Ag ⊕ B2u. The z
component of the electric-toroidal dipole moment belongs to
B+

1g, which appears as a part of the direct product of B+
3u in the

former and B2u in the latter.
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