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In this work, we present a collection of three-dimensional higher-order symmetry-protected topological phases
(HOSPTs) with gapless hinge modes that exist only in strongly interacting systems subject to subsystem
symmetry constraints. We use a coupled wire construction to generate three families of microscopic lattice
models: insulators with helical hinge modes, superconductors with chiral Majorana hinge modes, and frac-
tionalized insulators with helical hinge modes that carry fractional charge. In particular, these HOSPTs do not
require spatial symmetry protection, but are instead protected by subsystem symmetries, and support “fractonic”
quasiparticle excitations that move within only a low-dimensional submanifold of the system. We analyze the
anomaly structure for the boundary theory and the entanglement Hamiltonian, and show that the side surfaces
of these HOSPTs, despite being partially gapped, exhibit symmetry anomalies, and can only be realized as the
boundary of three-dimensional HOSPT phases.
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I. INTRODUCTION

Higher-order symmetry-protected topological phases
(HOSPTs) are novel forms of gapped quantum matter that
host gapped surfaces but, nonetheless, have gapless hinge or
corner modes protected by symmetry [1,2]. Since their initial
discovery, HOSPTs have attracted a great deal of attention
from both the theoretical and experimental communities.
Recent progress includes symmetry classifications [3–9],
topological field theory descriptions [9–12], and experimental
realizations of various classes of HOSPTs [13–22]. Many of
these HOTPs are noninteracting obstructed atomic insulators
that admit a Wannier representation [23]. Despite the
success in noninteracting HOSPTs, i.e., band insulators and
mean-field superconductors, the study of strongly interacting
HOSPTs is still in an early stage [24].

Introducing unconventional symmetries has proven to be
a successful way to expand the family of topological phases
of matter. As an intriguing generalization of conventional
global symmetry, subsystem symmetry is a symmetry that acts
independently along subregions of the whole physical system.
Previous works have established that subsystem symmetry can
restrict the mobility of charged excitations in fracton phases
of matter [25–28], and can lead to a number of new topolog-
ical phases [29–39]. For instance, based on field-theoretical
considerations, Ref. [9] proposed a new type of higher-order
topological insulator that has chiral hinge modes protected
by two distinct subsystem symmetries which act along two-

dimensional (2D) xz and yz planes, respectively. In addition
to the interesting hinge modes, the 2D planar symmetry for-
bids single-charge hopping terms in the x and y directions,
therefore, individual charge excitations are subdimensional in
the bulk and can only move along the z direction.

In this paper, motivated by recent developments in sub-
system symmetric topological phases [9,12], we construct
microscopic lattice models of three-dimensional (3D) sub-
system symmetric HOSPTs that host gapless hinge modes.
Interestingly, the HOSPTs protected by the subsystem sym-
metries do not require spatial symmetries to protect their
hinge modes. This is in stark contrast to the vast majority
of previously studied HOSPTs where spatial symmetries are
necessary for the stability of the corner or hinge modes.
More importantly, because of the subsystem symmetries,
single-particle tunneling along certain directions is forbidden.
Therefore, any models that respect these symmetries, and have
interesting dynamics, are intrinsically strongly interacting and
have no noninteracting counterparts with similar underlying
physics.

Motivated by these unusual features, we seek to bet-
ter understand the class of subsystem-symmetric HOSPTs
by constructing and analyzing three illustrative examples:
a topological insulator having helical fermion hinge modes
that are protected by U(1) subsystem symmetries and a Z2

global symmetry, a topological superconductor having chiral
Majorana hinge modes that are protected by Z2 subsystem
symmetries, and a fractional topological insulator having
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FIG. 1. (Left) The array of wires used to construct the HOTI. (Middle) The projected view in the xy plane. Each unit cell (denoted by
the black square) is composed of eight fermion modes, four upward chiral modes (•), and four downward chiral modes (×). The blue (red)
color denotes the ↑ (↓) fermions that carry opposite global Z2 charges. The green blocks denote the inter-unit-cell interaction which gaps out
the fermion modes within the block. On the surface of the system, there are symmetry-allowed intra-unit-cell tunnelings (denoted by the blue
and red blocks in the surface unit cells) which gap out the surface modes. However, there are symmetry-protected hinge modes when two
perpendicular surfaces intersect. (Right) A schematic picture for the higher-order topological insulator.

fractionalized helical hinge modes that are protected by U(1)
subsystem symmetries in addition to a Z2 global symmetry.
To develop these models we employ various coupled wire
constructions [40–46] to explicitly construct strongly inter-
acting subsystem symmetric insulators and superconductors
with fully gapped bulk and side surfaces, and gapless hinges
supporting one-dimensional (1D) chiral or helical modes. We
show that these 1D modes are anomalous and can exist only
as hinge modes of a 3D topological phase. We point out
that this is rather peculiar, as the conventional expectation
is that an anomalous N-dimensional system with an onsite
symmetry (i.e., not a subsystem or spatial symmetry) can be
realized on the surface of a symmetric (N + 1)-dimensional
bulk [47–49]. Here, however, the 1D hinge anomalies asso-
ciated with subsystem symmetry require a 3D bulk [i.e., an
(N + 2)-dimensional bulk], and cannot be realized as the edge
modes of any 2D lattice model having the same subsystem
symmetry. We expect that this anomaly argument can be
generalized to subsystem symmetries in higher dimensions as
well.

The remainder of the paper is structured as follows. In
Sec. II we present and analyze a subsystem-symmetric in-
sulator with helical hinge modes. In Sec. III we present and
analyze a subsystem-symmetric superconductor with four chi-
ral Majorana modes on each hinge. In Sec. IV we present
and analyze a subsystem-symmetric insulator having fraction-
alized helical hinge modes. For each of these models, we
explicitly show that the bulk and boundaries are gapped by
symmetric interactions, and that the hinges are gapless and
anomalous with respect to the subsystem symmetry. We also
include several Appendixes that contain related constructions
and technical details.

It is also worth mentioning that several 3D symmetry-
enriched fractonic phases have recently been constructed
using the coupled wire formalism [35,50–53]. Similar to the
subsystem-symmetric HOSPTs we present here, these fracton
models have subdimensionally mobile excitations, but un-
like the HOSPTs, these models have fully dispersive gapless
surface modes instead of gapped surfaces and gapless hinge
modes.

II. HIGHER -ORDER TOPOLOGICAL INSULATOR WITH
SUBSYSTEM CHARGE CONSERVATION

In this section, we provide a microscopic construction of a
spin- 1

2 fermionic HOSPT that is protected by subsystem U(1)
symmetry and a global Z2 symmetry. The U(1) subsystem
symmetry corresponds to the conservation of charge along
each xz and yz plane, and the Z2 symmetry corresponds to
a global conservation of spin parity. We will find that this
strongly correlated model will exhibit a gapped bulk and sur-
face, but will harbor helical hinge modes.

A. Fermionic wire model

Let us consider a 2D lattice (which spans the xy plane)
of 1D wires (which span the z direction). To be explicit, we
will use a square lattice in the xy plane with four 1D Dirac
fermions per unit cell, two of which are spin up and two of
which are spin down as in Fig. 1. For simplicity, we assume
that the Dirac fermions correspond to excitations which are all
at the same lattice momentum. The low-energy Hamiltonian
for the wires is

Hwires =
∑

r

ψ†
r i∂zτ

zz0ψr, (1)

where r = nxx̂ + nyŷ labels the unit cells of the 2D lattice, and
ψ = (ψ1

↑L, ψ2
↑L, ψ3

↑R, ψ4
↑R, ψ1

↓R, ψ2
↓R, ψ3

↓L, ψ4
↓L ). The R and L

subscripts indicate that the mode propagates along the +z or
−z direction, respectively. Here, and throughout, we use the
shorthand τ i j...k ≡ τ i ⊗ τ j ⊗ · · · ⊗ τ k where τ i are the Pauli
matrices, including the identity. Hence, the first index of τ i jk

acts on the spin index, while the other two indices act on the
flavors of a given spin.

Now we can choose couplings between the wires to gap
out the bulk. To generate something topological, we expect
that we will need couplings between unit cells. The wires
can be gapped with single-particle intercell tunneling terms,
however, such couplings between unit cells would violate
subsystem symmetries. Instead, we will couple the wires
together using quartic, subsystem-symmetric intercell inter-
actions. The interactions are specifically chosen such that
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the model decomposes into a decoupled array of 1D wire
bundles when viewing from the xy plane. These 1D bundles
are composed of fermionic modes from the lattice sites that
surround a given plaquette, as shown in see Fig. 1. The HOTI
Hamiltonian we consider is

HHOTI = Hwires + Hint,

Hint =
∑

r

[
V1ψ

1†
↑L,rψ

2†
↑L,r′ψ

3
↑R,r′′ψ

4
↑R,r′′′

+V2ψ
1†
↓R,rψ

2†
↓R,r′ψ

3
↓L,r′′ψ

4
↓L,r′′′

+V3ψ
1†
↑L,rψ

3
↑R,r′′ψ

1
↓R,rψ

3†
↓L,r′′

+V4ψ
1†
↑L,rψ

4
↑R,r′′′ψ

1
↓R,rψ

4†
↓L,r′′′

] + H.c., (2)

where r = nxx̂ + nyŷ, r′ ≡ r + x̂ + ŷ, r′′ ≡ r + x̂, and r′′′ ≡
r + ŷ. HHOTI has a global Z2 symmetry,

Z2 : ψ → τ z00ψ, (3)

which corresponds to the global conservation of spin parity.
Additionally, it has two U(1) subsystem symmetries

U(1)xz : ψr → eiθxz (r·ŷ)ψr,

U(1)yz : ψr → eiθyz (r·x̂)ψr,
(4)

where θxz is a real function of r · ŷ = ny, and θxy is a real
function of r · x̂ = nx. These subsystem symmetries indicate
that charge is conserved along both xz and yz planes (and by
extension the total charge is conserved as well). As mentioned
above, we see that single-particle intercell tunneling in either
the x or y directions necessarily breaks these symmetries,
although tunneling along the z direction (i.e., along the wires)
is allowed.

From our choice of interactions, the fermions ψ1
↑L,r, ψ2

↑L,r′ ,
ψ3

↑R,r′′ , ψ4
↑R,r′′′ , ψ1

↓R,r, ψ2
↓R,r′ , ψ3

↓L,r′′ , and ψ4
↓L,r′′′ only couple to

one another, for a fixed r. This set of fermions can be treated
as a 1D wire bundle, and the full 3D model is simply a 2D
array of these bundles. If each bundle is fully gapped (see
below for an explicit calculation), then the bulk of the HOTI
is also fully gapped. Furthermore, if the system has open
surfaces perpendicular to x or y direction, then each surface
unit cell will be left with a pair of helical modes, which can be
gapped out with an intra-unit-cell tunneling that preserves all
the symmetries. However, on the hinges there will be an odd
number of helical modes. For example, for hinges between
boundaries normal to the +x and +y directions the fermions
ψ1

↑L, ψ1
↓R, ψ3

↑R, ψ3
↓L, ψ4

↑R, and ψ4
↓L are gapless, and there is a

net positive helicity mode. This net helical mode is protected
from acquiring a gap by the global Z2 symmetry. There are
similar helical modes on the other hinges, as well.

To show that the interactions Hint in Eq. (2) fully gap the
bulk of our system, we will use bosonization. We identify
the fermionic operators with the vertex operators ψ

j
σR/L ∼

e∓iφ1
σR/L , where σ =↑,↓, and the ∓ are correlated with the R/L

subscript. In terms of these bosonic variables, the Lagrangian

corresponding to Eq. (2) is

L =
∑

r

[ − ∂tφ
T
r τ zz0∂zφr − ∂zφ

T
r V ∂zφr

− g1 cos
(
φ1

↑L,r + φ2
↑L,r′ + φ3

↑R,r′′ + φ4
↑R,r′′′

)
− g2 cos

(
φ1

↓R,r + φ2
↓R,r′ + φ3

↓L,r′′ + φ4
↓L,r′′′

)
− g3 cos

(
φ1

↑L,r + φ3
↑R,r′′ − φ1

↓R,r − φ3
↓L,r′′

)
− g4 cos

(
φ1

↑L,r + φ4
↑R,r′′′ − φ1

↓R,r − φ4
↓L,r′′′

)]
, (5)

where φ = (φ1
↑L, φ2

↑L, φ3
↑R, φ4

↑R, φ1
↓R, φ2

↓R, φ3
↓L, φ4

↓L ) and V is
an 8 × 8 “velocity” matrix, which includes the fermionic
kinetic energy terms as well as various forward-scattering
terms. Crucially, all the cosine terms in Eq. (5) commute
with one another. Hence, provided that the gi couplings are
significantly strong, the bosonic fields φ1

↑L,r, φ2
↑L,r′ , φ3

↑R,r′′ ,
φ4

↑R,r′′′ , φ1
↓R,r, φ2

↓R,r′ , φ3
↓L,r′′ , and φ4

↓L,r′′′ are massive for each
wire bundle labeled by r. As noted before, this fully gaps
the bulk, while leaving behind gappable surface modes, and
symmetry-protected hinge modes. Based on this, we conclude
that at strong coupling the fermionic model in Eq. (2) realizes
a higher-order topological phase protected with helical hinge
modes.

B. O(4) nonlinear sigma model

It will be instructive to provide an alternative perspec-
tive of our wire construction using well-known properties of
1D nonlinear sigma models. As noted before, the fermions
in Eq. (2) form decoupled wire bundles of four gapless
Dirac fermions. To study the properties of a single bundle,
let us define ψ̃↑r = (ψ1

↑L,r, ψ
2
↑L,r′ , ψ

3
↑R,r′′ , ψ

4
↑R,r′′′ ) and ψ̃↓r =

(ψ1
↓R,r, ψ

2
↓R,r′ , ψ

3
↓L,r′′ , ψ

4
↓L,r′′′ ). The global Z2 symmetry acts

as ψ̃↑r → ψ̃↑r and ψ̃↓r → −ψ̃↓r on these degrees of freedom.
Our Hamiltonian is such that the fermions ψ̃↑r and ψ̃↓r only
couple to one another for a fixed r.

To understand the underlying physics of the subsystem-
symmetric HOTI, let us first consider only the four fermions
ψ̃↑r with fixed r (we will drop the subscript r for the rest of the
subsection for brevity). Taking the linear combinations of the
subsystem symmetry defined in Eq. (4), we can define three
independent U(1) symmetries that act as follows:

Ũ(1)xz : ψ̃↑ → eiθ̃xzτ
zz
ψ̃↑,

Ũ(1)yz : ψ̃↑ → eiθ̃yzτ
0z
ψ̃↑,

U(1)total : ψ̃↑ → eiθτ 00
ψ̃↑. (6)

We find that these symmetry assignments are very similar
to those of the edge states of two copies of a 2D quan-
tum spin Hall (QSH) insulator exhibiting both total charge
and spin Sz conservation, i.e., U(1)c × U(1)s symmetry [not
to be confused with the charge and spin of the HOTI in
Eq. (2)]. More explicitly, we can map Ũ(1)xz

↑ → U(1)c and
Ũ(1)yz

↑ → U(1)s. The interacting classification of 2D QSH
with U(1)c × U(1)s is labeled by an integer ν [54], and the
ψ̃↑ fermions correspond to the edge states of a ν = 2 system.
Therefore, interactions cannot fully gap the ψ̃↑ fermions due
to the anomaly associated with the two U(1) symmetries
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(though, as we have seen, it is possible to fully gap the ψ̃↑
fermions by coupling them to the ψ̃↓ fermions).

Although we see that interactions cannot fully gap the
spectrum of the ψ̃↑ fermions, it can gap out all single-particle
fermion modes such that the spectrum consists of only gap-
less bosonic modes [54,55]. These gapless bosonic degrees
of freedom can be described by an effective field theory of
an O(4) nonlinear sigma model with Wess-Zumino-Witten
(WZW) term at level 1 (possibly with anisotropic terms).

To see this, we couple the ψ̃↑ fermion to a fluctuating O(4)
order parameter 
m↑ = (m1↑, m2↑, m3↑, m4↑):

HO(4),↑ = ψ̃
†
↑
[
i∂zτ

z0 + m1↑τ xx + m2↑τ xy

+ m3↑τ xz + m4↑τ y0
]
ψ̃↑. (7)

The bilnear fermion terms should be considered as the re-
sult of a Hubbard-Stratonovich transformation of quartic
fermionic interactions V1ψ

1†
↑L,rψ

2†
↑L,r′ψ

3
↑R,r′′ψ

4
↑R,r′′′ in Eq. 2. The

ψ̃
†
↑ fermions are massive due to the O(4) order parameter, and

can be integrated out [56]. The resulting effective theory for
the O(4) order parameter is a nonlinear sigma model including
a WZW term:

L↑ = 1

g
(∂μ 
m↑)2 + 2π


3

∫ 1

0
du εi jkl mi↑∂zm j↑∂t mk↑∂uml↑,


m↑(x, t, u = 0) = (1, 0, 0, 0), 
m↑(x, t, u = 1) = 
m↑(x, t ),
(8)

which represents an SU(2)1 conformal field theory in (1+1)D.
For the bosonic degrees of freedom we find that the sub-

system symmetry Ũ(1)xz rotates m3↑ and m4↑ by θ̃xz while
Ũ(1)yz rotates m1↑ and m2↑ by θ̃yz. Thus, the WZW term
implies a perturbative anomaly [54,57] of the Ũ(1)xz × Ũ(1)yz

symmetry, whose physical effect is that a 2π flux insertion
for Ũ(1)xz would carry a unit charge of Ũ(1)yz. Hence, due to
the perturbative anomaly, the spectrum of the spin-up half of
the wire bundle is robustly gapless against any perturbation
provided the symmetry is not broken.

Now let us reintroduce the ψ̃↓ fermions. Following the
same logic as before, the low-energy effective field theory
of these fermions will be an O(4) WZW theory, but at level
k = −1 instead of k = +1 since its kinetic energy term has
the opposite sign of ψ̃↑. When combined together we obtain

L =
∑

σ

1

g
(∂μ 
mσ )2

+ (−1)σ 2π


3

∫ 1

0
du εi jkl miσ ∂zm jσ ∂t mkσ ∂umlσ . (9)

The anomaly associated with the Ũ(1)xz × Ũ(1)yz symme-
try cancels in the combined theory. In addition, the global
Z2 symmetry acts trivially on the O(4) order parameters.
Therefore, there is no anomaly reason to prevent us from
gapping out the combined system. As an example, we can turn
on a coupling −A(m1↑m1↓ + m2↑m2↓ + m3↑m3↓ + m4↑m4↓),
which preserve the Ũ(1)xz × Ũ(1)yz symmetry. In the large
A > 0 limit, the system will energetically prefer the field
configuration where mi↑ = mi↓ for all the components. In this
limit, the WZW terms cancel each other, and we get a pure
O(4) nonlinear sigma model in 1D which will flow to a gapped

symmetric phase at low energy. This gapped bulk is generated
by a dynamical mass due to the strong interactions, and the
resulting state does not break any symmetry of the system.
This phenomenon is sometimes refereed as dynamical mass
generation in the literature [55,58].

C. Hinge anomalies

From our construction we have shown there exists a
subsystem-symmetric 3D topological insulator that supports
helical hinge modes. However, having gapless modes at the
surface (or hinge) does not immediately guarantee that the
bulk is topological. To further reveal the bulk topological
nature of our model, we will now demonstrate that our helical
hinge modes cannot exist as the edge of a purely 2D lattice
model with local symmetric interactions. To elucidate this,
we begin with the HOTI model in Eq. (2) and take PBCs
along the z direction. Leaving the other directions open, we
see that the boundary contains the four side surfaces on the
xz/yz planes with four helical hinge states along the four
hinges. We now aim to demonstrate the anomalous nature of
this “boundary” by providing a no-go theorem that a similar
boundary state cannot be realized on a pure 2D “cover” with
the same symmetry assignment.

To begin, let us take a lattice model placed on a 2D xz
plane. We assume this model carries a global Z2 symmetry
as well as the subsystem U(1) symmetry, where the charge is
conserved on each z row. If we are able to construct a model
that (i) respects these symmetries, (ii) has a gapped bulk, and
(iii) has a gapless boundary harboring helical modes carrying
opposite Z2 charge propagating along the z edge, then one
can attach such 2D sheets on two opposing side surfaces of
the HOTI and the helical hinge states can be eliminated. If
this were possible, then the helical hinge state would not be a
signature of the bulk topology since they could be destroyed
by surface reconstruction while preserving symmetry. How-
ever, we will argue that such a 2D sheet would exhibit a global
anomaly, and hence cannot be realized in a lattice model with
local interactions.

To exhibit this anomaly, we can use a flux threading argu-
ment. Since the U(1) charge on the 2D xz plane is conserved
on each z row, we can insert a subsystem U(1) flux by in-
serting a 2π flux in the cycle spanned by only the leftmost
row without affecting the others, as shown in Fig. 2. As the
leftmost row contains two helical modes, such a flux insertion
would create a U(1) charge from one chiral mode (which
also carries a unit of global Z2 charge) and creates a U(1)
anticharge from the counterpropagating chiral mode (which
is neutral under Z2). Thus, while the total U(1) charge is
conserved, the total Z2 charge is shifted by a unit under a
large gauge transformation of the subsystem U(1) symmetry.
This phenomenon signifies a mixed anomaly between the two
symmetries, and implies that such a 2D lattice model in the
current setting cannot exist. This also concludes that there
is no way to decorate a 2D lattice model with subsystem
symmetry on the side surfaces to obtain the same helical hinge
states. Note that this is different from the usual physics of
the QSH edge state. For a 2D QSH state with a global U(1)
charge symmetry, the flux insertion operator will apply to all
degrees of freedom across all rows, so both the left and right
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FIG. 2. A 2D system with helical edge modes, and U(1) charge
conservation along each z row. Periodic boundary conditions are
taken along the z direction, and open boundary conditions are taken
along the x direction. Since charge is conserved on all z rows, it is
possible to insert a subsystem � = 2π flux along the leftmost row
only.

edges would respond to such a large gauge transformation. In
this case, the combined anomaly from the two edges cancels.
However, in the presence of subsystem symmetry, the flux
insertion on each row is independent, and the large gauge
transformation we apply to one edge does not affect the other
edge. We also note that the anomaly is different than what is
seen on the surfaces of a topological system with time-reversal
symmetry [59,60] Now let us consider a complementary ar-
gument. If we take the whole 2D surface cover of our system it
forms a tubelike shape as shown in Fig. 3. This cover harbors
four helical hinge modes. Additionally, the cover respects the
global Z2 symmetry and the two subsystem U(1) symmetries
(the latter act on rows parallel to the z direction on the cover).
When we apply a subsystem U(1) flux insertion operator, it
will affect two hinges. For our argument, let us consider an ex-
plicit large gauge transformation (LGT) specified by θ (r) →
θ (r) + 2π

Lz
[δ(x)δ(y − Ny) − ∑Nx

i=1 δ(x − i)δ(y)] with θ being
the U(1) phase of the compact boson. Such a LGT was chosen
so that it involves a global shift of charge from two hinges at
(0, Ny), (Nx, 0). We see that this LGT does not change the to-
tal Z2 charge on the cover since the hinges change oppositely.
More precisely, it inserts a 2π flux for the helical states at the
top-left corner at (0, Ny) and a (−2π ) flux for the helical states
at the bottom-right corner at (Nx, 0). Nevertheless, the theory
on the cover is still anomalous. To elucidate this, we further
cut the cover and extract a quadrant as shown in Fig. 3. The
quadrant contains only one hinge and creates new “edges”
on the xz and yz surfaces. The new edges might result in
additional gapless modes. However, since the side surfaces
are fully gapped and short-ranged correlated, edge states on
the new edges would not affect the stability of the helical
modes on the remaining hinge (which we take to be far away
compared to the correlation length). Now if we apply the same
subsystem U(1) LGT to the isolated quadrant, the Z2 charge

FIG. 3. The four side surfaces form a tube-shaped cover with
four gapless hinges. To demonstrate the anomaly on this side surface,
we take out a quadrant of the cover denoted by the darker blue part.
This quadrant turns out to be anomalous under certain large gauge
transformations by inserting subsystem 2π flux to the rows (yellow
lines).

is not invariant under a large gauge transformation (note that
our chosen LGT does not affect the new edges created by the
quadrant). This suggests that the 2D theory on the cover is still
anomalous since it contains an obstruction in the presence of
a boundary.

D. Anomalies in the entanglement Hamiltonian

In this section, we will demonstrate that the topological
nature of the HOSPT can also be probed using the entan-
glement properties of the wave functions of the many-body
system. In general, the entanglement spectrum of a symmetry-
protected topological phase does not necessarily resemble the
low-energy part of the spectrum at the edge [61]. For exam-
ple, one can observe phase transitions in the entanglement
Hamiltonian that are not reflected in the underlying physics
of the ground-state wave function of the Hamiltonian. As a
result, when we examine the entanglement Hamiltonian of
the ground-state wave function, we will focus on the whole
spectrum rather than only the low-energy states.

To set the stage, we begin with the HOSPT in Eq. (2). Since
this model is obtained from the coupled wire construction, the
ground-state wave function has (effectively) zero correlation
length transverse to the wires. Consider the 3D system with
periodic boundary conditions. Let us now choose a subregion
A which is open with finite extent in the x and y directions,
while is still periodic in the z direction. The entanglement
surface resembles a 2D sheet covering the external side sur-
faces of region A similar to Fig. 3. From the coupled wire
construction, it is straightforward to see that the entanglement
Hamiltonian on the side surfaces, i.e., on the xz and yz planes
is generically gapped since each row [with fixed coordinate
(x0, y0)] along the z direction contains two sets of decoupled
helical Luttinger liquids that can be coupled without breaking
the global Z2 charge conservation. The four hinges of region
A contain additional helical modes where counterpropagat-
ing modes have different Z2 charge assignments. Hence, the
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hinges remain gapless if the Z2 global symmetry is preserved.
As such, in this fine-tuned limit, the entanglement Hamilto-
nian looks exactly like the side surface of the 3D HOSPT in
Fig. 3.

While ultimately the gapless nature of the entanglement
Hamiltonian could be nonuniversal, the utility of this calcula-
tion is that such a gapless structure indicates the entanglement
Hamiltonian contains a symmetry anomaly. This anomaly is
exactly analogous to the quantum anomaly of the actual sur-
face, and would hence indicate that such a surface cannot be
generated in a lower-dimensional system. The argument for
the anomaly is identical to the discussion in Sec. II C. That
is, if we make an additional spatial cut of the entanglement
Hamiltonian by keeping only a quadrant of region A, then the
resulting quadrant contains a mixed anomaly where a large
subsystem U(1) gauge transformation on the row containing
the hinge will change the Z2 charge of the system. Thus, a
gauge transformation of the subsystem U(1) would break the
global Z2 charge conservation, and the resultant entanglement
Hamiltonian is anomalous that cannot be realized in a lower-
dimensional lattice model with the same symmetry.

If we move away from the zero-correlation length limit,
the helical Luttinger liquids from different wire bundles in
the system can interact and couple. While the low-energy
spectrum of the entanglement Hamiltonian will change and
vary depending on the microscopic couplings, we expect the
mixed anomaly to be robust against any wave function (or
entanglement Hamiltonian) reconstruction as long as the bulk
gap and symmetries are maintained. Subsequently, we ex-
pect the mixed anomaly to be a distinguishing feature of the
HOSPT entanglement Hamiltonian.

Finally, let us mention that while the symmetry anomaly
persists as long as symmetry is maintained, we cannot ig-
nore the possibility that the entanglement Hamiltonian might
have spontaneous symmetry breaking. As the entanglement
Hamiltonian is defined in 2D effectively, the Mermin-Wagner
theorem excludes the possibility of subsystem U(1) symmetry
breaking [62]. However, the global Z2 symmetry could be
broken spontaneously. Such a Z2 symmetry breaking would
then generate a twofold degeneracy in the entanglement spec-
trum.

III. HIGHER-ORDER TOPOLOGICAL
SUPERCONDUCTOR WITH CHIRAL HINGE STATES

In this section, we propose a higher-order topological
superconductor (HOTSC) with chiral hinge states that are
protected by subsystem Z2 symmetry. We still adapt the same
coupled wire construction formalism as before, and choose
interactions such that the model again decomposes into an
array of decoupled 1D bundles.

A. Fermionic wire model

For this model, we use a unit cell composed of four spinless
1D Dirac fermions. Again, for simplicity, we assume these
Dirac fermions each correspond to excitations near the same
lattice momentum. These Dirac fermions can be written in
terms of eight complex chiral fermions, χ1

L , χ2
L , χ3

R, χ4
R, χ5

L ,
χ6

L , χ7
R, χ8

R, where, as before, R and L indicate that the mode
propagates along the +z and −z directions, respectively. Since

the net chirality of these modes vanishes, these modes can
arise from a microscopic fermionic lattice model.

The Hamiltonian describing the HOTSC we consider is

HHOTSC =
∑

r

χ†
r i∂zτ

0z0χr + Hint-SC,

Hint-SC =
∑

r

[
V1χ

1†
L,rχ

2†
L,r′χ

3
R,r′′χ

4
R,r′′′

+V2χ
5†
L,rχ

6†
L,r′χ

7
R,r′′χ

8
R,r′′′

+V3χ
1†
L,rχ

3
R,r′′χ

5
L,rχ

7†
R,r′′

+V4χ
1†
L,rχ

4
R,r′′′χ

5†
L,rψ

8
R,r′′′

] + H.c., (10)

where χ = (χ1
L , χ2

L , χ3
R, χ4

R, χ5
L , χ6

L , χ7
R, χ8

R ), the spatial coor-
dinate definitions are the same as those following Eq. (2), and
we have kept the tensor product notation for the τ matrices.
The Z2 subsystem symmetries are given by

Zxz
2 : χr → eiηxz (r·ŷ)χr,

Zyz
2 : χr → eiηyz (r·x̂)χr,

(11)

where ηxz and ηyz are functions of r · ŷ = ny and r · x̂ = nx,
respectively, and are {0, π} valued.

Similar to before, the eight fermions χ1
L,r, χ

2
L,r′ , χ3

R,r′′ , χ4
R,r′′′ ,

χ5
L,r, χ6

L,r′ , χ7
R,r′′ , and χ8

R,r′′′ only couple to one another in a
bundle for fixed r. To show that the interactions in Eq. (10) gap
out the bulk fermions, we will once again use bosonization.
Here, the complex fermion modes correspond to the vertex

operators χ
j

R/L ∼ e∓iϕ j
R/L , where the ∓ are correlated to the

R/L subscript, and j = 1, . . . , 8. In terms of these bosonic
fields, the interactions in Eq. (10) become

Hint-SC = −g1 cos
(
ϕ1

L,r + ϕ2
L,r′ + ϕ3

R,r′′ + ϕ4
R,r′′′

)
− g2 cos

(
ϕ5

L,r + ϕ6
L,r′ + ϕ7

R,r′′ + ϕ8
R,r′′′

)
− g3 cos

(
ϕ1

L,r + ϕ3
R,r′′ − ϕ5

L,r − ϕ7
R,r′′

)
− g4 cos

(
ϕ1

L,r + ϕ4
R,r′′′ + ϕ5

L,r + ϕ8
R,r′′′

)
. (12)

These terms all commute with each other, and hence each wire
bundle in the bulk is gapped at strong coupling.

Having seen that the bulk is gapped we can consider sur-
face boundaries normal to the x or y directions, as shown
in Fig. 4. On such boundaries there exist gapless fermionic
modes with vanishing chirality which can subsequently be
gapped by turning on a surface coupling. Finally, on the
hinges, e.g., the hinge at the intersection between the surfaces
with +x̂ and +ŷ normal vectors, the fermions χ1

L , χ3
R, χ4

R, χ5
L ,

χ7
R, and χ8

R are gapless. Hence, there are two stable chiral com-
plex fermion modes (equivalently four real Majorana modes)
at each hinge and this system represents a HOTSC.

The chiral hinge modes we described here are subject
to surface modifications and reconstruction. Importantly, the
number of Majorana hinge modes can be changed by adding
a 2D topological superconductor with Z2 subsystem symme-
try to the surface. In Appendix D, we show that the chiral
Majorana edge modes of a 2D topological superconductor
with Z2 subsystem symmetry come in multiples of 8. Hence,
the number of chiral Majorana hinge modes is therefore only
defined modulo 8 for a 3D Z2 subsystem symmetric insula-
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FIG. 4. (Left) Wire construction for the higher-order topological
superconductor with chiral hinge modes. (Right) The schematic of
chiral modes on the hinges of the system. For this construction, the
chiral central charge of the hinge mode is 2, i.e., it consists of four
chiral Majorana modes.

tor. Based on this, a single copy of the HOTSC, with four
Majorana hinge modes, is nontrivial, while two copies of the
HOTSC, with eight Majorana hinge modes, are trivial. The
HOTSC therefore has a Z2 classification. As a corollary, we
see that the chirality of the hinge modes can be flipped by
surface modifications.

B. Hinge anomaly

The same argument used in Sec. II C to show that the heli-
cal state of the HOSPT is anomalous can be adapted to show
that the chiral hinge state of the HOTSC is also anomalous.
Here, we take a gapped side surface on the xz plane with two
sets of c = 2 chiral edges states along z. Since the Z2 fermion
parity is conserved on each row parallel to z at fixed (x, y), the
two hinges have independent fermion parity charges denoted
as ZL

2 and ZR
2 . As a whole, the counterpropagating hinge

modes from the left and right parts of the xz-plane side surface
resemble the edge physics of four copies of a 2D p ± ip SC
where the left-moving modes and right-moving modes have
different Z2 charges [55].1 Such a surface theory contains a
global Z2 anomaly, so the corresponding side surface cannot
be realized in a pure 2D subsystem-symmetric system. In
Appendix D, we provide a detailed argument to demonstrate
that 2D superconductors with subsystem Z2 symmetry must
carry a minimum of eight chiral Majorana edge modes, i.e.,
a central charge of c = 4, which is twice the amount on the
hinges of this 3D HOTSC.

C. Comparison to U(1) subsystem symmetry

When considering the HOSPT in Sec. II B, we noted that
U(1) subsystem symmetries acted on the set of fermions ψ̃↑ in
the same manner as global Uc(1)×Us(1) symmetry acting on
the edge of a 2D QSH SPT. The classification of such 2D QSH
SPTs is Z, and because of this, it was necessary to include
a second quartet of fermions with the opposite topological
index, i.e., the ψ̃↓ fermions, in order to fully gap the bulk.
Because the ψ̃↑ and ψ̃↓ fermions have opposite Z topological

1If we squash the side surface in the x direction, we end up with
an edge resembling four copies of a combined p + ip and p − ip
superconductor.

indices, this provides a simple way to argue that the hinge
modes of the HOSPT we constructed are helical.

Interestingly, for the HOTSC case, we find chiral modes
on the hinges instead of helical modes. To illustrate how this
occurs, we can adapt the previous argument to the case of
the HOTSC where we have an analogous set of fermions
χ̃a,r = (χ1

L,r, χ
2
L,r′ , χ

3
R,r′′ , χ

4
R,r′′′ ). Through a mechanism similar

as in Eqs. (7) and (8) in Sec. II B, this set of fermion modes
can be reduced to an O(4) NLSM with a WZW term. Here, the
Z2 subsystem symmetry actions on this NLSM precisely map
to the edge of a 2D bosonic SPT with Z2 × Z2 symmetry.
Crucially, such an SPT has a Z2 classification, hence, the
χ̃a,r fermions can be gapped if we just add an identical set
of fermions with the same Z2 classification. Such a set is
given by χ̃b,r = (χ5

L,r, χ
6
L,r′ , χ

7
R,r′′ , χ

8
R,r′′′ ). From this, we can

conclude that the bulk of the HOTSC can be consistently
gapped. (An alternative way to see the gapped bulk from a
topological defect perspective is provided in Appendix A.)
Furthermore, based on how the bundles χ̃a,r and χ̃b,r are
embedded in the 3D wire construction, we can also conclude
that the HOTSC will have four chiral Majorana modes on each
hinge.

We can also generalize this idea to systems with discrete
ZN subsystem symmetry. Let us start by considering a sys-
tem with ZN subsystem symmetry composed of 4N ′ complex
fermion wires per unit cell: 2N ′ right moving and 2N ′ left
moving. These wires can be combined into N ′ bundles of four
wires: two right moving and two left moving. Each bundle
with the ZN subsystem symmetry carries the same anomaly
as the edge of a bosonic SPT with ZN × ZN symmetry. The
classification of such SPTs is ZN , and so the N ′ bundles can
be symmetrically gapped only when N ′ is a multiple of N .
For N ′ = N , one can explicitly write the gapping term in the
bosonization language, and the resulting gapped system will
be nontrivial higher-order phase hosting N chiral complex
fermionic modes on each hinge.

IV. FRACTIONALIZED HIGHER-ORDER TOPOLOGICAL
INSULATOR

In this section we propose a fractional higher-order topo-
logical insulator (FHOTI) with helical hinge modes that are
protected by U(1) subsystem symmetry, and a global Z2

symmetry. These helical hinge modes have fractional charge
1/m = 1/(2n + 1), n ∈ Z, under the U(1) subsystem sym-
metries. As might be expected from the fractionalized hinge
modes, the FHOTI also has a topological ground-state de-
generacy. The ground-state degeneracy scales subextensively
with system size, similar to what is seen in fractonic phases of
matter [25]. The structure of the FHOTI is also similar to that
of cellular topological states [63–65].

A. Fermionic wire model

Similar to before, we construct the FHOTI using a coupled
wire formalism. For the FHOTI construction, the low-energy
degrees of freedom of the wires consist of eight spin-up
and eight spin-down 1D fermions, which we label as ψ i

R/L,σ

for i = 1 . . . 4. The ψ1
R,↑, ψ2

R,↑, ψ3
R,↓, and ψ4

R,↓ fermions
correspond to excitations near lattice momentum kR + b/2.
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Similarly, ψ1
L,↑, ψ2

L,↑, ψ3
L,↓, and ψ4

L,↓ are excitations near mo-
mentum kL + b/2, ψ1

R,↓, ψ2
R,↓, ψ3

R,↑, and ψ4
R,↑ are excitations

near momentum kR − b/2, and ψ1
L,↓, ψ2

L,↓, ψ3
L,↑, and ψ4

L,↑
are excitations near momentum kL − b/2. The constant b is
defined to satisfy b = m(kR − kL ) with m = 2n + 1 (n ∈ Z).

The Hamiltonian for the FHOTI is given by

HFHOTI =
∑

r

�†
r i∂zτ

00z0�r + Hintra + Hinter,

Hintra =
∑

r

J1O1†
R,↑,rO3

L,↑,r + J2O2†
R,↑,rO4

L,↑,r

+ J3O1†
L,↓,rO4

R,↓,r + J4O2†
L,↓,rO3

R,↓,r,

Hinter =
∑

r

V1O1†
L,↑,rO

2†
L,↑,r′O3

R,↑,r′′O4
R,↑,r′′′

+V2O1†
R,↓,rO

2†
R,↓,r′O3

L,↓,r′′O4
L,↓,r′′′

+V3O1†
L,↑,rO3

R,↑,r′′O1
R,↑,rO3†

L,↑,r′′

+V4O1†
L,↑,rO

4†
R,↑,r′′′O1

R,↓,rO4†
L,↓,r′′′ ,

Oi
R/L,σ,r = (ψ i†

L/R,σ,rψ
i
R/L,σ,r)nψ i

R/L,σ,r, (13)

where � = (ψ1
R,↑ . . . ψ4

R,↑, ψ1
L,↑ . . . ψ4

L,↑, ψ1
R,↓ . . . ψ4

R,↓,
ψ1

L,↓ . . . ψ4
L,↓). Provided that b = m(kR − kL ) all interactions

in Eq. (13) carry vanishing momentum. Equation (13) has two
U(1) subsystem symmetries, which are defined analogously
to those in Eq. (11). There is also a global Z2 symmetry
that sends � → τ 000z�, and, similarly, Oi

R/L,↑ → Oi
R/L,↑ and

Oi
R/L,↓ → −Oi

R/L,↓.
To analyze the interacting Hamiltonian in Eq. (13) we

shall use bosonization, identifying ψ i
R/L,σ ∼ exp(∓iφi

R/L,σ ),
where the ∓ correlate with the R/L subscript. To simplify the
interactions, we define the following bosons:

φ̃i
Rσ = n + 1

m
φi

Rσ + n

m
φi

Lσ ,

φ̃i
Lσ = n + 1

m
φi

Lσ + n

m
φi

Rσ . (14)

These bosons satisfy the commutation relationships

[
φ̃i

R/Lσ (z), φ̃ j
R/Lσ ′ (z′)

] = ±π
1

m
δσ,σ ′δi jsgn(z − z′). (15)

These are exactly the commutation relationships of the surface
modes of a Laughlin quantum Hall state at filling 1/m. The
U(1) charge operator for the bosons is ρ = 1

2π

∑
i,σ ∂z[φ̃i

R,σ +
φ̃i

L,σ ], and the vertex operators exp(iφ̃i
R/Lσ ) carry charge

±1/m. In terms of these new bosonic fields Oi
R/L,σ,r ∼

exp(∓imφ̃i
R/Lσ ).

With this in mind, let us first consider the interactions in
Hintra:

Hintra =
∑

r

λ1 cos
(
m

[
φ̃1

R,↑,r + φ̃3
L,↑,r

])
+ λ2 cos

(
m

[
φ̃2

R,↑,r + φ̃4
L,↑,r

])
+ λ3 cos

(
m

[
φ̃1

L,↓,r + φ̃4
R,↓,r

])
+ λ4 cos

(
m

[
φ̃2

L,↓,r + φ̃3
R,↓,r

])
. (16)

When the λi couplings are large, the only gapless fields are
φ̃

1/2
L↑ , φ̃

1/2
R↓ , φ̃

3/4
R↑ , and φ̃

3/4
L↓ . The intrawire interactions therefore

turn each unit cell into four sets of helical modes, each with
charge 1/m. A single such unit cell can be described in the
K-matrix formalism, using the 8 × 8 matrix K = mτ 0zz, and
the eight-component charge vector t = (1, . . . , 1) [66].

Let us now consider the interwire interactions Hinter. In
terms of the bosonic fields from Eq. (14) the interactions in
Hinter are

Hinter = g1 cos
(
m

[
φ̃1

↑L,r + φ̃2
↑L,r′ + φ̃3

↑R,r′′ + φ̃4
↑R,r′′′

])
+ g2 cos

(
m

[
φ̃1

↓R,r + φ̃2
↓R,r′ + φ̃3

↓L,r′′ + φ̃4
↓L,r′′′

])
+ g3 cos

(
m

[
φ̃1

↑L,r + φ̃3
↑R,r′′ − φ̃1

↓R,r − φ̃3
↓L,r′′

])
+ g4 cos

(
m

[
φ̃1

↑L,r + φ̃4
↑R,r′′′ − φ̃1

↓R,r − φ̃4
↓L,r′′′

])
.

(17)

When the gi couplings are large, the bulk bosonic modes are
gapped out, and there are gapless hinge degrees of freedom.
As noted before, these helical modes have charge 1/m. In gen-
eral, these interactions can be made relevant by tuning various
symmetry-preserving scattering terms in Eq. (13). We have
therefore constructed a fully gapped HOTI with fractionalized
symmetry-protected hinge modes. It should be noted that the
FHOTI reduces to the HOTI of Sec. II when m = 1 (n = 0).
Also, this construction can be generalized to produce other
FHOTIs where the helical hinge modes have odd denominator
rational charges.

B. Boundary anomaly

Similar to the HOSPT of Sec. II, the FHOTI presented here
has a mixed anomaly between the U(1) subsystem symme-
tries, and the global Z2 symmetry. For the FHOTI, inserting
a 2π flux changes the Z2 charge localized at a hinge by 1/m.
To show this, we use the following effective 1D Lagrangian to
describe the fractionalized hinge mode of the FHOTI:

LFHOTI-hinge = m

4π
∂t φ̃

T
τ z∂zφ̃ − 1

4π
∂zφ̃

T
V ∂zφ̃

− 1

2π
εμνt · φ̃∂μAν, (18)

where φ̃ = (φ̃R,↑, φ̃L,↓) is a two-component boson that en-
codes the fractionalized hinge mode, t = (1, 1) is the charge
vector, and V is a 2 × 2 velocity matrix. We have also gauged
the U(1) subsystem symmetry and coupled the hinge to the
U(1) gauge field Aμ (μ = t, z). The Z2 global symmetry acts
via φ̃ → φ̃ + πα, where α = (0, 1/m) and the Z2 charge and
current densities are jt

Z2
= m

2π
αT τ z∂zφ̃ and jz

Z2
= 1

2π
αT V ∂zφ̃.

For m = 1 this theory describes the nonfractionalized helical
hinge mode of the HOSPT.

Using the equations of motion from Eq. (18), we find the
following anomalous conservation equation for the Z2 charge
and current:

∂μ jμZ2
= 1

2π
α · tεμν∂μAν . (19)

Hence, if we insert a 2π U(1) flux, the Z2 charge increases by
α · t = 1/m. As before, for m = 1, we find that inserting 2π

flux increases the Z2 charge by 1. For m > 1, the change in
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Z2 charge is fractional, which reflects the fractionalization of
the microscopic fermions.

Clearly, Eq. (19) indicates that the hinge mode of the
FHOTI cannot occur in a symmetric 1D system. Additionally,
using similar augments to those given in Sec. II C, the FHOTI
hinge mode can also not be realized as the edge mode of a
subsystem-symmetric 2D system. In short, let us consider a
such a subsystem-symmetric 2D insulator with an edge mode
with the same anomaly as in Eq. (19). Due to subsystem
symmetry, we can consider threading a 2π U(1) flux only
along the edge of this system. Based on Eq. (19), the Z2

charge of the edge would increase during this process. Since
the flux is only threaded at the edge of the system, this process
would necessarily increase the Z2 charge of the full 2D system
as well, indicating that it is anomalous. We therefore conclude
that the FHOTI hinge modes are anomalous and cannot be
realized at the edge of a purely 2D system with the same
symmetries.

C. Ground-state degeneracy

As one would expect, the FHOTI has topological ground-
state degeneracy when defined on a lattice with periodic
boundary conditions. Specifically, for a Lx × Ly × Lz lattice,
there are m2Lx+2Ly−2 ground states. This linear scaling of
ground-state degeneracy is similar to what is seen in fractonic
phases of matter [26]. The ground-state degeneracy is derived
in Appendix E using methodology similar to that of Ref. [67].

It is worth remarking that each of the eight cosine terms
in Eqs. (16) and (17) has m possible minima, which would
naively lead to m8LxLy degenerate ground states. However, we
also need to take into account that the bosons φi

R/Lσ are com-
pact (φi

R/Lσ ≡ φi
R/Lσ + 2π ). So the bosons defined in Eq. (14)

satisfy (φ̃i
Rσ , φ̃i

Rσ ) ≡ (φ̃i
Rσ + π/m, φ̃i

Rσ − π/m) for each spin
and flavor index i. Taking this into account, the number of
degenerate ground states is reduced to m2Lx+2Ly−2 as shown in
Appendix E.

V. CONCLUSION AND OUTLOOK

In this work, we presented and analyzed three different
microscopic models of subsystem-symmetric HOSPTs with
gapless hinge modes. We have showed these systems display
a number of unique properties, primarily arising from sub-
system symmetry. First, the subsystem-symmetric HOSPTs
are necessarily interacting, and cannot be realized in nonin-
teracting systems. Second, the hinge modes of these models
are protected by a combination of subsystem and global sym-
metries, and are stable without spatial symmetries. To our
knowledge, the models we constructed here represent the
first microscopic models of chiral HOSPTs that are stable in
the absence of any spatial symmetries. Third, the 1D modes
that are localized at the hinges of the subsystem-symmetric
HOSPTs are anomalous and hence cannot appear in any
purely 1D system, or as the edges of any purely 2D system. In
particular, it is not possible to realize these 1D modes at the
edges of a subsystem-symmetric 2D system.

This work also raises a number of interesting questions. (1)
Is it possible to construct a model where the hinge modes have
central charge c = 1

2 (i.e., a single chiral Majorana fermion)

or c = 1 (i.e., a single chiral complex fermion)? In this work,
we have presented models with helical hinge modes (central
charge c = 0), a model with four chiral Majorana hinge modes
(c = 2), and it remains to be seen if there is any obstruction to
realizing HOSPTs with lower central charges. (2) Are there
any HOSPTs which are stabilized only by U(1) subsystem
symmetries? The examples presented here require either a
global symmetry, or a Z2 subsystem symmetry. (3) What
subsystem-symmetric HOSPTs can be constructed from mi-
croscopic bosons? All the models in this paper are constructed
out of microscopic fermions (although we used bosonization
to describe the low-energy physics in terms of bosons). It is
therefore natural to ask what subsystem-symmetric bosonic
HOSPTs are possible, and if these bosonic HOSPTs are fun-
damentally different from the fermionic ones.

It is also worth considering possible topological field-
theory descriptions of these systems. These would likely
be related to the dipolar Chern-Simons theory presented in
Ref. [9]. However, the dipolar Chern-Simons theory describes
a system with U(1) subsystem symmetry, c = 1 hinge modes,
and additional gapless surface modes. The models in this
work all have gapped boundaries, and either helical hinge
modes or Z2 subsystem symmetry. It seems likely that a
multicomponent version of the dipolar Chern-Simons theory
could describe the helical HOTI, and a Higgsed version of the
dipolar Chern-Simons theory could describe the HOTSC, but
we leave further discussion to future work.
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APPENDIX A: DEFECT PROLIFERATION

In this Appendix, we provide an alternative perspective of a
Z2 subsystem-symmetric topological superconductor in terms
of topological defects. Essentially, we want to argue that the
set of modes χ̃a,r and χ̃b,r defined in Sec. III C are gappable
by turning on symmetric interactions. Let us decompose the
two quartets of complex fermions from χ̃a,r and χ̃b,r into 16
Majorana fermions, which we label as γr = (γ1,r . . . γ16,r). For
a given r, the Hamiltonian for γ can be written as (leaving the
fixed r implicit)

Hm = γ T (i∂zτ
z000)γ . (A1)

Linear combinations of the Z2 subsystem symmetry on this
set of wires give us three independent Z2 symmetries whose
actions are as follows:,

Zxz−γ

2 : γ → −τ zz00γ ,

Zyz−γ

2 : γ → −τ 0z00γ ,

Ztotal−γ

2 : γ → −γ . (A2)

We will first consider gapping out the system by a Zxz−γ

2
symmetry-breaking mass term mγ T τ y000γ . Then we will try
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to restore the symmetry phase by considering dynamical fluc-
tuations of this mass term. This transition to a disordered
phase can be viewed as a condensation of topological defects
of the Z2 order parameter, namely, the domain walls. To
ensure a gapped symmetric phase after the condensation, the
topological defect must not carry any nontrivial zero modes
or quantum numbers. If such a trivial defect exists, then it is
possible to achieve the symmetric gapped bulk state that is
desired.

Let us examine the domain wall of this Zxz−γ

2 -breaking
mass term. It turns out that such a domain wall carries
eight Majorana zero modes. We can label them by γ̃l , l =
1, 2, . . . , 8. The Zyz−γ

2 symmetry acts on these modes as
Zyz−γ̃

2 : γ̃ → τ z00γ̃ . Our task is to find a symmetric four-
fermion interaction (two-fermion interactions will violate the
subsystem symmetry since our fermions are spread across
multiple unit cells) that can gap out the domain wall zero
modes and leave a nondegenerate ground state. Let us com-
pose the Majorana zero modes into complex fermions: fi =
γ̃i − iγ̃i+4. In terms of the f fermions, the Zyz−γ

2 action is
Zyz− f

2 : fi → f †
i , similar to a particle-hole transformation.

Now we can consider a four-fermion interaction:

Hint = V ( f1 f2 f3 f4 + H.c.). (A3)

This term is invariant under the Z2 subsystem symmetries. In
addition, it selects a single ground state in the Hilbert space of
the eight zero modes. It is easy to check that the ground state is
|ψ〉 ∼ (1 + f †

1 f †
2 f †

3 f †
4 )|0〉, where |0〉 is the empty state for the

f fermions. Under the Zyz− f
2 symmetry, |0〉 → f †

1 f †
2 f †

3 f †
4 |0〉.

Therefore, |ψ〉 is invariant under this symmetry.
Since we are able to find a trivial topological defect by turn-

ing on symmetric interactions, we can achieve a symmetric
gapped bulk by proliferating the topological defects.

APPENDIX B: A CHIRAL MODEL WITH C− = 1: ZX
3 × ZY

3

SUBSYSTEM SYMMETRY

1. Gapped bulk

The construction in the main text gives hinge modes with
chiral central charge c− = N � 2. In order to get smaller
chiral central charge, we need to modify our construction.
Let us consider a system with Zx

3 × Zy
3 subsystem symmetry.

To generate the hinge central charge we want, we need to
carefully choose the charge and chirality assignments on the
wires. For example, let us consider the structure that is shown
in Fig. 5 where we make three copies of each bundle of wires.
For the first copy, all the wires carry subsystem x charge 2, and
subsystem y charge 1. We can conveniently label this copy as
(2,1). For the second copy, labeled by (1,2), all the wires carry
y charge 2 and x charge 1. Finally, the third copy has x charge
1 and y charge 1; however, the chirality of the third copy is
reversed. Therefore, we label the third copy as (1, 1).

For each wire bundle, there are four fermion modes at the
intersection between four neighboring unit cells, labeled as
1,2,3,4 in Fig. 5. We can bosonize these four modes with
bosonic variables φi, i = 1, 2, 3, 4. The K matrix of these

FIG. 5. Three copies of the building block. For the first copy, the
wires all have x charge 2, y charge 1. The second copy has x charge
1, y charge 2. The third copy has unit charge on x and y directions.
However, the chirality of the third copy is reversed.

four modes is

K =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠. (B1)

The charge vectors associated with the subsystem symmetries
are given by

tX1 =

⎛
⎜⎝

2
0
0
2

⎞
⎟⎠, tX2 =

⎛
⎜⎝

0
2
2
0

⎞
⎟⎠, tY1 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠, tY2 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠. (B2)

For a single bundle, it is actually not possible to gap all the
modes without breaking any symmetry. The reason is similar
to the U(1)xz×U(1)yz case: the four fermion modes with these
symmetry actions map precisely to the boundary of a (2+1)D
SPT. However, it is possible to reduce the four fermion modes
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down to two bosonic modes by a four-fermion interaction

g0 cos(φ1 + φ2 − φ3 − φ4). (B3)

The two bosonic modes that are left are given by the following
vectors:

l1 =

⎛
⎜⎝

1
0

−1
0

⎞
⎟⎠, l2 =

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠. (B4)

Projecting the K matrix into these two modes, we get an
effective K matrix:

Keff =
(

0 1
1 0

)
, (B5)

and effective charge vectors are given by

tX1 = −tX2 =
(

2
0

)
, tY2 = −tY1 =

(
0
1

)
. (B6)

To proceed, for each of our three wire bundle copies we
first turn on the above interactions which reduce all of the
fermionic modes to a total of six bosonic modes. The three
copies together are described by the following effective K
matrix:

K (3)
eff =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ ⊗ (

0 1
1 0

)
, (B7)

with charge vector

tX1 = −tX2 =

⎛
⎜⎜⎜⎜⎜⎝

2
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎠, tY2 = −tY1 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
2
0
1

⎞
⎟⎟⎟⎟⎟⎠. (B8)

Within this set of modes, we can find three symmetric
interaction terms that are bosonic, linearly independent, and
mutually commuting so that we can gap out all the modes
without spontaneous symmetry breaking. The explicit inter-
actions are of the form of

∑3
i=1 gi cos(LT

i φ) where

LT
1 = (1, 0, 0, 0, 1, 0);

LT
2 = (0, 0,−1, 0, 1, 0);

LT
3 = (0, 1, 0,−1, 0, 1). (B9)

It is easy to verify that if any operator of the form eiLT φ com-
mutes with the above interactions, then L must be an integral
linear combination of L1, L2, and L3, which means there is no
gapless mode left in the regime where these interactions are
strong.

Beyond the technical considerations, we can provide in-
tuition for why our bundle charges and such interactions can
lead to a gapped bulk. This is again due to the Z3 classification
of BSPTs with Z3 × Z3 symmetry. Let us label these BSPTs
by an integer index ν, which is well defined only mod 3.
The low-energy bosonic modes in the (2,1), (1,2), and (1, 1)
sectors are equivalent to the edge modes of BSPTs having
topological index 2, 2, and −1, respectively. So the total

FIG. 6. The hinge modes from construction in Fig. 5 are NOT
equivalent to a single chiral fermion with susbystem x charge 1 and
subsystem y charge 1.

index is ν = 2 + 2 − 1 = 3 = 0 mod 3, i.e., it is trivial, which
implies that the modes are anomaly free and gappable.

2. Hinge state

From Fig. 5, we observe that the hinge has three modes,
two left moving and one right moving, and with an interesting
charge assignment, summarized in Fig. 6. This set of modes
indeed has total chiral central charge c− = 1. Unfortunately,
these modes are NOT equivalent to a single chiral mode from
an anomaly point of view as shown in Fig. 6. The single
chiral mode shown on the right of Fig. 6 has a mixed anomaly
between x symmetry and y symmetry, the mixed anomaly
index is kxy = Qx × Qy = 1 × 1 = 1 mod 3. However, this
anomaly is not matched by the left side of Fig. 6, whose index
is k′

xy = 2 × 1 + 1 × 2 − 1 × 1 = 0 mod 3.
Actually, within this construction, it is not possible to real-

ize a hinge mode that is equivalent to a single chiral fermion
mode because the gapping condition of the bulk is equivalent
to the vanishing condition of the mixed anomaly between the
x symmetry and y symmetry.

APPENDIX C: ANOTHER CHIRAL MODEL WITH C− = 1:
ZX

2 × ZY
3 SUBSYSTEM SYMMETRY

Next we can consider the case of subsystem symmetry
of Zx

2 × Zy
3; this notation means that the subsystem symme-

try along the xz plane is Z2 and the susbsystem symmetry
along the yz plane is Z3. Interestingly, the classification of
(2+1)D bosonic SPTs having Z2 × Z3 symmetry is trivial.
This implies that, if we just take a single wire bundle as
in the upper panel of Fig. 7 and consider the symmetry to
be Zx

2 × Zy
3, we should be able to gap out the bulk without

breaking the symmetries. However, it is not the case here, as
we cannot find symmetric terms that gap out the modes for
the bundle in the upper panel of Fig. 7 without spontaneously
breaking the symmetries. In other words, within the single
bundle we cannot construct a trivial gapped bulk even if we
break the symmetry down to Zx

2 × Zy
3. This is actually not in

contradiction to the classification of (2+1)D SPTs. The reason
is that the classification of (2+1)D SPTs only gives stable
equivalence of the edge theory [68]. Hence, we expect that
the modes of a single building block, although anomaly free,
in this case can only be trivialized by mixing with additional
trivial modes.

Nonetheless, we can design an alternative model to ac-
complish our goal. The alternative model in the notation
introduced above is two have three blocks with charge
assignments (1, 1) ⊕ (1, 1) ⊕ (1, 1) shown in Fig. 7. For
this construction, we can find the appropriate term to
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FIG. 7. Three copies of the building block. For the first two
copies, the wires all have x charge 1, y charge 1. The third copy has
unit charge on x and y directions as well, however, the chirality of the
whole system is reversed.

symmetrically gap out the bulk, and on the hinge, we can
realize a single chiral fermion mode.

Explicitly, within each bundle, we turn on the interaction in
Eq. (B3) to reduce the four fermionic modes into two bosonic
modes. The effective K matrix is the same as in Eq. (B7).
However, the charge vectors are different and given by

tX1 = −tX2 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎠, tY2 = −tY2 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎠. (C1)

We have to bear in mind that the x charges are defined mod 2
and y charges are defined mod 3. With these constraints, we
can find three interaction terms that can gap out all the modes.
The L vectors corresponding to the three terms are given by

LT
1 = (1, 0,−1, 0, 0, 0);

LT
2 = (1, 0, 0, 0, 1, 0);

LT
3 = (0, 1, 0, 1, 0, 1). (C2)

As discussed in the previous Appendix, these L vectors gen-
erate cosine interactions, and for our choice of L vectors,

FIG. 8. The hinge modes from construction in Fig. 7. We can
safely gap out a pair of counterpropagating modes with same sym-
metry charges and arrive a hinge mode which only contain a single
chiral fermion.

the interactions will leave the bulk symmetric, gapped, and
nondegenerate.

The hinge modes for this model are very simple, as shown
in Fig. 8. Indeed, for this model, we can realize a single chiral
fermionic mode on the hinge by turning on a intra-unit-cell
tunneling to gap out a pair of helical modes.

An interesting question is what is the classification of the
HOSPT that we just constructed. We argue that the classifica-
tion should be Z2. Namely, for two copies of the HOSPT, it
is possible to gap out the hinge modes by attaching subsystem
symmetric 2D layers on the surface. To see this, let us first
consider the surface that is normal to the x direction. On
such a surface, the subsystem Z2 symmetry implies that for
each unit cell along the z direction, the fermion parity is
separately conserved. The subsystem Z3 symmetry becomes
a global Z3 symmetry of the entire surface layer. A pure
2D system with such a symmetry assignment will always
have chiral central charge c = 4N, N ∈ Z, on its boundary
along the z direction (see the next section for an argument).
This indicates that, if we have four copies of the constructed
HOSPT, the hinge modes can be gapped out by attaching a
pure 2D subsystem-symmetric surface state and turning on
symmetric tunneling terms. Therefore, the classification of
the HOTSC state is at most Z4. Now let us consider the yz
surface. The subsystem Z3 symmetry becomes a subsystem
Z3 symmetry for the surface, namely, each unit cell along z
direction has an individual Z3 symmetry. The subsystem Z2

symmetry becomes the fermion parity for the entire surface.
Running a similar argument as the next section, we find that
a pure 2D system with such subsystem symmetry assignment
requires the boundary central charge to be c = 6M, M ∈ Z.
Therefore, for six copies of the HOTSC, the hinge modes can
be gapped out by attaching a pure 2D system on the yz surface.
Combining the information from both the xz and yz surfaces,
the classification of the HOTSC is Z2.

APPENDIX D: 2D TOPOLOGICAL SUPERCONDUCTOR
PROTECTED BY SUBSYSTEM SYMMETRY

In this Appendix, we will consider a 2D topological
superconductor (TSC) protected by subsystem symmetry
where the fermion parity charge is conserved on all vertical
rows (parallel to the y direction). We will show that these
subsystem-symmetric TSCs must have 8N chiral Majorana
edge modes, i.e., they have an edge chiral central charge of
c = 4N . We will do this in two steps. First, we explicitly
construct a subsystem-symmetric TSC with eight Ma-
jorana edge modes. Second, we will argue that any
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FIG. 9. Coupled wire construction of a 2D TSC. Each blue block
is a unit cell. The fermion parity of each unit cell is individually
conserved.

subsystem-symmetric TSC where the Majorana edge modes
do not come in multiples of 8 is inconsistent.

We will build a subsystem-symmetric TSC via the coupled
wire construction. As shown in Fig. 9 we couple 1D wires
along the vertical direction that each contain eight helical
Majorana modes. Our aim is to couple the wires in a way
that preserves the subsystem fermion parity symmetry, and
gaps out the bulk while leaving chiral Majorana modes on
the edges. To that end, we couple the eight left-moving chi-
ral Majoranas from ith wire to the eight right-moving chiral
Majoranas at the adjacent (i + 1)th wire. The fermion parity
is conserved on each vertical row, therefore, single-particle
interwire tunnelings are forbidden. Instead, the symmetry re-
quires inter-wire tunneling in terms of Majorana pairs. Hence,
we couple the wires via a quartet Majorana interaction that
preserves subsystem fermion parity symmetry (denoted by the
red shading in Fig. 9).

Explicitly, each coupled wire unit contains eight helical
Majorana modes:

H = ηT (kzσ
300)η, (D1)

Zi
2 : η → −σ 300η,

Zi+1
2 : η → σ 300η, (D2)

where the eight left- and right-moving modes carry inde-
pendent fermion parity symmetries Zi

2 and Zi+1
2 . The eight

copies of helical Majorana modes and the symmetry action
above precisely map to the edge of eight copies of a bilayer
consisting of one p + ip and one p − ip superconductor with
individual fermion parity for the ± layers. The interacting
classification for p ± ip with individual fermion parities for
the two chiralities is Z8, which means the system defined
in Eq. (D2) is anomaly free. Indeed, we can just adapt the
method we discussed in Sec. III and add the four-fermion
interaction term as in Eq. (10) to gap out the coupled he-

lical wires in the bulk. The resultant state has a symmetric
gapped bulk, and gapless edge modes that contain eight chiral
Majoranas whose total central charge is c = 4. Such a subsys-
tem symmetry-protected TSC has a Z classification since the
boundary state is chiral and exhibits a gravitational anomaly.
Notably, the central charge for this class of 2D TSCs has to be
an integer of four, namely, c = 4Z, otherwise it is not possible
to construct a gapped bulk.

Having shown that there exist 2D subsystem-symmetric
TSC with 8N Majorana edge modes, we will now show that
a subsystem-symmetric TSC with any other number of Ma-
jorana edge modes is inconsistent. To do this, let us consider
a subsystem-symmetric TSC with N ′ Majorana edge modes
where N ′ is not a multiple of 8. We can imagine cutting such
a system between two vertical rows. This will lead to two
edges, one with N ′ right-moving Majorana modes and one
with N ′ left-moving modes. Due to the subsystem symme-
try, the parity of each edge is separately conserved. We can
now consider reversing the cutting procedure to symmetrically
glue the edges back together. This will involve gapping out
the N ′ right-moving and N ′ left-moving Majorana fermions,
while preserving the parity of both the left and right movers
separately. However, it has been shown that such a gapping
procedure is possible only when N ′ is a multiple of 8 [69,70].
Hence, we can conclude that a subsystem-symmetric TSC
must necessarily have 8N chiral Majorana edge modes.

APPENDIX E: GROUND-STATE DEGENERACY
OF THE FHOTI

In the main text, the FHOTI was defined in terms of the
bosons:

φ̃i
Rσ = n + 1

m
φi

Rσ + n

m
φi

Lσ ,

φ̃i
Lσ = n + 1

m
φi

Lσ + n

m
φi

Rσ ,

(E1)

where φi
Rσ are compact bosons satisfying φi

R/Lσ ≡ φi
R/Lσ +

2π for each chirality, spin, and flavor index i. This indicates
that the bosonic fields in Eq. (E1) satisfy (φ̃i

Rσ , φ̃i
Rσ ) ≡ (φ̃i

Rσ +
π/m, φ̃i

Rσ − π/m).
To determine the ground-state degeneracy of the FHOTI,

we need to determine operators that commute with the in-
teractions in Eqs. (16) and (17), and are invariant under the
equivalence relationships of the compact bosons in Eq. (E1).
These constraints are satisfied by the following operators:

Gx1
(
n0

x

) = exp

⎛
⎝i

∑
ny

[φ̃1
↓,r + φ̃4

↓,r + φ̃2
↓,r′′′ + φ̃3

↓,r′′′ ]

⎞
⎠,

Gx2
(
n0

x

) = exp

⎛
⎝i

∑
ny

∑
i

[φ̃i
↑,r − φ̃i

↓,r]

⎞
⎠,

Gy1
(
n0

y

) = exp

(
i
∑

nx

[φ̃1
↑,r + φ̃3

↑,r + φ̃2
↑,r′′′ + φ̃4

↑,r′′′ ]

)
,

Gy2
(
n0

y

) = exp

⎛
⎝i

∑
ny

∑
i

[φ̃i
↑,r − φ̃i

↓,r]

⎞
⎠, (E2)
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where φ̃i
σ,r = φ̃i

Rσ,r + φ̃i
Lσ,r. For Gx1(n0

x ) and Gx2(n0
x ) the co-

ordinate r = (n0
x x̂, nyx̂), and for Gy1(n0

y ) and Gy2(n0
y ) the

coordinate r = (nxx̂, n0
y x̂). These four operators all commute

with the interactions in Eqs. (16) and (17), and are in-
variant under the equivalence relationship of the bosons in
Eq. (E1) (which leaves φ̃i

σ invariant). Clearly, these opera-
tors are nonlocal, and scale linearly with the length of the
system.

Based on the interactions in Eqs. (16) and (17) these opera-
tors all take values exp(i2πm′/m) for integer m′, 0 � m′ < m.

These operators are not all unique, as

∏
n0

x

Gx2
(
n0

x

) =
∏
n0

y

Gy2
(
n0

y

) =
∏
n0

x ,n
0
y

Gx1
(
n0

x

)
Gy1

(
n0

y

)
. (E3)

Hence, for a system size Lx × Ly × Lz, there are 2Lx + 2Ly −
2 unique operators that commute with the interactions, and
are invariant under the boson equivalence relationships. Since
each of these operators can take on m different values, there
are a total of m2Lx+2Ly−2 different ground states.
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