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In solid state physics, the electron-phonon interaction (EPI) is central to many phenomena. The theory of the
renormalization of electronic properties due to EPIs became well established with the theory of Allen-Heine-
Cardona (AHC), which is usually applied to second order in perturbation theory. However, this is only valid
in the weak coupling regime, while strong EPIs have been reported in many materials. As a result, and with
AHC becoming more established through density-functional perturbation theory, some nonperturbative (NP)
methods have started to arise in the last years. However, they are usually not well justified and it is not clear
to what degree they reproduce the exact theory. To address this issue, we present a stochastic approach for the
evaluation of the nonperturbative interacting Green’s function in the adiabatic limit, and show it is equivalent
to the Feynman expansion to all orders in the perturbation. Also, by defining a self-energy, we can reduce the
effect of broadening needed in numerical calculations, improving convergence in the supercell size. In addition,
we clarify whether it is better to average the Green’s function or self-energy. Then we apply the method to a
graphene tight-binding model, and we obtain several interesting results: (i) The Debye-Waller term, which is
normally neglected, does affect the change of the Fermi velocity v, and should be included to obtain accurate
results. (i) Although at room temperature second-order perturbation theory (P2) agrees well with the NP change
of v and of the self-energy close to the Dirac point, at high temperatures there are significant differences.
For other k points, the disagreement between the P2 and NP self-energies is visible even at low temperatures,
raising the question of how well P2 works in other materials. (iii) Close enough to the Dirac point, positive-
and negative-energy peaks merge, giving rise to a single peak. (iv) At strong coupling and high temperatures, a
peak appears at w = 0O for several states, which is consistent with previous works on disorder and localization
in graphene. (v) The spectral function becomes more asymmetric at stronger coupling and higher temperatures.
Finally, we show that the method has better convergence properties when the coupling is strong relative to when

it is weak, and discuss other technical aspects.

DOLI: 10.1103/PhysRevB.105.245120

I. INTRODUCTION

The electron-phonon interaction (EPI) is a fundamental as-
pect of condensed matter physics. It determines the electrical
conductivity in metals and the mobility in doped semiconduc-
tors. It drives the temperature dependence of the electronic
bands, and thus of the band gap in semiconductors, and it also
distorts phonon dispersions through kinks and Kohn anoma-
lies. It also leads to conventional superconductivity, among
other important physical phenomena [1].

EPIs are usually studied using lowest-order perturbation
theory, following the Allen-Heine-Cardona (AHC) approach
[2—4], which is valid when the coupling is weak. However,
strong EPIs have been measured in the last decades in per-
ovskites [5-7], numerous two-dimensional (2D) materials
[8,9], interfaces [10], and quantum dots [11]. Furthermore, it
is ubiquitous in high-temperature superconductors [12], and
it has even been reported in graphite [13] and twisted bilayer
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graphene [14]. Thus, it plays a fundamental role in some of the
most important systems currently studied in condensed matter
physics.

In such systems, higher-order terms are needed, but they
tend to pose serious numerical challenges (namely, additional
dense integrations and larger electron-phonon matrices). For
example, using the standard perturbative approach, Ref. [15]
has calculated some fourth-order Feynman diagrams in GaAs,
and obtained that scattering rates are as large as half the usual
second-order Fan value (so even higher-order terms might be
needed for precise results). However, not all diagrams are
included, and the cost of the fourth-order diagrams is 10*~10°
higher than the lowest-order ones [15]. There are a few first-
principles implementations of AHC [16,17] which calculate
electron-phonon matrix elements via density-functional per-
turbation theory (DFPT) [16,18], and some works have started
to look further into nonperturbative methods.

A common nonperturbative approach consists of simu-
lating an instantaneous snapshot of a system at a given
temperature, including quantum fluctuations at 7 = 0 (zero-
point motion), in which the atoms are displaced from their
equilibrium positions; calculating the desired quantity in each
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of these configurations; and then averaging. In this approach,
the phonons are introduced as static classical effective exter-
nal parameters, rather than as a quantum dynamical particle of
the system. In principle, however, both electrons and phonons
should be internal quantum mechanical degrees of freedom
in an exact description. It is not properly emphasized in the
literature that, although this averaging approach is intuitive, it
remains an uncontrolled approximation. The relation to the
fully quantized theory should be adequately established, to
understand its advantages and possible shortcomings.

Reference [19] considered distorted configurations and
recovered AHC, but limited the analysis to the electronic
energies (as opposed to studying the spectral function) and
to lowest order. In Ref. [20] the authors use a stochastic ap-
proach to calculate the dielectric function as we just described
(averaging over an ensemble). Then, the same authors in
Ref. [21], by looking at the form of the result, showed that the
shift of the electronic energy (in the weak coupling regime)
corresponds to AHC. For the electronic lifetime, however, the
expression is similar, but not the same as the standard result,
which is attributed to the semiclassical rather than adiabatic
expression of the dielectric function being used. It would thus
be desirable to calculate an observable which is exact in the
adiabatic limit of the fully quantized theory. Reference [21]
also proposed a particular distorted configuration to reduce
the number of configurations needed to achieve convergence.
However, we will show that in order to use Wick’s theorem
and recover Feynman diagrams beyond second order in our
approach, a Gaussian distribution is required. Other works
have focused on the bandstructue [22,23] or the spectral func-
tion [24-27]. Allen et al. [26] rigorously show how to unfold
states defined in the supercell (SC) to states defined in the
primitive cell (PC), and write an expression for the spectral
function in terms of distorted SC states (see Ref. [26] for
additional references and a more detailed discussion related
to unfolding). Although the starting point is defined in terms
of a Green’s function, no further elements of Green’s function
theory are used, and no connection to AHC is established. An-
other nonperturbative approach is that of Ref. [28], which uses
a path-integral quantum Monte Carlo approach to determine
the band gap, but there is no link to AHC either.

To address these issues, we develop a nonperturbative
Green’s function method and rigorously show how it relates
to the standard expansion in terms of Feynman diagrams. Our
method involves averaging a Green’s function over configu-
ration and defining a self-energy in the PC that is momentum
dependent. It turns out to be the same type of method used to
study impurity scattering as described in Mahan [29], which
also involves a diagrammatic expansion, and similar meth-
ods are used to study properties in disordered systems such
as amorphous semiconductors and alloys. For example, the
coherent potential approximation (CPA) averages the Green’s
function and defines an effective self-energy for the medium.
There are many references on Green’s functions methods to
study disordered crystals, such as the review article of Elliott
et al. [30] or the book by Economou [31]. Our goal here, how-
ever, is to study the effect of phonons in otherwise periodic
systems, rather than disorder.

In the first part of this paper, we describe how to define
the Green’s function and self-energy (Sec. II A). Then we

show that to lowest order the self-energy coincides with the
Debye-Waller (DW) and Fan terms of AHC in the adia-
batic limit (Sec. II B). Subsequently, we look at higher-order
terms, show that they can be represented diagrammatically,
and see that such diagrams have the same shape as those
of the exact theory (Sec. II C). In Sec. II D, we show that
the expressions of the equivalent diagrams (of our theory
and of the Feynman expansion) are exactly the same in the
adiabatic limit, completing the proof. In Sec. IIl, thanks to
the introduction of the self-energy, we can modify the usual
approach of Sec. II A, and obtain a spectral function with
reduced error in the broadening parameter needed in numer-
ical calculations. Then, in Sec. IV, we apply the method to a
tight-binding graphene model. First, we present the spectral
function for several couplings and temperatures, including the
strong coupling regime, where bands merge and a nonper-
turbative method becomes indispensable. Then we compare
AHC and our approach at the experimental coupling, and
observe some differences even at room temperature. We also
show how the bands and in particular the Fermi velocity
change close to the Dirac point. Finally, we study how the
spectral function becomes more asymmetric in the strong cou-
pling regime. The Appendix, among other things, considers
an alternative definition of the self-energy and includes some
convergence studies.

II. THEORETICAL ASPECTS

A. Green’s function and self-energy

We are interested in determining the electronic spectral
function due to EPIs. To do this, we consider an ensemble
of distorted ionic configurations in a SC according to the
phonons of the system. For each configuration, we determine a
Green’s function, which is then averaged to obtain the Green’s
function of the system. The averaged Green’s function can
be used to determine the spectral function and define a self-
energy, as we describe in this section.

Let us consider a N; x N, x N3 SC, and let u;;, be the
displacements from the equilibrium position, where / is the
index of the PC in the SC, i is the index of the ion in the PC,
and « the Cartesian direction. In the harmonic approximation,
the probability distribution of finding the system in a general
ionic configuration {u;,} is [32,33]

/MM 20qy ) ;
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where q is in Qgc, the set of SC reciprocal lattice vectors
in the primitive Brillouin zone (PBZ) (i.e., q is commensu-
rate with the SC), v is the phonon branch, wgq, the phonon
frequency of mode qv, ng, is the Bose-Einstein occupation
factor (at a temperature 7' and frequency wgq,), M; is the mass
of atom i, A is just the normalization constant, and Eé’f‘ are
the polarization vectors in the SC (which can be chosen real
since the corresponding dynamical matrix is symmetric and

real) written in terms of the polarization vectors 6{1‘); in the PC,

elaRigic if q € Dy,
) AR i iRy (gl
5(11'3= — ifq¢ Di,qe Dy, (2)
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TABLE I. Some of the symbols used in this work. We consider first B‘;C in Qgc, the set of reciprocal SC lattice vectors, to compute the

spectral function. Quantities in cursive are defined in the SC Hilbert space, with basis Bsc = {|qn), q in Qsc, n =1, ...,
number of bands in the PC. Averaged quantities are in the PC Hilbert space, with basis B&. = {|kn),n =1, ...

M}, with M the
, M}. In the SC we use other

basis as well, namely, the set of eigenstates {|J)!} in Eq. (6). When doing the average (over infinite configurations) the same momenta k' = k
are implied unless otherwise specified. If k is not commensurate with the SC, then the SC basis is shifted by the K in the SBZ such that

K = k + qo for some qg in Ogc.

Symbol Description Hilbert space basis First appearance
Ho Undistorted Hamiltonian Bsc After Eq. (4)
Go Undistorted Green’s function Bsc Eq. (17)
H! Distorted Hamiltonian Bsc Eq. (5)
Vi=H —H, Self-energy or “external potential” Bsc After Eq. (10)
Gl Distorted Green’s function Bsc Eq. (16)
g{mk,n, Distorted Green’s function matrix elements in Bgc basis Bsc Eq. (5)
(...) Average over ensemble Bsc Eq. (7)
(O) Average of some SC operator O Bsc for O

The implied matrix element is Oy, g B'}EC for (O) Eq. (19)
Gy Averaged Green’s function matrix elements in B basis B Eq. (7)
Gy Averaged Green’s function B‘;c Eq. (10)
Yk Self-energy BX. Eq. (10)
G Averaged Green’s function (implicit k index) B‘;C Eq. (20)
z Self-energy (implicit k index) B Eq. (33)

where D; C Qg is the set of points for which q and —q differ
by a reciprocal lattice vector, and D, C Qgc is the irreducible
BZ considering only time-reversal symmetry. In D, (first line),
eaﬂ‘) is chosen real (the dynamical matrix is symmetric and
real) and ™ is just 1 or —1. In the other cases we pick
(e’“ * = e_qv The second and third lines correspond to the
real and imaginary parts, respectively, of e/d® e{]";. So in all
cases Sflif‘ is real. We write it in this way, explicitly in terms of
exponentials with momentum q or —q, to later use momentum
conservation and establish more easily the connection with
Feynman diagrams.

We consider an ensemble of stochastic distorted configura-
tions which follows the distribution of Eq. (1):

5110{

2 T

where I =1, ..., N, is the index of the configuration, N =
NN, N5 is the number of cells in the SC, and

£, =&\ 2nq + 1, )

where éqv is a random number following a normal distribution
(centered at 0, of standard deviation 1). The temperature de-
pendence enters through ng,. For each static distortion u],,,
we will determine the electronic energies and wave func-
tions. This means that the phonons are introduced as classical
parameters, which do not dynamically interact with the elec-
trons. But, as we see later, this correctly reproduces the usual
contribution of (quantum mechanical) phonons to the elec-
tronic Green’s function (in the adiabatic limit), which we will
now define.

Let us consider a momentum Kk in the PBZ where we
want to determine the spectral function, and we first consider
k in Ogc. Let Hy be the undistorted Hamiltonian, and let
Bll§c = {|kn), n=1,..., M} be a basis of eigenstates in the
PC with band index n, Bloch symmetry k, and eigenvalues

ullot -

3

en., Holkn) = ) |kn) (in general there are infinite bands, but
in practical calculations the number of bands M is typically
restricted to include a few above the Fermi level). In the SC, a
Hamiltonian in general will not be diagonal in k, and a basis
is BSC = {|qi’l>, q in Qsc,l’l = 1, e ,M}.

Each configuration [ is described by a distorted static and
single-particle Hamiltonian . Let {|J)'} be a set of eigen-
states of configuration 7, with energies /. Reference [26]
defined a distorted Green’s function by starting from the usual
second quantization expression for the retarded Green’s func-
tion. Here instead, we define the retarded Green’s function
(the one normally used to compare to experiments) via

. 1 v
G (0 18) = enl T . 9)

H

where w corresponds to an electronic energy, and § is a pos-
itive parameter, that in principle (to get the exact result) is
considered in the § — 0 limit after taking first the SC limit
N — oo0. Since we are interested in determining the spectral
function in the original PC basis, we focus on k = k’ and
define a Green’s function G’ in the PC. We use cursive for
objects defined in the SC Hilbert space, and noncursive for
objects defined in the PC (see Table I for clarification on the
notation). Inserting also the identity Y, |/)//(J|, we have

it ,
knn’(w"‘l(S)_ZM (6)

7
; w+id—¢g;

which coincides with the expression of Ref. [26]. One can
then define an averaged Green’s function over the N, distorted
configurations

Gk,nn’(w +id) = <g]’m7kn, (w + l8)>
N,

with (...)= lim 1/N, Z @)

N.— 00
1
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and determine the spectral function in the usual way:

1
Ax(w + i) = ——ImTrGy(w + i8)
T
1 .
= —— Z ImGy (@ + i6)
4 n

=D Ao +i8). @®)

n

Experimentally the spectral function is typically accessed
by angle-resolved photoemission experiments (ARPES). A,
can be assigned to the spectral function of band n if the
bands are well separated. If there is a well-defined peak, the
maximum determines the quasiparticle energy, and the width
determines the broadening (inverse lifetime). Using Eqs. (6)—
(8), the spectral function is [24,25]

Ax(w) = <Z RULDIICES e§)> ©)
Jn

after taking the § — 0, N — oo limit.

In the next subsections, we will rigorously show that Gy
has the usual diagrammatic expansion in terms of Feynman
diagrams, putting on firm grounds the approach we just de-
scribed, which has been used somewhat heuristically in the
literature. We now introduce a self-energy with two purposes:
help establish the connection to the diagrammatic expansion,
and to later modify the approach above to reduce the error
in the broadening parameters that are needed in numerical
calculations to describe the delta function in Eq. (9). The
self-energy X is defined through the Dyson equation (with
band indices n, 1)

1

Gulw +i8) = ,
K ) = ) Tre — 60 — (@ 1+ 10)

(10)

where Ipc is just the M x M identity, and eﬁ’nn, =
(kn|Holkn') = sﬁncS,mr. Since G has the usual diagrammatic
expansion (in the adiabatic limit), X will correspond to the
sum of irreducible diagrams. If k is not commensurate with
the SC, there is a unique K = Kk + qo in the super Brillouin
zone (SBZ) with q¢ in Qsc. Then the grids are just shifted
by K. That is, Bsc = {|IK+q,n),qin Qsc, n=1,...,M}.
Thus, the spectral function can be determined at any k.

Before moving on to the proof, we want to mention an
important conceptual point. Since Xy is a sum of irreducible
diagrams, it is not Hermitian (it has complex eigenvalues)
and is energy dependent. On the other hand, Eq. (5) can
be written in terms of V' = H! — H,, which is then also a
Dyson equation, that relates the Green’s function G/ with the
self-energy V!, which is Hermitian and static. Why is this?

The key difference is that Xy only depends on k, while
Eq. (5) and V' depend on k and K/, so the inverse of V' in
Eq. (5) involves off-diagonal elements. Forcing the k diagonal
part of G' to be expressed in terms of a self-energy that is
diagonal in k (defined in the smaller PC space) makes the
self-energy acquire a more complicated structure. In other
words, the reduced information contained in momentum is
compensated by additional information in an imaginary part
and o dependence.

B. Comparison to AHC
1. AHC self-energy

The standard Hamiltonian to second order in the electron-
phonon interaction is given by [1]

1
H = Z gkncltnckn + quv (az;vaqu + 5)
kn qv

qav T T
gk,n’anJ’,qn/ckn(aqU + afqv)

knn'
qv

1
+ _
VN
+ l DW,qvq'v'
N gk,n’n Ck+q+q’n’ck”
knn'
qvq/v/

X (agqy +al ) aqy +a’y,), (11)

where, in the static approximation,

av 1 .

v I k + n/ kn ela b

Skt ;< | ouie(q) k) 2Miqu v

S| %
DW,qvq'v I~
Vad — - Nkt q 4 g |————|kn)
k, 2 l;j;‘} Ouio (q)0u;p(q’)
1 ) 1 ;
el el (12)

x \/ZMiqu qv\/ZMja)q/V/ T

and

d . d
=) RN — (13)
auia (Q) Z 8l'tlioz

g and gV can also be expressed in the primitive cell, using
the periodic part of the wave functions (see Sec. III 2 of
Ref. [1]), but we write it in this way to make more explicit
the connection with our method later.

Defining the retarded Green’s function Gﬁm,(t) =

—i0(t)({ckn(t), clt,lf}), one can obtain that to lowest order

the self-energy is given by X ., (w) = EE%'(‘U) + 2112"’;,,
where
1 v—qv
V(@) = v Gov " (2ng,, + 1), (14)

qv

and in the adiabatic limit,

1 Skctonm &,
EE&;H, (w) — Z k+(7'],l1n” k(,)n//n/ (znqv + 1)‘ (15)
N ot i — &g qw

The diagonal n = n’ part of this self-energy is what we re-
ferred to as the AHC self-energy in the adiabatic limit. In
DFPT implementations of AHC, the second derivative gPV
so far has been avoided by using the rigid-ion approximation
(RIA) and the acoustic sum rule, which allows to write ©PW
in terms of the first derivative g. Our method and others that
use SC methods [19] do not need to use the RIA. AHC theory
is usually applied by taking n =/, and originates on the
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diagrammatic expansion of many-body perturbation theory, so
it can actually be applied to higher-order terms. So when we
apply our method to the tight-binding model, we will usually
refer to (nondiagonal) Eqgs. (14) and (15) and second-order
quantities in the ionic displacements as P2.

2. NP second-order self-energy

In order to establish the connection of our method with
perturbation theory, we start by writing Eq. (5) as another
form of the Dyson equation (now writing the operator as
opposed to the matrix element)

G' =Gy +GV'G, (16)
where
1
Go= s~ ()
Thus,
G'=Go+ GoV'Go + GoV'GoV'Go + - - (18)
and averaging,
(Gh) = Go+Go(V)Go + GoV'GVNGo +--- . (19)
Defining ™ = (V) + (VIGV!) + - - -,
G = Gy + Gy=™Gy, (20)
where Gﬁ’nn, = g,‘gn’kn,. The notation "¢ will become more

clear in the next subsection (it corresponds to a reducible self-
energy).

We want to see that the self-energy =N of our approach,
to lowest order, is equal to X" 4+ XPV of Eqgs. (14) and
(15). So we now focus on an expansion of G’ in terms of the
displacements of the ions u;,,. We have assumed that the ge-
ometric sum G’ = Go(1 +V'Gy + (V' Gy)* + - -+ ) in Eq. (18)
converges, but so far the result is exact under the assumption
of harmonic phonons. Perturbation theory in the displace-
ments has not been used yet. If perturbation theory holds, we
can write

VI — VI,(l) + VI»(z) + ...

v,
= a.. %ia
lioe 8u1ia
1 ?*v.o o,
- _—Uu. , cee, 21
+ 2 % auliaumjﬂ ullaum]ﬁ " ( )
mjp

where we use the usual notation V = V ({u;;,}) [as in Eq. (12)]
for the potential seen as a function of the displacements (as op-
posed to V!, which is for a fixed distortion u!, ). We will now
see that the lower-order terms of the self-energy correspond
to the standard Fan and Debye-Waller (DW) terms. Writing
indices explicitly, these terms are

L, (1) 0 1, (1)
(a) <Z Vi ksan” Gk+qn,,Vk+qn,,kn,>,
™t

(b) (Vi) (22)

where we used g,‘gn K = Gﬁ nOkk' 8,y and the notation Gﬁn =
GO

ko with one band index.

Using Egs. (21) and (3) in (a), we get (before averaging)

Z 1,(1) 0 1,(1)
an’k+qnu GkJran VkJrankn/
qn//

1 v .
_ = k glla k an'
N Z { nlaulia v k)
it
qn”".qu.q'v
V .
x (k + qn’| —S”fﬁ,ﬂlkn’)
dumjp
1 V2ng + 1,/2ng + 1 7 gl
0+ 08— & g 2 OqOgy/MM; "V

(23)

The configurational average only affects the last two fac-
tors:

N,
: I < 1 z1
Jim < ; ELELy
0 if qu #q'v,
= -y . 24

That is, each mode qv has associated its own random number,
and the average of the product of different random numbers
is just 0. Instead, when the modes are the same, the product
of the random number with itself is positive, and the average
(with the chosen normalization) is 1.

5(11’;?‘ is defined in Eq. (2), and is made up of terms with
momentum ¢ or —q. Due to the usual momentum conserva-
tion,k £ q = Kk + @, so @ = £q (so q corresponds as usual to
the momentum wave vector). Momentum conservation holds
for each of the matrix elements, and also for second-order
or higher derivatives of the potential (in which case the dif-
ference of the bra and ket momenta of the matrix element
correspond to the sum of the momenta of the multiple modes
contained in the higher-order terms). Using Eq. (24) and mo-
mentum conservation, we can now proceed to establish the
connection with X, The derivation is straightforward but
a little bit cumbersome because of how the cases have to be
divided between different q's to get real displacements.

Since qu = ¢V’ from Eq. (24), we can look at each of the
cases of Eq. (2) separately. For the second line (case), we have
that the product of the SC polarization vectors is

eiq~R1€a(>]t) + e—iQ'Rl (6(110‘())* e[q~R,,,€é€ + e*iq~Rm (6{15)*
V2 V2

The usual contribution [corresponding to Egs. (15) and (12)]
involves the factors [3]

(25)

e R (eg’;)*eiq“m elb. (26)

We want to see that the terms of Eq. (25) can be written in this
way.
The product of the first and last terms in Eq. (25) can be
written as
e i-OR (eifqv)*ei(_q)'R”’ejﬁ

Zqv
2

27
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FIG. 1. Second-order diagrams of £ in Eq. (20). To the left
we have VEDGOVED and V@, When doing the average over the

ensemble, the phonon legs have to be paired, leading to the diagrams
on the right, which coincide with AHC in the adiabatic limit.

which gives half of the correct result for —q. The product of
the second and third terms gives one-half of the result for q.
In the same way, we can write Eq. (25) but for the third case
of Eq. (2), and we also get one-half of the contributions for
q and —q. In addition, the noncross terms (the ones with the
same momenta) cancel out instead of adding up. Therefore,
only terms with opposite momenta contribute

For the first case, the polarization vectors are real and q =
—q + G by definition, so /@R = ¢~1aR/ and the contribution
is

SR i iaRy B _ iR (o) ia Ry B
eqettrelll = e (eqn) el (28)

as we wanted to see.

Therefore,
1,(1) 0 1,(1)
<Z an k+gn” k+6}n” Vk+f]n”kn’>
1 1%
=— Y (kn|———|k+q)
N &= i (—)
n”,qu

" V /
< (k4 g < fkn)

dujp(q)
1104 /3
1 (Eqv) €qv
X 2nq, + 1
@+ 8 — &) | quv\/ATMJ( D
1 —qv
= N k?rq nn”GkJrqn”gk n'n' (2n‘lV + 1) (29)

n’.qu

which corresponds to the usual Fan term (15) [and (12)].

The proof for Eq. 22(b) is similar. So, aside from the
2ngy + 1 factor, the result corresponds to identifying VV with
g and, without worrying about the sign q with the phonon
wave vector. Also, we see that averaging is necessary to obtain
the standard diagrams, and not just a way to obtain smoother
spectral functions.

The pairing of factors of u can be done diagrammatically
by assigning a “leg” to each factor and joining them. This is
illustrated in Fig. 1. In the case of (V/*®), the two legs come
out from one point. In the case of (V- (DWGOV!-(D) they come
from two different points. In the next section we look at terms
of higher order and their corresponding diagrams.

C. Higher-order terms
1. Wick’s theorem

For terms of order 2, we had two modes, which we labeled
qv and q'v’. For terms of order n, we use the label ¢; = q;v;,
with [ =1, ..., n. Now, instead of the “two-point correlator”
(Sql qu) (omlttlng the 7 index), we have to evaluate the n-point
correlator (Sql . Sq ). If the distribution that generates the
phonons is Gaussian, because of Wick’s theorem [34], we can
exactly write

Z <‘§(1Pm§qp(2>> e

P

(gql cee g%) = (ngm—nng(n))’ (30)

where the sum is over all possible pairings P of the indices. If
all g; are different, the correlator is 0. If they can be grouped
in pairs, but not more than two ¢; are the same, the correlator
is 1. If more than two ¢g; are the same, more than one pairing
will contribute. (For example, for n = 4 and a given set of
vertices of Fig. 2, and g = ¢» = g3 = q4, there are three
permutations, which equally contribute to the three diagrams
corresponding to such vertices). For an odd number of terms,
the result is 0. So n-point correlators reduce to products of
two-point correlators. Then, for higher-order terms, legs can
also be assigned to each u, and all possible diagrams are
created by joining legs in all possible ways, just as for the
standard diagrams.

The momenta conservation we mentioned earlier corre-
sponds diagrammatically to the conservation of momenta in
each vertex. When joining legs, the terms that contribute are
those of opposite momenta, so the diagrams have the usual
momenta structure: the leg carries out a momenta ¢ from one
point (adds momenta —q to the vertex), and brings it back in to
another vertex (adds q to the vertex). As we see in more detail
in Secs. IIC3 and II D, this leads to the standard Feynman
diagrams.

2. Non-Gaussian distributions

First, let us say a few more words about non-Gaussian
distributions. In this case, higher-order moments have to be
evaluated separately. That is, if we have more than two ¢,
(an even number) that correspond to the same mode, then
their correlator does not reduce to a product of two-point
correlators. For example, for n = 4, we have

e e o~ if g1=¢2,93=q4
o <Eq1§q1)($q3éq3> o aFEgG o
_ - - - . ! T permutatlons 31)
Gofobofe) = (6,8,8,6,) ifalloqual.
0 if all different.

If the distribution is such that the two-point correlator is
1, because of Eq. (24), then we recover Fan and DW
terms. But, (§,,&, &, &,) will depend on the distribution, and
higher-order terms will not coincide with the Feynman dia-
grams.

Reference [27] proposed using a particular configuration to
determine k averaged quantities, which would require the use
of only one configuration instead averaging over N, configu-
rations. Their configuration corresponds to setting §qv ==+l
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RV

(@)

L J—
X2

(c)

OO

&M%ﬁj} R

x2 |

(b)
o
| avay

FIG. 2. Diagrams to order 4 in the displacements u corresponding to Eq. (32), without including indices for simplicity (to keep track of
the momenta indices and momentum conservation, arrows should be added to each diagram). Vertices with one phonon line correspond to a g
factor, and the ones with two phonon lines to gPV. The factors 2 correspond to different contractions that give rise to the same diagram, just
as in the Wick contractions of the standard approach. The diagrams that determine X are the irreducible ones I, as opposed to the reducible

ones R.

(not following a Gaussian distribution), alternating the sign
of nearby q points in the BZ to maximize the cancellation
of terms that are not present in the exact thermally averaged
expression to second order. In our proof, for the k resolved
self-energy, we saw that for finite SCs, averaging is necessary
to get Wick’s theorem and match opposite momenta. Using
one configuration, different branches and different momenta
(which need not be opposite) remain correlated. Pictorially,
the legs remain unpaired. Indeed, we tested the configuration
of Ref. [27] for different temperatures and couplings, and got
the same type of unconverged spectral function as when us-
ing one random configuration with the Gaussian distribution.
See Fig. 7 after the introduction of the graphene model in
Sec. IV B. Thus, the displacement of Ref. [27] does not seem
useful to reduce the number of configurations for k resolved
quantities.

3. Higher-order diagrams and fourth order as an example

We mentioned that Wick’s theorem leads to the usual dia-
grams. To understand higher-order terms in more detail, let us
now look at the diagrams of order 4. The contributions to %"
are

(@) (VPGeV?),

(b) (VP GV PGov ™),

(©) (VVGVP Gy,

(b) (VPGV DGV @),

@) (VPG PGV DGV D) 32)

and the corresponding diagrams are illustrated in Fig. 2. Di-
agrams of (b)’ are analogous to those of (b). “R” diagrams
are reducible (can be cut in two to give other diagrams),
while “I” diagrams are irreducible (they cannot be cut into
two allowed diagrams) [29]. They correspond to a subset

of the usual diagrams of the full theory (see the next subsec-
tion for more details), and the same holds for higher-order
terms.

Thus, if we define ¥ in the usual way, as the sum of the
irreducible diagrams without the external legs Gy, we can
write

G=G"+G"2G" +G'2G"'=G + - -

=G"+ GG, (33)
which is just the Dyson’s equation and coincides with
definition (10). So X is given by terms of the form
(VGoVGy ... VGy) which are irreducible. Diagrammatically,
this means drawing a straight (fermionic) line and vertices on
top of it with one, two, or more wavy (phononic) lines, and
doing all possible contractions of the wavy lines that give rise
to an irreducible diagram. The usual theoretical expression
for the Hamiltonian (11) includes one and two derivatives
with respect to ionic displacements. In principle, all deriva-
tives should be included in the Hamiltonian. Such terms
are automatically included in our work and other numerical
approaches that consider distorted ionic configurations. The
term with p derivatives corresponds in the diagrams to a vertex
with p legs. We remind the reader that our method is non-
perturbative, so that we can obtain the Green’s function even
when the variation of the potential with the displacements in
not analytical (cannot be expressed using perturbation the-
ory).

The last thing we have to do is check that diagrams have
exactly the same analytical expression as the corresponding
standard Feynman diagram (in the fully quantized theory), in
the adiabatic limit. Let us show this for a particular diagram,
the one of the middle of Fig. 2(d). From this analysis, it will
then be easy to see that any diagram corresponding to our
method coincides with the standard diagram.
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The diagram we just mentioned comes from
VYOGV DGVDGVDY, Just writing indices explicitly
for matrix element kn, kn’ before averaging, this is

2 E: (1) V(l)
kn k+q,n k+q|n1 k+qnl k+q,+q2n2

(ll q2q3 ninanj3
(1)
X Gk+q1 s Vet ke i+ Gas

X Gk+q|+Qz+q3nle<(ll+)(11+(]2+(13n3,kn" G4
As before, each term V) has a displacement written in mo-
mentum space, with a random factor &g, for each mode.
Taking the average and using Wick’s theorem, we can look
at the diagram we are interested in now (pairing terms 1 and
3, and 2 and 4). In Eq. (29) we put all cases of Eq. (2) together,
paired momenta and used momenta conservation. Proceeding
in the same way, we can write (with more generality in the
indices)

(1) (1)
<Vk1n1 kznz k3n3,k4n4)
v v
= N Z gk]n],kznzgk3113,k4n2
v

X (21K, —k;0 + 1)8ky—k),—(ks—ks)» (35)

where we have switched to the notation gy’ 10 &}, 4 -
Pairing terms 1 and 3, and 2 and 4 in Eq. (34), and using
Eq. (35) for each pairing, we get

2 § : § :gknk+q1n1 k+q1n1gk+q1n1 k+qi+q2n2

QIQZ nynpn3

0 v
X Gk+q, +qom gkl+q1+q2n2,k+q2n; Gk-‘rqznz gk-&-qznz Kkn'
X (2”q1v1 + 1)(211(12\,2 + 1). (36)

Similarly, one can work out diagrams with higher-order
derivatives. The difference is that the matrix element g of
order p has p momenta indices. Therefore, if we want to
extract the result more directly from a diagram, we see that
momenta follow the usual rules, due to momenta conservation
at each vertex and each phonon line carrying momentum
in and out (i.e., the pairing of opposite momenta in each
two-point correlator after applying Wick’s theorem). To label
momenta indices correctly, arrows should be drawn in each
straight or wavy line. Each straight line is associated with a
GY, each vertex with the corresponding g(l’) matrix element,
and each wavy line with a mode qv and a 2ny, + 1 factor. In
the next subsection, we show that the usual Feynman diagrams
have the same expression in the adiabatic limit. First, we
will see that Feynman rules applied to the middle diagram of
Fig. 2(d) leads to the exact same expression of Eq. (36).

D. Comparison to the full theory

The diagram we just analyzed in more detail in our method
is analogous to a diagram in the fully quantized theory.
Following Feynman rules in the Matsubara formalism, the
diagram can be labeled with the indices of Fig. 3, and written

q.v
Wi,

kn

FIG. 3. Fourth-order diagram of Fig. 2(d) including all indices.
It is worked out in detail in the text.

as
o (,3N)2 Z Z ng qnmgk q—-q’ nlnzgk q n2n3g;qn3un
‘l" mnang jija
X DO (wjl)Dg’v (wjz)Gk qn (a)i - wjl)
0
X Gk —q—q'm ((,()l‘ — W — a)jz)Gk_q,m (a)i — a)jz), (37)
where
Gin(@)) 1 38
w)= ———
kn\*"J l(!), _ 81%1 ( )
and
D() ( ) 1 1
w:) = _
avi wj — g 0]+ oq
2wqs
= —— (39)
T

are the unperturbed time-ordered electron and phonon Green’s
function in imaginary time, respectively.

After doing the sums over the Matsubara frequencies, the
phonon frequencies wg, in D° and G° are set to 0. This is what
we refer to as the adiabatic limit, which corresponds to the
usual adiabatic limit in the Fan self-energy (dropping phonon
frequencies in the energy denominators).

The sum over Matsubara frequencies w; is done in the
standard way, by converting it into a complex integration
with the Bose-Einstein factor n. Since ng(a) i) X gy —> 0
if wq, — 0, the only poles that contribute are those of D°
(the poles of G° give terms with a D° — O factor). This
gives factors —n(wqy ) and n(—wq) = —1 — n(wq, ), and
the frequencies w; = *wgq,  are dropped in the G"'s [making
the factors —n(wgq) and —n(wq,) — 1 proportional to the
same term, simplifying the result]. Performing these steps for
J2, we have

—qv
z : z : 2 :gk qnnlgk q—q’ nlnzgk q nzn;gkn;n

qQv nimnz  j;
q v
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x D (07,)Gy_qu, (@i — )G _g_ g, (@i — @},)

X Gy gy (@) (—=2ng — 1). (40)

Notice how the procedure leads to a factor of —1 proportional
to the usual factor 2n + 1.

Doing the sum over j;, and switching again to the notation
of Eq. (35) for g,

l v U/
N2 Z Z 8kn k—qn Ek—qn; k—q—q'n2

qV ninyng

qv
x gV V'
gk—q—q’nz,k—q/m gk—q’;13,kn’

X G qn, @)Gy_ g qmy (@G (@)

X Qngy + 1)2ngy + 1). (41)

Doing the analytical continuation iw; — w + i8, we get the
final expression. It coincides (changing the sign of the phonon
momenta q, ' to —qy, —q2, and v, vV — vy, v,) with Eq. (36).

In general, we see that the G°’s will be evaluated at w; after
doing all the Matsubara sums and each of the Dgl ,, gives a fac-
tor —(2ng,, + 1). Our method also has such factors for each
phonon line. The momentum structure of the g and G° with
the Feynman rules is straightforward, and earlier we saw that
our method follows the same rules (we also have momentum
conservation, and pairings also correspond to the phonon mo-
menta coming in and out). Using the Feynman rules, the sign
is less straightforward. It is (—1)(—1)*(=1)*(—=1)/, with v, b,
f the number of vertices, phonon propagators, and fermionic
propagators, respectively. The first —1 just comes from the
definition of G. Each vertex has a — sign, coming from the
exponential e #¥ that gives rise to the Feynman expansion.
And from the definition of G° and D°, with a — in front,
each contraction that gives a G° and D° give an additional
sign. Furthermore, we saw that each Matsubara sum gives
an additional —. Thus, D° together with the corresponding
Matsubara sum gives a +1 factor. Finally, if there is one
vertex, there is no internal G°. For each additional vertex (—1
factor) there is an additional G° (additional —1). Since the
sign of ZPW (one vertex) is 41, then the total sign is +1 in all
diagrams, just as in our method. This completes the proof.

We see from the proof that the diagrams are exact for any
SC (i.e., for a given q-grid commensurate with the SC). There
are no additional undesired terms that become negligible in
the thermodynamic limit, or q points that are neglected. In the
alternative self-energy of Appendix 4, for example, there are
terms missing in the sum over momenta. Averaging the most
convenient quantity could also be relevant in the determina-
tion of other quantities through distorted configurations.

The results do not depend on the Fermi-Dirac distribution
f since there is no contribution from a fermionic Matsubara
sum. This occurs because transforming the phonon into a
parameter prevents electrons and phonons from exchanging
energy; instead, the electronic cloud is continuously distorted
according to the ionic displacement. Since there are no elec-
tronic excitations due to phonons, there is no need to know
the probability that electrons are in a given state or that they
will transition to an unoccupied state, so concentration plays

V®@

FIG. 4. Generic diagram corresponding to the self-energy in our
theory (order 10), including also vertices with three and four legs,
not present in the previous figures.

no role. The phonons do keep a quantum character in the way
they distort the crystal, via the factor /2n + 1 in the ionic
displacements.

We proved that our method contains an infinite number of
diagrams that coincide with the standard diagrams in the adia-
batic limit. A generic diagram of our theory can be observed in
Fig. 4, where the order of the derivative is explicitly indicated
in each vertex. The exact theory has additional diagrams ac-
tually: those with a fermionic bubble, as in Fig. 5. Diagrams
of type (a), with a bubble or some structure in-between two
phonon lines, correspond to a phonon renormalization. Since
we are using experimental phonons (phonons fitted to experi-
mental data), all diagrams that correct the phonons are already
included. That is, the phonon lines in this work correspond
to renormalized phonon lines. Diagrams of type (b) are not
included, but after integrating out the bubble, can be seen
as an anharmonic term. Since we are not including anhar-
monicities, it is consistent in our approach to ignore these
terms (of at least order 6). As a final remark, off-diagonal
elements of the self-energy are automatically included in our
method. That is, the usual diagonal approximation [35] is
(omitting the k index) G,, = 1/(w — 82 — X,,), instead of
Gun = (0 — &% — E)n’nl as in our method. Off-diagonal terms
should be included close to band-crossing points if terms
beyond second order are relevant.

(a) (b)

FIG. 5. (a) Diagrams with additional bubbles are actually in-
cluded since they correspond to a phonon renormalization, and the
phonons corresponding to DFT calculations are screened quantities.
Diagrams like (b) instead are not included, but correspond to anhar-
monicities, which we are not considering.
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III. NUMERICAL IMPLEMENTATION

In Sec. II A we described the method, which involves de-
termining the Green’s function for each configuration of the
ensemble, averaging, and determining the spectral function
via Egs. (5), (7), and (8). In the limit of an infinite SC and § —
0, one gets Eq. (9) for the spectral function, but in numerical
calculations a broadening parameter needs to be introduced to
describe the delta function, typically by considering a finite &
in the previous equations. The problem of introducing a finite
§ is that the peak is artificially broadened by ~§. To see this
more explicitly, let us assume peaks are well separated and
that we can use the diagonal approximation (to be clear, in
this work we do not use these diagonal approximation and
make no assumptions about the separation of the peaks). From
Eq. (10),

2:2,knn(§))

[0 = &0, — 21 k(@] + 6 + S (@)
(42)

i 1
Ayn(@) = ——

N

where X, is the real part and X, the imaginary part of X,
and @ = w + ié for a more compact notation. If the frequency
dependence of the self-energy can be neglected in the region
of the peak, then one gets the usual Lorentzian distribution,
widened by exactly §. But the larger § is, the more the shape
of the spectral function gets distorted. For example, in a wider
spectral function, the frequency dependence of the self-energy
tends to become more relevant, and the peak becomes more
asymmetric. Also, § can impact the shape significantly when
peaks overlap [in this case of course Eq. (42) is not a good
approximation].

To reduce the error introduced by &, we define a new
Green’s function

1

G = ,
k(w) a)HpC — 8]2 — Ek(a) + l5)

(43)

without a finite imaginary part outside of the self-energy, and
a new spectral function

Ax(w) = —%TrImGk(a)). (44)

Both Gy and Ag depend on §. In this way, we remove the artifi-
cial width from Gﬁ (which is actually a delta function, and not
a Lorentzian of width §), but retain the width coming from X.
Since X corresponds to the usual sum of retarded diagrams, it
has the usual analytical properties, so we should have Ax > 0
(which is the case in all of our calculations). Later in Sec. IVB
and Fig. 6, after we define the graphene model, we show
with some numerical examples that this expression gives a
better spectral function than the one calculated directly from
Eq. (10) [i.e., Egs. (5), (7), and (8)]. In actual calculations,
one also has to consider a finite ensemble. Here we consider
enough configurations so as to get an error of about 1%—2%.
See Fig. 17.

In the previous section, we defined a Green’s function for
each configuration, Eq. (6), and then averaged. Another possi-
bility could be to define a self-energy for each configuration,
and then average. Let us define a self-energy [T that only

depends on k (as opposed to V),

1
(@ + i8)lpc — &0 — L (w + i8)

Gi(w +i8) = (45)
In the Appendix, we show that defining the self-energy as
I = (Hﬁ) coincides with Xk of Eq. (10) in the thermo-
dynamic limit, but for finite supercells Xy provides a better
definition than ITy to determine the Green’s and spectral func-
tions.

Therefore, our optimized method to determine the spectral
function is the following. First, determine Gx according to
Egs. (6) and (7), and ¥k using Eq. (10). Then, determine a
new Green’s function Gy, Eq. (43), and finally the spectral
function Ay via Eq. (44).

IV. GRAPHENE TIGHT-BINDING MODEL

A. Model

We will now apply our method to a graphene tight-binding
model [36]. Let us consider (localized) p, orbitals |/s) in the
SC, with [ again the index of the cell and s = 1,2 of the
atoms in each PC. We use as a basis the Bloch states |ks) =
«/LN >, e®®FT)|15) If we only consider nearest neighbors
(NNs), the matrix elements of the undistorted Hamiltonian in
the PC Hy . = (ks|H°|ks’) are given by

(0 fm
= o) 0

where f(k) = —1 ), €™ 1y is the hopping parameter, and
T; are the vectors that connect the s = 1 atom with its NN,
which are all s =2 atoms. The eigenvalues are +|f(k)|,
which give the characteristic conical bands around the Dirac
point K.

In the SC we use as a basis the states |S) = |Is). The
NNs correspond to different atoms and the matrix elements
(S|H|S’) are just —ty (in the undistorted case). We consider
that the hopping parameter ¢ changes linearly [37] with the
distance dsg between atoms S, S’ in the SC,

tig =to+n(1 —dig /do). 47)

with dy the equilibrium distance 1.42 A. 7 is an electron-
phonon coupling parameter, that determines how much the
hopping parameters change for a given distortion.

B. Comparison to the standard method
and to the configuration of Ref. [27]

We mentioned that the use of a finite SC implies the use of
finite broadening parameters, and that a usual approach is to
use a finite § in the expression of the Green’s function (6), and
to calculate the spectral function using Eqgs. (8) and (10). In
Sec. III we showed that this artificially increases the width,
and to tackle this issue, we introduced a modified method,
which uses Egs. (43) and (44).

With the usual method, the width of the peak increases by
about 8, so § should be a fraction of the width of the peak.
For example, a common width is of the order of 0.1 eV, so §
should be less than 0.01 eV, but then a large SC is required.
Instead, with our method, we can use values that are a fraction
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FIG. 6. Comparison between the spectral functions using our method (44) (blue) and the usual approach (8) (red), for different tempera-
tures, k points, and couplings, using 6 = 0.1eV (lower values can lead to noise in some cases). DP stands for Dirac point (instead of K, to
avoid confusion with Kelvin). Values of 5 are defined at the beginning of Sec. IV C. (a) For narrow linewidths, of the order of 0.1 eV, the red
curve is considerably distorted. (b) Close to K, peaks are actually separate, but in the red curve they are partially merged. (c) The asymmetry
is also different between both curves. (d) Only when the linewidth is very big, here of the order of 2 eV (> §), both curves are similar (§ does

not have much impact on the spectral function, as expected).

of typical energy differences (of the order of the eV), such as
§ = 0.1eV, and the SC can be smaller. A comparison of both
methods can be seen in Fig. 6. If the peak is very wide as in
Fig. 6(d), then the usual method and our method give similar
spectral functions. But if the width is comparable or lower
than §, then our method gives a much more accurate spectral
function.

After improving the spectral function for a given §, we also
wanted to see if the particular configuration of Ref. [27] (in
principle proposed for quantities that are k averaged) could be
used to get converged results for A,. We generated the config-
uration for each SC and temperature using the implementation
7ZG.x in QUANTUM ESPRESSO7.0 [18]. We considered both
a small Ny = 8 and a large N} = 48 SC, and experimental
parameters and a strong coupling regime. In all cases, the
spectral function is similar to the one obtained with just one
standard Gaussian configuration (see Fig. 7). Thus, the config-
uration of Ref. [27] does not seem to improve the convergence
of the spectral function.

C. Results

Now that we have showed that our method improves the
spectral function, we proceed to apply it more generally
to the tight-binding model. In this work we use several val-
ues of the electron-phonon coupling constant 1: a very weak
coupling value nyex = 10‘4nexpt, an experimental value nexp
(see Appendix 1), an intermediate value figer = 2.57expt, and
a strong regime value 7srong = SMexpt-

Let us first look at the spectral function in Fig. 8 (scale
on the right vertical axis) along the I'-K-M path (left verti-
cal axis), for several values of n and temperature. At Mexp
and T = 300K, the broadening is very small. At 7y and
T = 1000 K, the peaks are significantly broadened, but quali-
tatively the spectrum still looks basically the same (except for
a little of overlap at the k point closest to K). At 7one and
T = 1000 K, two new qualitative differences become clearly
visible. First, for points close to K, the negative- and positive-
energy peaks merge together. This can be understood as a
result of the energy renormalization lowering the energies
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FIG. 7. Comparison between the displacement of Ref. [27] and one configuration using the standard Gaussian distribution. The noise of
both curves looks similar. The blue line shows the converged spectral function.

close to K (see Fig. 10) and the peaks getting broader at higher
temperatures and stronger coupling. Second, a peak appears
at w = 0, both for k’s in which the main peaks are separated
(closer to M), but also for k’s in which the main peaks have
merged (closer to the Dirac point, or DP). For #gyone and
T = 3000K, the peaks of more k’s become merged, and the
peak at = 0 becomes visible even at I' (where &) and —¢)
are the furthest apart).

P2 is not expected to be able to describe these qualita-
tive changes of the features of the spectral function in the
strong coupling regime (larger displacements, which occur
at higher temperatures, and/or a strong coupling constant),
nor to give accurate widths and shifts. Indeed, in Figs. 8(e)
and 8(f) we can see the P2 spectral function varies signifi-
cantly with respect to Figs. 8(c) and 8(d) (which use the same
coupling and temperature). Compared to our exact NP ap-
proach, peaks do not merge properly, there is not a peak at
o = 0, there is a double-peak structure for each state instead
of one, and the weight is artificially restricted to the bare
values. Quantitatively, widths and shifts are also incorrect.
In general, nonperturbative approaches or higher-order terms
should be included in the strong regime.

Let us now look in more detail at the points mentioned in
the Abstract: (i) contribution of DW to the change of the Fermi
velocity; (ii) failure of AHC (P2) even at experimental values
of the coupling, especially at high temperatures; (iii) merging
of peaks at high temperature/coupling; (iv) peak at w = 0;
(v) asymmetry of the spectral function.

1. Contribution of DW to the Fermi velocity

EPIs change the values of the electronic energies and, in
particular, of states close to the Dirac point. Although all terms
of the self-energy contribute to the electronic renormalization,
the DW term has been frequently ignored [38,39]. In the NP
approach, all derivatives with respect to the ionic displace-
ments are automatically taken into account, which means that
DW (and higher-order terms) are included as well. Although
to lowest order it does not affect the linewidth or lifetime,
since it is real, it does affect the Fermi velocity (it is k de-
pendent). At the experimental values [blue curve in Fig. 8(a)],
the Fermi velocity changes by about 4%, and DW accounts for
20% of this effect. [By Fan contribution, we mean the change
given by the linearized version of Eq. (47), Eq. (A8). By DW,
we mean the rest of the contribution. In the weak coupling
limit, they coincide with £ and PV, respectively (see
Table I)]. At T =3000K, the Fermi velocity changes by
about 20% and the contribution of the DW term is about 40%.
A first-principles calculation should be carried out to deter-
mine these values more accurately, but our results indicate that
the DW cannot be neglected and plays a significant role at high
temperatures.

2. Failure of AHC at Nexp;

We already saw that in the strong coupling regime
[Figs. 8(c) and 8(d) vs 8(e) and 8(f)], P2 can vary drastically
from NP. Here we focus on 7.y, where differences between
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FIG. 8. Spectral functions Ay (w) (scale on the right) as a function of the energy w for several values of k along the I'-K-M path (left label),
with our nonperturbative approach (NP) (a)-(d), and the perturbative approach to second order (P2) (e), (f). The color bar saturates below the
maximum value to help visualize the peaks. Notice that the scale varies; peaks get broader at higher coupling and temperatures. The dashed
line corresponds to £. (a) At low temperatures and coupling, the width is of the order of ~0.01-0.1 €V and peaks are very narrow. (b) At
higher temperatures and coupling, the shift is larger and peaks become broader. Some overlap can be seen between positive and negative peaks
at the points closest to K. (¢) At fone and T = 1000 K, the bands of k points next to K merge, forming a single peak. A small peak also
appears at @ = 0 for several k. (d) At ngong and T = 1000 K, even the bands at M merge, and a large peak forms at @ = 0. Panels () and (f)
use the parameters of (c) and (d), respectively. There are several differences with the NP spectral functions: (1) There is no peak at w = 0. (2)
For most states, there is a double-peak structure, more easily seen in (e) close to M. So there are four peaks instead of two. (3) Energies do not
go beyond the highest bare energy, of about 8 eV, so the weight is artificially restricted to the bare values. (4) There is no merging of peaks at
3000 K. (5) Peaks are not as wide. Thus, P2 completely fails to describe the strong coupling regime. Panels (e) and (f) use § = 0.2eV since
noise is present at 6 = 0.1eV.
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TABLE II. Change of the Fermi velocity Avy relative to the bare
value v, fraction of the DW contribution to Avg, and ratio of the
P2 to the NP self-energy for different temperatures (which agrees
very well with AvE?/AvRF). Results were obtained at k = 0.97 DP,
with &g = 0.3 eV. Atroom temperature, of the 4% change of vy, 21%
corresponds to the DW term, and grows to 41% at 3000 K. So the DW
term, although normally neglected, should be included. The third line
also shows that P2 agrees with NP at room temperature, but differs
significantly at high temperatures. For k points further away from
DP, P2 differs much more from NP (see Fig. 9).

300K 1000 K 3000 K

Avp /vp 0.04 0.07 0.22
DW 021 0.30 0.41

¥P2/3NP 0.98 0.94 0.83

P2 and NP are also visible. At higher temperatures, the agree-
ment between P2 and NP to obtain Avg gets worse. See third
line of Table II, AvE?/AvRP ~ BP2/5 NP (at neyy, the usual
approximation Ae = ¥; works well). More in general, Fig. 9
shows that at room temperature there are visible differences
between P2 and NP. This means graphene is not in the weak
coupling limit, but rather in what we can call an intermediate
regime, in which higher-order terms start to become relevant.

T=300K, Neyy

0.0001 _4— Nonp.

-0.0054 e
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—0.015 1
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—0.030 1
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T=3000K, Neypt

0.00 1
-0.051 "
-0.10
-0.151

—0.201

ReX(w = &) (eV)

—0.251

—0.301

This is significant since it shows that the assumption of weak
coupling might be ill justified in many materials. It is hard
to know a priori for which states P2 works well, and in
which cases higher-orders terms are relevant. Commonly, P2
(AHC) is used because it is essentially the only available
option, rather than because it has been shown that higher-order
terms are negligible. The difference becomes larger at higher
temperatures.

In nonpolar systems like graphene, the matrix element in
Eq. (15) gﬂt’nn, goes as ¢° for small q, so the imaginary part
of the self-energy at 7 = 0 is proportional to [ d*q8(w —
Ek+qn), Which is proportional to the density of states. In
2D, the density of states (DOS) diverges logarithmically at a
saddle point, which is the case of the M point in graphene.
So when evaluating the imaginary part of the self-energy at
the bare energy @ = ¢y, to determine its width, it diverges.
This is also reflected in the point between I' and K which
has the same energy as M. In the nonadiabatic expression of
the self-energy, there are additional phonon frequencies in the
denominator, and the imaginary part will still be ill defined
for several values of w. Thus, the spectral function at M is
ill defined using perturbation theory and is hard to converge
close to M. On the other hand, NP is well defined, and the
curves of Fig. 9 are also smooth for lower values of §, while
P2 starts to show some noise.

T=300K, Nexpt
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o
o
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0.201

-ImI(w =¢€o) (eV)
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FIG. 9. Comparison between the P2 and NP self-energy at 1., (the lines are a guide to the eye) and § = 0.2eV. Close to DP at T = 300K,
they agree. But for some other k points there are visible differences. This is likely the case in other materials as well. In fact at high temperatures
(commonly included in works that calculate ¥ to second order [40]), £F? is far from =™ for many k points. We show the negative part of the

imaginary part since it corresponds to the linewidth.
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FIG. 10. Renormalization of the Fermi velocity and merging of
bands close to the Dirac point. (a) Energy of the QP peak maximum
for several k points close to K. At 7y, the renormalization of vp
increases with temperature (see Table II for more details). Lines
connecting the calculated values are a guide to the eye. At higher
coupling and temperatures, the peak of the spectral function (the QP
energy) of m* shifts to even lower energies (v to higher energies).
The peaks also get broader, and close enough to K, the peaks of of
7 and 7* merge, leaving only a maximum at @ = 0. (b) This can
be observed at k = 0.97 DP (between I" and DP) and k = 1.03 DP
(between DP and M = 1.5 DP). Slightly further away, at k = 0.94
DP and k = 1.06 DP, there are two distinct peaks, but they also
merge substantially.

3. Merging of peaks

Another effect that NP helps to describe is the merging
of peaks at sufficiently high values of the coupling or tem-
perature. See Fig. 10. In Fig. 10(a), we can see how the
peak of the spectral function gets closer to @ = 0. When
the peak is at 0 and k is not K, it means that the peaks
have fully merged. For other k close to K, there are two
maxima [see Fig. 10(b)], but the peaks still have significant
overlap, and the full-width at half-maximum (FWHM) is not
well defined (the value of the spectral function at v = 0 does
not reach half of the maximum). At stronger coupling and
higher temperatures, peaks merge further away from K, as in
Fig. 8(d). The fact that bands close to K get closer to the Fermi

Istrong: T=1000K

=-= 6=0.2eV

6=0.1eV
—- 6=0.03eV
— 6=0.01leV
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FIG. 11. Peak in the spectral function at w = 0, for the state k =
0.63 DP. The peak appears in addition to the two other maxima at
positive and negative energies [see Fig. 8(c)]. The width is similar to
the value of 6 being used, so the actual width is less than 0.01 eV. This
is consistent with the peak in the DOS of Ref. [43] and is related to
a localization transition in the presence of off-diagonal disorder and
chiral symmetry [43,44].

level is similar to what happens in semiconductors, in which
the band renormalization due to phonons usually reduces the
gap, and band merging is analogous to the gap closure in
solid hydrogen at high pressures, attributed to strong electron-
phonon coupling resulting from large quantum fluctuations of
hydrogen [41]. Hydrides more in general are also expected to
have a large electron-phonon coupling A, such as LaHy with
A = 3.6 at 129 GPa [42], and NP effects might be relevant as
well.

4. Peak at v = 0

An unexpected effect of the strong coupling regime is a
peak at @ = 0, which appears in addition to the positive and
negative peaks. It can be observed in more detail for k = 0.63
DP (with DP the Dirac point, instead of K, to avoid confusion
with Kelvin) in Fig. 11. The peak gets narrower and higher
for smaller values of § (the noise for the lower values of § can
be eliminated by averaging over more configurations). This
means that the width of the peak is smaller than §. The same
o = 0 peak can be observed for other k points, including
points as in Fig. 8(d) where the positive and negative peaks
merge together.

Since the density of states (DOS) in the interacting case
can be obtained by averaging the spectral function over all k
points in the PBZ, a peak will be also present in the DOS.
This is consistent with the results of Ref. [43], in which disor-
der is considered via a random Gaussian hopping parameter.
The authors also obtain that the peak becomes narrower with
decreasing smearing parameter, and suggest that the DOS
diverges in the thermodynamic limit. Interestingly, they ob-
serve that the peak disappears with a weak onsite disorder,
so the chiral symmetry plays a crucial role in the divergence.
Reference [44] points out that the DOS has a power law close
to the Dirac point, and that a minimal (nonzero) conductivity
is observed in graphene. If this still holds above the critical
disorder, it would imply a transition from ballistic transport
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FIG. 12. Illustration of how the spectral function looks asymmet-
ric at higher temperatures or coupling, for a particular k point. The
spectral function calculated with our method (blue) is very well fitted
with Eq. (48) (red) with « = —0.99. The dashed line corresponds to
a Lorentzian line shape (o« = 0), to better visualize the asymmetry.

to localization. Reference [43] follows the same argument,
but observes a nonzero DOS below the critical disorder, and
suggests a transition from diffusive transport to an insulating
phase. It appears like the divergence at w = 0 is still not well
understood [43]. In the context of Landau level broadening
and the quantum Hall effect, a divergence is also observed
when considering the so-called off-diagonal disorder (disor-
der in the hopping or interatomic coupling constant, involving
different atoms) in the presence of a magnetic field. See
Ref. [45] and references therein.

5. Asymmetry of the spectral function

Another effect of the strong coupling regime is an increase
of the asymmetry of the peak of the spectral function. In order
to characterize it, we make use of the following line shape
[46]:

Ay A0 T(w)
) = @ =) +T@)
with T(@)= — 20 (48)
1 + ea(w—wg)

That is, a Lorentzian with a width that varies sigmoidally.
We can define « = al'y as the dimensionless parameter that
quantifies the asymmetry of a spectral function (see Appendix
8). In Fig. 12, we show the spectral function (blue) for a
particular k point close to the Dirac point, together with the
fit using Eq. 48 (red). The agreement is very good, and the
asymmetry of the peak can be visualized by plotting also a
Lorentzian curve (dashed black). In the Appendix, we can also
see that the asymmetry increases with temperature [Fig. 21(a)]
and coupling [Fig. 21(b)] for all the considered k’s. This might
be a general feature of crystals in the strong coupling regime,
related to the asymmetry of bands above and below the energy
of given state.

V. CONCLUSIONS

We have developed a nonperturbative (NP) method to
determine the electronic Green’s function in presence of
electron-phonon interactions, and rigorously proved how it
relates to the standard Feynman diagrammatic approach to
all orders. Such a proof to all orders and involving both the
real and imaginary parts of the self-energy was missing in
the literature. The diagrams coincide exactly with those of
the standard theory, without any additional spurious terms. In
particular, the method reproduces AHC to second order in the
adiabatic limit. The diagrams include most of the diagrams of
the standard theory, except for diagrams containing bubbles,
which are unimportant when using fixed harmonic phonons
fitted to experimental data. In addition, we showed that av-
eraging over an ensemble is necessary to get the pairing of
legs through Wick’s theorem and recover the usual Feynman
diagrams, and not just a procedure to get a smooth spectral
function. Increasing the number of configurations improves
the calculation until a certain point, when convergence to the
Feynman diagram is achieved. The smoothness of the spectral
function still depends on choosing § that is large enough for
a given SC. The smallest value of § for a given SC that gives
a smooth spectral function can be larger than the linewidth
of the state under consideration, unless the SC is very large.
To solve this issue, by using the self-energy, we presented
an optimized method with a reduced error in the broaden-
ing parameter. Basically, the method removes the artificial
broadening introduced in the unperturbed spectral function
(which should be a delta function), and keeps the broaden-
ing contained in the self-energy. In this way, the broadening
parameter does not need to be extremely small, and does not
require very large SCs.

We then applied the method to a graphene tight-binding
model, and observed that AHC (or P2 in this work) completely
fails in the strong coupling regime. We obtained several in-
teresting results, most of them related to the strong coupling
regime. (i) First of all, in the tight-binding model, the role
of the DW term in the change of the Fermi velocity (line shift
close to the Dirac point) is comparable to the Fan contribution,
as is usually the case. This holds at room temperature, where
P2 is accurate, and at higher temperatures, where P2 and NP
start to differ. (ii) At neyp, for several k points further away
from the Dirac point, differences in the self-energy are visible
at room temperature, and significant at higher temperatures.
(iii) As the coupling and temperature increase, positive and
negative energy peaks of the spectral function merge for k
close enough to the Dirac point. In the strong coupling regime,
the line shift and linewidth are so large, that peaks merge
for a wide range of k, including points far away from the
Dirac point. (iv) In the strong regime, a sharp peak becomes
visible at w = 0, resulting in spectral functions with three
peaks, instead of the standard two peaks associated to the
and 7 * bands. Previous works on disordered graphene identify
this peak with a diffusion or ballistic transport to localization
transition. (v) With increasing temperature and coupling, the
peaks become more asymmetric. This could be a generic
feature of strongly coupled systems. High-resolution ARPES
might be needed to identify this effect.
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FIG. 13. Phonon dispersion.

By putting our approach on solid grounds (and comparing
to the exact conical model in Appendix 6), it becomes more
clear under which conditions nonperturbative methods can be
used. The method should give good results in nonpolar semi-
conductors and insulators, and in metals and semimetals (as
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we explicitly showed here for graphene) not close to the Fermi
level (where the Fermi-Dirac factors are relevant). Another
interesting approach to study the electron-phonon interaction
that goes beyond AHC and which has gained traction in the
last years is the cumulant method [47,48]. It is nonadiabatic
and it includes higher-order terms by basically putting the
AHC self-energy in an exponential. The disadvantage is that
higher-order terms are included in an approximate way. On the
other hand, nonperturbative methods like the one described
here are adiabatic, but include all higher-order terms exactly.
Combining both methods could lead to very precise results
and, in fact, adiabatic and nonadiabatic methods have already
been used conjunctly in polar materials with Frohlich-type
models [27,49].

An analysis like the one we performed here can proba-
bly be applied to the dielectric function or other correlation
functions, in order to establish a clear connection with
nonadiabatic methods. In future work, we plan to apply
our method to systems in the strong coupling regime, like
high-pressure hydrogen [28,41], using first-principles calcu-
lations.
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FIG. 14. Real and imaginary parts of the self-energy. (a) Parameters of Fig. 8(a). In this case, P2 and NP give very similar results, and the
w — & line (which looks almost vertical) intersects ReX at only one point, resulting in just one peak (which is the usual behavior). We plot
the full range of energy, rather than a window around the bare energy, to better visualize the comparison to the strong case. (b) Parameters of
Figs. 8(c) and 8(e). The shape of P2 would be exactly the same as in (a), if the temperature were the same. In any case, the shape changes
little; the main change is in the amplitude (compare the y-axis scale). Here as well as for other k, @ — & intersects or is very close to ReX in
two points, resulting in the anomalous double-peak structure of Fig. 8(e). On the other hand, the shape of NP changes significantly, and w — &
intersects ReX at one point. Here § = 0.2 eV to obtain a smoother curve for P2.
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FIG. 15. Comparison between both definitions of the self-energy for different supercells [linearized Hamiltonian (A8)]. Terms with internal
momenta k; equal to the external momenta k are not included in [Ty (that is, the phonon momenta q; equal 0). So,inthe 1 x 1 x 1 case, [Ty =0
for any k because k; = k are the only terms. For larger supercells, the difference between both definitions gets smaller.

As a final remark, the fact that for some states the
self-energy differs appreciably between the perturbative and
nonperturbative approaches is a salient result of this work. It
seems hard to know a priori for which states lowest-order per-
turbation theory might work, and in which cases higher-order
terms are relevant. So it is likely that the accurate determi-
nation of the electronic properties of many other materials,
especially above room temperature, also requires going be-
yond second-order perturbation theory.
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APPENDIX
1. Calculation details

The phonons used to generate the ensemble of random
configurations were obtained using the interatomic potential
of Ref. [50], which is fitted to DFT-PBE calculations. For
completeness, the phonon dispersion is shown in Fig. 13. The
lattice parameter is a = 2.467 A. Displacements are consid-
ered both in and out of plane.

In the tight-binding model, the hopping constant 7y is
picked so that the slope around the Dirac point is B =
5.52eV A as in Ref. [38], so \/§/2at0 = B. We also use
Nexpt = 4.42 eV/A, obtained from (g2) = i/(2Mwr)9/41>
(see Ref. [36], Sec. IIC) and (g%) = 0.0405 eV? [see Ref. [38]
after Eq. (6)].

Recall from the main section that if k is not in Qgc, then
the grids have to be shifted by K, with K the only wave vector
in the SBZ such that k = K 4 q¢ for some qg in Qsc. To
determine the Green’s function, for each configuration, H! has
to be diagonalized to get the eigenstates |J)! needed in Eq. (6).
Then, the inner product can be done for any k = K + q [using
Eq. (A1) in our model]. So by diagonalizing an ensemble of
Hamiltonians #/, the Green’s function can be determined in
a set of points {k = K + q, q in Qgc} without diagonalizaing
additional Hamiltonians.

Calculations are done in a 48 x 48 x 1 supercell, with
a smearing parameter § = 0.1eV, and 100 configurations,
unless otherwise stated. Also, Ny = N, in all calculations, so
the supercells are N; x N; x 1 and we only specify N;. Using
K =T and commensurate points, this gives 25 k points along
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FIG. 17. (a), (b) Convergence of the error of the self-energy as a function of §, for different number of configurations (indicated in the
label). The error is obtained by doing the ratio between the self-energy (at the bare energy) at successive number of configurations (for
the commensurate points along the I'-K-M line), and averaging. The error at 2048 configurations is obtained by dividing the error of 512 by
/2048/512 = 2. (c) Number of configurations needed to achieve less than 1% error, as a function of 1/N,. The largest number of configurations
used for N; = 4, 8, 12, 24, 48 is 18432, 4608, 2056, 512, 128, respectively. The dashed line is 1/N?, so the number of configurations needed
roughly decreases with the number of atoms. The imaginary part has less error than the real part.

I'-DP-M (i.e., I'-K-M), as in Fig. 8. The closest point to DP
has a bare energy of 0.6 eV. To determine the change of the
Fermi velocity, the calculation is done at K = DP/32, to get
the energy at k = 31/32 DP = 0.97 DP, with gy = 0.3eV
(K = 0.97 DP can actually be directly used as well).

2. Tight-binding model

Calculations in the SC in the tight-binding case are a little
bit subtle because the basis depends on the positions of the
atoms. In the SC, we use |S)! = |Is) as a basis, and in the PC
we consider |ks)! = ﬁ Y, e® Rt 5)! Thus, in order to
work out the inner product of Eq. (6), we need to determine
LS|ks')!:

1 )
1 nl __ ik-(Ry+ty)l 1 I
(Sks") = — e TR g|s")
N;

1 .
= RRFTs

= Al
NG (AD)

In the distorted SC, the localized basis of orbitals is nat-
urally shifted. Consequently, the PC basis has to be shifted
as well (considering it has to be defined in the SC Hilbert
space for the inner product to be well defined), so there is
actually no dependence on the basis in the matrix element of
Eq. (6). So, the information on how the interaction changes is
contained in the hopping parameter, and the proof of the main
section holds. What really matters in the model is how the
distance between atoms changes in each configuration and the
hexagonal topology (which atoms interact with each other);
where the basis is centered plays no role. For incommen-
surate k = K + qq, ¢¥75|S)! is the SC basis and the result
of the inner product [second line of Eq. (A1)] has g instead
of k.

3. Self-energy

To get a better understanding of why the P2 and NP spectral
functions in Fig. § are so different, we plot here also the real
and imaginary parts of the self-energy (see Fig. 14). In P2,
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FIG. 18. Comparison of ImX(g() between the perturbative tight-
binding model (with a Ny =48 SC and § = 0.1eV), and the exact
(analytical) conical model [38], in the static and dynamical cases,
where g, is the bare energy of the corresponding k state in the
I'-K-M line. The static result is similar to the dynamical one, except
close to the Fermi level, where the dynamical part has additional
features due to the Fermi-Dirac factors. In the tight-binding model,
the dispersion is also conical close to K, and the contribution from
states that are further away (where the dispersion is not conical) is
smaller because energy denominators are larger. So, the perturbative
result in the conical and tight-binding models should be very similar
inthe N — oo and § — 0 limits. The difference gives an estimate of
the error incurred by using a finite SC.

T = 0K, Neypt
0.06 1
S 0.041
o
S 0.021
I
3 0.001
W
S
~0.021
~0.04 1
1/48124  1/12 1/8 1/4
1/N;
T = 0K, Nstrong
0.1
S 004
)
=~ -01
o
w
I -0.2
3
W -0.3
=
-0.4
-0.5
1/481/24  1/12 1/8 1/4
1/N4

the shape of the self-energy at a given temperature does not
change with coupling since the frequency dependence is only
contained in the Fan term. The magnitude just changes as n?.
This explains for example why in P2 there is no peak at = 0.
Instead, a small peak is visible in ReX at w = 0 at 9syong. See
also the caption of Fig. 14.

4. Alternative self-energy definition

In the main section, we defined the self-energy by averag-
ing the Green’s function G. This is a good definition since
we saw it reproduces AHC and also higher-order terms of
the standard diagrammatic expansion. Here, we consider an
alternative definition, by averaging I} of Eq. (45). Writing
momentum indices explicitly (and band indices implicitly, and
omitting the 7 index to simplify notation) Eq. (16) can be
written

Gk = G\ + Z G Vi Gk (A2)
”
From Eq. (45),
Gk = G + G\ Gy,. (A3)

These equations are matrix equations in the band indices
n,n' (Grx, G Vi Gy, Gk, and Tl are matrices in such
indices). We remind the reader that calligraphic symbols

T=0K, Nexpt

148124 112 18 14

T=0K, Nstrong

148124 112 1/8 14
1/N,

FIG. 19. Convergence of the self-energy with the supercell size N; for several k points, at neyy and fsyong (§ = 0.1€V is fixed). At exp,
the real part is not well converged for all k points, while for the imaginary part arguably at least N; = 24 to get a good result (tuning § for each
SC would give more similar results for different SCs). Instead at 7rong, convergence is good at already Ny = 8.
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FIG. 20. Spectral function for different values of the asymmetry
parameter «. @ = 0 corresponds to a symmetric Lorentzian. Up to
o = 1 the asymmetric can be considered moderate, while @ = 5 gives
a very asymmetric shape.

G, GO,V are defined in the SC (Hilbert space) and have two
momentum indices, while G, G° are defined in the PC and
have one momentum index. In the case of G°, which is diago-
nal in k, we can write G, = G..

In order to obtain an expression for I, we write these
equations as

G = Gy + GVaGr + > GV, Go VG + -+ (A4)
ki

Gk = Gy + GGy + GGGy + - . (A5)

By definition, Gx = G and G = G} [see after Egs. (5)
and (20)]. In Eq. (AS), G° only appears with index k. So, in
Eq. (A4), we separate the sums } ;. as Yy 4 + >y _x- The
terms with k; # k can be grouped together, and it can be seen
that [51]

M =00 + 1@ 10 4 ..
with: H:(l) = Vikk,

H]((n-&-l) — Z

Vi Gy, --- Gy Vik- (A6)

n expt

1.01

0.84

0.6

|a

0.4

0.2+

0.01— :
300 1000
Temperature (K)

(a)

Averaging, terms have to be grouped in pairs as be-
fore, so we recover the same type of structure as X =
WPisred + VGOV irgea + - - - because k; # k (reducible di-
agrams cannot be present). So by defining (putting back the /
index)

1_Ik,nn’ = <Hl )

k,nn’' (A7)
we see that IT almost coincides with ¥ in Eq. (10), except
for the fact that internal momenta cannot be k. Although
both definitions coincide in the thermodynamic limit, for finite
supercells X provides a better definition than IT to determine
the Green’s and spectral functions. A comparison between
both self-energies can be seen in Fig. 15.

5. Comparison between AHC and NP in the very
weak coupling limit

In order to check that the method is correctly implemented,
we compared our method to AHC, by using the analytical
expression of the electron-phonon matrix element, Eqs. (B4)
and (B50) of Ref. [36] together with Eq. (15) of our work. To
do so, we linearized the distorted H',

n
l‘;sf =l— —7T" (ll{sv - llg), (A8)

do

to omit the DW term, and used 7yeaxx = 10’4nexpt, to make
sure there are no contributions from higher-order terms.

In Fig. 16, we can see the comparison between the per-
turbative AHC self-energy (black) and our nonperturbative
approach (blue), for different number of configurations Nct,,
for several k points along the I'-K-M path. For N, = 10
the curves are quite similar, but there are clear differences.
At Ngg = 100 the values are the same for most points and
at Neg, = 1000 they overlap perfectly (here the self-energy
is evaluated at the bare value of the energy, but the same
holds for any w). More configurations are needed for smaller
supercells (see Fig. 17).

k=0.94 DP
2.51 —a T=0K -
T=300K et
-®- T=1000K e
.
2.0 -~ T=3000k . e

1.5
5
1.0
0.5
Exbt. Infer. Strbng
Coupling n

(b)

FIG. 21. (a) Asymmetry parameter || vs temperature for ne.,. Asymmetry increases with temperature for all points considered and
results are similar at Miper and Ngrong. (b) || vs coupling. Asymmetry also increases when increasing the coupling. Thus, the asymmetry of
an experimental spectral function could be an indicator of strong coupling, and that a nonperturbative method is required to describe the

measurements.
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FIG. 22. Comparison between NP calculations with and without including quadratic (DW) and higher-order terms in the Hamiltonian at
(@) Nexpr and (b) Ngrong, for both T = 0K and T = 3000 K [that is, using Eqs. (47) (blue) and (A8) (red)]. For the real part, contributions from
the higher-order terms are negative for all k. They do not affect the imaginary part at 7 = 0K (at 9y, and just barely at 7ong), but they do
at T = 3000K (through terms that involve g and gPV). Also, as mentioned earlier, we notice how the DW relative contribution to the Fermi
velocity is larger at higher temperatures (for both 7y and #sirong)-
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6. Comparison between P2 and exact analytical results

To better understand how our results compare to an exact
adiabatic and nonadiabatic calculation (N;, N, — 400 and
8 — 0), let us look at Fig. 18. It includes the analytical
imaginary part of the self-energy in a conical model [38],
with the same slope around the Dirac point as in the tight-
binding model, in the adiabatic and nonadiabatic cases. The
self-energy in the tight-binding model should coincide very
close to K, where the dispersion is linear. First, we notice that
far away from K, the values are quite similar, so the adiabatic
approximation works well. Second, the use of a finite SC and
a finite § introduces some error. But we see that the adiabatic
exact calculation (black curve) and the perturbative result
(blue curve) are similar, again, not too close to K (where the
Fermi level lies).

7. Convergence of NP

In Fig. 19, we show how the real and imaginary parts of
self-energy at the bare value converges as a function of the
SC size N, at the experimental and strong couplings. For
Nstrong> convergence is achieved for smaller supercells. So the
stronger the coupling, the more important a NP method is,
and the easier it will likely be to achieve convergence. This is
important since SC methods are usually too computationally
demanding to be applied to very large SCs.

8. Asymmetry

With the rescaling a,w, wy, A, 'y = Aa, Ao,
Awg, M, ATy in Eq. (48), the spectral function does
not change. This implies that if a and T’y are rescaled
simultaneously in this way, the amount of asymmetry does
not change. Figure 20 illustrates how asymmetric the peak is
for several values of o« = al'y and Fig. 21 how |«/| increases
with temperature and coupling.

9. Comparison between including and not including
DW in the Hamiltonian

In the main section, we mentioned the contributions from
the Fan and DW to the change in the Fermi velocity. Here,
we compare calculations linearizing the hopping parameter
as in Eq. (A8), and using the full distance (47) (that is, in-
cluding DW and higher-order terms) (see Fig. 22). For the
imaginary part, the DW term can be neglected at T = 0K,
but not at higher temperatures, which means it contributes
through higher-order terms (ImXPY =0, so the DW term
does not contribute to lowest order). At stronger coupling, the
DW piece reduces ReX at both temperatures, just as for exp.
It is interesting to notice how the DW piece is still barely
relevant at 7 = 0K for the imaginary part. At 7 = 3000 K,
DW contributions play a larger relative role compared to nexpt
and increase the width of all k points.
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