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Bad metal and negative compressibility transitions in a two-band Hubbard model
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We analyze the paramagnetic state of a two-band Hubbard model with finite Hund’s coupling close to integer
filling at n = 2 in two spacial dimensions. Previously, a Mott metal-insulator transition was established at
n = 2 with a coexistence region of a metallic and a bad metal state in the vicinity of that integer filling. The
coexistence region ends at a critical point beyond which a charge instability persists. Here we investigate the
transition into negative electronic compressibility states for an extended filling range close to n = 2 within a
slave boson setup. We analyze the separate contributions from the (fermionic) quasiparticles and the (bosonic)
multiparticle incoherent background and find that the total compressibility depends on a subtle interplay between
the quasiparticle excitations and collective fields. Implementing a Blume-Emery-Griffiths model approach for
the slave bosons, which mimics the bosonic fields by Ising-like pseudospins, we suggest a feedback mechanism
between these fields and the fermionic degrees of freedom. We argue that the negative compressibility can
be sustained for heterostructures of such strongly correlated planes and results in a large capacitance of these
structures. The strong density dependence of these capacitances allows to tune them through small electronic
density variations. Moreover, by resistive switching from a Mott insulating state to a metallic state through short
electric pulses, transitions between fairly different capacitances are within reach.
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I. INTRODUCTION

Strongly correlated electron systems have been in the focus
of research for many decades, not the least on account of their
peculiar magnetic [1] and unconventional superconducting
properties [2–5]. The manifest characteristic of the prominent
model for strongly correlated electrons, the one-band Hubbard
model [6,7], is the doping-driven Mott metal-insulator transi-
tion (MIT) [8]. It is the repulsive on-site Coulomb interaction
U that renders a transition into a Mott insulating state at
half-filling (n = 1). With respect to MITs, an extension of the
model to a multiband case [9–12] appears to be qualitatively
similar except that insulating states are to be identified at in-
teger filling numbers. For example, in the case of two orbitals
per site insulating states can emerge at n = 1, 2, 3—apart
from the uncorrelated insulating states at n = 0 and 4.

However, an unsophisticated reasoning with respect to
multiband behavior must fail on several accounts: For asym-
metric two-orbital Hubbard models, presenting systems with
unequal local Coulomb interactions for distinct orbitals or
different band widths, orbital selective Mott phases are to
be expected where one band may be insulating whereas the
second band is metallic (see, for example, Refs. [13–17]).
Moreover, when further coupling parameters become relevant,
such as Hund’s coupling JH, various magnetic phases are sta-
bilized [18–21]. Recently, an in-gap band for the two-orbital
case [22] has been identified, the width of which depends on
JH [23]. Furthermore, even for modest Coulomb interaction
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U , Hund’s coupling JH may strongly reduce the coherence
of the underlying metallic state. This prominently applies to
the degenerate three-band Hubbard model around one charge
away from half-filling, in the so-called Hund metal regime
[24–26].

Intriguing is also the nature of electronic phases in the
vicinity of the insulating states at these critical filling factors.
If U is on the order of its critical value or above, then the elec-
tronic state is a bad metal state with correlation-suppressed
band width. For a two-band Hubbard model with finite JH,
close to n = 2, a first-order transition was established from a
moderately correlated metallic state into a bad metal, where
the transition and the coexistence regime strongly depend
on JH/U and end at a critical point [27]. In particular, the
quasiparticle weight z2(n) collapses to a small value at this
transition and a finite Hund’s coupling controls this behavior
in the two-orbital case, as correlations then depend on the
local spin alignment.

In our work we focus on the transitions into the bad metal
behavior and into a negative compressibility state in the vicin-
ity of n = 2 for a symmetric two-band Hubbard model with
finite coupling JH. Beyond the first-order transition into the
bad metal regime [27], a continuous transition—at which
the electronic compressibility diverges indicating a charge
instability—was previously identified [28].

A different scenario for a strongly enhanced or negative
compressibility in a three-band model was suggested for the
insulator-metal transition in Sr-doped LaTiO3 [29]. There, an
interorbital charge transfer may result in a negative subband
compressibility, assuming that at least one band is close to a
Mott transition. Furthermore, we note that in the low density
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regime, Coulomb interactions dominate the kinetic energy
and generate a negative compressibility of the electron gas
[30,31]. These scenarios are not covered by our present work.

Transitions into a state of negative electronic compressibil-
ity were observed experimentally at interface electron gases
in Si-MOSFETs and in III-V heterostructures [32–34]. More-
over, electron liquids formed at LaAlO3–SrTiO3 interfaces
through electronic reconstruction may allow for negative com-
pressibility [35] as confirmed in Kelvin probe microscopy
measurements [36].

It should be noted that a negative electronic compressibility
does not necessarily imply a thermodynamic instability—with
a possible transition into a phase separated state: the negative
(inverse) compressibility may be compensated by positive
terms which are generically given by the ionic background
or by coupling to further electronic systems, as realized in
some heterostructures. In this case the transition into a state of
negative compressibility may be continuous. Here we do not
investigate the nature of the negative compressibility state. It
depends on the material and the interplay between local and
long range Coulomb interaction. Usually it is expected that the
electronic system phase separates or a CDW state is formed.
However, these may be exponentially damped [37] and the
state stays rather homogeneous with a negative compressibil-
ity as at LaAlO3–SrTiO3 interfaces.

Not surprisingly, in a one-band Hubbard model the com-
pressibility of the paramagnetic state is reduced with respect
to its free electron value and stays positive, yet strikingly
the compressibility is a nonmonotonous function of U for
electron densities in proximity to half-filling. The reduction
is controlled by the interplay of the effective mass and the
Landau parameter F s

0 [38–40]. The same is true in the vicinity
of the MITs at n = 1, 3 in the two-band Hubbard model but
the case of n = 2 is fascinatingly different. There, a finite JH

aligns the spins in the two different orbitals of a site which
induces a suppression of orbital fluctuations in the vicinity
of n = 2 and strongly enhances the effective mass [27,28].
Nevertheless, it is remarkable that a repulsive local Coulomb
interaction induces a negative compressibility state.

Here, we analyze the interplay of quasiparticle behavior,
expressed by the quasiparticle weight z2(n), and collective
excitations, expressed by bosonic fields for orbital occupa-
tions in the two-band Hubbard model. The feedback between
these fermionic and bosonic degrees of freedom determines
the discontinuous and continuous phase transitions and drives
the electronic system into a state of negative compressibility.

The slave boson technique is well adjusted to study this
interplay. In fact, negative electronic compressibility obtained
by means of Kotliar-Ruckenstein and related slave boson cal-
culations received considerable attention in the context of the
Hubbard model on the square lattice. In the course of consid-
ering incommensurate spiral phases—which allow to lower
the energy of the lightly doped one-band Hubbard model
with respect to the commensurate antiferromagnetic phase—
negative compressibility in a small density range close to half
band filling was discovered [41]. Motivated by the quest of
thermodynamically stable phases a Maxwell construction was
suggested, which has been recently revisited [42].

A well accessible response function to probe the com-
pressibility is the capacitance of heterostructures comprising

two electrodes and dielectric layers in between. An en-
hancement of the capacitance in two-band systems was
suggested in Ref. [43]. Besides, the capacitance of multi-
layers with strongly correlated materials was investigated
recently [40,44,45], either with a barrier or electrodes consist-
ing of strongly correlated materials. The capacitance strongly
depends on the correlation strength U of the considered one-
band models. Apart from these analyses, a scheme that builds
on a Wigner crystal-like strongly correlated liquid state was
proposed for the low density regime to explain capacitance
enhancements [46].

In the present work we suggest a realization of a capac-
itance device which comprises plates with a material that
is electronically in a regime well described by a two-band
Hubbard model close to half filling.

The paper is organized as follows: the two-band Hubbard
model of our investigation is presented in Sec. II, together
with the key features of the extended Kotliar-Ruckenstein
slave-boson technique that we utilize. We present our results
in Sec. III. These comprise the quasiparticle residue z2 and
the phase diagram close to half filling in Sec. III A, then the
double occupancies as represented by slave boson fields in
Sec. III B, the electronic compressibility κ in Sec. III C, and
eventually the capacitance of a device with strongly correlated
electron systems on the electrodes in Sec. III D. In Sec. IV
the bosonic degrees of freedom are interpreted in terms of
classical Ising-fields through a Blume-Emery-Griffiths (BEG)
model approach, and a feedback mechanism between these
fields and the fermionic degrees of freedom is presented.
Finally, Sec. V presents conclusions and a short outlook.

The gauge symmetry group of the approach is unraveled in
Appendix A, while the saddle point equations that we solve
are detailed in Appendix B. The filling dependence of the
chemical potential is given in Appendix C and the single
and triple occupancies are addressed in Appendix D. The
parameters that enter the BEG-type analysis are discussed in
Appendix E, and the BEG phase diagram for the chosen set of
parameters in Appendix F.

II. MODEL AND METHOD

The microscopical model consists of a kinetic energy term
Ĥ0 and a Hubbard interaction part Ĥi, with the complete
Hamiltonian Ĥ = Ĥ0 + Ĥi. The kinetic term reads for the
two-band case

Ĥ0 =
∑
k,σ

(c†
k,η,σ , c†

k,ξ ,σ )

(
εη,k rk

rk εξ,k

)(
ck,η,σ

ck,ξ ,σ

)
. (1)

A specific realization one may wish to consider is provided
by oxides with two bands active at the Fermi energy. Below,
we focus on degenerate dxz and dyz orbitals dispersing on
a square lattice in the x-y plane—with lattice constant a.
In that case, a minimal tight-binding model entails εη/ξ,k =
−2t cos (kx/ya)—representing the hopping along the proper
bond—with minimal mixing rk = −4t ′ sin (kxa) sin (kya)—
arising from the hopping along the diagonals. The operators
c†

k,η,σ (c†
k,ξ ,σ ) create a Bloch eigenstate with wave vector k

and spin projection σ in band η (ξ ). Below we refer to a band
index u that takes the values η, ξ .
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The band structure is appropriate to the layered Sr2RuO4

material, that crystallizes in the Ruddlesden-Popper structure
and the degeneracy of the t2g multiplet is partially lifted [47].
As t ′ is expected to be much smaller than t we use the rep-
resentative value t ′/t = 1/25 in our numerical evaluations.
As for |t ′/t | � 1

4 the bandwidth W is given by W = 4t , we
will use from now on W as the band parameter instead of
t . Our results do not depend qualitatively on this choice of
t ′/t but rather on the relative magnitudes of the band width,
Hund’s coupling JH and on-site Coulomb interaction UP/A/H

(see below).
The two noninteracting bands ε

(0)
k,ν follow as

ε
(0)
k,ν = 1

2

(
εη,k + εξ,k + ν

√
(εη,k − εξ,k )2 + 4 r2

k

)
, (2)

with ν = ±1. While for the most common dispersions on the
square lattice the van Hove singularity is located close to—or
even at—half-filling, this is not the case with the here cho-
sen dispersion. Having van Hove singularities in the relevant
doping regime would suppress the kinetic contribution to the
inverse compressibility very effectively [43]. The interference
of this single particle effect with the correlation driven impact
on the compressibility, studied in Ref. [40], is avoided here
thanks to the dispersion Eq. (2).

For the local part of the Hamiltonian,

Ĥi = UP

∑
i,σ

n̂i,η,σ n̂i,ξ ,σ + UA

∑
i,σ

n̂i,η,σ n̂i,ξ ,−σ

+ UH

∑
i,u=η,ξ

n̂i,u,↑n̂i,u,↓, (3)

the interactions of the electrons between different bands are
taken into account: The first term originates from the interac-
tion of electrons in different orbitals with parallel spins and
the second term from the interaction between electrons in
different orbitals with antiparallel spins. The last term, which
also appears in the single-band Hubbard model, is due to the
on-site repulsion between two electrons in the same band.
Above, n̂i,u,σ = c†

i,u,σ ci,u,σ is the number operator on site i,
in band u and spin projection σ . For an ion in the octahedral
environment, assumed here, the coefficients of the interaction
are related by UA = UP + JH and UH = UP + 3JH [11,48,49].

As argued in Ref. [28] further contributions from Hund’s
coupling are of minor relevance for the considered regime.
They are not considered in this work. We comment on the
reduction of Hund’s coupling to Zeeman-like spin-density
correlations and the value of JH in the conclusions, Sec. V.

We use an extended Kotliar-Ruckenstein slave-boson tech-
nique [50] to treat the above defined two-band Hamiltonian.
One slave-boson field is introduced for each of the 16 pos-
sible atomic configurations [11], as well as four fermionic
fields fi,α . The physical electron annihilation operators may
be expressed in terms of auxiliary particles as

ci,α = zi,α fi,α, (4)

where α = (u, σ ) is a four-valued spin-band index and zi,α

is a combination of bosonic operators as given in Ref. [11]
(see also Appendix A). A bosonic field e (
 ) is associated
to empty (fourfold occupied) sites, and four bosonic fields
pα (tα) are associated to each singly (triply) occupied sites

whereby the α-state is filled (empty). The six different dou-
ble occupancies are tied to bosons dα,α′ , with α < α′. All
auxiliary fermionic and bosonic fields satisfy canonical com-
mutation relations, while the physical electron operators do so
provided the following constraints are satisfied:

1 = e†
i ei +

∑
α

p†
i,α pi,α +

∑
α<α′

d†
i,αα′di,αα′

+
∑

α

t†
i,αti,α + 


†
i 
i, (5)

f †
i.α fi,α = p†

i,α pi,α +
∑
α′<α

d†
i,α′αdi,α′α +

∑
α′>α

d†
i,αα′di,αα′

+
∑
α′ �=α

t†
i,α′ti,α′ + 


†
i 
i. (6)

In an imaginary time functional integral the constraints (5)
and (6) are incorporated in the Lagrangian together with the
(Lagrange multiplier) constraint fields λ′ and λα , respectively.
Ideally the functional integrals should be calculated exactly.
Regarding spin models this has been achieved for the Ising
chain [51], but in the case of interacting electron models exact
evaluations could be performed on small clusters only, either
using the Barnes representation [52], or the Kotliar and Ruck-
enstein representation [53]. Yet, such a calculation remains
challenging on lattices of higher dimensionality, and we rather
resort to the saddle-point approximation.

Below, we consider the paramagnetic saddle-point approx-
imation obtained after having integrated out the fermionic
fields (for formal aspects of the approach see Appendix B).
In the paramagnetic phase one may introduce d2

P , d2
A, and d2

H,
through the relations d2

η↑,ξ↑ = d2
η↓,ξ↓ ≡ d2

P , d2
η↑,ξ↓ = d2

η↓,ξ↑ ≡
d2

A, d2
η↑,η↓ = d2

ξ↑,ξ↓ ≡ d2
H, as well as p2, t2, and λ through

p2 ≡ p2
α , t2 ≡ t2

α , and λ ≡ λα∀α. In terms of them, the grand
potential may be written as

�/NL = 2
(
UPd2

P + UAd2
A + UHd2

H

)
+ 2(UP + UA + UH)(2t2 + 
 2)

+ λ′(e2 + 4p2 + 2
(
d2

P + d2
A + d2

H

) + 4t2 + 
 2 − 1
)

− 4λ
(
p2 + d2

P + d2
A + d2

H + 3t2 + 
 2
)

− 2

β

1

NL

∑
k,ν

ln (1 + e−βEk,ν ). (7)

To disburden the notation we use U ≡ UP below. Outside
the strong coupling regime U > 5W in which the 
 bo-
son representing the four-fold occupancy was neglected, all
bosons were retained in our calculations performed for n � 2.
Results for n � 2 are obtained using particle-hole symmetry.
Here β = 1/kBT incorporates the temperature T and NL is the
number of lattice sites. The dispersion for the quasiparticles is
given by

Ek,ν = z2ε
(0)
k,ν

− μeff , (8a)

μeff = μ − λ. (8b)

For more details about the saddle-point equations see Ap-
pendix B.
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III. RESULTS

The transition to a negative compressibility in proximity to
half filling is a remarkable feature of the two-band Hubbard
model [28], a property which is not found for the one-band
Hubbard model. A first-order phase transition to a bad metal
state close to half-filling was identified before [27]. There the
quasiparticle residue of the charge carriers drops significantly
to low values, concomitant with a jump of the effective mass
to large values. These transitions are controlled by Hund’s
coupling JH, that is, they are absent for vanishing JH. We
emphasize that JH does not scale with U but rather depends
on the orbital character of the electrons. For our investigation
of the impact of intermediate to strong correlations on the
electronic compressibility we consider JH of the order of t ,
namely, we fix JH = W/6. A JH/U dependence was discussed
in Refs. [27,28]. The full JH dependence will be the scope of
a different work.

A. Quasiparticle residue and phase diagram

The dependence of the quasiparticle residue z2 on charge
carrier density and interaction strength in the two-band model
has been extensively investigated before (see, for example,
Refs. [11,12,27,54]), not the least because it is directly related
to the inverse effective electronic mass. Of particular inter-
est is its behavior at the commensurate densities: for n = 1
and n = 3 it decreases smoothly with increasing interaction
strength, and vanishes at the metal-to-insulator transition. It is
a continuous transition and bears much resemblance with the
Brinkman-Rice transition [8]. On the contrary, it is first order
for n = 2 in its dependence on U [27].

Here we consider a fixed parameter value JH = W/6 and
plot the quasiparticle residue against filling for various val-
ues of U (see Fig. 1). Its behavior varies strongly with the
correlation strength: for U < UMI � 1.41W the quasiparticle
residue smoothly depends on filling below the Mott insulator
transition (MI). As previously shown in Ref. [11], it displays
a broad minimum at n = 2 and decreases with increasing U .

The same seems to apply for U up to 1.65W , but this is a
fallacy. Indeed, a second solution starting from n = 2 with z =
0 develops and is actually stabilized in a doping range around
half-filling that grows with increasing U . This marks a coex-
istence region of the above described metallic state with an
insulating-like doped Mott insulator or “bad metal” state. The
bad metal state disappears below an n-dependent value Uc1(n)
and the metallic state above a value Uc2(n) (see blue and
black curves in Fig. 2, respectively, where the phase diagram
is presented, as well as in Figs. 3 and 4.). The lowest value
of Uc2 is Uc2(n = 2) � 1.65W for JH = W/6. The metallic
and the insulating-like solutions are degenerate along the red
dashed lines in Figs. 2 and 3. As a hallmark of this first-order
transition, the coexistence range of the two solutions is rather
limited in size and extends from U = UMI at half-filling to at
most n∗

c � 1.937 for U ∗
c � 1.768W . Beyond it, both solutions

turn indistinguishable and accordingly smoothly connect.
At the critical point CP, located at (n∗

c , U ∗
c ), the residue z2

possesses an inflection point in its density dependence, where
its derivative diverges. When further increasing U , there re-
mains an inflection point, where the magnitude of the slope

1.7 1.8 1.9 2
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z2

U = 1.3 W
U = 1.4 W
U = 1.6 W
U = 1.7 W
U = 1.78 W
U = 2.0 W
U = 5.0 W

FIG. 1. Quasiparticle residue in dependence on filling n for
JH = W/6. The circles and the vertical thin lines characterize the
first-order transitions while the diamonds mark the inflection points.

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
n

1.3

1.4

1.5

1.6

1.7

1.8

U
 / W

Uc1

Uc2

Uc

CI
CIL
IP of z

MI

CP CP

CEP CEP

2.101.90 2.0

2

FIG. 2. Phase diagram for JH = W/6. The red dashed line sep-
arates a stable metallic solution from a stable bad metal state at
larger values of U . This line becomes red-green dashed where the
charge instability coincides with that first-order transition. Uc1 and
Uc2 mark the boundary of the coexistence regime. The red circles
locate the critical points CP = (n∗

c ,U ∗
c ) and (2 − n∗

c ,U ∗
c ). The green

circle denotes [n = 2,Uc2(n = 2)]. The charge instability line (CIL)
merges with the Uc-line at the critical end point (CEP) marked by the
red-green dot (see the magnification of this regime in Fig. 3). The
first-order transition (red-green dashed line) ends at the MI-transition
point, close to (n = 2,U/W = 1.41). The green dots extend the
charge instability (CI) into the metastable metallic state. The orange
dashed (dotted) curve marks the inflection points of z2(n) in the
metallic (metallic metastable) phase.
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1.94 1.95 1.96n

1.700

1.725

1.750

1.775

U 
/W

CP

CEP

nc* nCEP

U

c
*U

CEP

FIG. 3. Phase diagram of Fig. 2 zoomed into filling range close
to the critical end point (CEP).

steadily decreases (see the diamonds placed on the continuous
curves in Fig. 1 and the dark-orange dashed line in Fig. 4). As
the addressed jump of the quasiparticle residue for U < U ∗

c
transforms into an inflection point in its density dependence,

1.82 1.84 1.86 1.88 1.9 1.92 1.96 1.98
n

0

5

10

15

CIL

IP of z

CP

2

2.0

20

U
/W

Uc
*

nc
*

CIL
IP of z 2

FIG. 4. Charge instability line (CIL) and lines of inflection points
of z2 in the (n,U ) phase diagram for JH = W/6. The red circle marks
(n∗

c ,U ∗
c ), and the green circle [n = 2,Uc2(n = 2)]. The dark-orange

dashed line displays the inflection points of z2(n) for U above U ∗
c .

The light-orange dashed line denotes the inflection points in the
metallic regime (cf. to the diamonds in Fig. 1) and the light-orange
dots extend this line of inflection points into the metastable metallic
state close to half filling.

it is to be associated with a crossover. For U < UMI, besides
the stable metallic solution, there remains a solution arising
from the Mott insulator. It is metastable and, therefore, it will
not be addressed any longer in the following.

In addition, we display the charge instability line (CIL) of
the metallic solution as continuous green lines in Figs. 2–4.
Along this line the inverse electronic compressibility is zero.
The CIL merges with the Uc-line at (nCEP � 1.9423,UCEP �
1.733W ) (see Fig. 3). Below this value of U , the Uc-line
not only represents the transition from metallic to bad-metal
behavior but also a discontinuity of κ−1 (jump from positive to
negative values of κ−1). The analysis of the charge instability
will be presented in Sec. III C.

B. Slave boson fields

The slave boson expectation values represent collective
fields. With the calculations performed at fixed JH the collec-
tive fields involving double occupancies markedly differ from
one another in a broad density range around half-filling. As
shown in Fig. 5, the hierarchy d2

H < d2
A < d2

P is always clearly
obeyed, with the exception of the Mott insulating phase where
the first two vanish. The critical point (n∗

c ,U ∗
c ) illuminates the

density dependence of all bosons; there, they all exhibit an
inflection point with diverging derivative with respect to n. For
U > U ∗

c inflection points remain, though the amplitude of the
derivatives diminishes. On the other side, U < U ∗

c , all boson
expectation values jump at the first-order transition whereas a
smooth behavior is restored for U < Uc(n = 2).

C. Compressibility

The inverse electronic compressibility is expressed through
the derivative of the chemical potential μ with respect to the
electronic density ρ,

κ−1 = ρ2 ∂μ

∂ρ
, (9)

where we consider the zero-temperature compressibility for
constant volume. The density in the two-dimensional elec-
tronic system is trivially related to the filling through n =
a2ρ where a is the lattice constant. Alternatively, the in-
verse compressibility may be calculated directly from F (n),
which is the Legendre transform of �(μ), through κ−1 =
n2d2(F/NLa2)/d2n.

In this work we ascribe a continuous transition with a zero
crossing in the inverse electronic compressibility κ−1(n) to a
charge instability (see the green lines in Figs. 2 and 4). There
the charge susceptibility κ diverges. However, a first-order
transition emerges if κ−1(n) changes discontinuously and the
charge susceptibility stays finite. This discontinuity is tied
to the metal to bad metal transition (see the red-green lines
in Fig. 2). Only at singular points (nCEP,UCEP), the inverse
compressibility approaches zero from the low-filling side and
jumps to a negative value (see the green-red point in Fig. 3).
There the charge instability line ends at the first-order transi-
tion line. In analogy with similar end points in thermodynamic
phase transitions we denote this point as a “critical end point”
(CEP).

We now analyze the formation of a negative compress-
ibility state in few of the involved fermionic and bosonic
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(a)
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(c)

FIG. 5. Filling-dependent expectation values of site double occupancies for JH = W/6: (a) two parallel spins, (b) two antiparallel spins in
different orbitals, (c) two antiparallel spins in the same orbital. The circles and the vertical thin lines characterize the first-order transitions.

degrees of freedom. The grand potential �, Eq. (7), as well
as F is made of a fermionic contribution arising from the
quasi-particles, and a bosonic one, to which no coherence may
be related. Accordingly, the full inverse compressibility κ−1

consists of a fermionic contribution κ−1
f , arising from the last

two lines of Eq. (7), and a bosonic one κ−1
b , deduced from

the first three lines of Eq. (7). Note that the last line is the
kinetic energy for a fermionic system and the second but last
line contains a contribution to the constraint which relates the
fermionic to the bosonic degrees of freedom.

The interaction distinctly influences κ−1
b as may be de-

duced from Fig. 6(a). For weak to moderate coupling U �
1.4W all bosons display a comparatively weak density de-
pendence and this holds true for κ−1

b as well. For U above
UMI, the bosonic contribution to κ−1 is still positive but jumps
to a larger value close to half-filling in the bad metal state.
Then, for U > Uc2(2), the metastable metallic state does not

extend to n = 2 and κ−1
b is negative in a wide filling regime

well below half-filling before it jumps to a positive value
close to half-filling in the regime where the bad metal state
is stabilized. Eventually, for U � U ∗

c , κ−1
b is continuous with

a minimum and a maximum below and above the transition,
respectively [see inset of Fig. 6(a)].

To relate these findings to the bosonic fields one may
rewrite the bosonic contribution �b to the grand potential
Eq. (7) as

�b/NL = −d2
P (U + 4JH) − d2

A(U + 2JH) − d2
H(U − 2JH).

(10)

This expression results from first neglecting the very small
contributions from the bosons e and 
 , and second to using
the constraints to express the boson t in terms of the d-bosons.
This additionally yields terms proportional to n − 1, but the
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FIG. 6. Bosonic (a) and fermionic (b) contribution to the inverse compressibility in dependence on filling n for JH = W/6. Here κ−1
b,f is in

units of W/a2. The vertical blue line marks a first-order transition for U = 1.6W . The dashed blue line represents the metastable metallic case.
The positions of the first-order transitions for U = 1.7W and 1.75W are schematized by diamonds. The transitions in the inset are continuous
albeit the inverse compressibility for U = 1.78W is not displayed completely.
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latter do not contribute to the inverse compressibility—as κ−1

is the second derivative with respect to n—and they are not
included in �b of Eq. (10) for the following discussion of κ−1

b
Recalling the above hierarchy among the d-bosons it turns

out that the leading contribution to �b follows from the dP-
boson. At U = U ∗

c the dP-boson possesses an inflection point
in its density dependence that is located at n = n∗

c . It separates
a density range where the density dependence of d2

P is charac-
terized by a positive curvature from a regime with a negative
curvature [compare the purple curve in Fig. 5(a)]. This sign
change of the curvature persists for larger U values, which
is reflected in κ−1

b (see inset of Fig. 6). This is also true for
U < U ∗

c but close to it—with the additional feature of a jump
at the first-order phase transition.

For weak to moderate coupling U < UMI the curvature of
the dP-boson contribution is negative in the entire presented
density range. As this is in fact the leading contribution to κ−1

b ,
it results necessarily in a positive bosonic compressibility.

For U � UMI, the density dependence of d2
P displays a neg-

ative curvature in the considered regime close to half filling.
In this case, κ−1

b remains positive. However, well below half-
filling the curvature switches its sign as seen for the blue curve
in Fig. 5(a) even though the compressibility κb stays positive.
This seeming inconsistency is resolved by the observation
that the contribution of the other two d-bosons in Eq. (10)
overcompensates the one of dP for this doping regime far from
half filling.

The filling dependence of the fermionic contribution κ−1
f

to the inverse compressibility is to a large extend opposite to
that of the bosonic κ−1

b [see Fig. 6(b)]. Again, the qualitative
behavior of such a contribution to the inverse compressibility
can be derived from a single dominant term, namely, the
second derivative of the quasiparticle residue with respect to
filling.

To understand this we analyze the free energy arising
from the grand potential at T = 0. The last two lines of
Eq. (7)—together with the Legendre transformation—lead to
a fermionic contribution Fkin to the free energy composed of
the kinetic energy, only. Since Fkin may be obtained analyti-
cally in the limit t ′ → 0 with little impact on the numerical
results, we adopt this approximation below. In that case we
obtain the kinetic energy per site as

Fkin/NL = −2z2 W

π
cos

(
πδ

4

)
, (11)

where doping δ ≡ n − 2 was introduced for convenience.
From Eq. (11) one may infer the leading contribution to κ−1

f
to be given by

κ−1
f � −2n2 ∂2z2

∂n2

W

a2π
cos

(
πδ

4

)
. (12)

Numerical tests prove Eq. (12) to be a good approximation.
In the regime of weak to moderate coupling (U � UMI) the

effective mass ∼1/z2 weakly depends on filling, though fea-
turing an inflection point (cf. the position of the diamonds in
Fig. 1 and the light-orange dashed line in Fig. 4) at which the
curvature switches from negative to positive when increasing
the filling. Accordingly, κ−1

f takes comparatively small values,
exhibits a sign change, and its magnitude somewhat increases
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FIG. 7. Inverse compressibility in dependence on filling n for
JH = W/6. Here κ−1 is in units of W/a2. The vertical lines mark a
first-order transition from the metallic to the bad metal state. The
dashed lines refer to the metastable states.

in the vicinity of half filling. When intermediate coupling is
considered in the metallic phase (U � 1.6W ) the same trends
are followed, yet with a larger magnitude and, close to half
filling, with a jump of the fermionic inverse compressibility to
a larger negative value in the stable bad metal state. For larger
interaction strength, (Uc2(2) � U � U ∗

c ) the inflection point
of z2 vanishes. Instead, increasingly negative curvature is re-
alized in the entire metallic phase, while positive curvature
characterizes the bad metal phase. Note that the corresponding
values taken by κ−1

f close to the discontinuity are too large to
be displayed in Fig. 6(b). Once U exceeds U ∗

c , the inflection
point of z2 is restored, and so is the zero of κ−1

f . Let us stress
that it remains a continuous function of density that takes very
large positive and negative values [see the purple curve in the
inset of Fig. 6(b)].

Since κ−1
b is mainly controlled by the dp-boson while κ−1

f
is primarily ruled by the inverse effective mass, that itself
depends on the dP-boson, one may wonder why these two
contributions to κ−1 do compete. To that aim we seek for
an approximate but reasonably accurate analytical form of
∂2z2/∂n2 that enters Eq. (12). From the plethora of contri-
butions to it [cf. Eq. (A4) and the definitions in Eq. (A5)], it
turns out that

∂2z2

∂ n2
� 4(dP + dA + dH)2

1 − (
n−2

2

)2

∂2(p + t )2

∂n2
(13)

is a good approximation. Here a numerical test shows that
the term with the second derivative of d2

P is small as com-
pared with the retained term (13) [cf. Figs. 15(a) and 15(b) to
Fig. 5(a)]. Hence, while the sign of κ−1

b is essentially given by
the curvature of d2

P , the one of κ−1
f follows from the curvature

of (p + t )2. Figure 5(a) and Figs. 15(a) and 15(b) show that
they are opposite in sign in the largest part of the parameter
space of interest where they therefore compete.

The total inverse compressibility is shown in Fig. 7. The
near cancellation of κ−1

b and κ−1
f is particularly clear for the
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smallest densities, i.e., the largest doping. There, not only
the magnitude of κ−1 is smaller than the larger of its compo-
nents, but its U -dependence is strongly suppressed. For weak
to moderate U (U � UMI), and under an increase in density,
the bosonic contribution takes over in the entire presented
density range, where κ−1 remains positive.

For intermediate coupling, UMI < U < U ∗
c , the sign of κ−1

follows mostly the one of κ−1
f . However, note that the strong

increase of κ−1
f on the low-filling side of the discontinuity

is nearly canceled by κ−1
b . Therefore the charge instability

(with negative compressibility) is formed already in the sta-
ble metallic state (see the turquoise curve in Fig. 7). That
regime is identified in the phase diagram of Fig. 2 where
for fixed U close to but below U ∗

c one first crosses the CIL
with increasing n and only then observes for slightly larger
filling a transition to a bad metal state. This regime ends
at (nCEP � 1.9423,UCEP � 1.733W ) where the CIL merges
with the Uc-line (see the red-green point in the inset of Fig. 2).

For U -values above U ∗
c the inverse compressibility is

continuous—as are its partial contributions κ−1
f and κ−1

b —and
for U/W below approximately 10 the CIL stays at the lower
filling side with respect to the line of inflection points (see
Fig. 4). Again, it is the bosonic contribution which drives
the compressibility to negative values already before the
fermionic contribution beyond the inflection point enforces
the negative compressibility state at smaller doping.

D. Capacitance of a heterostructure

Previous studies point out a tendency for the capacitance of
heterostructures comprising strongly correlated electron sys-
tems to be larger than those with weakly interacting electron
systems [40,55]. Here, we consider a capacitor made of a
polarizable dielectric between two electrodes as modeled by
the current two-band Hubbard model. In this simple set-up,
the quantum corrections to the inverse capacitance (see, e.g.,
Ref. [43]) are given by

C0

C
= 1 + 2

ε0εa2

e2d

∂μ

∂n
. (14)

Here, C0 = ε0εA/d is the geometric capacitance of a capacitor
with two plates, ε is the dielectric constant of the dielectric
material between the two electrodes, each of area A, and d
is the thickness of the dielectric. To be specific, we use the
parameter values d/ε = 4aB (with aB the Bohr radius), and
the lattice spacing a is set to 6aB. The prefactor of ∂μ/∂n in
Eq. (14) is then 2ε0εa2/(e2d ) = 0.0526 eV−1.

As can be seen in Fig. 14 the chemical potential steadily
grows with density in the largest part of the phase diagram.
This includes the weak coupling regime U � UMI for all den-
sities as well as the moderate to strong coupling regime for
large doping. In these regimes the kinetic term rather acts to
lower the capacitance.

For moderate coupling in the range from U � UMI to
U � UCEP the metallic state becomes unstable close to half
filling and the compressibility jumps to negative values in the
bad metal state. Concomitantly, C/C0 is pushed to a value
well above 1 which is easily understood from Eq. (14) for
the parameter regime where the right-hand side (rhs) is still
positive [cf. Fig. 8(a)].
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)(b)(a

FIG. 8. Capacitance enhancement in dependence on filling n for
JH = W/6. (a) The weak coupling regime displays a continuous
filling dependence of C/C0 with values below 1.0 whereas the in-
termediate coupling range shows jumps of C/C0 from less than 1 to
values well beyond 1. The jumps of the capacitance are associated
to the first-order metal to bad metal transition and are indicated
by vertical lines. (b) For stronger coupling in the range from UCEP

to U above U ∗
c , the C/C0-lines have two branches with a negative

capacitance in between. For large coupling beyond U ∗
c , the filling

dependence of C/C0 is again continuous.

For U � UCEP the metallic state still persists in a small
doping range with negative compressibility and the rhs of
Eq. (14) is still positive [see the turquoise curve in Fig. 7
and the corresponding turquoise curve for C/C0 in Fig. 8(b)].
The turquoise circle represents an end point beyond which the
capacitance is negative in a small doping range: When the bad
metal state is stabilized at larger n, the inverse compressibility
jumps to a more negative value. There the capacitance C
becomes negative which signifies that the charging of the elec-
trodes changes (negative C are not displayed in Fig. 8). We do
not investigate that charging instability further in this work (it
was discussed in Ref. [43]). Eventually, with a slightly higher
filling, the negative inverse compressibility is again reduced
sufficiently so that the rhs of Eq. (14) becomes positive again
and the second branch of the (positive) capacitance curve
close to half filling is observed.

Eventually, for U in the vicinity of U ∗
c [see the purple

curves in Figs. 7 and 8(b)], the rhs of Eq. (14) is zero twice
in the regime of negative compressibility. Correspondingly,
the capacitance diverges twice and it attains negative values
around n = 1.94. For even stronger coupling the dip in the
inverse compressibility is less pronounced and the capacitance
displays a broader maximum [see the red and orange lines in
Fig. 8(b) for U = 2.0W and 5.0W , respectively].

It is evident that, with the strong dependence of the capaci-
tance on filling in the intermediate to strong coupling regime,
switching capacitances through small electronic-density vari-
ations appears to be feasible.

Moreover, we suggest that with electric pulse switching be-
tween the high resistance Mott insulator and the low resistance
metallic state [56] it is possible to switch between low and
high capacitance in a corresponding device. This is indicated
in Fig. 9 for the capacitance transition with U/W = 1.6.
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1.94 1.96 1.98 2
n

1.0

1.5

2.0

C
/C

0

E(t)

FIG. 9. Schematics of the capacitance switching induced by a
short electric pulse E (t ). The Hund’s coupling is JH = W/6 and
U = 1.6W . Below approximately n � 1.965, the continuous blue
line represents the capacitance with electrodes in the stable metallic
state, whereas above n � 1.965 this line refers to the stable bad
metal state. The dotted blue line represents the metastable metallic
case. The obtained effect is enhanced when approaching the transi-
tion, that is, when the energy difference between the two phases is
smaller.

IV. BLUME-EMERY-GRIFFITHS APPROACH

The phase diagram of the two-band Hubbard model close
to half-filling is surprisingly intricate exposing a first-order
and a continuous phase transition (Figs. 2 and 4)—even
though magnetic transitions are disregarded. The interpre-
tation, however, is elusive as the slave-boson technique
involves already seven bosonic fields in the paramagnetic
state (at least four fields are relevant in the vicinity of half-
filling) and their interplay jointly with the fermions is to be
understood.

In the spirit of the Ising lattice-gas formulation of the
liquid-gas transition we intend to mimic the bosonic fields by
Ising-like pseudospins. The procedure builds on the assump-
tion that it is not unreasonable to represent bosonic fields by
classical fields and that the metal to bad metal transition is
controlled by the bosonic degrees of freedom. For this purpose
we simplify the formalism with exclusive focus on these tran-
sitions. We introduce a Blume-Emery-Griffiths (BEG) model
[57] for the pseudospin degrees of freedom to better capture
the machinery of the transition rather than gain quantitative
results.

Such a simplification will not pave the way to reproduce
the Mott transition or magnetic transitions close to half-filling.
However, it will generate qualitatively similar results as those
in the previous section and thereby allows to understand the
addressed transitions eventually in the more comprehensive
framework of slave-boson theory.

A. BEG model and relation to the slave-boson representation

The basic idea is to interpret the bosonic degrees of free-
dom in terms of classical Ising-fields (pseudospins) which are
controlled by various couplings. Foremost, there is a Zeeman-
like coupling term which provides the energetical splitting
between different configurations of doubly occupied sites,
so that the Hund’s coupling JH becomes a pseudomagnetic
field for the Ising fields. Then there is for sufficiently strong
interaction U an effective nearest-neighbor exchange between
orbital states of doubly occupied sites that is translated into an
Ising-type nearest-neighbor coupling of the pseudospins.

The feedback of the Ising pseudospins to the fermionic
subsystem controls the kinetics of the fermions. It is the effec-
tive mass or rather the quasiparticle residue z2 [see Eq. (A4)]
through which the bosonic fields affect the kinetic fermionic
term. We will use the dependency of z2 on the bosonic fields,
now for the dependence of z2 on the classical Ising fields.

Yet there is a second (reverse) feedback mechanism: the
fermionic degrees of freedom are expected to control the
bosonic fields, that is, the Ising fields in this approach. With
the fermions coupled to the pseudospins, the latter must nec-
essarily fluctuate, even though they are introduced as classical
fields. Although this is a rather crude approximation we intro-
duce the effective bandwidth of the fermions as a soft energy
cutoff for the fluctuations of the pseudospins by implemen-
tation of this energy cutoff as an effective temperature for
the pseudospins. In fact, we will see that this approximation
reproduces the slave-boson results qualitatively.

In detail we now proceed as follows: To keep the num-
ber of pseudospin components minimal we only consider the
fields related to the three doubly occupied states and the field
representing the singly occupied sites. This will be sufficient
for an intermediate coupling regime below half-filling (but
above quarter filling). Later we will address the shortcomings
of this reduction of degrees of freedom. Moreover one of the
three fields representing doubly occupied sites may be related
to the further fields through a constraint [see Eq. (B11)].
Consequently we consider a spin-one Ising Hamiltonian for
the pseudospins Si. We identify Si = 1 with the spin-parallel
occupation of the two orbitals on a site i, i.e., with d2

P , and
Si = −1 with the spin-antiparallel occupation of the two or-
bitals, i.e., with d2

A. The singly occupied sites are represented
by Si = 0, which relates to the slave boson field p2 on that
site.

For arbitrary nearest-neighbor contributions the pseu-
dospin representation of the bosonic degrees of freedom
leads to a generalized form of the Blume-Emery-Griffiths
(BEG) model [58]. We find that an antiferromagnetic nearest-
neighbor (bilinear) Ising coupling is consistent with the
slave-boson results; we will also provide a discussion for the
choice of valid BEG-parameter regimes in Appendix E.

The Hamiltonian for the generalized BEG-model has the
following structure for Ising spins on NL sites with nearest-
neighbor coupling:

H = − J
∑
〈i, j〉

SiS j − K
∑
〈i, j〉

S2
i S2

j + �

NL∑
i=1

S2
i − h

NL∑
i=1

Si

− L
∑
〈i, j〉

(
SiS

2
j + S2

i S j
) + E0, (15)
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which is the most general Hamiltonian for three classical
states per site and nearest-neighbor coupling [58]. Here J
is the coupling which controls ferromagnetic J > 0 or an-
tiferromagnetic J < 0 correlations of the Ising pseudospins,
that is, in the language of the two-band Hubbard model, it
favors double occupancy with the same or different orbital
states on neighboring sites, respectively. The “magnetic field”
h aligns the pseudospins and corresponds to the Hund’s cou-
pling: h = JH/2 (see Appendix E). The parameter −� in
Eq. (15) controls the number of sites with zero pseudospin and
is related to μ, the chemical potential. Therefore we refer to it
as the chemical potential related to the pseudospin particles.
It will be fixed by the filling n.

The coupling L is to be included if the nearest-neighbor
interaction strength in dP − dP configurations and the strength
in dA − dA configurations is not equal (see Appendix E). Here
we refer to a dP/A − dP/A configuration when two neighboring
sites are both occupied by a dP/A boson. Obviously, such terms
with finite L denote in mean-field theory a shift of both h
and � proportional to L〈S2

i 〉 and to −L〈Si〉, respectively. In
that respect, the coupling L is not relevant for the existence
of the discussed transition although it renormalizes the other
couplings. In this section we only consider the BEG-model
[57] where L = 0 and address finite L in Appendix E.

As to the fermionic dispersion, Eq. (8a), the z2-factor is
reduced to

z2 = 4p2 (dP + dA + dH)2

1 − (
2−n

2

)2 (16)

in the approach with only four bosonic degrees of freedom
[cf. Eq. (13), where the triple occupation was included for a
better quantitative estimate of the compressibility]. We stay
below half-filling (n < 2) because the corresponding results

above half-filling may be derived directly from particle-hole
symmetry, and we introduce δ = 2 − n as the doping param-
eter. The relative number of singly occupied sites is 4p2 = δ

which in BEG is the relative number of zero-spin sites. Here,
the factor 4 accounts for the two-spin directions and the two
orbitals per site. The bosonic field d2

H is fixed by the relation
(B11). As in BEG the dP and dA configurations are assigned
to spin 1 and spin −1, respectively, one immediately identifies

〈Si〉 = 2d2
P − 2d2

A ≡ m, (17a)〈
S2

i

〉 = 2d2
P + 2d2

A ≡ q, (17b)

where we introduced the standard BEG-notation for the mean-
field values of Si and S2

i , that is, m and q, viz. pseudospin
magnetization and relative number of sites with pseudospin
1. Filling is expressed by n = 1 + 2d2

P + 2d2
A + 2d2

H if only
four bosonic fields are considered and this expression may be
rewritten as

q = 1 − δ − 2d2
H. (18)

To include the field d2
H through a constraint is consistent

with the counting, however the sites with dH-configuration
are not represented by a proper term in the Hamiltonian. This
approach is justified if the number of such sites, that is d2

H,
is much smaller than d2

P , d2
A and doping δ which is true close

to the considered transition (see the results below). One may
introduce an on-site energy for the sites with dH-configuration
but this accounts just for a shift of the chemical potential �

and of the coupling constant K which does not affect our
mean-field results qualitatively.

It is straightforward to derive from Eqs. (B11), (16), and
(18) the following expression:

z2(m, q) = 1

2

(
1 − q2 − 2d2

H

)[
q + 2d2

H +
√

q2 − m2 + 2dH (
√

q + m + √
q − m)

]
1 − 1

4

(
1 − q − 2d2

H

)2 , (19)

where

d2
H(m, q) = 1

4

q2 − m2

13q + 5m − 12
√

q2 − m2
. (20)

The variables q and m are taken from the mean-field solutions
of the BEG model. The filling n is found parametrically from

n(m, q) = 1 + q + 2d2
H(m, q), (21)

which is equivalent to Eq. (18).
It is convenient to determine the upper and lower bounds

for z2:

1

2
f (δ) � z2 � 3

2
f (δ) with f (δ) = δ(1 − δ)

1 − 1
4δ2

, (22)

which is valid for the considered case of four distinct on-site
states. The lower bound is derived from full polarization, that
is m = q which implies d2

A = 0 = d2
H and 2d2

P = 1 − δ. The
upper bound is the “nonmagnetic” state with m = 0 which
implies 2dA2 = 2d2

P = 2d2
H = (1/3)(1 − δ).

The BEG mean-field free energy F of the paramagnetic
state in the presence of finite field h is (see Refs. [57,58]):

F (T, h,�)/NL = 1

2
ζJm2 + 1

2
ζKq2 + kBT

× ln

[
1 + 2 e− (�−ζKq)

kBT cosh
ζJm + h

kBT

]
,

(23)

where ζ is the number of nearest-neighbor sites. We may cast
the mean-field equations ∂F/∂m = 0 and ∂F/∂q = 0 into the
form

h = −ζJm + kBT

2
ln

q + m

q − m
, (24)

� = ζKq − kBT

2
ln

q2 − m2

4(1 − q)2
. (25)

For such a classical Ising-type model a zero-temperature
evaluation produces phase transitions where m and q change
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discontinuously (see, e.g., Fig. 2 in Ref. [58]). This is not
necessarily expected for the concomitant bosonic fields dP

and dA [see Figs. 5(a) and 5(b)] that are related to m and q
through the identification (24) and (25). These bosonic fields
are in fact enslaved by the fermionic degrees of freedom and
the challenge is then to allow for a control of the pseudospins
through the fermions, at least approximately. We achieve this
through a feedback mechanism where we assume that the
temperature of the pseudospin BEG-system is an effective
temperature which is proportional to some power α of the
fermionic bandwidth: kBTeff = gfb z2α . Here gfb is a (fermion-
boson) coupling constant which however depends on α and
will be discussed below.

The excitations of the bosonic system involve fermionic
Greens functions (or rather spectral functions) which are
weighted by z2. As virtual particle-hole excitations couple to
the bosonic (pseudospin) degrees of freedom, one may assume
in view of a perturbative approach that α = 2 is a suitable
choice. For strong coupling, that is t � U , this may not be
valid anymore and it may be argued that the excitations exist
in an energy window given by the bandwidth z2W . Accord-
ingly, one would then rather switch to α = 1 with increasing
coupling. So far there is no microscopic scheme how to de-
termine Teff and α [59]. We find that the choice α = 1 does
not produce a discontinuous transition. Here we investigate
the case with α = 2 which allows to reproduce the slave-
boson results qualitatively when J is chosen appropriately.
Consequently we introduce the effective temperature of the
pseudospin system through

kBTeff = gfbz4, (26)

where z2 is a function of m and q [see Eq. (19)] and the
fermion-boson coupling gfb is chosen such that we recover the
position of the jump or inflection point of z2 in dependence
on filling n of the slave-boson results. This filling is denoted
by n0. We emphasize that this pseudospin approach to the
bosonic fields is necessarily a phenomenological approach
where the “temperature profile,” that is, the dependence of the
pseudospin temperature Teff on n [expressed through q(n) and
m(n)] is controlled by the strength of the coupling parameter
gfb and the effectiveness of the feedback mechanism, deter-
mined by the exponent α.

It is evident that in the limit of half-filling, Teff converges
to zero as z2 approaches zero. This reproduces the correct
limits of the fields dP, dA and dH but we do not consider this
pseudospin approach as appropriate to discuss the Mott tran-
sition. We rather discuss the results below half-filling where
our approach provides a transition to a state with negative
compressibility in line with the slave-boson results.

B. Results from the BEG approach and interpretation

The procedure to calculate z2 in dependence on n is as
follows: We gain m from the mean-field equation (24) for
given q, whereby we replace the temperature by the effective
temperature Teff from Eq. (26). Then we use relations (19)
and (20) to determine z2. We plot z2 in dependence on filling
n which is given by Eq. (21).

Most strikingly, z2 displays a transition in this evaluation
with BEG Ising-type fields, the nature of which depends on
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FIG. 10. Quasiparticle residue from BEG evaluation. The black
lines are the upper and lower bounds for z2 from Eq. (22). The two
diamonds in the right panel mark the respective inflection points.

the strength of nearest-neighbor coupling J with respect to
h = JH/2 (see Fig. 10). We consider all energies in this sec-
tion in units of JH/2. The coupling parameter gfb mostly shifts
the curves but does not affect the transition qualitatively; its
role will be discussed below.

These results are consistent with those of the slave-boson
evaluation (SB) in the previous section in the sense that we
find a continuous as well as a discontinuous transition in a
doping regime close to half-filling. In SB the type of transition
is controlled by the correlation strength U/W (see Fig. 1).
Here the transition is tuned by J and L. The dependence of
J , K and L on the Hubbard-model parameters U , t, t ′ and JH

is rather complex, and we only estimate the relative size of the
BEG-parameters in Appendix E.

Before we suggest an interpretation of the filling depen-
dence of z2 we briefly discuss the coupling parameter gfb. As
said this parameter shifts the inflection point or the jump in
z2: the lower the value of gfb the farther away the inflection
point from half-filling (this is exemplified in the right panel of
Fig. 10). In few of the SB results it appears that gfb is inverse
to U . This is not unreasonable as a larger gfb, that is, a higher
energy cutoff kBTeff accounts for stronger fluctuations in the
pseudospin field. Conversely, one expects that for larger U the
slave boson fields are more tightly bound to the fermionic de-
grees of freedom and fluctuations of the fields are suppressed.
We introduced gfb phenomenologically and we just use it to
shift the transition structure of z2 to a position compatible with
the SB result.

The values of gfb in Fig. 10 are surprisingly large. A brief
analysis relates these large values to the smallness of z4.
To understand this argument, we reparametrize the fermion-
boson coupling gfb in terms of a temperature T0 and a z2

0 =
z2(m0, q0):

kBTeff (m, q) = gfb z4(m, q) = kBT0

z4
0

z4(m, q), (27)

whereby q0 is a reference value which we will choose
appropriately and m0 is calculated from the mean-field equa-
tion (24) with m, q and T replaced by m0, q0 and T0. We
choose the reference value q0 such that q0 = n0 − 1 − 2d2

H
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holds [see Eq. (18)], where we can neglect the small contribu-
tion of d2

H for an approximate specification of q0 in the regime
close to half-filling. Now with given q0 and the requirement
that the inflection point or jump of z2 is placed in the range
of fillings consistent with SB results one identifies values of
kBT0 in the range of 0.2 − 0.4 and through the relation (27)
one finds gfb in the range of 20 − 1100. The smallness of z4

0
requires large values of gfb to fulfill gfb = (kBT0/z4

0 ).
Qualitatively, the z2-curves of Fig. 10 resemble those of

the SB result in Fig. 1. One might object that z2 calculated
within SB theory is notably larger in the metallic regime,
especially for U < W . This discrepancy, however, is not a
consequence of the BEG Ising-type evaluation but it is caused
mainly by the neglect of triple occupancies. In fact, the bounds
of Eq. (22) (see the black curves in Fig. 10) also hold for
the SB evaluation if triple occupancies and empty sites are
excluded. These neglected contributions are sizable for small
and intermediate values of U , whereas we are targeting the
regime of larger values of U in the BEG scheme.

The down bending or the jump of z2 to low values close
to half-filling is caused by the strong increase of the “BEG-
magnetization” m in a regime where q approaches one.
The upper bound in Eq. (22) stands for m = 0 whereas the
lower bound is determined by full polarization m = q. Corre-
spondingly, in the language of the two-band Hubbard model,
we observe a transition from a state with smaller orbital
polarization (d2

H < d2
A < d2

P) to a state with strong orbital po-
larization close to half-filling: d2

H � 0 � d2
A and 2d2

P � 1 − δ

(see Fig. 11 for the BEG result of the filling dependence of
2d2

P,A,H). Again, the filling dependence of these occupations is
qualitatively similar to what was found in the SB evaluation.
That inspires the following interpretation of the result of the
two-band Hubbard model:

Obviously, a finite Hund’s coupling favors a double occu-
pation of sites where the spins of the two orbitals are aligned
(dP-state). For strong coupling bosonic fluctuations to dA,H

states are reduced—this is expressed here through a stronger

fermion-boson coupling, that is, through a smaller gfb which
entails a smaller effective temperature for the fluctuations in
our pseudospin evaluation. Then, the pseudospin magnetiza-
tion m is larger. Correspondingly, 2d2

P is larger and 2d2
A,H are

smaller for stronger electronic correlations. However, there is
a further impact of strong coupling: an orbital (antiferromag-
netic) nearest-neighbor coupling J < 0 becomes effective
which induces local fluctuations to states with antiparallel
spins on the two orbitals of a site. These fluctuations prevent
a sharp transition to an orbitally polarized state: we only
observe an inflection point in z(n)2.

For intermediate coupling gfb is larger and, correspond-
ingly, the transition is closer to half-filling. Moreover, the
reduced antiferromagnetic (orbital) coupling J allows Hund’s
coupling to dominate in this regime and we identify a discon-
tinuous transition in z(n)2.

In SB theory all single-site double occupancies are rep-
resented by bosons, the fluctuations of which are effectively
the incoherent background to the (fermionic) quasiparticle
excitations. It depends on the interplay of the fermions and
the incoherent (bosonic) background if the reduction of z2 is
continuous or discontinuous.

C. Compressibility

The inverse compressibility is identified from the sum of
the inverse compressibilities of the subsystems whereby each
subsystem is characterized by its respective free energy (see,
for example, Ref. [43]). Each of the free-energy terms yields
an additive contribution to the inverse compressibility κ−1

when forming the second derivative with respect to the total
density (and multiplying by a factor density squared). As we
keep volume and number of lattice sites NL constant we can
use the filling n instead of the density in our evaluation. There
is a fermionic free-energy term, which is in fact the fermionic
kinetic energy controlled by the inverse effective mass z2(n),
and a pseudospin free-energy term originating from the BEG
Hamiltonian.

In an approximation where d2
H is zero we find the simple

relation n = 1 + q and we can take the derivatives of the
pseudospin free energy simply with respect to q to calculate
the inverse compressibility. With inclusion of a finite d2

H, we
have to respect the relation (21): correspondingly there are
corrections from the derivative

dn/dq = 1 + 2d
(
d2

H

)/
dq (28)

that can be sizable because d2
H decreases rapidly in the doping

regime of the continuous transition.
Here the compressibility is to be determined not for given

orbital polarization m but for fixed Hund’s coupling, that is,
for fixed field h. As regards the other BEG-variable, q, this
is the variable which is related to filling as just discussed.
So the appropriate pseudospin free energy depends on h and
q which is a Legendre transform of F (h,�) of Eq. (23)
from � to q which we denote as �(h, q). The derivative of
�(h, q)/NL with respect to q naturally yields −�(h, q), which
may be interpreted as the chemical potential related to the
q-particles. However, as we actually have to take the derivative
of �(h, q) with respect to n and not q, we have to multiply the
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q-derivative of �(h, q) by dq/dn:

d (�/NL)

dn
= −�

/[
1 + 2

d
(
d2

H

)
dq

]
, (29)

where all terms depend through q on n. The contribution of
the pseudospins to the inverse compressibility, κ−1

ps , is now the
derivative of this pseudospin chemical potential with respect
to n:

(n2κps)−1 = d2(�/NL)

dn2
= − d

dn

{
�

/[
1 + 2

d
(
d2

H

)
dq

]}
. (30)

Here �(h, q) is found from the mean-field expression Eq. (25)
with m replaced by its q-dependent mean-field value m(q),
and the temperature is replaced by Teff of Eq. (27) in that
mean-field evaluation. It is evident that the n-dependence of
the term in parentheses on the rhs of Eq. (30) has to be
determined first from Eq. (21) and the mean-field equations,
before the derivative with respect to n can be calculated.

The fermionic contribution to the inverse compressibility,
κ−1

qp , results directly from the second derivative of the kinetic
energy z(n)2Ekin(n) with respect to n. To have a simple an-
alytical expression for Ekin(n) we take the dispersion from
Eq. (2) with t ′ = 0. As the second derivative of the kinetic
energy is dominated by the curvature of z(n)2 in the transition
regime, the filling dependence of the unrenormalized Ekin(n)
is of little consequence if it is sufficiently smooth. This is
the case, as the dispersion integrates to the smooth func-
tion Ekin(n)/NL = − 2

π
W cos[π

4 (2 − n)] [compare Eq. (11)],
where W is the bandwidth and the two spin directions have
been taken care of by a factor 2. The fermionic compressibility
is now

(n2κqp)−1 = d2(z2Ekin/NL)

dn2
. (31)

To put κ−1
qp in relation to κ−1

ps quantitatively, we have to fix
W : with JH = W/6 used in the section on the SB results
and h = JH/2, we choose correspondingly W = 12h for the
further evaluation of the total compressibility.

Eventually, the total compressibility κtot is determined
from the subsystem compressibilities Eqs. (30) and (31)
through

κ−1
tot = κ−1

ps + κ−1
qp . (32)

As is obvious from Eq. (30) we now need � which is extracted
from Eq. (25) where T has to be replaced by Teff . The evalua-
tion of � requires to choose an appropriate K-parameter of the
BEG-model. As one can learn from Eqs. (E2) in Appendix E
and the following discussion, the parameter K is positive and
considerably larger than |J |. We take K = 8.0 (again in units
of JH).

The compressibilities are displayed in Fig. 12 for J =
−1.0. That value of J entails that the transition in z2(n) is
continuous. This is now reflected in a continuous transition of
the compressibility κtot from positive to negative values close
to half-filling.

Similarly, the compressibilities are discontinuous for J =
−0.3 as seen in Fig. 13. This is expected as the quasiparticle
weight z2 is discontinuous for these less negative values of J .
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FIG. 12. Compressibility in dependence on filling n. The BEG
parameters are h = 1.0, J = −1.0, gfb = 50 and K = 8.0. Here κ−1

is in units of JH/2a2 and the coupling parameters are in units of JH/2.

It is obvious that in the considered filling regime the in-
verse pseudospin compressibility κ−1

ps partially cancels the
inverse quasiparticle compressibility κ−1

qp . The exact degree
of cancellation depends on the relative values of the partial
compressibilities. However, in the vicinity of the transition,
κ−1

qp becomes already negative when κ−1
ps is still negative (see

Fig. 12). This behavior is analogous to what was observed
in the SB formalism for κ−1

f and κ−1
b . If the zero crossings

of both were at the same filling n, then the transition to bad
metal behavior (the inflection point of z2) would coincide with
the transition to negative compressibility. Instead we find two
distinct transitions.

The negative compressibility of the pseudospin subsystem
indicates that it is not in its (thermodynamic) equilibrium
which is presumably true also for the bosonic subsystem in SB
theory—however, a partition into subsystems is not evident
there. For the pseudospin subsystem we find a mean-field so-
lution for given q and the appropriate effective temperature but
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FIG. 13. Compressibility in dependence on filling n. The BEG
parameters are h = 1.0, J = −0.3, gfb = 330 and K = 8.0. Here
κ−1 is in units of JH/2a2 and the coupling parameters are in units
of JH/2.
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this solution does not represent the global minimum for q >

0.744 (assuming here J = −1.0). The chemical-potential
parameter −� of Eq. (25) is tied to the pseudospin field q,
which is fixed by the choice of n. Actually a considerably
lower q represents the thermodynamically stable state for
that value of �. If n and, correspondingly, q were not fixed,
then the pseudospin system would relax to this lower q. The
thermodynamic stability of the BEG subsystem is discussed
in Appendix F. It is the requirement of sufficiently large q
to keep a filling in the low doping regime and of sufficiently
small effective temperature Teff enforced by small values of
z2 close to half filling that drives the pseudospin out of equi-
librium: there is no global minimum of the thermodynamic
potential in this regime.

Close to half-filling κ−1
ps becomes positive for J = −1.0

(see Fig. 12). This behavior close to the metallic transition
is triggered by the strong filling dependence of the fields
that represent double occupancies. In particular, the field d2

H
enters through the factor dq/dn of Eq. (28) into Eq. (29)
and reverses the slope of the pseudospin chemical poten-
tial term d (�/NL)/dn with respect to n in the bad metal
state. This signifies that κ−1

ps is positive there. However, the
pseudospin subsystem is still not in its (thermodynamic)
equilibrium.

For the discontinuous case (see Fig. 13) κ−1
ps becomes

again negative in the vicinity of half-filling as opposed to
the behavior of κ−1

b in the SB evaluation. In this respect we
reemphasize that the BEG-results cannot be trusted for lower
values of U/W . In fact, effective interactions between doubly
occupied sites were parameterized as nearest-neighbor pseu-
dospin exchange within a perturbative scheme where triple
and quadruple occupancies are suppressed.

On the other side, for U/W � 1, the BEG parameters J ,
K, and L become small in comparison to the fixed h = JH/2
(see Appendix E) and one might expect a reemergence of the
first-order transition. However, for large values of U/W , the
chosen “temperature profile” with exponent α = 2 may have
to be modified to α = 1, as discussed at the end of Sec. IV A.
In that case, we find exclusively a continuous transition—in
line with the strong coupling SB results.

Correspondingly, we expect a parameter window for inter-
mediate to moderately strong correlation strength where the
results from this phenomenological approach are qualitatively
valid.

Overall the results from the BEG modeling can be com-
pared reasonably well with those of the SB theory. They
explain the transition in z2(n) through a transition in the pseu-
dospin magnetization controlled by h, that is, in the orbital
polarization of the two-band Hubbard model controlled by
JH. Also the transition to the negative compressibility in the
low doping regime is recovered. However, it is not a phase
transition of the pseudospin system of the BEG model but it
is the feedback mechanism between the pseudospin system
and the (fermionic) quasiparticle system which causes the
transitional behavior.

V. CONCLUSIONS AND OUTLOOK

This work is concerned with the two-band Hubbard model
in the presence of a finite Hund’s coupling JH. In particular, we

investigated the paramagnetic state close to half filling (n = 2)
using an extended Kotliar-Ruckenstein slave-boson technique.
Previously, a first-order transition with a coexistence regime
between a metallic and a bad metal state below a critical point
was identified [27] and, more recently, a continuous transition
signaling a charge instability for larger on-site interaction
U was discovered [28]. Both transitions were considered in
dependence on JH/U and it was found that they are absent for
JH = 0.

Here, we analyzed these transitions jointly for fixed JH

and found that the line related to the continuous transition,
characterized by zero inverse compressibility, merges with the
first-order transition at a critical end point (CEP). This CEP is
close to the CP. Beyond the CEP, that is for the filling range
toward half filling, the charge instability persists, however
only in the metallic state which is not the global free-energy
minimum in this range of n.

The inverse compressibility jumps from positive to nega-
tive values jointly with the inverse effective mass along the
first-order transition line. This transition into the negative-
compressibility bad-metal regime extends to smaller values of
U down to the metal-insulator transition at half filling where it
ends at the Mott-insulator transition for the two-band Hubbard
model.

A recent DMFT-based work [60] on the two-orbital Hub-
bard model that presents the phase diagram close to half
filling in dependence on JH/U compares well with the slave
boson findings of [27] concerning the first-order transition
with a coexistence regime and a (quantum) critical point. In
the regime where Ref. [60] has “no solution” we identify a
critical end point (CEP). The QCP in their work is the CP
in our work but our high resolution in the parameter space
allows to separate the charge instability line from the CP in our
Fig. 3, whereas in Ref. [60] the QCP is directly connected to
the “crossover (enhanced compressibility)” line in Fig. 2(a) of
Ref. [60]. More refined evaluations may help to decide which
scenario is realized in these systems.

The slave boson theory suits well to distinguish between
the excitations into coherent (fermionic) quasiparticles and
multiparticle or collective (bosonic) excitations. Even though
this is implemented here only on the saddle point level, the
decomposition allows in this context to study the quasipar-
ticle contribution to the compressibility separately from the
bosonic background as the inverse compressibility can be split
into the corresponding partial (inverse) compressibilities. The
quasiparticle compressibility is controlled by the curvature
and jump of the inverse effective mass ∝ z2(n). In contrast, the
bosonic contribution in this regime is governed by the bosonic
field which represents doubly occupied sites with parallel
spins in the two distinct orbitals, that is, d2

P (n). The Hund’s
coupling JH triggers both, the sharp drop in z2(n) and the steep
increase in the double occupancy d2

P (n) when approaching
half filling. This drop and increase for z2(n) and d2

P (n), respec-
tively, may be realized by a jump or an inflection point in their
n-dependence. Obviously, Hund’s coupling favors this type of
double occupancy (d2

P) energetically thereby suppressing not
only the competing double occupancy configurations but also
the triple occupancy and concomitantly the single occupancy
so effectively that a phase transition is accomplished—either
first order or continuous.
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We confirmed that in the absence of Hund’s coupling, the
curvature of z2(n) close to half filling does not switch its sign,
i.e., z2(n) stays concave. The filling range where z2(n) be-
comes convex, which signals a charge instability and negative
compressibility, is in fact controlled by the size of JH.

In view of the applied technique and our focus on low
doping and orbital ordering in this regime we may now sub-
stantiate the assumption that the Zeeman-like term to Hund’s
coupling is the dominant contribution in the saddle point
approximation. It generates a transition into the phase with
parallel spin orientation of the electrons in the two orbitals
close to half filling. The spin-flip term that is also present in
Hund’s coupling introduces fluctuations into the local config-
uration with antiparallel spins in the two orbitals. It favors an
antiparallel configuration which, however, is only sustained
in J2

H/U . As we considered only small JH with respect to U ,
this correction is of minor relevance: it may reduce the regime
of the negative compressibility state slightly [28]. The third
term in Hund’s coupling, the pair-hopping term, favors the
configuration with double occupancy on a single orbital. How-
ever, the energy of this state is already considerably higher in
energy (by 3JH in a local estimate) and is therefore disfavored.
Moreover, a constraint [see Eq. (B11)] enforces this configu-
ration to vanish if the configuration with antiparallel spins is
suppressed close to half filling.

In that respect our approach is consistent as JH/U is still
small in the relevant part of the phase diagram (see Fig. 2).
Upon increasing JH from W/6 to W/3 moves the charge in-
stability line CIL (green line in Fig. 4) down toward lower
values of U (about half its displayed value) in the regime
of the rather horizontal extension of the CIL but also bends
the vertical part of the curve toward lower doping values at
large U . The maximal doping value of the CIL is increased
to approximately 0.18. This may still be seen as a correction
to the displayed results. However, for JH as large as W/2,
the regime of charge instability would already form for U
considerably less than W and results with the approximate
Zeeman-type Hund’s coupling would not be trustworthy.

Breaking particle-hole symmetry does not change the re-
sults qualitatively. The origin of the phase transitions is to be
related to Hund’s coupling and its impact on the quasiparticle
residue z2(n) which becomes small and convex close to half-
filling. Particle-hole symmetry has no particular significance
in that respect. Introducing a van Hove singularity close to
half-filling on either side of the center of a band suppresses the
inverse compressibility related to the kinetic term for filling
in this regime. It may be worthwhile to investigate such a
situation.

Nonlocal correlations may arise from further nonlocal
terms in the Hamiltonian or from contributions beyond the
slave-boson saddle-point approximation. For the one-band
model the additional contribution of a nonlocal exchange
(Fock) term to the compressibility was investigated [40].
As expected, the compressibility is strongly affected in the
low-density case but beyond that it is well presented by the
local mean-field terms. Given that the explicit inclusion of a
nonlocal term does not drive the saddle-point physics for in-
termediate densities into a different regime we conjecture that
nonlocal correlations do not present substantial corrections
in the compressibility with or without nonlocal Hamiltonian

terms. In particular, this will apply for our modeling close to
half filling where the transition to negative compressibility is
controlled by the filling dependence of z2(n); fluctuations of
z2(n) through nonlocal correlations are not pivotal as long as
one does not consider the regime in the immediate vicinity of
half filling.

In a toy-model approach, the most prominent bosonic
degrees of freedom were mapped onto Ising-like (spin-1)
pseudospins within a Blume-Emery-Griffiths model that im-
plements the Hund’s coupling by a Zeeman-like field and
the correlations through quadratic and bi-quadratic nearest-
neighbor exchange-energy terms. This allows to discuss these
degrees of freedom in a classical model although the Ising
fields are then coupled to the (fully quantum mechanical)
quasiparticle system through a feedback mechanism. It ap-
pears in this approximate treatment that the transition is not a
phase transition of the pseudospin system itself but it is a tran-
sition generated by the feedback of the quasiparticles and vice
versa. The pseudospin system by itself is rather out of equi-
librium close to half filling and the coupling to the fermionic
system keeps it in this state. It is only the joint pseudospin-
quasiparticle system that, for fixed filling n, is in equilibrium.

The capacitance of a heterostructure device is intimately
related to electronic compressibilities of the electrodes. As the
compressibility of this two-band Hubbard-model electronic
system depends very sensitively on the electron density close
to half filling—also under the consideration of the transitions
to negative compressibility—it is well conceivable that micro-
device capacitances may be very effectively controlled and
switched through small electronic-density variations.

We also suggest the intriguing possibility to switch be-
tween low and high capacitance through electric pulse
switching between the high resistance Mott insulator and the
low resistance metallic state [56].
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APPENDIX A: FURTHER SLAVE BOSON PROPERTIES

The generic slave boson rewriting of the physical electron
creation operators in terms of auxiliary particles Eq. (4) makes
it manifest that any slave boson representation possesses an
internal gauge symmetry group [51–53,61–65]. In the present
case of the two-band model and using the above four-valued
spin-band index α the representation of the physical electron
operators Eq. (4) is invariant under the gauge transformations

fα −→ e−iχα fα

e −→ eiθ e

pα −→ ei(χα+θ ) pα

dα,α′ −→ ei(χα+χα′ +θ )dα,α′

tα,α′,α′′ −→ ei(χα+χα′ +χα′′+θ )tα,α′,α′′


 −→ ei(θ+∑
α χα )
. (A1)
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The gauge symmetry group is therefore U (1) × U (1) ×
U (1) × U (1) × U (1). The Lagrangian also possesses this
symmetry. Expressing the bosonic fields in amplitude and
phase variables as

e(τ ) =
√

Re(τ ) eiθ (τ ),

pα (τ ) =
√

Rα (τ ) ei[χα (τ )+θ (τ )] (A2)

allows to gauge away the phases of the above five slave
boson fields, provided one introduces the five time-dependent
Lagrange multipliers

λ′(τ ) ≡ λ′ + ∂τ θ (τ ),

λα (τ ) ≡ λα − ∂τχα (τ ). (A3)

Here the radial slave boson fields are implemented in the
continuum limit [61–63], but introducing radial slave boson
fields can also be achieved in the discrete time step set-up
[52,53,65].

As these bosonic fields have been deprived of their phase
degree of freedom they do not undergo Bose condensation
any longer. In fact, their exact expectation values are gener-
ically nonvanishing [53] (see Ref. [52] in the case of Barnes’
representation to the single impurity Anderson model), and
may be approximately obtained through the saddle-point ap-
proximation (SPA) that we used above. This approximation is
exact in the large degeneracy limit, with Gaussian fluctuations
generating the 1/N corrections [66] (for a recent detailed
reference, see Ref. [67]). It has been tested against quantum
Monte Carlo simulations in the most challenging N = 2 case:
A quantitative agreement for charge structure factors was
demonstrated [68] and, for example, a very good agreement
on the location of the metal-to-insulator transition for the
honeycomb lattice has been shown [69]. Also the comparison
of ground state energies to numerical simulations are excellent
[41]. Further quantitative agreement of ground state energies
and site-dependent local magnetization with density matrix
embedded theory have been recently reported [70].

We now turn to the operator zi,α . It represents the change
in the bosonic occupations which results from the annihilation
of an electron [see of Eq. (4)]. In the considered paramagnetic
phase one introduces z through z ≡ zi,α . Following Ref. [11]
it reads

z = Lz̃R, (A4)

with

z̃ = ep + (p + t )(dP + dA + dH) + t
, (A5a)

L = (
1 − p2 − d2

P − d2
A − d2

H − 3t2 − 
 2
)− 1

2 = (1 − nα )−
1
2 ,

(A5b)

R = (
1 − e2 − 3p2 − d2

P − d2
A − d2

H − t2
)− 1

2 = n
− 1

2
α , (A5c)

and nα ≡ n
4 . Note that z depends on the three d-fields in a

symmetric fashion.

APPENDIX B: SADDLE-POINT EQUATIONS

The saddle-point equations associated to the derivative
with respect to the bosons read

λ′ +
[

p + z̃e

nα

]
2B
e

= 0, (B1)

λ′ − λ +
[

e + dP + dA + dH + z̃p
3 − 2nα

nα (1 − nα )

] B
2p

= 0,

(B2)

λ′ − 2λ + UP +
[

p + t + z̃dP

nα (1 − nα )

] B
dP

= 0, (B3)

λ′ − 2λ + UA +
[

p + t + z̃dA

nα (1 − nα )

] B
dA

= 0, (B4)

λ′ − 2λ + UH +
[

p + t + z̃dH

nα (1 − nα )

] B
dH

= 0, (B5)

λ′ − 3λ + UP + UA + UH

+
[

 + dP + dA + dH + z̃t (1 + 2nα )

nα (1 − nα )

] B
2t

= 0, (B6)

λ′ − 4λ + 2(UP + UA + UH) +
[

t + z̃


(1 − nα )

]
2B



= 0,

(B7)

where we introduced

ε̄ ≡
∑
k,ν

fF (Ek,ν )ε (0)
k,ν ,

B ≡ z̃ε̄

nα (1 − nα )
. (B8)

Here, fF (. . .) is the Fermi function. Steps toward the solution
of the saddle-point equations involve solving Eqs. (B1) and
(B7) with respect to λ and λ′. One finds

λ = UP + UA + UH

2
+

(
t



− p

e
+ z̃(2nα − 1)

nα (1 − nα )

)B
2

,

λ′ = −2

(
p

e
+ z̃

nα

)
B. (B9)

Inserting these solutions into Eqs. (B3), (B4), and (B5) allows
to write

UH − UP =
(

1

dP
− 1

dH

)
(p + t )B,

UA − UP =
(

1

dP
− 1

dA

)
(p + t )B,

UH − UA =
(

1

dA
− 1

dH

)
(p + t )B. (B10)

A useful relation between the three d-bosons may be derived
out of these equations:

dH = dPdA

3dP − 2dA
, (B11)

which both eases the numerical task and the interpretation of
the results. Further steps toward the solution of the saddle-
point equations arise from the derivatives with respect to the
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U = 1.78 W
U = 2.0 W

FIG. 14. Chemical potential in dependence on filling n for JH =
W/6. The circles and the vertical thin lines mark the first-order
transitions. The dotted curves refer to metastable states.

Lagrange multipliers. They read

e2 + 4p2 + 2
(
d2

P + d2
A + d2

H

) + 4t2 + 
 2 − 1 = 0, (B12)

4p2 + 4
(
d2

P + d2
A + d2

H

) + 12t2 + 4
 2 − n = 0. (B13)

They may be solved with respect to e and 
 as

e2 = 1 − nα − (
3p2 + d2

P + d2
A + d2

H + t2), (B14)


 2 = nα − (
p2 + d2

P + d2
A + d2

H + 3t2). (B15)

Altogether, one is left with four unknowns (p, dP, dA, and t)
determined by Eqs. (B2), (B3), (B4), and (B6) rewritten using
Eqs. (B9), (B14), and (B15).

APPENDIX C: CHEMICAL POTENTIAL

A key quantity that reveals the addressed first-order tran-
sition is the chemical potential which is depicted in Fig. 14.
For U < UMI � 1.41W and starting from a large hole doping
value, it is found that the chemical potential monotonically
grows with increasing density, which ensures positive elec-
tronic compressibility and thermodynamical stability of this
coherent metallic phase, as indicated by its quasiparticle
residue z2 > 0.5. Furthermore, μ monotonically increases
with U . However, if U exceeds UMI, then a bad metal state
stabilizes close to half filling and μ jumps to a lower value
and decreases further toward half filling.

If U exceeds UCEP the chemical potential first grows but
then reaches a maximum and decreases until the metallic
solution ceases to exist. Accordingly, the density dependence
of μ reveals a charge instability—signaled by the resulting
negative electronic compressibility. This metallic, negative
compressibility state is superseded in a first-order transition
to a bad metal state when n is further increased.

Above U ∗
c the continuity of the density dependence of

the chemical potential is restored. Though continuous, these
curves are characterized by a maximum which implies that the
charge instability persists above U ∗

c . The latter is a hallmark
of the doped Mott insulator.

APPENDIX D: SINGLE AND TRIPLE OCCUPANCIES

In a fashion similar to the d-bosons the critical point
(U ∗

c , n∗
c ) is also central to the density dependence of the p

and t bosons; there, they both exhibit an inflection point with
diverging derivative with respect to n. For U > U ∗

c inflection
points remain, though less visible, while the amplitude of the
derivatives diminishes when moving away from the critical
point. For U < U ∗

c all bosons jump at the first-order transition,
and a smooth behavior is restored for U < Uc(2). Similar
comments apply to the bosons p and t involving single and
triple occupancy, respectively: as shown in Figs. 15(a) and
15(b) they vanish in the Mott insulating phase, and exhibit
related inflection points at the critical point (U ∗

c , n∗
c ). It should

also be noticed that t increases when slightly hole-doping
the Mott insulator (δ � 10%). This leads to a sizeable gain
of kinetic energy for electrons moving in a background of
essentially doubly occupied sites and reinforces the coherence
of the quasiparticles that is lost in the Mott insulating phase.

APPENDIX E: BEG-PARAMETERS

In Sec. IV we have set up the BEG scheme as a phe-
nomenological approach to model the bosonic degrees of
freedom. In principal, one can devise a microscopic approach
through a strong coupling expansion or Schrieffer-Wolff
transformation to project onto a subspace with no triple
and quadruple occupied sites. Such an expansion generates
nearest-neighbor exchange terms. If it is assumed that only
configurations with dP and dA are relevant, then the Hamilto-
nian contribution for double occupancies reads

HP,A = (U − 3JH)
NL∑
i=1

nPi + (U − 2JH)
NL∑
i=1

nAi

− VPA

∑
〈i, j〉

(
nPi nA j + nAi nP j

)

− VPP

∑
〈i, j〉

nPi nP j − VAA

∑
〈i, j〉

nAi nA j

− μ

NL∑
i=1

(
nPi + nAi

) − μNL, (E1)

where nPi (nAi ) is the number operator for a dP- (dA)-
configuration on site i. In the expression with the chemical
potential one expects −μ

∑NL
i=1(npi + 2nPi + 2nAi ) where npi

denotes the number operator for singly occupied sites and
factors of two take into account that double occupied sites
contribute two electrons. Yet, with the relation

∑
i=1 npi =

NL − ∑
i=1(nPi + nAi ) one confirms the last line of Eq. (E1).

In Sec. IV we included the dH-configurations through the
constraint Eq. (B11) however those sites are not represented
by a proper term in the Hamiltonian. This approach is justified
if the number of such sites, that is d2

H, is much smaller than
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FIG. 15. Single (a) and triple (b) occupancy in dependence on filling n for JH = W/6. The circles and the vertical thin lines characterize
the first-order transitions.

d2
P , d2

A and doping δ which is true close to the considered
transition (compare Figs. 5(a), 5(b), and 5(c), and Fig. 11).
If one introduces the on-site energy U

∑
i=1 nHi for the sites

with dH-configuration, then one can identify a shift of �, a
quantity which is determined below; however, this does not
affect our results in a qualitative way.

Here we do not intend to determine the exchange coupling
parameters VPP, VAA, and VPA as functions of U , JH, and t and
t ′ explicitly. We rather discuss qualitatively their dependen-
cies and use them as phenomenological parameters. It is our
intention to gain an approximate understanding of the phase
transitions identified in slave boson theory within a much
simpler framework. For this purpose we now relate the states
of Hamiltonian (E1) to those of the generalized BEG-model
(15) through the identification of Si = 1 with the spin-parallel
occupation of the two orbitals nPi , the pseudospin Si = −1
with the spin-antiparallel occupation of the two orbitals nAi ,
and Si = 0 with the single occupation npi . This comparison
of matrix elements of Hamiltonians (E1) and (15) yields the
following relations:

h = JH/2, � = U − 5
2 JH − μ,

L = 1
4 (VPP − VAA), K = 1

4 (VPP + VAA + 2VPA),

J = 1
4 (VPP + VAA − 2VPA). (E2)

Obviously, the magnetic field h of the pseudospin is set by
Hund’s coupling JH and the chemical potential related to the
pseudospin particles, −�, is determined by the chemical po-
tential μ. However, we do not calculate � through μ directly
but we gain � from the mean-field equation (25).

All exchange coupling parameters VPP/AA/PA are expected
to be positive and of order 2t2/U in the strong coupling
regime where not only t but also JH is sizably smaller than
U ; we also take (t ′/t )2 � 1.

It is then reasonable to assume that L and J are consid-
erably smaller than K because terms of order t2/U cancel in
L and J on account of the minus signs in their respective
relations (E2). The coupling L is expected to be negative on
account of VPP < VAA which results from equal energies of ex-
cited states in both, dP − dP and dA − dA, and lower energy in
the ground state of the dP − dP configuration (so the denomi-
nator in the strong coupling expression of the exchange energy
is larger for dP − dP than for dA − dA). Therefore we conclude
that L is negative, J can have both signs, and K is positive and
much larger than the absolute value of either J or L.

In Sec. IV B we chose L = 0.0. In Fig. 16 we show that
a finite negative L can produce similar results if the further

1.94 1.96 1.98 2
n

0

0.04

0.08

z2

FIG. 16. Quasiparticle residue from BEG evaluation for finite
L. The black lines are the upper and lower bounds for z2 from
Eq. (22). Parameters are J = 0.0, L = −1.0, and gfb = 20 (red) for
the continuous transition, and J = 0.1, L = −0.9, and gfb = 180
(blue) for the discontinuous transition. All energies are in units of
JH/2 and h = 1.0.
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FIG. 17. BEG phase diagram. The parameters are J = −1.0,
L = 0.0, and K = 8.0; these energy parameters as well as temper-
ature θ and chemical potential � of the pseudospins are in units of
the field h. The blue line is the continuous phase transition from the
antiferromagnetic state at low θ (blue area) to the paramagnetic state
at high θ . The blue dots represent a first-order transition line from the
antiferromagnetic state to a paramagnetic state with lower values of
q, and the green dots depict the first-order transition line in the para-
magnetic state, also from a higher to a lower value of q. CP is a
critical point and CE is the critical end point. The gray curves connect
states with fixed q-values. The red line is the curve in the parameter
space (�, θ ) for gfb = 50 along which we move when we go from
large doping (n = 1.8, that is q = 0.70 at the upper end point) to
small doping (n = 1.98, that is q = 0.98 at the lower end point). For
this curve θ is the effective temperature kBTeff . The black dots on
that curve are placed at the actual crossing points with the lines of
fixed q.

parameters are chosen properly. In fact, a negative L has a
similar effect on the orbital magnetization m as a negative J
if q is close to 1.

APPENDIX F: BEG-PHASE-DIAGRAM

In Sec. IV we considered an antiferromagnetic version of
the BEG-model as it allowed to address both, continuous and
discontinuous transitions. The question then arises if the sys-
tem is actually in an antiferromagnetic state or if the parameter
regime is such that the state is still paramagnetic which we
have assumed in our evaluation.

The phase diagram of the spin-1 BEG model was studied
by mean field evaluations (see, for example, Refs. [57,58,71]),
in renormalization-group analyses [72–74], with exact recur-
sion relations on the Bethe lattice [75], and Monte Carlo
techniques (see, e.g., Refs. [76,77]), not the least because it
reveals a plethora of phase transitions including a tricritical
point in a certain parameter range.

In Fig. 17 the phase diagram is displayed for a set of
parameters which we used in Sec. IV. A tricritical point is
absent for this large value of K. When Eq. (27) is solved for
m at given q and the resulting m(q) is inserted in Eq. (25),
one can identify a curve Teff (�) parameterized by q. This is
the red curve in Fig. 17 where kBTeff is the temperature θ . We
also plot lines along which q is constant. It is only the lower
crossing point of the constant-q lines with the Teff (�)-curve
that represents a solution of Eqs. (27) and (25).

Note that the slope of the constant-q lines changes sign
when going from q close 1 to small values of q. At the
first-order transition (green dots) the high-q lines cross with

(a) (b)

FIG. 18. BEG phase diagram in dependence on q. The parameters are J = −1.0, L = 0.0, and K = 8.0; these energy parameters as well
as the temperature θ of the pseudospins are in units of h. The blue triangular area represents the antiferromagnetic state [see panel (a)]. The
blue line depicts the continuous transition, the blue dots the first-order transition from the antiferromagnetic state to a paramagnetic state, and
the green dots refer to the first-order transition in the paramagnetic state. The gray lines between these dots connect the equilibrium states
with high q to those with low q at the first-order phase transition [see panel (b)]. States within the white area are not characterized by a global
minimum of the BEG free energy. The green area is the regime where global minima of the free energy exist. CP is a critical point and CE is
the critical end point. The red curve is given by kBTeff (q) for gfb = 50.
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appropriate low q-lines as there the q-value jumps when the
thermodynamic equilibrium is considered (for example, a
jump from q = 0.98 to approximately q = 0.02). In fact, high
values of q represent the thermodynamic equilibrium on the
left-hand side of the transition (that is, for lower �) and low
values of q are in equilibrium on the right-hand side of the
transition (that is, for larger �).

From these considerations it is obvious that the states
that we find as solutions from the mean-field equations are
not equilibrium states of the pseudospin system: above ap-
proximately q = 0.75 (for gfb = 50) the red curve is in the
parameter regime where low values of q would be (global)
equilibrium solutions whereas we are forced to realize high-q
solutions because the filling n, which is approximately 1 + q,

approaches half-filling at q = 1 and the effective temperatures
goes to zero.

The choice of the parameter space (�, θ ) yields the con-
ventional representation of the phase diagram of the BEG
model but here it appears to be more appropriate to consider
functions of q instead of � on account of the necessity to
specify the filling. Correspondingly, we display in Fig. 18 the
phase diagram in the parameter space (q, θ ). It can be clearly
seen that the kBTeff (q)-curve is placed in the nonequilibrium
regime (white area) except for high temperature and q below
0.75 (green area). The antiferromagnetic regime (blue area)
appears as a small triangle in this parameter space and it is
well separated from the states that are relevant for the analysis
of the phase transitions discussed in the present framework.
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