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Strongly correlated zero-bias anomaly in double quantum dot measurements
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Experiments in doped transition metal oxides often show suppression in the single-particle density of states
at the Fermi level, but disorder-induced zero-bias anomalies in strongly correlated systems remain poorly
understood. Numerical studies of the Anderson-Hubbard model have identified a zero-bias anomaly that is
unique to strongly correlated materials, with a width proportional to the intersite hopping amplitude t [S. Chiesa,
P. B. Chakraborty, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 101, 086401 (2008)]. In ensembles of
two-site systems, a zero-bias anomaly with the same parameter dependence also occurs, suggesting a similar
physical origin R. Wortis and W. A. Atkinson, Phys. Rev. B 82, 073107 (2010)]. We describe how this kinetic-
energy-driven zero-bias anomaly in ensembles of two-site systems may be seen in a mesoscopic realization
based on double quantum dots. Moreover, the double-quantum-dot measurements provide access not only to
the ensemble-average density of states but also to the details of the transitions which give rise to the zero-bias
anomaly.

DOI: 10.1103/PhysRevB.105.245116

I. INTRODUCTION

Semiconductor-based quantum dots and transition-metal
oxides are both subjects of current interest in condensed
matter physics, yet with seemingly little connection to each
other. Transition-metal oxides are studied typically as bulk
materials in which atomic-scale Coulomb interactions pro-
foundly shape the electronic structure and induce phenomena
that range from high temperature superconductivity to colos-
sal magnetoresistance. Quantum dots, on the other hand, are
typically built from semiconductors described by relatively
simple band structures, with atomic-scale interactions folded
into Fermi liquid parameters such as effective mass. Here we
show that a simple mesoscopic structure involving two cou-
pled semiconductor-based quantum dots can provide unique
insights into some of the behaviors of bulk disordered strongly
correlated materials.

Disordered interacting systems generically exhibit a fea-
ture in the density of states (DOS) pinned to the Fermi
level, often referred to as a zero-bias anomaly (ZBA), the
properties of which can be used as a probe of electronic
structure. Established theoretical frameworks exist for under-
standing the energy dependence of this feature in systems
where the correlations are weak: In metals with weak interac-
tions and disorder, a feature known as the Altshuler-Aronov
zero-bias anomaly is found [1], and a corresponding fea-
ture in insulators is known as the Efros-Shklovskii Coulomb
gap [2]. ZBAs are also observed when tunneling into
transition metal oxides, but they generally do not match ei-
ther the Altshuler-Aronov or the Efros-Shklovskii pictures
[1,3,4].

The Hubbard model, widely used in describing transition
metal oxides, becomes the Anderson-Hubbard model under
the addition of disorder in the site potentials. Numerical

studies of the Anderson-Hubbard model on two-dimensional
lattices have established the existence of a ZBA with unique
parameter dependence [5,6]. A ZBA with the same parameter
dependence is found in ensembles of two-site systems, pro-
viding physical insight into the origin of this feature [7–9].

This discovery opens the door to modeling the ZBA
observed in disordered strongly correlated materials using
double quantum dot (DQD) structures, which have been com-
monplace for decades in the mesoscopics community [10].
DQDs can be described by a two-site Anderson-Hubbard
model with each dot corresponding to a single site (Fig. 1).
The analog of disorder in a bulk system is variation of site
energies in a DQD using independent gate voltages coupled
to the two dots. To researchers in bulk strongly correlated
materials, the message of this work is that DQDs provide a
controlled environment in which to see the ZBA unique to
disordered strongly-interacting systems. To researchers in the
semiconductor mesoscopics community, the message is that
transport data through a simple DQD structure displays the
physical origin of the strongly correlated ZBA.

This paper begins with a brief review of the motivation
for studying ensembles of two-site systems, a presentation of
the two-site Anderson-Hubbard model and its realization in
DQDs, and an overview of the ZBA in the ensemble-averaged
DOS. With this framework laid, we explore how this physics
of the strongly correlated ZBA is reflected in DQD measure-
ments.

II. MOTIVATION FOR STUDYING THE ENSEMBLE OF
TWO-SITE SYSTEMS

The motivation for looking at an ensemble of two-
site systems was a set of surprising numerical results.
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FIG. 1. (a) Schematic diagram of a single two-site system.
(b) The DQD realization of the system in (a), with tunnel coupling
t between sites and interdot electrostatic coupling V . The dots are
connected to source and drain leads in the parallel configuration of
relevance to this paper.

Quantum Monte Carlo and exact diagonalization studies of
the Anderson-Hubbard model on two-dimensional lattices
show a suppression in the single-particle density of states
at the Fermi level with unique parameter dependence [5,6]:
the ZBA width varies linearly with hopping amplitude and
is independent of interaction strength, disorder strength, and
filling, within specified ranges. This contrasts with the results
of mean-field calculations in which the ZBA depends on the
strength of interactions [11–13] and of disorder [14]. A phys-
ical picture for the mean-field ZBA centers on level repulsion
[8,15]: While hopping in a tight-binding model always pro-
duces level repulsion, if it is irrespective of energy no ZBA
is produced. However, when a nonlocal Coulomb interaction
is included and treated in a mean-field approximation, the
exchange term of the interaction enhances the level repulsion
specifically between states on opposite sides of the Fermi
level, resulting in a ZBA. Even when only onsite interactions
U are included in the model, an effective nonlocal interaction
Veff ∝ t2/U may be generated through exchange terms.

Looking for physical insight into these numerical results,
one simplifying limit to consider is that of strong disorder.
For infinite disorder, the system is an ensemble of single sites,
which has no ZBA. One step beyond this is an ensemble of
two-site systems, which does display a ZBA, and moreover
one with the same parameter dependence as that found in
lattices [7–9]. For the two-site ensemble, the linear increase
in the spacing between the peaks at the edges of the anomaly
is visible in Fig. 2(c). The lack of variation with other pa-
rameters, and within what limits, is explored in Ref. [7]. The
similarity in parameter dependence of the two-site ZBA with
that found in larger systems suggests a shared physical origin
and hence motivates further examination of the two-site case.
What is found is that the unique parameter dependence arises
from a level alignment [Fig. 2(a)] that occurs only in systems
with both strong disorder and strong interactions, as discussed
in detail in Sec. IV below.

While the primary focus of these studies has been the effect
of strong onsite interactions in combination with disorder,
we also consider nearest-neighbor interactions. The added
influence of nearest-neighbor interactions has been explored
in bulk systems [6,16,17] but was not included in prior discus-
sion of ensembles of two-site systems [7–9]. Nearest-neighbor
interactions are necessarily present in DQD systems. In the
absence of intersite tunneling, the introduction of nearest-

FIG. 2. (a) Diagram of one possible arrangement of Hubbard or-
bitals relative to the chemical potential with particular significance as
discussed in the text. (b) The DOS of the system shown in (a) without
hopping (black) and with hopping (red). (c) The ensemble-average
DOS with � = 12, U = 8, V = 0, and t as indicated. (d) The ensem-
ble average DOS with � = 12, U = 8, t = 0, and V as indicated. (e)
The ensemble-average DOS with � = 12, U = 8, V = 2, and t as
indicated. In all cases, μ = V + U/2, corresponding to half filling.

neighbor interactions in the ensemble of two-site systems
results in a V-shaped minimum in the DOS at zero energy,
Fig. 2(d). Figure 2(e) shows the evolution of the DOS with
increasing tunneling for a fixed nonzero value of nearest-
neighbor interaction strength.

III. THE TWO-SITE ANDERSON-HUBBARD MODEL AND
A DOUBLE QUANTUM DOT

We are considering systems consisting of two sites, each
of which has a variable site potential and between which
tunneling may occur [Fig. 1(a)]. Such systems are described
by the two-site Anderson-Hubbard model with the following
Hamiltonian:

Ĥ = −t
∑

σ=↑,↓
(ĉ†

1σ ĉ2σ + ĉ†
2σ ĉ1σ )

+
∑

i=1,2

(εin̂i + Un̂i↑n̂i↓). (1)

ĉiσ and n̂iσ are the annihilation and number operators for
lattice site i and spin σ . t is the hopping amplitude and U
the strength of the on-site Coulomb repulsion. Disorder is
modeled by choosing εi, the energy of the orbital at site i,
from a uniform distribution of width �.

DQDs offer an approach to realize this Hamiltonian
in experiments [Fig. 1(b)]. DQDs are commonly built in
semiconductor-based two-dimensional electron gases using
metal gates to confine and control the electrons [10]. The
energy of an orbital on dot 1, ε1, can be tuned by applying
a voltage Vg1 to an adjacent gate. Likewise for dot 2, Vg2 tunes
ε2. U effectively represents the single-dot charging energies
e2/C, where C is the self-capacitance of each dot, assumed
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to be the same. The height of the tunnel barrier between the
two dots, and hence the hopping amplitude t , is typically
controlled by an additional gate. The two dots are generally
close enough that the presence of an electron on dot 1 in-
creases the potential at dot 2. In the tight-binding model (1)
this electrostatic coupling can be represented by adding a
nearest-neighbor interaction term V n̂1n̂2 in the Hamiltonian.

Bulk tunneling measurements are approximated in DQD
systems using a parallel configuration [Fig. 1(b)], in which
both dots couple to both the source and the drain such that
the tunneling process may occur through both dots simulta-
neously [18–23]. This is in contrast to the more conventional
series coupling in which electrons tunnel sequentially through
the two dots.

For the purpose of this presentation, we further specify
characteristics of the coupling strength to the leads and of
the bias between them. First, the strength of the couplings to
source and drain, characterized by rates γs and γd respectively,
are assumed to be weak enough that tunneling to and from
the reservoirs does not perturb the states in the dot; instead,
current through the dot serves as a noninvasive probe of those
levels. In addition, the contact to the drain is much stronger
than that to the source: γd � γs, while both γs and γd remain
in the small coupling regime. Furthermore, the applied bias
between source and drain, Vsd ≡ μs − μd , is simultaneously
larger than kBT while still being small enough that at most
only a single transition falls between the source and the drain.
We define the source as the reservoir with higher chemical
potential, such that electrons flow from source to drain. In
this configuration, the DQD spends most of its time in its
ground state as set by μd , and current flows via the temporary
occupation of excited states with one additional particle.

In the proposed DQD realization described here, the size
of each individual dot must be sufficiently small and hence
the orbital level spacing sufficiently large that we can assume
the dots contain just 0, 1, or 2 electrons and higher orbitals
may be neglected. To observe the effects of interest here,
site potentials ε1 and ε2 are varied continuously over a range
� > U , large enough to cause the ground-state occupation of
each dot to vary by ±1, while U must be large relative to the
hopping amplitude t , and the temperature must be less than
all these energy scales. The calculations shown here reflect
T = 0; the detailed line shape would change but the ZBA
would still be present for kBT nonzero so long as it is less than
t [9]. We remind the reader that � in this paper refers to the
disorder distribution width, not to orbital level spacing (as is
common in DQD literature) as the orbital spacing is assumed
to be large enough as not to play a role, that is, much larger
than kBT for temperature T and eVsd for source-drain bias Vsd .

IV. ORIGIN OF THE ZERO-BIAS ANOMALY IN THE
ENSEMBLE-AVERAGE DENSITY OF STATES

Figures 2(c)–2(e) show the ensemble-averaged DOS of an
ensemble of two-site Anderson-Hubbard systems in which
both the onsite Coulomb repulsion U and the disorder strength
� are large, specifically � > U � t . The opening of a ZBA
as hopping (tunneling) is turned on is shown both without
[panel (c)] and with [panel (e)] nearest-neighbor interactions.
Here, we describe the origin of this strongly correlated ZBA

starting first with a review of the spectrum of a single two-site
system and then focusing on a particular level alignment that
is accessible in these systems and gives rise to the ZBA.

In a single two-site system with no interactions (U = V =
0), the DOS is just a histogram of the single-particle states
as a function of energy. Without hopping between the dots,
these peaks are at the site energies ε1 and ε2, while with hop-
ping they are at the energies of the bonding and anti-bonding
states. When interactions are included, the DOS is the density
of single-particle transitions from the N-particle many-body
ground state to N ± 1-particle many-body excited states:

ρ(ω) = ρ1(ω) + ρ2(ω)

2
, (2)

where ρi(ω) is the local DOS on dot i, given by the imaginary
part of the local single-particle Green’s function,

ρi(ω) = − 1

π
Im Gii(ω). (3)

We calculate the Green’s function using the exact eigenstates
in the Lehmann representation [24]. The ground state is set by
the chemical potential, corresponding to μd in the proposed
experiment. The number of available transitions depends on
the ground state and the weight depends on the magnitude of
the corresponding matrix elements.

A key point in the appearance of a linear-in-t ZBA [7,8]
is that when � > U , level alignment ε2 = ε1 ± U is possible.
This is the scenario shown in Fig. 2(a). Furthermore, when
t/U � 1, it is possible to have significant (linear in t) level
repulsion between ε2 and ε1 + U while that between ε2 and
ε1 is much smaller (of order t2/U ). The presence of hopping
in systems with this configuration results in a lowering of the
energy of the two-particle singlet state by an amount linear
in t , a change which impacts the transitions that arise in an
ensemble of two-site systems in three distinct ways: First, for
systems with a two-particle singlet ground state, transitions to
one-particle and three-particle excited states are increased in
energy by an amount linear in t because the energies of the
one- and three-particle states are not changed to first order in
t . This shifts weight away from the Fermi level [Fig. 2(b)].
Second, some systems that have one-particle or three-particle
ground states when t = 0, switch to a two-particle ground
state, hence modifying the available transitions. For later ref-
erence we will refer to these first two effects as the ground
state effects. And finally, for those systems that retain one-
particle and three-particle ground states when hopping is
turned on, transitions to two-particle excited states are now
split, with the transition to the singlet being lower in energy
than that to the triplets. For later reference we will refer to this
as the splitting effect

The net result of these effects is the ZBA shown in
Figs. 2(c) and 2(e). However, in this ensemble-average DOS
the details of the effects are largely hidden. In Sec. V we
discuss how DQD measurements can show the effects explic-
itly, and how the ZBA in the ensemble-average DOS may be
extracted from the DQD measurement.
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V. EXPERIMENTAL SIGNATURES OF
THE ZERO-BIAS ANOMALY

We discuss here two ways in which the physics of the ZBA
is reflected in the DQD transport measurement sketched in
Fig. 1(b). We begin by focusing near the Fermi level, exam-
ining the changes hopping causes in the stability diagrams
often produced in DQD measurements. We then consider the
dependence on the bias voltage between source and drain
and connect the stability diagrams with the ensemble-average
DOS.

A. Seeing the reduction of the DOS near the Fermi level

It is common practice to plot the current through a DQD
system as a function of the gate voltages on the two dots,
resulting in what is often called a stability diagram. This
section focuses on a fixed, low value of Vsd , addressing how
the resulting diagrams reflect the suppression near the Fermi
level of the ensemble-average DOS shown in Fig. 2. In the
configuration detailed in Sec. III, the stability diagram is a
map of the DOS weight integrated over the range 0 � ω �
Vsd . Examples are shown in Fig. 3 panels (a), (b), (e), and (f)
for different settings of t and V .

We note that the configuration described, specifically the
stronger coupling to drain than source, introduces an asym-
metry which has the benefit of allowing clear differentiation
of the effects giving rise to the ZBA. However, after taking
an ensemble average, the ZBA itself will be symmetric about
the Fermi level, as in a bulk system, and from an experimental
point of view positive and negative bias will result in the same
changes to net current.

To examine the connection between the DOS and the
stability diagram, consider first the simplest case of two
independent dots. Current flows through one dot when a
single-particle transition from the ground state has an energy
less than Vsd . These low energy transitions occur only for
parameters very close to a change in the ground state occupa-
tion, so nonzero current flow appears in Fig. 3(a) only along
lines marking the boundaries between different ground states.
For readers from the strongly correlated community, we note
that we adopt the convention that the axes of the stability
diagram correspond to increasing occupancy up and to the
right. For readers from the mesoscopics community, first we
emphasize that our stability diagrams are plotting current and
not differential conductance. Second, we note that the distinct
coloration of the lines at the 1 → 2 particle and the 2 → 3
particle ground state transitions is a result of our choice to
consider stronger coupling to the drain and Vsd > kBT . If the
contact to the source was more open than that to the drain,
or equivalently if in an experiment the sign of the bias is
changed without changing the couplings, the current would
flow through N − 1 particle excited states, shifting the lines
slightly up and to the right and reversing the coloration. If
Vsd < kBT , the 1-to-2 and 2-to-3 lines would be the same
color, effectively an average of these two scenarios. In all three
cases the average of the current over the ensemble shows the
same zero-bias anomaly.

Next, consider the case of two parallel-coupled dots, near
each other and therefore not fully independent, but still

FIG. 3. Stability diagrams for a parallel-coupled double quan-
tum dot system as described in the text with (a) no hopping, no
electrostatic coupling; (b) no hopping, V = 2; (e) t = 0.6, V = 0;
and (f) t = 0.6, V = 2. The color scale indicates the magnitude
of the current as a function of Vg1 and Vg2. The ground-state oc-
cupation of each dot is indicated in the two t = 0 plots, panels
(a) and (b), while in panels (e) and (f) the numbers in parentheses
indicate the overall ground-state occupation. In all cases � = 12,
U = 8, μ = V + U/2, and Vsd = 0.2. Transition spectrum diagrams
for (eV1, eV2 ) = (−3,−4.01), (c) t = 0, and (g) t 	= 0; and for
(eV1, eV2) = (−3, −4.03), (d) t = 0, and (h) t 	= 0. Diagrams show
μs on the left, μd on the right and the available single-particle-
addition transitions. The height of the transition lines indicates
energy, and the length indicates the weight of the transition.

without tunneling. In this case, electrostatic coupling affects
the ground state occupancy of each dot and hence the stabil-
ity diagram, Fig. 3(b). Figure 3(c) shows an example of the
transition spectrum (single-particle DOS) corresponding to a
set of parameters for which there is a transition with energy
less than Vsd , so current does flow. Indeed there are two such
transitions, from the one-particle ground state |↑ 0〉 to two
different two-particle excited states, |↑↑〉 and |↑↓〉, which are
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degenerate when t = 0 because there is no singlet-triplet split-
ting. In contrast, Fig. 3(d) shows an example of the transition
spectrum for a system in which current does not flow: Here
the same transitions discussed above have an energy outside
the window between source and drain.

Figure 2(c) of Ref. [18] shows an example of a mea-
sured stability diagram of the type shown in Fig. 3(b), with
regions of fixed site occupancy separated by straight lines
where current flows. Note that, while in a calculation each
parameter may be tuned independently, in experiments they
are often interdependent. In particular, increasing Vg1 will also
slightly increase the potential on dot 2, resulting in lines of
current in the experimental diagram that are slanted rather
than strictly horizontal and vertical lines as in the theory
diagram. This interdependence does not affect our result,
and may be minimized in experiments by the use of virtual
gates that are linear combinations of physical gate voltages
[25].

Next, consider the case of nonzero t , when hopping is
allowed between the two dots. The current through the system
is proportional to the weight of transitions from the N-electron
ground state to N + 1-electron excited states that fall in the
energy range 0 < ω < Vsd . Figures 3(e) and 3(f) show ex-
amples of the resulting stability diagram, without and with
electrostatic coupling respectively. Figures 3(g) and 3(h) show
examples of the transition spectra (single-particle DOS) for
two different parameter settings that would and would not give
rise to current flow, respectively. Experimental examples of
the curved lines of current shown in Fig. 3(f) can be seen in
Ref. [20] Fig. 1(b) and Ref. [22] Fig. 1(b).

Comparing panels (a) and (e) of Fig. 3, we see that allowing
tunneling between the dots changes both the shape and color
of the lines. The shape change is due to changes in the ground
state. In particular, in the upper left and lower right (corre-
sponding to ε2 ∼ ε1 ± U ), there are more dot level settings
which yield two-particle ground states in (e) than (a), due to
the ground state effects defined in Sec. IV. The most striking
color change is at the one- to two-particle transition. The
line becomes much darker with inter-dot tunneling because of
the splitting effect defined in Section IV: there are two
possible transitions when t = 0 [Fig. 3(c)] whereas when
t 	= 0 there is only a single low-energy transition into the
two-particle singlet state [Fig. 3(g)]. The line at the two-
to three-particle transition also changes color, becoming
somewhat brighter, because the singlet ground state allows
transitions into two possible three-particle states whereas
without interdot tunneling only a single spin option is avail-
able to a given Fock ground state.

The intent of this paper is to connect these DQD stability
diagrams with the ZBA in the DOS of an ensemble of two-site
systems shown in Figs. 2(c)–2(e). The experimental equiva-
lent of the ensemble is to scan the gates Vg1 and Vg2 within
an appropriate region of the stability diagram. The integrated
current over such a scan then reflects the ensemble-average
DOS. In an experiment, tuning t is likely to effect the coupling
to source and drain, making a quantitative comparison of
these ensemble-average results challenging. Nonetheless, the
stability diagrams themselves display the transport signatures
that lead to the reduction of integrated current with hopping t
and nearest-neighbor interaction V .
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FIG. 4. Stability diagrams for (a)–(d) U = 8 and (f)–(i) U = 1
with t and Vsd as indicated and the same color scale as shown in
Fig. 3. The ensemble-average DOS as a function of frequency near
the Fermi level for (e) U = 8 and (j) U = 1. In all cases, � = 12,
V = 0.6, μ = V + U/2.

A comparison of Figs. 3 panels (a) and (b) shows the effect
of V alone, in the absence of hopping: The outward shift
of the lines of current reduces the ensemble-average DOS
at the Fermi level as shown in Fig. 2(d), but the transitions
involved do not change in character. In contrast, the addition
of tunneling t changes both the shape and the intensity of the
lines of current, as shown in Figs. 3(a) and 3(e) for V = 0 and
in (b) and (f) for V 	= 0. The combined effect of these changes
is a net decrease in the ensemble-averaged DOS at the Fermi
level shown for V = 0 in Fig. 2(c) and for V 	= 0 in Fig. 2(e):
The increase in weight at the two- to three-particle transition
is more than canceled by the decrease in weight at the one- to
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two-particle transition, and the decrease in the length of these
lines due to their curvature further suppresses the average.

B. Seeing the energy dependence of the zero-bias anomaly

The DOS at the Fermi level can be suppressed for multiple
reasons, and, if only the ensemble-average value is accessible,
these can be difficult to distinguish. Stability diagrams provide
additional information allowing physics unique to strong cor-
relations to be disentangled from other effects. Further details
appear when the dependence on the bias voltage is considered,
specifically in the form of I (Vsd )

Figure 4 panels (a)–(d) and (f)–(i), like those in Fig. 3,
show the weight of the DOS in the range 0 � ω � Vsd , but
this time for several values of Vsd . Experimentally, these
correspond to stability diagrams representing the DC current
measured over a range of Vg1,Vg2, for fixed Vsd . Again, we
consider a system in which the coupling to the drain is sig-
nificantly more open than that to the source and Vsd > kBT
such that the DQD is primarily in its ground state, with cur-
rent flowing via brief occupation of single-particle-addition
excited states.

Figures 4(b)–4(d) show the evolution of the stability di-
agram with increasing Vsd for a strongly correlated system
t/U � 1. At the lowest bias, the one- to two-particle transi-
tion exhibits sharply reduced current due to the splitting effect
defined in Sec. IV and discussed further in Sec. V A. As the
bias is increased, all the lines of current broaden, and at the
one- to two-particle transition a bright orange sliver appears,
corresponding to the entrance of the triplet transitions into the
window between source and drain. This occurs first in the
region of ε2 ∼ ε1 where the splitting is lower in magnitude,
and extends outward to the ε2 ∼ ε1 ± U regions.

Figure 4(e) shows the ensemble-average DOS for the same
interaction strengths U and V and a range of t values. The
t = 0 curve (black) corresponds to Fig. 4(a) and shows the
ensemble-average DOS suppression associated with nearest-
neighbor Coulomb repulsion V as shown in Fig. 2(d). The t =
0.6 curve (green) corresponds to Figs. 4(b)–4(d). The simple
broadening of the lines is reflected in the flat DOS at very low
energy, while the entrance of the triplet transitions is seen in
the sharp rise in the DOS at ω ≈ 0.2

A natural question to consider is what is special about
the case of strong correlations. As a point of comparison,
Figs. 4(f)–4(j) show the same quantities with U = 1 such

that t/U ∼ 1 (shown for illustration, although implementing
U � � in a DQD system is not feasible). All the physics
just discussed is still present at very small t values in a
small region at the center of the diagram. However, when
t ∼ U , it is large enough to couple not only ε2 with ε1, or
only ε2 with ε1 + U , but instead to couple all of these states
together. As a result, the stability diagrams lose the unique
features associated with changes in the transition spectrum
and the ensemble-average DOS shows no ZBA. Comments
on the comparison with mean-field treatments can be found in
Ref. [8].

VI. CONCLUSION

In summary, we have described how DQD measurements
can show, explicitly, the changes in the transition spectrum
that result in a ZBA in ensembles of two-site systems. This
ZBA arises exclusively when onsite interactions are strong,
and it has been shown to share the same parameter depen-
dence as that found in numerical studies of two-dimensional
lattices. In bulk systems measurements have limited control
over parameters and can access only the average DOS, making
it difficult to differentiate between different mechanisms of
DOS suppression. For example, the simple linear-t depen-
dence of the width of the ZBA in Fig. 2(c) is obscured by
the presence of nearest neighbor interaction V . DQD mea-
surements by contrast offer exceptional tunability and produce
stability diagrams which readily display the physical origins
of DOS features. In particular, both the gapping of the triplet
state and its reemergence at higher bias is clearly visible in
the stability diagrams both without and with V . Observing
this effect in DQD systems would establish a first solid point
of contact between theory and experiment in the study of the
disorder-driven ZBA in strongly correlated systems.
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