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Recent advances in many-body physics have made it possible to study correlated electron systems at the
two-particle level. In dynamical mean-field theory (DMFT), it has been shown that the metal-insulator phase
diagram is closely related to the eigenstructure of the susceptibility. So far, this situation has been studied using
accurate but numerically expensive solvers. Here, the iterated perturbation theory (IPT) approximation is used
instead. Its simplicity makes it possible to obtain analytical results for the two-particle vertex and the DMFT
Jacobian. The limited computational cost also enables a detailed comparison of analytical expressions for the
response functions to results obtained using finite differences. At the same time, the approximate nature of IPT
precludes an interpretation of the metal-insulator transition in terms of a Landau free energy functional.
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I. INTRODUCTION

Electronic correlations play an important role in many
phase transitions, including unconventional superconduc-
tivity, charge-density waves, and magnetism. The seminal
example of a correlation-induced transition is the Mott
metal-insulator [1] transition. Once the repulsive Coulomb
interaction between electrons overpowers the band energy, the
electrons localize and the density of states at the Fermi level
disappears, turning the system into an insulator. The minimal
theoretical description of this transition is given by the dy-
namical mean-field theory solution of the Hubbard model in
the limit of infinite dimension [2].

In addition to the density of states, the metal-insulator
transition also has profound effects on the level of two-particle
correlation functions [3–5]. In equilibrium statistical physics,
these carry three simultaneous meanings: first, as the proba-
bility for creating and annihilating fermions at four specific
times; second, as the second derivative of the free energy with
respect to a particular field, indicating the energy cost or gain
associated with fluctuations; third, as the linear response of
a one-particle observable to an external field. In dynamical
mean-field theory, these three manifestations of two-particle
correlations can be expressed entirely in terms of the local
vertex [6–9].

Over the last few years, two-particle correlations close
to the metal-insulator transition have been a topic of active
investigations [9–12], partially driven by methodological and
computational improvements that have enabled the accurate
determination of the two-particle vertex [13–15]. Despite
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these improvements, the study of two-particle correlations
typically requires a substantial amount of supercomputing
power, because the evaluation of the two-particle vertex across
a wide range of frequencies is hard.

This paper takes a step back and considers the iterated
perturbation theory (IPT) [16] approximation to dynamical
mean-field theory (DMFT). The vertex within this approx-
imation is evaluated analytically and this makes it possible
to study two-particle correlations in detail and with a very
limited computational cost. In particular, IPT is very suited
to the study of response functions as finite differences, since
the method is free from stochastic noise.

The structure of this paper is as follows: Section II pro-
vides an overview of dynamical mean-field theory on the one-
and two-particle level. This section summarizes the literature
and translates results to the Bethe lattice where needed. In
Sec. III, IPT’s two-particle vertex is derived and the resulting
two-particle properties of DMFT + IPT are discussed. It is
shown that the IPT approximation breaks certain symmetry
properties of the many-body theory for the Hubbard model.
This makes the construction of an IPT free energy functional
problematic. Still, other two-particle quantities remain sen-
sible. Section IV discusses the physical response to changes
in the interaction strength. Using the results of the previous
section, it is shown that �(τ ) is a monotonic function of U
in IPT. Section V then provides a numerical illustration of the
derived analytical results. The paper ends with conclusions
and an outlook.

II. DYNAMICAL MEAN-FIELD THEORY ON
THE BETHE LATTICE

To set the stage, an overview of dynamical mean-field
theory (DMFT) for the Hubbard on the Bethe lattice is given.
More details can be found in the literature [2,17]. For the dis-
cussion of two-particle properties, the notation of Ref. [9] will
be followed, although it should be noted that some differences
appear in the formulas: for the Bethe lattice considered here,
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the concept of momentum is absent. The lattice structure is en-
coded in the Bethe lattice self-consistency condition without
invoking a momentum sum.

A. Hubbard model

The Hamiltonian of the Hubbard model [18–20] is

H = −t
∑
〈i j〉

∑
σ=↑,↓

c†
iσ c jσ + U

∑
i

ni↑ni↓. (1)

Here, c†
iσ creates an electron with spin σ at site i, ciσ is the

corresponding annihilation operator and n = c†c is a number
operator, 〈i j〉 denotes that the sum is taken only over pairs
of neighboring sites, t is the electron hopping, and U the
electron-electron interaction. In this work, the Bethe lattice
at half filling is considered in the usual DMFT limit [2] of
z → ∞ with t ∝ 1/

√
z, where z is the number of neighbors

in the Bethe lattice. All calculations shown here use t = 1/2
for the rescaled hopping, leading to a bandwidth of 1 for the
noninteracting system.

B. DMFT on the Bethe lattice

DMFT [2] revolves around three dynamical (i.e.,
frequency-dependent) objects, namely the (interacting)
Green’s function G, the bare Green’s function G0, and the
self-energy �, which are connected by Dyson’s equation,

G−1(iνn) = G−1
0 (iνn) − �(iνn). (2)

Here, iνn = i(2n + 1)πT denotes the nth Matsubara fre-
quency. Dyson’s equation is evidently diagonal in the
Matsubara representation: it does not couple different
Matsubara frequencies νn 
= νm, since the same frequency νn

appears in all three objects [21]. Paramagnetism is assumed
and all spin labels are suppressed.

The self-consistency condition for the Bethe lattice is

G−1
0 (iνn) = iνn − t2G(iνn). (3)

This relation is also diagonal in the Matsubara frequency. The
self-consistency condition can also be expressed in terms of
the hybridization function �,

G−1
0 (iνn) ≡ iνn − �(iνn), (4)

�(iνn) = t2G(iνn). (5)

It should be noted that this linear relationship between � and
G is a peculiarity of the Bethe lattice; for a general lattice,
�(iνn) is a more complicated function of G(iνn).

The final ingredient for DMFT calculations is the solution
of the many-body impurity problem defined by G0, using a so-
called impurity solver. For the present discussion, this simply
means an algorithm to calculate the functional relationship
�(G0;U, β ), which can be highly nonlinear and couples all
frequencies of the input G0 and the output �.

In total, the DMFT self-consistency cycle consists of three

relations G0
impurity�→ �

Dyson�→ G
SC�→ G0. The physical parameters

U and t appear in the self-energy and the self-consistency con-
dition, respectively. The temperature T only enters implicitly,
via the domains of the dynamical fields.

C. Dynamical fields: Representations

In the imaginary-time representation, the Green’s func-
tion is defined on the domain [0, β ), i.e., G(τ ) : [0, β ) →
R, where β = 1/T . The Green’s function can then be ex-
tended antiperiodically to all τ via the relation G(τ −
β ) = −G(τ ), reflecting the fermionic nature of the elec-
tron. The Matsubara representation is obtained by performing
a Fourier transformation, G(iνn) = ∫ β

0 dτ G(τ ) exp(+iνnτ ),
G(τ ) = 1

β

∑
νn

G(iνn) exp(−iνnτ ). From the properties of
G(τ ), it follows that G(−iνn) = G(iνn)∗, so it is sufficient to
consider the positive frequencies only.

The imaginary-time and Matsubara frequency representa-
tions are not particularly compact [23]. In imaginary time, a
very fine discretization mesh is needed to faithfully describe
the continuous function. In the Matsubara representation,
G(iνn) decays only algebraically (see also Appendix A) and
a large number of frequencies is needed to give a full de-
scription of the Green’s function. The origin of this slow
decay is the discontinuity of G(τ ) and its derivatives at τ = 0.
Representing G(τ ) in terms of appropriately chosen orthogo-
nal basis sets turns out to be much more efficient. Here, the
Legendre polynomials are considered, following the nota-
tion of Ref. [23], G(l ) = √

2l + 1
∫ β

0 dτ G(τ )Pl (2τ/β − 1),

G(τ ) = ∑
l�0

√
2l+1
β

G(l )Pl (2τ/β − 1). Note that the coeffi-
cients G(l ) are real.

The basis transformations to the Matsubara and Legendre
representations are unitary and preserve the norm,

‖G‖2 =
∞∑

n=−∞
|G(iνn)|2 = β

∫ β

0
|G(τ )|2dτ =

∑
l

|G(l )|2.

(6)

Altogether, the dynamical fields G, G0, and � can be seen
as vectors in an infinite-dimensional vector space, and the
various representations provide different basis sets for this
vector space. At the same time, the physical Green’s functions
form only a small subset (embedded manifold) of this vector
space.

For the Bethe lattice at half filling, as considered in
this work, there is an additional symmetry (particle-hole
symmetry), which further restricts the space of physical
Green’s functions, since G(τ ) = G(β − τ ), G(τ ) = −G(−τ ),
Re G(iνn) = 0, G(iνn) = −G(−iνn), and G(l ) = 0 for l odd.
Similar properties hold for the bare Green’s function G0 and
the self-energy �, after removing the Hartree term in the
latter. For the Matsubara representation, this means that it is
only necessary to consider the imaginary parts of the Green’s
function, so G : N → R, n �→ Im G(iνn) is an element of the
real vector space RN . This will be convenient when discussing
derivatives, which are all real.

D. Free energy functional

Following Landau’s theory of phase transitions, a free en-
ergy functional can be used to describe the hysteresis region
of DMFT. For the Bethe lattice, this approach is described in
detail in Sec. 3.7 of Ref. [8] and references therein [7,16].
The lattice free energy functional can be written as 	[�] =
	imp − 	′. Here 	imp is the free energy function of the
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impurity model, which satisfies 1
T δ	imp/δ�(iν) = G(iν).

Functional derivatives δ� are used for the free energy func-
tional 	, partial derivatives ∂� for other derivatives. The
free energy associated with the lattice, 	′ = T

2t2

∑
ν �(iν)2,

ensures that the DMFT self-consistency condition is fulfilled
at the extremal points of 	, since

0 = 1

T

δ	

δ�(iν)
= G(iν) − �(iν)

t2
(7)

is the self-consistency condition of the Bethe lattice.
The second derivative of the free energy functional distin-

guishes stable (minimum) and unstable (maximum) solutions
of the self-consistency equations. It is a matrix in Matsubara
space,

1

T

δ2	

δ�(iν)δ�(iν ′)
= ∂G(iν)

∂�(iν ′)
− δνν ′

t2

= −G2(iν)
∂G−1(iν)

∂�(iν ′)
− δνν ′

t2

= G2(iν)

[
δνν ′ + ∂�(iν)

∂�(iν ′)

]
− δνν ′

t2

= G2(iν)[δνν ′ + T Fνν ′G2(iν ′)] − δνν ′

t2

= χ̂νν ′ − δνν ′

t2
. (8)

The basic idea is that the derivative ∂/∂� introduces an
additional c†c in any expectation value, so ∂G/∂� is a
two-particle correlation function. Accounting for prefactors,
following Ref. [9], and with ω = 0 implied everywhere,
∂�(iν)/∂�(iν ′) = 1

β
Fνν ′G2(iν ′), where F is the reducible

vertex of the impurity model. Finally, χ̂ = GG + GGFGG
is the generalized susceptibility of the impurity model. The
relation between χ̂ and F is a local Bethe-Salpeter equation.

These equations are written entirely in terms of the re-
ducible vertex or the susceptibility of the impurity model.
Since the impurity model at finite temperature cannot fea-
ture any phase transition, these objects are well defined
and divergence free. In particular, the inversion of a local
Bethe-Salpeter to obtain the irreducible vertex is avoided in
this formulation.

In this Landau theory formulation of DMFT [7,9,24], the
Hessian δ2	/δ�2 is positive definite for stable solutions and
has (at least) one negative eigenvalue for unstable solutions.
At the critical point, one eigenvalue is exactly equal to zero,
signaling the transition from a stable to an unstable solution.
This also happens for the disappearing solution at the edge
of the hysteresis region, where a stable and an unstable so-
lution merge. The distinction between the critical point and
the hysteresis region boundary can thus be found in the third
derivative of the free energy: at the critical point δ3	/δ�3 =
0 along the “direction” given by the vanishing second
derivative.

For the Bethe lattice, 	′ is quadratic in �, because of the
linear form of Eq. (3). This implies δ3	/δ�3 = δ3	imp/δ�3,
since 	′ is quadratic in �.

E. Iterative properties of DMFT

DMFT is a self-consistent theory, similar to Curie-Weiss
mean-field theory for magnetism. Although only converged
solutions have a formal role in mean-field theory, useful phys-
ical insight can be gained by studying the convergence toward
such a solution, since the convergence speed is related to
the presence of “soft modes” and enhanced response [9]. For
Curie-Weiss theory, this is illustrated in Appendix B.

Where Curie-Weiss theory considers a scalar as the
self-consistently determined mean field, DMFT uses the
infinite-dimensional vector �(iνn) instead. In both cases, for-
ward iteration provides a way to achieve self-consistency.
Starting from an initial guess G0, one calculates G0 �→ � �→
G �→ G0 until convergence is reached.

The convergence of forward iteration is determined by
the DMFT Jacobian [8,9,24,25]. The mathematical theory of
self-consistent schemes states that the eigenvalues λα and
eigenvectors vα of the Jacobian J determine the iterative
flow of the self-consistent scheme �(n+1) = f (�(n) ) in the
linear regime around a self-consistent solution �∗. Starting
with an initial guess �(0) sufficiently close to �∗, the dif-
ference �(n) − �∗ can be expanded in the eigenbasis of J ,
�(n) − �∗ = ∑

α cαvα , and the subsequent iterations give

�(n) − �∗ ≈
∑

α

λn
αcαvα. (9)

In the eigenbasis, every component evolves according to its
own eigenvalue. The solution converges exponentially as long
as |λα| < 1 for all eigenvalues of J . Furthermore, smaller
(absolute) eigenvalues lead to faster convergence.

The relevant Jacobian in DMFT is an infinite-dimensional
matrix, since the field is infinite-dimensional. Note that the
Jacobian keeps track of how a single object in the self-
consistency cycle changes during the iterative process, so the
expression for the Jacobian differs based on the object that is
tracked, but the convergence speed turns out to be identical,
as shown below.

The Jacobian for G0 is obtained by taking the derivative of
the self-consistency condition,

JG0
νν ′ = ∂Gnew

0 (iν)

∂Gold
0 (iν ′)

= −G2
0(iν)

∂
(
G−1

0

)new
(iν)

∂Gold
0 (iν ′)

= t2G2
0(iν)

∂Gold(iν)

∂Gold
0 (iν ′)

= t2G2(iν)

(
δνν ′ + G2

0(iν)
∂�(iν)

∂G0(iν ′)

)
. (10)

Here, in the last equation, the label old is dropped, since
it appears on both sides of the derivative. Similarly, the
Jacobian for the hybridization function � is obtained
by taking the derivative of the self-consistency condition
�new(iν) = t2Gold(iν):

J�
νν ′ = ∂�new(iν)

∂�old(iν ′)

= t2 ∂Gold(iν)

∂�old(iν ′)
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= t2G2(iν)

(
δνν ′ + ∂�(iν)

∂�(iν ′)

)

= t2G2(iν)

(
δνν ′ + ∂�(iν)

∂G0(iν ′)
G2

0(iν ′)
)

. (11)

The two Jacobians are similar, since J� = Q−1JG0 Q for
Qνν ′ = δνν ′G2

0(iν ′). Thus, they have the same eigenvalues and
the forward iteration converges with the same speed, even
though the eigenvectors are different.

To get closer to the notation of Ref. [9], we recall that
T Fνν ′G2(iν ′) = ∂�(iν)

∂�(iν ′ ) . This gives

J�
νν ′ = t2G2(iν)δνν ′ + t2T G2(iν)Fνν ′G2(iν ′) = t2χ̂νν ′ .

The Jacobian can be split into two terms, with and without
a contribution from the vertex,

J�
νν ′ ≡ J0

νν ′ + J1
νν ′ ,

J0
νν ′ = t2G2(iν)δνν ′ ,

J1
νν ′ = t2T G2(iν)Fνν ′G2(iν ′). (12)

Relation to free energy functional. Based on the free en-
ergy functional, a more convenient derivation of the Jacobian
is possible. � = t2G = t2δ	imp/δ� so J� = ∂�new/∂�old =
t2δ2	imp/δ�2 = t2χ̂ . This reflects the fact that the self-
consistency condition itself is the derivative of the scalar
function 	. In that case, according to Clairaut’s theorem, the
Jacobian J� is symmetric. This is equivalent to the symmetry
Fνν ′ = Fν ′ν .

However, as will be discussed in Secs. III B and III C,
IPT cannot be derived from a free energy functional, but the
derivation of the Jacobian given here remains valid for IPT.

F. Jacobian, lattice free energy, and the
metal-insulator transition

The relation between the Jacobian and the Hessian of the
impurity free energy also provides a direct relation to the
lattice free energy functional,

1

T

δ2	

δ�(iν)δ�(iν ′)
= 1

t2
(J�

νν ′ − δνν ′ ). (13)

Thus, the leading eigenvalue of the Jacobian, λJ , is closely
related to the metal-insulator phase diagram [8,9,24]; for IPT
the phase diagram is shown in Fig. 1. Above Tc, all eigenval-
ues of the Jacobian are smaller than unity in absolute value,
i.e., |λJ | < 1. The resulting solution is a minimum of the free
energy functional [26]. Exactly at (Uc, Tc), one eigenvalue is
equal to unity. In the hysteresis region at T < Tc, the metallic
and insulating solutions have eigenvalues smaller than unity,
so they are stable. There is a third, unstable solution with
eigenvalue larger than unity. At the boundary of the hysteresis
region, the leading eigenvalues of the disappearing solutions
(one stable and one unstable) are both equal to unity. To-
gether, the leading eigenvalues of the possible solutions form
a smooth curve, which implies an infinite slope of the dis-
appearing solutions at the edge of the hysteresis region. This
situation is illustrated in Fig. 12 of Ref. [24]. At Tc, the leading
eigenvalue reaches unity at Uc, and then goes back down.

FIG. 1. Phase diagram of IPT for the Bethe lattice. The position
of the critical point at Uc ≈ 2.46 and Tc ≈ 4.69 × 10−2, i.e., βc ≈
21.3, is taken from Ref. [24]. Uc1 and Uc2 denote the boundaries of
the hysteresis region; the parameters of Figs. 4 and 5 are also marked.

III. ITERATED PERTURBATION THEORY

The missing ingredient in the discussion so far is the
functional relation �[G0]. In IPT, a particularly simple ap-
proximation for �[G0] is used, namely

�IPT[G0] = −U 2G0(τ )G0(−τ )G0(τ ). (14)

This expression corresponds to applying second-order per-
turbation theory (SOPT; also called GF2) as the impurity
solver, under the assumption of particle-hole symmetry. The
distinction between second-order perturbation theory and IPT
is the way that the “input” G0 is determined. In IPT, it is
determined self-consistently according to the DMFT self-
consistency condition. In second-order perturbation theory, on
the other hand, it is either fixed to the initial G0 or it is updated
according to the Dyson equation in self-consistent SOPT. In
the end, this difference is responsible for the fact that IPT has
a metal-insulator transition and SOPT does not.

At particle-hole symmetry, the self-energy simplifies to
�IPT(τ ) = U 2G0(τ )3.

Note that this expression for the IPT self-energy ignores the
Hartree term, which is of first order in U and is instantaneous.
When the density is fixed at half filling, the Hartree term
cancels with the chemical potential and there is no need to
keep track of it explicitly.

A. The IPT vertex

To determine the stability of DMFT, we need the derivative
of the self-energy of the impurity model with respect to the
input; i.e., ∂�/∂G0 or ∂�/∂� should be calculated. The
relation between the two derivatives is

∂�(iν)

∂�(iν ′)
= ∂�(iν)

∂G0(iν ′)
G2

0(iν ′). (15)

In this paper, all three objects, F , ∂�/∂G0, and ∂�/∂�, will
be called “vertex”; the explicit mathematical expression will
be used when it is necessary to be specific.

From �(τ ) = −U 2G0(τ )G0(−τ )G0(τ ), the derivative
∂�/∂G0 can be taken directly,

∂�(τ )

∂G0(τ ′)
= − 2U 2G0(τ )G0(−τ )δ(τ − τ ′)

− U 2G0(τ )2δ(τ + τ ′), (16)
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FIG. 2. Iterated perturbation theory self-energy and vertex.

or, at particle-hole symmetry,

(
∂�(τ )

∂G0(τ ′)

)PHS

= 3U 2G2
0(τ )δ(τ − τ ′). (17)

Diagrammatically, taking a derivative corresponds to cut-
ting a single line from every possible self-energy diagram in
every possible way; see Fig. 2. The IPT self-energy func-
tional consists of a single diagram with three internal lines
G0, so there are three possible ways to cut a line, giving the
prefactor 3.

The derivative, ∂�(τ )
∂G0(τ ′ ) , interpreted as a matrix in imaginary

time, is diagonal with strictly positive elements on the diago-
nal. The operator is therefore positive definite if U 
= 0, which
is a property that is independent of the choice of basis; i.e.,
it also holds in the Matsubara basis. The matrix also has a
well-defined inverse (again, if U 
= 0), signaling that the IPT
relation between � and G0 is invertible. As a diagonal matrix,
∂�(τ )
∂G0(τ ′ ) is also symmetric. This is actually an undesirable prop-
erty of IPT, since it implies that Fνν ′ is not symmetric within
the IPT approximation.

It is also useful to express the self-energy and the func-
tional derivative in the Matsubara representation. This can
be done diagrammatically, or by Fourier-transforming the
previously obtained imaginary-time expressions; see also
Appendix C. Either way,

�(iν) = −U 2

β2

∑
ν1ν2

G0(iν1)G0(iν2)G0(iν1 + iν2 − iν), (18)

leading to

δ�(iν)

δG0(iν ′)
= −2

U 2

β2

∑
ν1

G0(iν1)G0(iν1 + iν ′ − iν)

− U 2

β2

∑
ν1

G0(iν1)G0(iν + iν ′ − iν1). (19)

The functional derivative δ�(iν)/δG0(iν ′) is a matrix in
ν, ν ′. Since there is a relation between the value of the
Green’s function at positive and negative Matsubara frequen-
cies, it is generally sufficient to consider the symmetric and
antisymmetric parts of the matrix separately [27]. At parti-
cle hole-symmetry, only the functional derivative within the
particle-hole symmetric manifold [G0(iν) = −G0(−iν)] is
needed [28]. This restricts variations to the form

δG0(|ν|) ≡ δG0(iν) − δG0(−iν). (20)

The associated functional derivative δ�(ν)/δG(|ν ′|) is

δ�(ν)/δG0(|ν ′|) = − 3
U 2

β2

∑
νi

[G0(iνi )G0(iνi + iν ′ − iν)

−G0(iνi )G0(iνi − iν ′ − iν)]. (21)

More details on the structure of the matrix ∂�/∂G0 are avail-
able in Appendix C.

Having determined the vertex ∂�/∂G0, it is also possible
to consider higher-order derivatives. In IPT, ∂2�/∂G2

0 and
∂3�/∂G3

0 are finite, and all higher orders are equal to zero.
This follows from the explicit IPT form of the self-energy and
is a notable difference with the exact solution.

B. IPT’s problems on the two-particle level: Nonexistence of
free energy functional

The derivation of the free energy functional in Sec. II D
holds for the general formulation of DMFT. However, a prob-
lem is encountered when IPT is used as the impurity solver. As
discussed above, Fνν ′ should be a symmetric matrix, but this is
not the case in IPT. This would imply that the Hessian of the
free energy functional is not symmetric, which is impossible.
Thus, the conclusion is that there is no consistent way to de-
rive IPT from a free energy functional. However, the Jacobian
is still useful to characterize the hysteresis region, as will be
discussed in Sec. III C.

The lack of a free energy functional might come as a
surprise. It is useful to consider an analogy in the form of
electromagnetism. In electrostatics, the electric field �E is curl-
free, ∇ × �E = 0; i.e., the matrix ∂Ei/∂x j is symmetric. This
property guarantees that the electric field can be written as the
gradient of a potential V , �E = −∇V . Given �E , V (�x) can be
determined up to a constant by simply taking a line integral of
�E from any point �x0. Due to the vanishing curl, this construc-
tion is independent of the integration path. Now, imagine that
we had an approximate way to calculate the electric field for
a system of interest, �E approx(�x). If this approximation satisfies
∇ × �E approx = 0, then there is still a consistent way to con-
struct V approx via line integrals. However, if ∇ × �E approx 
= 0,
the construction breaks down. �E approx can still be a useful
approximation for the electric field; it just does not allow a
discussion of potentials. The situation is similar in IPT, in the
sense that the explicit recipe G(�) of the IPT impurity solver
is inconsistent with the existence of a free energy functional
	imp[�] with G = T −1∂	imp/∂�.

This raises the question of why F is not symmetric in IPT,
which brings us back to the functional derivative. There is
a difference between ∂/∂G0 and ∂/∂� in the precise way
the cutting of lines in the diagram is handled: in ∂/∂G0 the
“stumps” left by the cut are amputated with G0, whereas in
∂/∂�, a factor G0 is attached at the stumps. Finally, in the
usual definition of F , the ends of the ∂/∂� expression are
divided by G. In total, the definition of F amputates all one-
particle irreducible contributions from the legs of the vertex.
In the exact solution, these are generated by higher orders in U
in the expression for �, but in IPT they are absent completely.
Thus, in IPT, the definition of F amputates too much. But
this problem only occurs in the two legs that are cut when
the derivative is taken; the two external legs in the initial
expression for �IPT are properly amputated by construction.
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At a very fundamental level, IPT breaks the equivalence of
the four external legs of F , and the origin of this equivalence
breaking is the use of G0 instead of G in the diagrammatic
expression for � [29]. Thunström et al. [30] identified this
phenomenon with time-reversal symmetry breaking, but from
the diagrammatic analysis, the inequivalence of the legs ap-
pears as the origin.

C. Jacobian in IPT

The Jacobian for DMFT is given in Eq. (10). For an exact
solution of the impurity model, F is a symmetric matrix and
J� is thus also symmetric. However, within the IPT approxi-
mation, J� is not symmetric, it is only similar to a symmetric
matrix: defining Xνν ′ = δνν ′G(iν)/G0(iν), the matrix X −1J�X
is real and symmetric. Essentially, one factor G(iν)/G0(iν)
is divided out from the left in Eq. (11) and replaced by a
factor G(iν ′)/G0(iν ′) from the right. Due to the similarity,
the nonsymmetric J� still has real eigenvalues and the sym-
metrized version of J has an orthogonal basis of eigenvectors.
The factors (G/G0) are related to the amputation procedure of
the vertex discussed above.

It is useful to analyze several limiting cases of the Jacobian,
namely U = 0, t = 0, and large ν, since the Jacobian matrix
turns out to be diagonal (in the Matsubara representation) in
these situations. Additional T = 0 expressions are given in
Appendix D.

Noninteracting model. The DMFT self-consistency cycle
becomes trivial in the noninteracting model, U = 0, since
it implies � = 0, G0 = G, and the self-consistency condi-
tion becomes G−1(iνn) = iνn − t2G(iνn), which is solved by
G(iνn) = iνn

2t2 (1 − √
1 + 4t2/ν2

n ).
Since there is no self-energy at U = 0, the Jacobian is

given by the first, diagonal term, i.e., Jνν ′ = J0
νν ′ = t2G2

νδνν ′ .

The eigenvalues are t2G(iνn)2 = − ν2
n

4t2 (1 − √
1 + 4t2/ν2

n )2,
which takes values in (−1, 0) for νn 
= 0. So for T > 0, this
solution is iteratively stable, although it becomes unstable at
T = 0. The leading eigenvector is entirely localized on the
lowest Matsubara frequency. These results at U = 0 do not
use the IPT approximation and are generally valid.

Atomic limit. For t = 0, the self-consistency condition is
G0 = 1/iνn and this makes it possible to evaluate the vertex
explicitly, as done in Appendix C. The result is that the IPT
vertex is proportional to the identity matrix. At t = 0, the
Jacobian is strictly equal to zero. However, for 0 < t � U ,
the atomic G0 and vertex can still be used, while the Jacobian
is given only by J� and is diagonal. Due to the factors G2 and
G2

0, it is decaying as a function of frequency. Importantly, it
results in J > 0 in the atomic limit, since G2G2

0 is positive.
Large frequency. In the limit of large frequency, i.e.,

ν, ν ′ � t,U , only the term depending on ν − ν ′ in the ver-
tex remains finite. In the Jacobian, this contribution coming
from the vertex has to be compared against the δνν ′ term.
The (constant) vertex contribution has an additional prefactor
G0(iν)2, which decays at large frequency. Thus, the Jacobian
becomes dominated by the diagonal, noninteracting contribu-
tion, J ≈ J0 = t2G2(iν)δνν ′ at large frequency. The resulting
eigenvalues are simply t2G2(iνn) < 0 and decay asymptoti-

cally as −t2ν−2
n . In other words, as long as U and t are finite,

the spectrum of the Jacobian contains a countably infinite
number of eigenvalues that approaches 0 from below, and the
corresponding eigenvectors are (approximately) localized on
a single pair of Matsubara frequencies ±iνn.

From weak to strong coupling. The noninteracting and
atomic model both have a diagonal Jacobian, but the eigen-
values of the Jacobian change from negative (at U = 0) to
positive (at U � t). Thus, with increasing U , the eigenvalues
of the Jacobian cross zero one by one. Since J� = t2χ̂ , this
is equivalent to zero crossings of the eigenvalues of the sus-
ceptibility, responsible for the divergence of the irreducible
vertex [3,27,31,32], since it is based on χ̂−1.

It should be stressed that the zero crossings of the eigenval-
ues of the Jacobian are well defined in the IPT approximation,
even though the free energy and the vertices are problematic,
as discussed in Sec. III B.

IV. RESPONSE FUNCTION: SELF-ENERGY VERSUS
INTERACTION

The Jacobian also plays a role in the response of the
observables of the system to changes in the model param-
eters. Simply stated, the DMFT response consists of the
direct response of the impurity model combined with the
self-consistent adjustment of the impurity model, which is
described by the Jacobian. The first part is free from thermo-
dynamic divergences by construction (at T > 0), whereas the
second part can have nonsmooth behavior when λJ = 1. As an
example, the compressibility has been studied in this way [9],
although it remains smooth in the particle-hole symmetric
model [9,12,33] because of the peculiar frequency structure
of the leading eigenvector of the Jacobian. This motivates the
study of a dynamic quantity, such as the self-energy �. Here,
d�/dU will be considered.

U appears explicitly only in the self-energy of the impurity
model, leading to the derivative ∂�imp/∂U . Here, the label imp

signals that the derivative is taken while keeping G0 constant.
However, in the DMFT self-consistent procedure, G0 will also
vary when U is changed, leading to further changes in the
self-energy. The label DMFT is used below to denote derivatives
where the change in G0 is taken into account.

The Dyson equation and Eq. (3) have to be satisfied at all
values of U , thereby providing relations between the d/dU
derivatives of G0, G, and �,

G−2 dG

dU
= G−2

0

dG0

dU
+ d�

dU
,

dG0

dU
= G2

0t2 dG

dU
. (22)

Note that these relations are all diagonal in the
Matsubara representation and Matsubara frequencies are
implied as the argument on all objects. Taken together, this
gives (1 − t2G2)dG0/dU = G2

0t2G2d�/dU . This enables
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the calculation of the derivative of the self-energy as

d�DMFT(iν1)

dU
= ∂�imp(iν1)

∂U
+

∑
ν2

∂�imp(iν1)

∂G0(iν2)

dG0(iν2)

dU

= ∂�imp(iν1)

∂U
+

∑
ν2

∂�imp(iν1)

∂G0(iν2)

t2G2
0(iν2)G2(iν2)

1 − t2G2(iν2)

d�DMFT(iν2)

dU
,

(
d�DMFT

dU

)
α

=
(

d�imp

dU

)
α

+
∑

β

Ĉαβ

(
d�DMFT

dU

)
β

,

d�DMFT

dU
= (1̂ − Ĉ)−1 d�imp

dU
,

Ĉαβ ≡ ∂�imp(iνα )

∂G0(iνβ )

t2G2
0(iνβ )G2(iνβ )

1 − t2G2(iνβ )
. (23)

A numerical illustration of Eq. (23) is given in Fig. 3. After
some matrix manipulation, this result can be related to the
Jacobian in Eq. (10),

Âαβ ≡ [1 − t2G2(iνa)]αβδαβ,

P̂αβ ≡ G2
0(iνα )G2(iνα )δαβ,

[Â − ĈÂ]αβ = [1 − t2G2(iνa)]δαβ

−
(

∂�imp

∂G0

)
αβ

t2G2
0(iνβ )G2(iνβ )

= [1 − P̂−1ĴG0 P̂]αβ,

[1̂ − Ĉ] = [1 − P̂−1ĴG0 P̂]Â−1. (24)

The matrices Â and P̂ are diagonal and positive definite at
particle-hole symmetry, since G and G0 are purely imaginary.
For stable solutions, the leading eigenvalue of the Jacobian J
is smaller than unity, which implies that 1̂ − Ĉ has only pos-
itive eigenvalues. Thus, for a stable solution, Eq. (23) states
that the vector d�DMFT/dU is related to the vector d�imp/dU
via the positive definite matrix (1̂ − Ĉ)−1.

FIG. 3. d�/dU evaluated analytical via Eq. (23) (green crosses)
and numerical via the finite difference �U = 0.001 (orange pluses).
The DMFT response is enhanced compared to the impurity re-
sponse with G0 held constant (blue circles) due to the self-consistent
feedback.

Positive-definiteness is preserved under a basis
transformation to imaginary time, so d�DMFT(τ )/dU =∫

dτ ′M̂ττ ′ d�imp(τ ′)/dU , where the positive definite M̂ is
the Fourier-transformed version of (1̂ − Ĉ)−1. For iterated
perturbation theory, �imp(τ ) = U 2G0(τ )3 in Eq. (23), and
∂�imp(τ )/∂U = 2UG0(τ )3 is negative. Combined with
the positive-definiteness of the matrix M̂, this implies
monotonicity of the IPT self-energy for stable solutions
at U > 0:

d�IPT(τ )

dU
< 0 (monotonicity). (25)

If one also wishes to consider attractive Hubbard in-
teraction, U < 0, this statement can be reformulated as
d�IPT(τ )/d (U 2) < 0, for all τ ∈ [0, β ). Note also that, since
�(τ ) < 0, there is the implication d‖�‖2/d (U 2) > 0, which
is representation independent, but also a substantially weaker
statement. There is no guarantee of monotonicity for individ-
ual components of d�/dU in other representations; this will
be illustrated numerically for the Legendre representation.

The proof of monotonicity only holds for stable solutions,
λJ < 1; in other words, it does not apply to the disappear-
ing solutions at the edge of the hysteresis region or at the
critical point, where λJ = 1 and ∂U � is divergent, nor to
the third, thermodynamically unstable solution that exists
within the hysteresis region with λJ > 1. Exactly at the critical
point, λJ = 1 and the self-energy has infinite slope. Thus, the
self-energy shows the expected nonanalytical behavior at the
critical point, and this derivation shows that the nonanalytical
behavior is directly related to the iterative stability. It should
be noted that not all observables are nonanalytical in U ,
since the compressibility has be shown to be smooth at the
critical point of the particle-hole symmetric metal-insulator
transition [9,12].

V. NUMERICAL RESULTS

Iterated perturbation theory is very suitable for numerical
studies, since it is fast and does not suffer from stochastic
noise. This is especially useful for the derivatives considered
in this work, since IPT is sufficiently stable for finite-
difference evaluations. Here, a modified version of the IPT
code available in TRIQS [34] is used to perform calculations;
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FIG. 4. Calculations at β = 35, U = 1.5 (left) and U = 3 (right). (a), (b) Converged solution and normalized difference vector of G0,
�, and G. (c), (d) The self-energy converges exponentially in the forward iteration, ��(iνn) ∝ λiteration

J , at all frequencies. (e), (f) The first
eigenvalues of the Jacobian, sorted by their absolute value. The value of λJ found in (c) and (d) corresponds to the leading eigenvalue here.

the code is available at [35]. In high-accuracy computations,
it becomes necessary to enforce symmetry properties in the
calculation explicitly, to avoid minor round-off errors from
causing problems.

Figure 4 shows the results of calculations at U = 1.5
(metal) and U = 3 (insulator), both for β = 35. In Fig. 4(a),
the metallicity is visible in the linearly vanishing � around
νn = 0 while Fig. 4(b) has a divergent self-energy character-
istic of a Mott insulator. Also shown in Figs. 4(a) and 4(b)
are the difference vectors, which are the leading eigenvectors
of the respective Jacobians. In Fig. 4(a), there is a clear dif-
ference in frequency structure between the difference vectors
�G0 and �G on the one hand, which feature a sign change
between the lowest Matsubara frequency and the higher
Matsubara frequencies, and �� which has a continuous de-
cay with a uniform sign. Although the three similar Jacobians
have the same eigenvalues, they have different eigenvectors,
which is reflected here.

For U = 3, in Fig. 4(b), the shape of the difference vec-
tors has changed substantially. Now, the difference vectors
�� and �G0 are very similar, whereas �G differs. Further-
more, a sign change within the difference vector no longer
occurs. The difference vectors for G0 and � are almost en-
tirely localized on the lowest Matsubara frequency, as would

be expected close to the atomic limit. These changes re-
flect the growing important of the vertex contribution to the
Hamiltonian.

Figures 4(c) and 4(d) show the convergence toward the
self-consistent solution. For both values of U , all frequencies
are eventually exponentially converging with a single expo-
nent, confirming that there is a single relevant eigenvalue of
the Jacobian and that the corresponding eigenvector is finite at
all Matsubara frequencies. In fact, ��(iν) ∼ ν−3 at large fre-
quencies, since only odd powers in the asymptotic expansion
are allowed at particle-hole symmetry, and the ν−1 coefficient
of � is fixed by the parameter U ; see Appendix A. The
simplicity of IPT makes it possible to track the convergence
with high accuracy, as is clear from the values on the y axis.

Finally, Figs. 4(e) and 4(f) show the eigenvalues of the
Jacobian evaluated according to Eq. (10) as blue circles, with
the orange line giving the scaling obtained directly from
the iterations in Figs. 4(c) and 4(d). This confirms that the
largest absolute eigenvalue determines the convergence. For
U = 1.5, Fig. 4(e), all eigenvalues are negative, as in the
limit U = 0. The second eigenvalue is already almost half
as small as the leading eigenvalue. For U = 3, Fig. 4(f), the
leading eigenvalue of the Jacobian has changed sign, as antic-
ipated by the results for the atomic limit. At the same time,
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FIG. 5. Results at β = 20, which is just above the hysteresis
region. (a) Eigenvalues of the Jacobian. A thick colored line is used to
highlight the leading eigenvalue, i.e., the one with the largest absolute
value. For small U , the leading eigenvalue is negative, while all
eigenvalues eventually turn positive in the atomic limit. The leading
eigenvalue reaches a maximum just below unity close to Uc (vertical
line; value from Strand et al. [24]). (b) The imaginary-time Green’s
functions and self-energy evaluated at τ = β/2. They change rapidly
in the region where λJ ≈ +1. (c) The evolution of � in the Legendre
basis shows that not all properties are monotonic functions of U .

a large number of negative eigenvalues remains (note that the
eigenvalues are sorted by their absolute value), as expected
from the high-frequency limit.

To illustrate the approach to the critical point, Fig. 5 shows
a scan over U at β = 20, i.e., just above Tc = 1/21.3. The
eigenvalues in Fig. 5(a) start out negative at U = 0, as ex-
pected for the noninteracting limit. This continues until U ≈
1.64, where a positive eigenvalue appears, and from U ≈ 1.9
the leading eigenvalue is positive. This is a sign that J� be-
comes more important than J0. Every eigenvalue that crosses
zero corresponds to a divergence in the irreducible vertex [3],
and it is clear that these divergences occur before Uc. This is
a sign that qualitative changes due to correlation effects set in
long before the metal-insulator transition is reached [3,27].

As anticipated in Sec. IV, strongly enhanced response takes
place when λJ ≈ 1; see Fig. 5(b). The physical response is
largely driven by the self-consistent lattice physics encoded

FIG. 6. The Green’s function in the Matsubara and Legendre
representation at T = 1/20, just above Tc and close to Uc. The shape
of the curves at low frequency changes rapidly with U .

in the Jacobian. As proven in Eq. (23), �(τ ) depends mono-
tonically on U . G0(τ = β/2) and G(τ = β/2) also appear to
be monotonic in U , although the formal proof only holds for
�. However, Fig. 5(c) clearly shows that not all quantities are
monotonic in U : the Legendre coefficients of the self-energy
have a minimum at intermediate U .

Figure 6(a) shows the Matsubara Green’s function for sev-
eral values of U close to the critical point. The temperature
is T = 1/20 > Tc, as in Fig. 5. The Green’s function has
been rescaled by 4t here, showing that G(iν0) ≈ G(iν1) ≈
1/(4t ). It is directly visible that the slope of G changes as
a function of U , which is a reflection of the disappearing
spectral weight around the Fermi level. Figure 6 shows the
Legendre representation of the Green’s function. Only even
Legendre coefficients are shown, since odd coefficients vanish
by particle-hole symmetry. Only the lowest Legendre coeffi-
cients differ meaningfully between U = 2.42 and U = 2.46.
In that sense, the mathematically efficient [23,36] Legendre
representation also provides a compact description of the
metal-insulator transition.

At U = 2.44 and β = 20, the symmetrized Jacobian
matrix X −1JX is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.953 0.080 0.019 0.007 0.003 0.001

0.080 0.230 0.039 0.012 0.005 0.002

0.019 0.039 0.068 0.020 0.007 0.003

0.007 0.012 0.020 0.011 0.011 0.004

0.003 0.005 0.007 0.011 −0.010 0.006

0.001 0.002 0.003 0.004 0.006 −0.018

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lowest Matsubara frequencies correspond to the top left
of this matrix, and only the first 6 × 6 matrix elements are
shown. The off-diagonal matrix elements, coming from the

245104-9



ERIK G. C. P. VAN LOON PHYSICAL REVIEW B 105, 245104 (2022)

vertex, are positive and decay quickly with frequency. The
diagonal elements start out positive and become negative for
larger Matsubara frequencies. The top-left matrix element is
close to 1, so the leading eigenvector is heavily localized on
the lowest Matsubara frequency, but it necessarily has finite
weight on the other frequencies as well.

VI. CONCLUSION

Via the susceptibility, a single DMFT calculation provides
information about the immediate surroundings of the solution:
the iterative stability of solutions, the response to changing pa-
rameters, and the free energy landscape. The relation between
these properties is particularly simple for the Bethe lattice.
Here, it was shown that the eigenvalues of the Jacobian have
to change sign between the noninteracting and atomic limit,
where the Jacobian is dominated by the one-particle and the
vertex part, respectively. At the boundaries of the hysteresis
region, including the critical end point, the leading eigenvalue
of the Jacobian reaches unity, which leads to a divergent
response d�/dU .

The IPT approximation breaks some of the symmetries
of the vertex, and there does not exist a consistent IPT free
energy functional. This shows one of the limitations of using
an approximate impurity solver. Still, the vertex-based analy-
sis of the iterative stability and response remains applicable.
It is even possible to prove monotonicity of the self-energy,
d�(τ )/dU < 0, for any stable IPT solution.

The IPT vertex has been derived explicitly. At particle-hole
symmetry, the vertex has a very simple frequency structure.
This explicit expression could form the basis for further an-
alytical considerations of, e.g., the IPT critical point. It is
noteworthy that the irreducible vertex of the impurity model
was not needed in this discussion of the metal-insulator transi-
tion on the two-particle level, since all derivations were done
with G0 or � and not with G. Although zero eigenvalues
appear in the Jacobian, the inversion of a local Bethe-Salpeter
equation and the associated divergences [3,32] are avoided in
the current formalism.

VII. OUTLOOK

Efficient, alternative representations of the many-body
Green’s function have received considerable attention re-
cently [23,37,38]. For an overview, see Ref. [39]. The
motivation for these studies is the inefficiency of the
Matsubara representation, i.e., the slow, algebraic decay of
G(iνn) and �(iνn). For the finite-temperature metal-insulator
transition, the relevant physical information distinguishing
between a metal and an insulator is largely concentrated at a
small number low frequencies, supporting the idea that more
compact representations are possible and useful. Indeed, few
Legendre coefficients are sufficient to describe the physical
changes close to the critical point. Ideally, the representation
used for the Green’s function should closely match the eigen-
vectors of the Jacobian, since the magnitude of the eigenvalues
of the Jacobian provides a useful criterion for physically
relevant and irrelevant degrees of freedom. The Matsubara
representation is in this sense efficient (only) in the two trivial

limits of the Hubbard model, U ≈ 0 and U � t , since the
Jacobian is frequency-diagonal in these two cases.

The DMFT self-consistency conditions were solved us-
ing forward iteration here. Other, faster schemes have been
used [24,25], which are based on the iterative determination of
the Jacobian. The exact DMFT Jacobian, Eq. (10), can be used
instead. It requires the vertex, which is generally not cheap to
calculate, but a good approximation of the exact vertex, e.g.,
the IPT vertex or a single-boson exchange formula [40], could
already help speed up the convergence. Furthermore, only the
lowest Matsubara frequencies of the vertex appear relevant for
the Jacobian. Similar efficient mixing schemes have also been
used in other electronic structure applications [41–43].
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APPENDIX A: ASYMPTOTIC EXPRESSIONS

Here, a brief overview is given of some known properties
of many-body Green’s functions at large frequencies. More
rigorous mathematical treatment can be found elsewhere in
the literature [44,45].

The Matsubara functions G(iνn), G0(iνn), and �(iνn) de-
cay algebraically at large frequency, e.g.,

G(iνn)
νn→∞→ G(M =0) + G(M =1)

(iνn)
+ G(M =2)

(iνn)2
+ . . . ,

(A1)

where the coefficients G(M ) are called the tail coefficients of
G. At particle-hole symmetry, Re G(iνn) = 0, so all even tail
coefficients vanish and the lowest-order relevant coefficients
are G(M = 1) and G(M = 3). These coefficients are related
to the moments of the (real-energy) spectral function; for
example G(M = 1) gives the integral of the spectral function
and G(M = 3) gives its second moment.

In the imaginary-time representation, the first tail coeffi-
cient is responsible for the discontinuity at τ = 0,

G(M = 1) = lim
n→∞ iνnG(iνn)

= lim
n→∞ iνn

∫ β

0
dτG(τ )eiνnτ

= lim
n→∞

∫ β

0
dτG(τ )

d

dτ
eiνnτ

= G(τ )eiνnτ

∣∣∣∣
β−

0+
− lim

n→∞

∫ β

0
dτ

dG(τ )

dτ
eiνnτ

= −1 × G(τ = β−) − G(τ = 0+)

= G(τ = 0−) − G(τ = 0+). (A2)
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Here, eiνnβ = −1 was used and it is argued that the second
term in the integration by parts vanishes in the limit of large
frequency, since dG/dτ is smooth on (0, β ).

Similarly, the third coefficient is related to the discontinuity
in the second derivative of G(τ ) at τ = 0, and so on. This
can be proven via integration by parts, similar to the proof
above. The vanishing of the even coefficients in the particle-
hole symmetric system is equivalent to the continuity of the
odd derivatives of G(τ ) at τ = 0.

From the DMFT-IPT relations, it is possible to de-
rive some of the lowest-order tail coefficients exactly.
The self-consistency equation G0 = 1/(iνn − t2G) implies
G0(M = 1) = 1 and G0(M = 3) = t2G(M = 1) for the self-
consistent solution. Dyson’s equation G = G0/(1 − �G0)
implies G(M = 1) = G0(M = 1) and G(M = 3) = G0(M =
3) + G0(M = 1)�(M = 1)G0(M = 1). Finally, the first mo-
ment of � in IPT is most easily derived in imaginary
time, since G0(M = 1) combined with particle-hole symme-
try leads to G0(τ = 0−) = 1/2 and G0(τ = 0+) = −1/2:

�IPT(M = 1) = �(τ = 0−) − �(τ = 0+)

= U 2[G0(τ = 0−)3 − G0(τ = 0+)3]

= U 2

4
. (A3)

Note that the latter relation also holds for the exact self-energy
at particle-hole symmetry, not just for the IPT approximation.
Collecting the results,

G0(iνn)
νn→∞→ 1

iνn
+ t2

(iνn)3
+ . . . , (A4)

G(iνn)
νn→∞→ 1

iνn
+ t2 + U 2/4

(iνn)3
+ . . . , (A5)

�(iνn)
νn→∞→ U 2

4

1

iνn
+ . . . , (A6)

shows that the first few tail coefficients can be expressed
entirely in terms of the parameters t and U . This has the
important implication that any co-existing solutions in the
hysteresis region have the same asymptotic coefficients and
therefore differ only “at small frequencies,” in the sense
that �metal − �insulator decays at least as (iνn)−3 and Gmetal

0 −
Ginsulator

0 decays at least as (iνn)−5.
On the other hand, the third moment of the IPT self-energy,

�IPT(M = 3) = d2�(τ )

dτ 2

∣∣∣∣
0−

0+

=
(

3U 2G2
0

d2G0(τ )

dτ 2
+ 6U 2G0

(
dG0

dτ

)2)∣∣∣∣
0−

0+

= 3U 2

4
G0(M = 3) + 6U 2

(
dG0

dτ

∣∣
τ=0

)2

.

(A7)

This follows directly from the IPT expression for the self-
energy, Eq. (14), at particle-hole symmetry. Here, the actual
value of the first derivative of G(τ ) at τ = 0 enters, not just the
discontinuity. Thus, the right-hand side of this expression can-
not be expressed entirely in terms of the parameters and can
be different for co-existing solutions of the self-consistency

relation. All results in this Appendix also hold for the exact
DMFT solution on the particle-hole symmetric Bethe lattice.

APPENDIX B: CURIE-WEISS MEAN-FIELD THEORY

Curie-Weiss mean-field theory for the spin-1/2 Ising
model is perhaps the most familiar example of a mean-field
theory. Reducing the notation to a minimum, it is defined by
the set of equations

M(h) = tanh(βh), (B1)

h = B + αM. (B2)

Here, M(h) is the magnetization of the impurity model as
a function of the self-consistent field h and h = B + αM is
the self-consistency relation. The physical variables are the
inverse temperature β and the external field strength B; α is a
fixed constant. Clearly h = 0 and M = 0 is always a solution
when B = 0.

The stability of this solution is given by the “Jacobian,”
J = dMnew/dMold = dM/dh × ∂h/∂M = α dM/dh =
αβ/ cosh2(βh). Filling in h = 0 gives J = 1 if and only
if αβ = 1. In other words, βc = 1/α.

The physical susceptibility dM/dB can be written as

dM

dB
= dM

dh

dh

dB
= dM

dh

(
1 + α

dM

dB

)
, (B3)

dM

dB
= dM/dh

1 − α dM/dh
. (B4)

This diverges at the critical point J = 1, since the denominator
is equal to zero there. This illustrates the relation between the
Jacobian and the response function in Curie-Weiss mean-field
theory.

APPENDIX C: REPRESENTATIONS OF THE IPT VERTEX

In the main text, the reducible vertex of IPT is given
in imaginary time and in imaginary frequency. To see how
these two expression are related, it is useful to derive the
imaginary-time result in a slightly more general setup. In the
main text, time translation symmetry is assumed throughout
the derivation and � and G are written as a function of a single
imaginary-time argument. This implicitly sets the bosonic
frequency ω of the vertex to zero.

Instead, it is also possible to start from the two-time ex-
pression

�IPT(τ1, τ2) = −U 2G0(τ1, τ2)G0(τ2, τ1)G0(τ1, τ2). (C1)

For the vertex, this gives a four-time object

∂�(τ1, τ2)

∂G0(τ3, τ4)
= − 2U 2δτ1,τ3δτ2,τ4 G0(τ1, τ2)G0(τ2, τ1)

− Uδτ2,τ3δτ1,τ4 G0(τ1, τ2)G0(τ1, τ2). (C2)

Now, when considering variations around the time translation
symmetric solution, time translation symmetry can be used on
the right-hand side, i.e., G0(τ1, τ2) = G0(τ2 − τ1). Particle-
hole symmetry gives G0(τ ) = −G0(−τ ). Together, this
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leads to

∂�(τ1, τ2)

∂G0(τ3, τ4)
= 2U 2δτ1,τ3δτ2,τ4 G2

0(τ2 − τ1)

− Uδτ2,τ3δτ1,τ4 G2
0(τ2 − τ1). (C3)

Clearly, every part of this formula only depends on time
differences. The appearance of two δ functions means
that both terms depend on a single linear combination of
frequencies only.

For the vertex in the frequency representation, a more
compact expression is obtained by defining a “bare
susceptibility” χ as

χ (iω) = −
∑
ν1

G0(iν1)G0(iν1 − iω),

δ�(ν)/δG0(|ν ′|) = 3
U 2

β2
[χ (iν − iν ′) − χ (iν + iν ′)]. (C4)

Differences and sums of fermionic Matsubara frequencies
appear here, which results in bosonic Matsubara frequen-
cies, e.g., νi − ν j = (2i − 2 j)πT = ωi− j and νi + ν j = (2i +
2 j + 2)πT = ωi+ j+1. An important detail is the +1 in the last
expression. Note that χ is real and positive, since G0 is purely
imaginary.

It is easy to verify that χ (−iω) = χ (iω), by relabelling
ν1 → ν2 = ν1 − ω, so the expression for ∂�(iν)/∂G0(|ν ′|)
is properly antisymmetric in ν. This confirms that � re-
mains particle-hole symmetric as long as G0 is particle-hole
symmetric.

The frequency structure of the vertex is given entirely by
χ (iν − iν ′) − χ (iν + iν ′), with 3U 2/β2 appearing as a sim-
ple prefactor. At particle-hole symmetry, it is sufficient to
consider the matrix δ�(iν)/δG0(|ν ′|) for ν > 0 and ν ′ > 0.
This matrix is real and symmetric. The first contribution,
χ (iν − iν ′), depends only on the distance to the diagonal of
the matrix (Toeplitz matrix), whereas the second contribution,
χ (iν + iν ′), depends only on the Manhattan distance to the
top-left corner of the matrix (Hankel matrix); see Fig. 7. Note
that that Hartree term in the self-energy would provide a
term proportional to U 1 in the vertex, but this term would
be symmetric in the fermionic frequency and at particle-
hole symmetry only the frequency-antisymmetric part plays
a (nontrivial) role.

The IPT vertex simplifies substantially in the atomic
limit [30], where G0 = 1/iνn, since

χ (ω0) = 1

π2T 2

∑
n

1

2n + 1

1

2n + 1
= 1

4T 2
, (C5)

and for finite frequency a 
= 0, manipulations similar to the
usual evaluation of the Lindhard bubble give

G0(iνn)G0(iνn+a) = G0(iνn) − G0(iνn+a)

G−1
0 (iνn+a) − G−1

0 (iνn)

= G0(iνn) − G0(iνn+a)

2ai
,

χ (ωa) =
∑

n

G0(iνn)G0(iνn+a)

FIG. 7. The IPT vertex is given by the difference between
a Toeplitz matrix (left) and a Hankel matrix (right), and a
prefactor 3U 2/β2.

= 1

2ai

(∑
n

G0(iνn) −
∑

n

G0(iνn+a)

)

= 0. (C6)

This reflects the fact that the atomic limit does not have any
charge dynamics. Looking at Eq. (21) or at Fig. 7, the vertex is
proportional to the identity matrix. Note that, although �IPT =
�Exact at t = 0, this does not imply that the corresponding
vertices are also equal, so the proportionality of the vertex
with the identity matrix is a result that is derived within the
IPT approximation. For a detailed investigation of the atomic
limit, see Ref. [30].

Going back to the general situation, it is interesting to point
out that χ (ω0) = ‖G0‖2 according to Eq. (6). For finite ωn,

χ (ωn) =
∫ β

0
dτ cos(ωnτ )G2

0(τ ), (C7)

where symmetry was used to obtain the cosine instead of
a complex exponential. Since G2

0(τ ) is positive definite and
cos(ωnτ ) � 1, this implies that 0 � χ (ωn) � χ (ω0). Numer-
ically it turns out that χ (ωn) is a decreasing function of n � 0
(for causal G0, the Lehmann representation provides a way to
prove this). This implies that all matrix elements of the IPT
vertex are positive, since they are of the form χ (ωa) − χ (ωb)
with b > a � 0. As seen above, in the atomic limit χ (ωn) = 0
for n > 0, so the matrix elements are positive but not strictly
positive. A further remark is that the mapping between G0 and
the vertex is one-to-one, given fixed values of U and β.

The structure of Fig. 7 shows that the rows of the
vertex are telescoping, leading to Rj = 3U 2/β2[χ (iω0) +
2

∑ j
m=1 χ (iωm)] for the sum over the jth row. This row sum

enters the Gershgorin circle theorem [46] for the eigenvalues
of a matrix. It is plausible that further analytical results for the
eigenvalues of the IPT vertex can be derived given suitable
assumptions on G0.

The IPT vertex is very simple, since it consists of a single
diagram at half filling. It is not necessary to resort to channel
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decomposition techniques [40,47], since this decomposition
in terms of a “susceptibility” occurs naturally. Unlike the
usual channel decompositions, the “susceptibility” that ap-
pears here is based on G0 and not on G.

APPENDIX D: ZERO TEMPERATURE

Here, the limit T → 0 of IPT for the Hubbard model is
considered, in combination with the two limits of U � t and
U ≈ 0.

Atomic limit. For t = 0, G0(iν) = 1/iν, �(iν) = U 2/(4iν),
and χ (iωm) = 1

4T 2 δm,0. This gives G−1(iν0) = G−1
0 (iν0) −

�(iν0) ≈ −�(iν0). The leading eigenvalue of the Jacobian
is determined by the diagonal matrix element of the vertex
contribution, λ ≈ J� (ν0, ν0),

λ ≈ 3U 2t2

β2
G2

0(iν0)G2(iν0)χ (ω0)

≈ 3U 2t2

β2

1

π2T 2

16π2T 2

U 4

1

4T 2

= 12t2

U 2
for large U . (D1)

Noninteracting limit. The limit T → 0 implies that the
discrete Matsubara frequencies approach the origin of the
complex plane, so G0(iν) is directly related to G0(E = 0) in
this limit. At small U , G0 stays close to the noninteracting
value, in the sense that Im G0(iν) → − 1

t for ν ≈ 0+. For the
IPT vertex, the difference of two susceptibilities is needed.

The simplest case is

χ (iω0) − χ (iω1) =
∑

m

G(iνm)[G(iνm) − G(iνm−1)]

≈ G(iν0)[G(iν0) − G(iν−1)]

+
∑
m 
=0

G(iνm) 2πT
dG(iν)

d (iν)

= 2G(iν0)2 + O(T )

= 2t−2 for T → 0. (D2)

Here, it was used that at low temperature, the Matsubara
grid becomes dense and G(iνn) is a smooth function except
between ν−1 and ν0, where it jumps from +1/t to −1/t .
A similar derivation shows that χ (iωm) − χ (iωm′ ) = (m′ −
m)2t−2 for m′ > m � 0. The structure of Fig. 7 means that
the first row and column of the vertex are constant and equal
to 3U 2

β2 2t−2, the second row and column are constant and

equal to 3U 2

β2 × 3 × 2t−2 except for their first elements, and

so on. The factor in front of the vertex β−2 = T 2 makes the
low-frequency components of the vertex disappear in the limit
T → 0. Since G0(iν0) is approximately constant in the limit
of low temperature, the vertex contribution J� in Eq. (10)
indeed vanishes compared to J0, and the leading eigenvalue
is still given by t2G2(iν0), with the eigenvector concentrated
on the lowest Matsubara frequency. So at small U , the leading
eigenvalue is λJ ≈ −1.
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