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Topological phases of a semi-Dirac Chern insulator in the presence of extended range hopping
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We study the topological properties and the topological phase transitions therein of a semi-Dirac Haldane
model on a honeycomb lattice in the presence of an extended range (third neighbor) hopping. While in the
absence of third-neighbor hopping t3 the system exhibits a gapless electronic spectrum, its presence creates an
energy gap in the dispersion. However, the nature of the spectral gap, that is, whether it is trivial or topological,
needs to be ascertained. We find that the answer depends on the value of t3 and its interplay with the value of the
on-site potential that breaks the sublattice symmetry, namely, the Semenoff mass �. To elucidate our findings
on the topological phases, we demonstrate two kinds of phase diagrams using the available parameter space, one
in which the phases are shown in the �-t3 plane and one in a more familiar �-φ plane (φ is the Haldane flux).
The phase diagrams depict the presence of Chern insulating lobes comprising Chern numbers ±2 and ±1 for a
certain range of values for t3, along with trivial insulating regions (zero Chern number). Thus, there are phase
transitions from one topological regime to another which are characterized by abrupt changes in the values of the
Chern number. To support the existence of the topological phases, we compute counterpropagating chiral edge
modes in a ribbon geometry. Finally, the anomalous Hall conductivity obtained by us shows plateaus at either
e2/h or 2e2/h corresponding to these topological phases.
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I. INTRODUCTION

In condensed-matter systems, whether a material possesses
a topological phase has been of immense interest since the
discovery of the quantum Hall effect (QHE) [1]. The QHE
demonstrates that in the presence of a strong magnetic field,
the Hall conductivity of a two-dimensional electron gas ac-
quires a series of plateaus quantized in units of e2/h. This
quantization is due to the presence of discrete magnetic Bloch
bands [2–7] or Landau levels [8–12] owing to the presence
of a magnetic flux. The topological invariant that defines the
quantization of the Hall conductivity, from a general per-
spective, is known as the Thouless-Kohmoto-Nightingale-Nijs
invariant [2].

An external magnetic field initially appeared to be neces-
sary to achieve QHE; however, Haldane proposed that even
in the absence of an external magnetic flux, QHE can still
be observed [13]. He introduced direction-dependent complex
next-nearest-neighbor hopping in a honeycomb lattice, such
as graphene, which breaks time reversal symmetry (TRS).
This broken TRS is the only necessary criterion to observe
QHE. The model proposed by Haldane is a two-band system,
with the bands being characterized by a topological invariant
known as the Chern number, and these quantized (integer)
values of the Chern number yield a plateau in the Hall con-
ductivity when the Fermi energy lies in the bulk gap. Further,
a nonzero value of the Chern number and hence the quantized
value of the Hall conductivity can be seen for a finite value of
the phase φ (we shall call it Haldane flux) of the complex next-
nearest-neighbor hopping. A nonzero value of the Semenoff
mass �, which breaks the sublattice symmetry in graphene,

opens or closes a gap in the band structure [14]. The variation
of the Semenoff mass with the Haldane flux presents a phase
diagram that encodes opening and closing of the band gap
alternately at the two Dirac points, which are usually called
the K and K′ points [13,15].

In recent years, exploration of the topological properties
associated with the Haldane model have progressed rapidly in
quantum many-body systems [16–19] from both experimen-
tal and theoretical perspectives. Studies of two-dimensional
Dirac systems have also been explored, such as Fe-based
ferromagnetic insulators, XFe2(PO4)2, where X may be Cs,
K, La, etc. [20], in the Dice lattice [21], which hosts isotropic
low-energy Dirac-like dispersions. However, certain other
materials exist that display anisotropic dispersions at low
energies, for example, quadratic along one direction in the
Brillouin zone (BZ) and linear along the other one [22–24],
which are known as semi-Dirac systems. Semi-Dirac dis-
persions have been found in a variety of materials, such
as phosphorene under pressure and doping [25,26], electric
fields [27,28], multilayered structures of TiO2/VO2 [29,30],
quasi-two-dimensional organic conductor BEDT-TTF2I3 un-
der pressure [31,32], oxidized silicene layer [33], deformed
graphene [34], etc. Experimentally, semi-Dirac dispersions
have been observed in layers of black phosphorene obtained
via in situ doping of potassium atoms [35].

A natural question arises about whether semi-Dirac sys-
tems will show topological phases similar to those of their
Dirac counterpart. To gain insight into the answer to this ques-
tion, we explore whether and how the lowering of symmetry
induced by anisotropic dispersion modifies the topological
properties of the system. However, to achieve a topological
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phase, we need to break the TRS of the system, either by
including a perpendicular magnetic field or via adding the
complex second-neighbor hopping (the Haldane term). Here,
we choose the latter option. However, unlike in the Dirac
case, the addition of the complex second-neighbor hopping
in the semi-Dirac system does not open a gap in the electronic
spectrum, and hence, the system remains a semimetal, with
the conduction and valence bands touching each other at a
point intermediate to the K and K′ points in the BZ (the M
point). A little introspection reveals that, in such a scenario,
we can add a real third-neighbor hopping to open up a gap in
the energy spectrum and hence look for the existence of the
topological phases. A semi-Dirac system with the Haldane
term has been discussed in the literature [36]. However, we
are not aware of studies of the semi-Dirac system with the
Haldane term and a real third-neighbor hopping. An important
dividend of such an exercise will be accessing regions in the
phase diagram with large values of the Chern number [37],
which also facilitates studying the topological phase transi-
tions between phases with different Chern numbers.

Theoretically, certain systems have been predicted that
show nontrivial topological phases with higher values of
Chern numbers, such as a star lattice (decorated honeycomb
structure) [38], where the Chern number |C| = 3, along with
|C| = 1 and |C| = 2, has been observed. Also a third-neighbor
hopping has been added in the multiorbital triangular lat-
tice [39], which shows higher Chern numbers. Further, in a
spin-orbit coupled system, along with the presence of a stag-
gered flux in a honeycomb lattice [40,41], it is found that the
spin Chern numbers and the total Chern numbers are nonzero,
where the values may either be high or low depending on
the values of the parameters used. In the case of an ultracold
atomic gas on a triangular lattice [42,43], such higher Chern
numbers have also been observed in the presence of the spin-
orbit coupling. In classical systems, multiple higher Chern
numbers, for example, C = 1, 2, 3, 4, have been observed in
an acoustic Chern insulator, such as a sonic crystal [44].
Higher values of Chern numbers have also been predicted
in magnetic doped topological insulators [45] and Cr-doped
thin laminar sheets of Bi2(Se, Te)3 [46]. On the experimental
front, higher Chern numbers have been realized in MnBi2Te4

at high temperature [47,48], multilayer structures of magneti-
cally doped and undoped topological insulators [49], etc.

Motivated by the above scenario, here, we discuss the
topological properties of a semi-Dirac system in the presence
of third-neighbor (between different sublattices) hopping. We
shall show that inclusion of the third-neighbor hopping shifts
the band minima from the boundary towards the interior of
the BZ and makes the system a Chern insulator, with Chern
numbers of ±2 for certain values of the hopping amplitude.
The addition of the Semenoff mass to the problem changes
the Chern number from ±2 to ∓1. Consequently, we obtain
the plateaus of the Hall conductivity, which are quantized as
Ce2/h, with C being the Chern number, and acquire values ±1
and ±2.

This paper is organized as follows: In Sec. II we show the
semi-Dirac Hamiltonian in the presence of a Haldane term
and real third-neighbor hopping on a honeycomb lattice. In
Sec. III, we investigate the topological properties by comput-
ing the Chern number for various values of the amplitude

FIG. 1. A honeycomb lattice is shown, where the red and the blue
circles represent sublattices A and B, respectively. In the δ2 and δ3

directions the N2 hopping strengths are the same (t), while in the δ1

direction it is t1. The N3 hopping is shown by the yellow arrows.

of the third-neighbor hopping and obtain phase diagrams
that demonstrate the existence (or absence) of the nontrivial
topological phases. In Sec. IV, we study the structure of the
edge modes in a nanoribbon for various relevant values of
the second- and third-neighbor hopping amplitudes. Hence,
we compute the anomalous Hall conductivities, which exhibit
plateaus quantized in units of e2/h, in Sec. V and finally
conclude with a brief summary of our results in Sec. VI.

II. MODEL HAMILTONIAN

We consider a tight-binding Hamiltonian on a honeycomb
lattice with hopping between the various neighbors, which can
be written as

H = −
∑
〈i, j〉

ti jc
†
i c j + t2

∑
〈〈i, j〉〉

eiφi j c†
i c j

+ t3
∑

〈〈〈i, j〉〉〉
c†

i c j +
∑

i

�ic
†
i ci + H.c. (1)

The first term is the nearest-neighbor (N1) hopping. The N1
hopping strengths along the δ2 and δ3 directions are t , while
in the third direction, that is along δ1, the strength is t1, as
shown in Fig. 1. The N1 vectors are given by δ1 = a0(0, 1),
δ2 = a0(

√
3/2,−1/2), and δ3 = a0(−√

3/2,−1/2). In the
first term, ti j = t1 or t when j connects the neighbors δ1 or
δ2,3 that belong to the other sublattice, respectively. We have
assumed two different values of t1, such as t1 = t and t1 = 2t .
The value t1 = t represents the well-known isotropic Dirac
case, graphene, while t1 = 2t denotes the semi-Dirac case and
is the focus of this work. The second term is the Haldane term
comprising a complex second-neighbor (N2) hopping with
an amplitude t2 and a complex phase denoted by φi j , where
φ assumes positive (negative) values if the electron hops in
the clockwise (counterclockwise) direction. The third term
represents the third-neighbor (N3) hopping between different
sublattices, and the fourth term represents the on-site energy
(Semenoff mass), which assumes values of +� and −� for
sublattices A and B, respectively. Performing a Fourier trans-
form of Eq. (1), we can write the Hamiltonian in momentum
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space as

H (k) = hx(k)σx + hy(k)σy + hz(k)σz + h0(k)I

= h(k) · σ + h0(k)I, (2)

where

hx(k) =
{

t1 cos ky + 2t cos
ky

2
cos

√
3kx

2

}

+ t3{cos 2ky + 2 cos ky cos
√

3kx}, (3)

hy(k) =
{
−t1 sin ky + 2t sin

ky

2
cos

√
3kx

2

}

+ t3{sin 2ky − 2 sin ky cos
√

3kx}, (4)

hz(k) = � − 2t2 sin φ

{
2 sin

√
3kx

2
cos

3ky

2
− sin

√
3kx

}
,

(5)

and

h0(k) = 2t2 cos φ

{
2 cos

√
3kx

2
cos

3ky

2
+ cos

√
3kx

}
, (6)

where σi (i ∈ x, y, z) denote the 2 × 2 spin-1/2 Pauli matrices
which represent the sublattice degrees of freedom and I is the
2 × 2 identity matrix. The energy dispersion can be obtained
as

E (k) = h0(k) ±
√

hx(k)2 + hy(k)2 + hz(k)2, (7)

where the + and − signs refer to the upper (conduction) band
and the lower (valence) band, respectively. In the absence of
t2 and t3, the band dispersion is linear along one direction and
quadratic along its perpendicular direction [50] about the band
touching M point in the BZ. We refer to this as the zero mode
in our subsequent discussion.

Now, if we add a small N3 hopping, namely, t3, then the
zero modes shift from the M point towards the interior of the
BZ, as shown in Figs. 2(b)–2(d). There are four zero modes
inside the first BZ for a nonzero value of t3. Let us call these
points where the zero modes occur � points. For example,
one of the zero modes for a particular value of t3, namely,
t3 = t , occurs approximately at a particular � point, namely,
�1 = ( 1.1560π

3
√

3a0
, 1.5487π

3a0
), while that for a different value of

t3, namely, t3 = 3t , approximately occurs at another � point,
�2 = ( 1.0805π

3
√

3a0
, 1.2403π

3a0
). For other values of t3, namely, t3 > 3t ,

the zero modes remain fixed at the same locations as that for
t3 = 3t .

Now, if we turn on the N2 hopping, t2 then the spectral
gaps open up at these � points in the BZ where the zero
modes occur, and hence, the system behaves as an insulator.
However, in the absence of t3 (with t2 being nonzero), there
is no gap at the M point, and the dispersion is anisotropic
linear (linear along both directions, but with different veloc-
ities along the x and y directions) about the M point, which
makes the system a semimetal, as discussed in Ref. [36].
In Figs. 2(e) and 2(f), we show the band structures for the
semi-Dirac system in the absence and in the presence of t2,
respectively, for nonzero values of t3. In our calculations, we
have fixed the values of the Haldane flux φ, N1 hopping t1,

FIG. 2. The top view of the band structure of the semi-Dirac
(t1 = 2t) system is depicted for (a) t3/t = 0, (b) t3/t = 0.5, (c) t3/t =
1, and (d) t3/t = 3. The hexagons in each plot represent the first
Brillouin zone. In the calculations, we have fixed t2 = 0 and � = 0.
(e) and (f) Three-dimensional depictions of the band structure for the
semi-Dirac system for t2 = 0 and t2 = 0.5t , respectively, where we
have used � = 0 and φ = π/2.

and the Semenoff mass � to π/2, 2t , and zero, respectively.
The corresponding band structures for the Dirac system were
discussed in Refs. [51,52], and we skip them here to make our
discussion concise.

It may be noted that t3 is indeed a parameter and the values
used may not have experimental relevance. The reason is that
the value of the real second-neighbor hopping is of the order
of 0.1 eV [53], which would mean that t3 is even smaller.
However, the phase diagrams presented in Sec. III demand
the value of t3 to be of the order of t or even larger in order to
access topological phases with different Chern numbers.

III. THE PHASE DIAGRAM

In this section we obtain the phase diagram by numerically
calculating the Chern number of the system. Since in this
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FIG. 3. The Chern number of the lower band is depicted as a
function of � and t3 for (a) t1/t = 2 and (b) t1/t = 1. The colored
regions signify the Chern insulating regions with nonzero Chern
numbers (C = +1 for the red region and C = −2 for the green
one), while the white region denotes the trivial insulating phase with
C = 0. We show the variation of C as a function of � for a particular
value of t3, say, t3 = 3t , for (c) t1/t = 2 and (d) t1/t = 1. In this
calculation, the Haldane flux φ is kept fixed at π/2. The topological
phase transitions are implied via C discontinuously changing values
between 1 → 0 → −2.

model the complex N2 hopping term breaks the TRS, nonzero
values and hence nontrivial phases with a finite Chern number
are expected. The inversion symmetry breaking on-site ener-
gies ±� on different sublattices opens or closes energy gaps
in the energy spectrum at the � points. We compute the Chern
number via [54,55]

C = 1

2π

∫∫
BZ

�(kx, ky)dkxdky, (8)

where �(k) denotes the z component of the Berry curva-
ture [56], which is given by

�(kx, ky) = h
2|h|3 ·

(
∂h
∂kx

× ∂h
∂ky

)
, (9)

where h(k) is defined in Eq. (1). It should be noted that in
the absence of an N3 hopping, the Chern number is always
zero for any arbitrary value of � and φ for the semi-Dirac
case (t1 = 2t), even though the time reversal symmetry re-
mains broken. However, in the presence of the nonzero N3
hopping, we may obtain nonzero values for the Chern number.
In Fig. 3(a) we depict the Chern number corresponding to
the lower band as a function of � and t3 for Haldane flux
φ = π/2. As can be seen in Fig. 3(a), there are two regions
denoted in red and green. The region in red indicates the
value of the Chern number is C = 1, while the green region

indicates C = −2. In addition, there is also a finite region
denoted in white which corresponds to a trivial region with
C = 0. In the absence of t3 or at small values of t3, namely,
t3 < 0.68t , for all values of �, the trivial region prevails. We
observe the topological phase with Chern number C = −2 be-
yond a certain value of the N3 hopping t3, namely, t3 � 0.68t ,
for zero Semenoff mass (� = 0). If we increase the value of
�, then we observe the C = −2 phase for a range of values
of t3, such as 0.68t � t3 � 1.9t . However, for t3 � 1.9t , there
are two topological phases with Chern numbers C = 1 and
C = −2, which depend on the value of �. For example, for
t3 = 3t , a phase transition occurs from the C = 0 to C = 1
phase at � 	 −5.04t2. C again drops to zero at � 	 −3.11t2.
Beyond � 	 −2.56t2 the Chern number becomes −2 and
remains −2 until � 	 2.56t2, when the Chern number van-
ishes again. The Chern number becomes 1 at � 	 3.11t2 and
finally vanishes again for � � 5.04t2. Thus, a series of phase
transitions occurs at t3 = 3t . There is always a trivial region
(with C = 0) between the two Chern insulating regions with
two different Chern numbers (the white region between the
red and green regions). Further, as one increases the value of
t3, vanishing Chern numbers are obtained for lower values of
�. As a result, the width of the Chern insulating region with
C = −2 (the green region) shrinks with the increase of t3, or
equivalently, we can say that the width of the C = 1 region
increases with the increase in t3. The trivial region [shown in
white in Fig. 3(a)] gets narrower as one increases the value of
t3.

This phenomenon is somewhat different in the Dirac case
[see Fig. 3(b)], where we can see a nonzero Chern number
(namely, C = 1) even in the absence of the N3 hopping, that
is, the Haldane model. The phase persists for very small values
of t3. However, in the presence of N3 hopping, we obtain a
phase with Chern number C = −2 or C = 1 depending on the
value of �. Further, unlike the semi-Dirac case, there is no
trivial regime in between the two different Chern insulating
regimes, that is, the red and green regions. If we fix the
value of t3, say, t3 = 3t , and calculate the Chern numbers for
increasing values of �, then we observe the Chern number
jump from C = −2 to C = 1 at � 	 2.55t2. Finally, the Chern
number drops to zero from a value of C = 1 at � = 3

√
3t2.

The values of � at which the Chern number changes from
a value of C = −2 to C = 1 depend on the value of the N3
hopping t3 [see the shoulderlike region in Fig. 3(b)]. However,
the values of � at which the Chern number vanishes from a
value of C = 1 does not depend upon t3. It should be noted
that the calculations are done for a Haldane flux φ = π/2. If
we change φ to −π/2, then the phase diagram will remain
identical, except that the Chern numbers will undergo a sign
change.

In Figs. 3(c) and 3(d) we show the variation of the Chern
number as a function of � for the semi-Dirac (t1 = 2t) and
Dirac (t1 = t) systems, respectively, for a particular value of
t3, say, t3 = 3t . As can be seen for the semi-Dirac case [see
Fig. 3(c)], there are phase transitions occurring from C = 0
to C = 1 and then again to C = 0 as one increases �. With a
further increase of �, C drops to −2. To quote some numerical
values, the plateau at C = −2 exists for a range of �, that is,
−2.56t2 � � � 2.56t2. With a further increase in the value
of �, C drops to zero and then rises again to 1 and finally
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FIG. 4. The Chern numbers of the lower band are shown as a
function of � and φ for (a) t1/t = 2 and t3/t = 1, (b) t1/t = 2 and
t3/t = 3, and (c) t1/t = 1 and t3/t = 3. In each plot, the green and
the orange regions denote the Chern insulating phase with Chern
numbers of −2 and +2, respectively, while the red and the blue
regions imply Chern numbers of +1 and −1, respectively. Further,
the white region denotes the trivial topological regime with zero
Chern number.

vanishes. The plateaus at C = 1 persist for some values of �,
such that, −5.04t2 � � � −3.11t2 and 3.11t2 � � � 5.04t2.
Similar phase transitions are observed for the Dirac case [see
Fig. 3(d)], except that there are direct phase transitions from
C = 1 to C = −2 or vice versa. The C = −2 plateau occurs
for −2.55t2 < � < 2.55t2, while the plateaus at C = 1 occur
for −3

√
3t2 � � � −2.55t2 and 2.55t2 � � � 3

√
3t2.

Figure 4 shows the phase diagram in the �-φ plane cor-
responding to the lower band for both the semi-Dirac and
Dirac cases. For both of them, the values of the Chern number
depend on the value of the N3 hopping amplitude (see Fig. 3).

FIG. 5. The conduction band of the semi-Dirac system (t1 = 2t)
is shown in (a) in the absence of t2 and the Semenoff mass �, while
the same in the presence of a nonzero t2 is presented in (b)–(d) for
� = 0, �/t2 = 3.44, and �/t2 = −3.44, respectively. The values of
t3 and φ are taken as t and π/2, respectively.

In Fig. 4(a), we show the phase diagram for the semi-Dirac
case for t3 = t . As can be seen, there are two Chern insulat-
ing regions with Chern numbers C = −2 (green region) and
C = +2 (yellow region). The phase diagram is similar to that
of the Haldane model, except that the values for the Chern
number are different in this case. Further, the widths of the
Chern insulating lobes are smaller than those in the Haldane
model. Now, if we increase the value of t3 (say, t3 = 3t), we
shall see additional Chern insulating regions emerge, with the
Chern numbers given by C = +1 (red region) and C = −1
(blue region), as depicted in Fig. 4(b). A trivial insulating
phase with C = 0 exists between the two Chern insulating
regions, that is, between the green and red regions or between
the yellow and blue regions. These types of phase diagrams
are in complete contrast to the Dirac case, where the trivial
insulating phase is absent, as shown in Fig. 4(c). The width
of the Chern insulating region with C = −2 is greater in the
Dirac case than in the semi-Dirac case [see Fig. 4(c)], as is
evident from the �-t3 phase diagram [Fig. 3(b)]. For t3 to be
vanishingly small, we note that the phase diagram becomes
similar to that of the Haldane model.

The reason to have a value of the Chern number of |C| = 2
is that we have multiple zero modes in the presence of t3 (and
in the absence of t2) inside the first BZ for the semi-Dirac
system. For example, when t3 = t , the zero modes occur at
four � points, as depicted in Fig. 5(a), which are perceptible
from the dark blue color. Gaps open up at those � points, as
we turn on the N2 hopping t2 [see Fig. 5(b)]. The Chern num-
ber of the system becomes −2. Now, if we keep increasing
the value of the Semenoff mass �, the gaps at two out of the
four � points decrease and, finally, vanish at � ≈ 3.4372 [see

235441-5



SAYAN MONDAL AND SAURABH BASU PHYSICAL REVIEW B 105, 235441 (2022)

FIG. 6. Schematic diagram of the ribbon. The edge current flows
along the zigzag edges (x axis) of the ribbon.

Fig. 5(c)], where a topological phase transition takes place.
For � � 3.4372, the gaps open up again; however, the Chern
number vanishes. A similar gap-closing scenario occurs at the
remaining two � points for � ≈ −3.4372 [see Fig. 5(d)].

The phase diagrams presented in Figs. 3 and 4 aid us in
identifying specific values of t3 and � to explore the nature
of the topological phases. We achieve that via the numeri-
cal computation of the edge states and the anomalous Hall

conductivity, as discussed below. These quantities are inves-
tigated for t3 = 0.5t , t , and 3t , where we have considered
� = 0 corresponding to t3 = 0.5t and t , while the t3 = 3t case
has been studied for � = 0 and � = 4t2, which correspond to
C = −2 and C = 1, respectively.

IV. EDGE STATES

In order to understand whether the nature of the band
gaps is topological or trivial, we look for the existence (or
absence) of the edge states. To achieve this, we consider the
system to have semi-infinite ribbon geometry. Such a scenario
breaks the periodicity along a particular direction, while the
translational symmetry is preserved along the perpendicular
direction. We take the semi-infinite ribbon [57,58] to be finite
along the y direction and infinite along the x direction. We
further label the sites along the y direction as A1, B1, A2,
B2, . . . AN , BN , etc., as shown in Fig. 6. Since the translational
invariance is preserved along the x direction, we can Fourier
transform the operators along only the x direction, that is, use
c†

x,y = ∑
k eikxc†

k,y. This yields two sets of coupled eigenvalue
equations for the wave functions which can be written as

Ekak,n = −[t{1 + e(−1)nik}bk,n + t1bk,n−1] − 2t2

[
cos(k + φ)ak,n + e(−1)n ik

2 cos

(
k

2
− φ

)
{ak,n−1 + ak,n+1}

]

+ t3[bk,n+3 + 2bk,n−1 cos k] + �ak,n, (10)

Ekbk,n = −[t{1 + e(−1)n+1ik}ak,n + t1ak,n+1] − 2t2

[
cos(k − φ)bk,n + e(−1)n+1 ik

2 cos

(
k

2
+ φ

)
{ak,n−1 + ak,n+1}

]

+ t3[ak,n−3 + 2ak,n+1 cos k] − �bk,n, (11)

where n denotes the site index. n assumes integer values in
the range [1 : N], with N being the total number of unit cells
along the y direction. In Eqs. (10) and (11), ak,n and bk,n are
the coefficients of the wave functions corresponding to the nth
A and B sublattices, respectively. Here, k is the momentum
along the periodic x direction, which is rendered dimension-
less by defining k = √

3a0kx. The width D of the ribbon along
the y direction is related to N via D(N ) = a0( 3N

2 − 1). In our
work, we use N = 128, and hence, the ribbon has a width of
191a0. By solving Eqs. (10) and (11) one can get the band
structure of the nanoribbon, as shown in Fig. 7 for a fixed
value of the Haldane flux, namely, φ = π/2. As can be seen,
one of the edge modes from the lower band crosses over to the
upper band as a function of kx, and another one crosses over
in the opposite direction. These edge modes are responsible
for a finite value of the Hall conductivity, provided the Fermi
energy lies in the bulk gap. In Fig. 7(a), we show the edge
states for the semi-Dirac (t1 = 2t) system corresponding to a
particular value of the N3 hopping, for example, t3 = t . The
red dashed line represents the Fermi energy EF , and the points
where the edge modes intersect the Fermi energy are shown by
green dots. The edge currents corresponding to points p and
r flow along one of the zigzag edges of the ribbon, and the
edge currents corresponding to points p and s travel along the
other edge [see Fig. 7(g)]. However, their flows are in opposite
directions since the velocity of the electron is proportional

to ∂E/∂k, which changes sign at (q, s) compared to those at
(p, r).

Owing to the presence of a pair of edge states, there will
be finite Hall conductivity with a plateau occurring at a value
of 2e2/h, with the factor of 2 denoting the number of edge
modes [59]. This result is consistent with the Chern number
phase diagram [see Fig. 3(a)], where the Chern number is
found to have a value of −2 for t3 = t and � = 0. In contrast,
we get a single edge mode, along either edge of the ribbon,
for t3 = 3t and � = 4t2, as shown in Fig. 7(f). In this case,
we show the edge currents corresponding to points q and r in
Fig. 7(h). This result is also consistent with the phase diagram
[Fig. 3(b)], where we find C = 1. For t2 = 0.5 and � = 0, the
edge modes are shown in Fig. 7(c). It is clearly visible that
the edge modes have split from the bulk. Thus, one can say
that the edge modes do not contribute to the edge current and
hence the system possesses zero Hall conductivity.

The edge states for the Dirac system (t1 = t) are shown
for comparison in Figs. 7(d), 7(e), and 7(f). The plots show
the presence of a single edge mode at points p and s for
t3 = 0.1t and � = 0 [Fig. 7(d)], which propagates at two
opposite edges of the ribbon corresponding to points p and
s. Such a situation yields a plateau in the Hall conductivity
at e2/h. This result is similar to that of the Haldane model.
Now, if we increase the value of the N3 hopping t3 to, say,
t3 = t [Fig. 7(e)], a pair of edge modes appears, and they
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FIG. 7. The energy spectra of the ribbon as a function of the
dimensionless momentum k (here, k denotes

√
3a0kx) for the semi-

Dirac system (t1/t = 2) are shown for (a) t3/t = 2, �/t2 = 0,
(b) t3/t = 3, �/t2 = 4, and (c) t3/t = 0.5, �/t2 = 0, while for the
Dirac system (t1/t = 1) they are shown for (d) t3/t = 0.1, � = 0, (e)
t3/t = 1, � = 0, and (f) t3/t = 3, �/t2 = 4. The green dots in each
plot signify the intersection of the edge states with the Fermi energy
EF (shown via the red dashed line). (g) and (h) denote schematic
diagrams of a part of the ribbon. The arrows in (g) represent the
edge currents corresponding to the points in (a) and (e), while in (h)
the edge currents are shown corresponding to the points in (b), (d),
and (f).

propagate along two different edges of the ribbon; however,
these two pairs are counterpropagating at the opposite edges
[see Fig. 7(h)]. In this case, the Hall plateau will be quantized
in units of 2e2/h. The pair of edge currents will be there as
long as the Semenoff mass � remains at a zero value. How-
ever, as we introduce a finite value of �, there is a possibility
that there will be a single edge mode at each edge, as depicted
in Fig. 7(f). Here, we see that the edge modes are along either

FIG. 8. The variation of anomalous Hall conductivity σxy is
shown as a function of the Fermi energy EF for (a) t1/t = 2 and
(b) t1/t = 1. Here, σ0 = e2/h is the unit of the Hall conductivity.
In this calculation we have fixed the N2 hopping t2 at 0.5t and the
Haldane flux φ at π/2.

edge of the ribbon corresponding to points q and r, as shown
in Fig. 7(h). The number of edge currents along either edge
of the ribbon is consistent with their values for the Chern
numbers, namely, C = 1 and C = −2 [see Fig. 3(b)].

V. ANOMALOUS HALL CONDUCTIVITY

The anomalous Hall conductivity requires a nonzero local
Berry curvature. In order to calculate the Hall conductivity,
we first obtain the Berry curvature of the system using Eq. (9)
and then use the following formula [60–62]:

σxy = σ0

2π

∑
λ

∫
dkxdky

(2π )2
f
(
Eλ

kx,ky

)
�(kx, ky), (12)

where Eλ(kx, ky) denotes the electronic energies and λ = +1
and −1 represent the upper and the lower bands, respectively.
σ0(= e2/h) sets the scale for σxy. f (E ) = [1 + e(E−EF )/KBT ]−1

is the Fermi-Dirac distribution function, with EF being the
Fermi energy and T being the absolute temperature. Using
Eqs. (9) and (12), the Hall conductivity is calculated numer-
ically at zero temperature (T = 0) as a function of EF and
is shown in Fig. 8(a) for the semi-Dirac system (t1 = 2t). We
see that as long the Fermi energy lies in the gapped region, the
Hall conductivity shows a plateau quantized in units of 2e2/h
for t3 = t and � = 0. Since the integral is performed over the
occupied states for a given value of EF , the Hall conductivity
decreases as EF moves away from the gapped region, that is,
towards the bulk. If we consider the Semenoff mass � to be
zero, we see that the plateaus occur at 2e2/h, as shown by the
green and red curves in Fig. 8(a). However, in the presence of
a finite value of �, there is a possibility of getting a plateau
at e2/h in σxy, as shown by the blue curve in Fig. 8(b). These
results are supported by the respective values for the Chern
numbers. Thus, for C = −2, we get the Hall plateau quantized
at a value 2e2/h, and for C = 1, we find it is quantized at e2/h.

To make a comparison with the Dirac case, that is, for
t1 = t , we show the anomalous Hall conductivity in Fig. 8(b).
As can be seen, with a small N3 hopping (say, t3 = 0.1t),
the Hall plateau is quantized in units of e2/h [the red curve
in Fig. 8(b)]. If we increase the value of the N3 hopping,
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the quantized Hall conductivity is seen at 2e2/h. Now, if we
add the Semenoff mass term, the quantized Hall conductiv-
ity acquires a plateau at e2/h. The value of � up to which
the e2/h plateau is retained depends on the value of t3. In
Fig. 8(b), we show the Hall conductivity for a nonzero �

with the blue curve corresponding to t3 = 3t . The existence
of the e2/h Hall plateau is noted for a certain range of �,
that is, 2.5t2 � � � 3

√
3t2, corresponding to a fixed value

of N3 hopping, namely, t3 = 3t . Similar to the case for the
semi-Dirac system, the quantized Hall conductivity of the
Dirac system is fully consistent with the corresponding Chern
number phase diagrams [see Fig. 3(b)].

VI. CONCLUSION

We have shown that, in the semi-Dirac system, adding a
third-neighbor hopping causes the zero modes to move inward

into the BZ from the boundary. The addition of the Haldane
term creates spectral gaps at those points. We have obtained
two different phase diagrams, namely, in the parameter spaces
defined by �-φ and �-t3 after computing the Chern numbers.
The �-t3 phase diagram for the semi-Dirac case shows a
different scenario than the Dirac case in the following sense.
There is always a trivial regime between the two Chern in-
sulating regimes (C = −2 and C = 1), which is absent for
the Dirac case. The �-φ phase diagram for the semi-Dirac
case shows that one may have Chern insulating regions with
either |C| = 2 and |C| = 1 or only |C| = 2, depending on the
value of the N3 hopping t3. The computation of the edge states
shows additional crossing of the edge modes corresponding
to |C| = 2. Finally, the anomalous Hall conductivities for
several values of t3 demonstrate the existence of Hall plateaus
quantized either at 2e2/h or at e2/h depending on the values
of their Chern number.
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