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Application to the magnetic susceptibility of a ferromagnetic ultrathin film
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The renormalization group equations describing a finite 2DXY (two-dimensional XY) system with fourfold
anisotropy are solved in two steps, in order to study the magnetic transition to paramagnetism in an ultrathin film.
First, the equations are linearized near the critical coupling K = J/kBT = 2/π . This allows integration constants
to be evaluated at the fixed point, and the tuning of the constants to represent a ferromagnetic ultrathin film. An
exact solution of the linearized equations confirms that a finite-size Kosterlitz-Thouless (KT) transition occurs in
the presence of weak fourfold anisotropy, and that an Ising transition occurs for strong anisotropy. The behavior
of a given system, and the crossover region between these two types of transitions, is determined by the system
parameters through the product of an anisotropy parameter and the logarithm of the system size. The linearized
RG equations are not quantitatively reliable across the extended temperature range of the finite-size transition,
but they do define the parameter space where a second approach, where the fourfold anisotropy is treated as
a perturbation, is valid. This perturbative treatment provides a quantitative determination of the renormalized
exchange coupling, vortex density, and anisotropy throughout the transition. In particular, the coupling has a
universal point of inflection where vortex-antivortex pairs unbind (as opposed to a “universal jump”), and goes
to zero asymptotically in the paramagnetic state, as is expected for a finite system. These results are used to
calculate the magnetic susceptibility as the system moves from one dominated by spin waves to one dominated
by a free vortex gas. The presence of anisotropy makes it necessary to include both the susceptibility χ|| due to
fluctuations of the magnitude of the magnetization, and χ⊥ due to angular fluctuations of the magnetization about
a fourfold easy axis. Comparison to recent measurements of the magnetic susceptibility of ultrathin Fe/W(001)
films suggests that a detailed quantitative analysis of the experimental results can provide information on vortex
formation, disappearance of anisotropy, and dissipative processes in the finite-size KT transition of a real system.
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I. INTRODUCTION

Nearly half a century after Berezinskii [1], Kosterlitz and
Thouless [2], and Kosterlitz [3], introduced the ideas underly-
ing the transition of a spin system between phases supporting
excitations of different topologies, there has been a resurgence
of interest in topological spin textures in material systems.
Topological spin textures of current interest include chiral
“bubbles” in perpendicularly magnetized films [4], vortices
bounded within a ferromagnetic microstructure [5,6], 2D
skyrmions [7] in ferromagnetic and antiferromagnetic layers,
3D skyrmions in crystals [8,9], as well as the chiral domain
wall spin textures in these systems [10,11]. There is great
interest in the phase diagrams and transitions between the
topological phases [12], as well as in the nonequilibrium
dynamics of the topological excitations [13]. These investi-
gations are driven both by fundamental questions in the larger
area of topological materials, and by the prospect of potential
applications in spintronics.

Within the context of this larger field of work, the simpler,
archetypical 2DXY ferromagnetic system originally consid-
ered by Kosterlitz and Thouless [2,3,14] can provide insight
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into basic questions relevant to many of the systems that
support topological spin textures. These include the effects
of dissipation and relaxation towards equilibrium [15–17],
finite-size effects [18,19], fluctuations near transitions [20],
and the influence of perturbations from an ideal symme-
try as may be provided by, for example, defects [21], and
anisotropies [22].

Despite these opportunities, there is a relatively small liter-
ature reporting experimental studies of 2DXY ferromagnetic
films focused on the Kosterlitz-Thouless (KT) transition and
vortex dynamics. Experimental work has focused instead on
superconductors [23] and layered three dimensional antiferro-
magnets [24–26]. For the most part, studies of ferromagnetic
films consist of magnetization studies of ferromagnetic films
grown on (001)-oriented metallic substrates [27], where a
non-Ising magnetization exponent was reported and only later
interpreted as the signature of a finite-size KT transition [18].
Early indications that experimental measurements of the mag-
netic susceptibility displayed the characteristic form of a KT
transition in such films [28] were made quantitative only
recently [29], using Fe/W(001) ultrathin films. This opens
the path for further quantitative experimental studies using
the magnetic susceptibility, aimed at a better understanding
of topological spin textures using this simple realization of a
topological phase transition.
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The first step is to make contact between the experimen-
tal thin film results and theoretical predictions through a
quantitative determination of the exchange and anisotropy
parameters in a 2DXY system. Kosterlitz and Thouless [2,3]
treated the infinite, isotropic system and introduced the KT
transition. Bramwell, Holdsworth, and coworkers [18,20,30]
investigated the finite, isotropic system and identified es-
sential finite-size effects and the finite-size KT transition
with separate characteristic temperatures for the formation of
vortex-antivortex pairs and for unbinding of the pairs to form
a free vortex gas. José et al. [22,31] derived the renormal-
ization group equations for the infinite, anisotropic system
with an n-fold, in-plane anisotropy. They showed that the
system is Ising-like for n < 4, and has a KT transition when
n > 4. A system with microscopic fourfold anisotropy flows
to a second-order transition to paramagnetism with nonuni-
versal critical exponents that depend upon the strength of the
anisotropy. For large anisotropy, there is a cross-over to 2D
Ising exponents.

The finite, anisotropic 2DXY model with fourfold
anisotropy has not been investigated in detail. Taroni et al.
[27] have reported Monte Carol simulations as a function of
the strength of the fourfold anisotropy, and of system size.
They find a competition between the finite size effects and
anisotropy. For small anisotropy, finite size effects prevail
and the value of the effective critical exponent of the mag-
netization indicates that a finite-size KT transition occurs.
As the anisotropy increases, the effective critical exponent
crosses over to the 2D Ising value. The present article con-
centrates instead on solutions of the RG equations to provide
a detailed description of the behavior of an ultrathin ferro-
magnetic film with fourfold anisotropy. This is accomplished
in two stages. In the first stage, the RG equations are ex-
panded to lowest order about the critical coupling, when
K = J/kBT = 2/π , and solved exactly. This allows appro-
priate physical parameters to be set, and makes contact with
the previous findings for the finite, isotropic system. These
results validate the use of a second approach within a large
parameter space, where the fourfold anisotropy is treated as
a perturbation. This method yields quantitative results for
the effective exchange coupling, vortex density and screened
fourfold anisotropy as a function of temperature and system
size throughout the full temperature range of the finite-size
transition. It shows that the coupling has a universal point of
inflection where vortex-antivortex pairs unbind (as opposed
to a “universal jump”), and goes to zero asymptotically in the
paramagnetic state. The fourfold anisotropy also goes to zero
smoothly just above the temperature where the vortex pairs
unbind.

These quantities are then used to find two components of
the magnetic susceptibility: an improved calculation of the
longitudinal susceptibility due to fluctuations in the magni-
tude of the magnetization [32], and, in addition, the transverse
susceptibility due to fluctuations of the magnetization direc-
tion about an easy axis in the fourfold system. The appropriate
combination of these susceptibilities give an excellent quali-
tative account of the experimental measurements of Atchison
et al. [29] and suggest that a detailed quantitative comparison
with the measurements can provide information on vor-
tex formation, the disappearance of anisotropy, and domain

processes in the finite-size KT transition of an experimental
system.

II. RENORMALIZATION GROUP EQUATIONS UNDER
GEOMETRIC SCALING

The 2DXY ferromagnetic spin model with a fourfold
anisotropy is represented by the Hamiltonian [22]

H = J
∑
i, j

[1 − cos(θi − θ j )] +
∑

i

h4[1 − cos(4θi )], (1)

where J is the bare nearest neighbor exchange coupling, θi

is the angle the in-plane spin at lattice site i makes with a
fixed in-plane “easy” magnetic axis, and h4 is the microscopic
anisotropy energy for a fourfold in-plane anisotropy. The sum
over i, j is over nearest neighbors on a square lattice. The
renormalization group (RG) equations under geometric scal-
ing for this model have been derived by José et al. [22,31]
using an approximation due to Villain [33] that is applica-
ble for small anisotropy. After defining K = J/kBT as the
temperature-normalized exchange coupling, they find

dK−1

d�
= 4π3y2

0e−π2K − 16πy2
4K−2e−4K−1

, (2)

dy0

d�
= (2 − πK )y0, (3)

dy4

d�
=

(
2 − 4

π
K−1

)
y4. (4)

These equations are first order in the system variables y0 and
y4 (see below), with corrections in the third order. � = ln L is
the scaling length, where the system size L is in units of the
nearest neighbor lattice constant. The temperature-normalized
anisotropy is

y4 = h4

2kBT
. (5)

Due to approximations made in the Villain model, the max-
imum value of y4 = 1 corresponds to a clock model with
effectively infinite anisotropy [22].

The fugacity of a vortex, or the density of vortices, is
given by

Y = y0e
−π2K

2 . (6)

Here, y0 is a small parameter that is renormalized by the flow
described by the RG equations. It has been introduced into
the Villain model (where y0 = 1), to create the generalized
Villain model. In the regions K > 2/π , y0 is renormalized to
zero and is an irrelevant parameter. In the region K < 2/π ,
y0 is renormalized to unity and is a relevant parameter. In this
way, it can be shown [22] that the generalized Villain model
formally reproduces the results for an isotropic 2DXY system
as described by the Villain model. By introducing y0, it was
possible to display a dual symmetry between y0 and y4 in
the anisotropic 2DXY model. This was instrumental in the
original derivation of the RG equations.

While introducing y0 was necessary, it is problematic when
relating the system of equations to a physical system. This is
because y0 is a phenomenological, and not a physical, parame-
ter. For this reason, it is useful to recast the equations in terms
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of the fugacity Y , and a modified, but still physical, anisotropy
parameter Y4 that maintains the dual relation with Y :

Y4 = y4e−2K−1
. (7)

A line of fixed points of the RG equations occurs when
y0 = y4 = 0, regardless of the value of K . A second line
occurs when y0 = ±y4; K = 2/π . José et al. [22] have shown
that, in an infinite system, this second line of fixed points
mark second-order phase transitions for systems of differ-
ent microscopic fourfold anisotropy. These transitions have
nonuniversal exponents that depend upon the anisotropy, and,
in the limit of strong anisotropy, cross over to 2D Ising
transitions.

The RG equations (2) to (4) that include fourfold
anisotropy will be solved for a finite system in two steps.
In Sec. III, the equations are solved by expansion about the
critical coupling K = 2/π . This is referred to as the “critical
approximation” and is routinely used to study critical proper-
ties. This step is necessary because the fixed point is the only
place where boundary conditions are known precisely. RG
equations valid at the fixed points can be used to determine
the values of constants of integration, and to tune parame-
ters in the equations to values appropriate for ultrathin films.
The solutions confirm that a finite-size KT transition can be
preserved in the presence of fourfold anisotropy, and that,
because the fixed point is approached only logarithmically
in the system size L, there is a large parameter space where
the renormalization flow does not approach the critical point
closely. In Sec. IV, a second approximation is used. This is
referred to as the “perturbative approximation.” It is not as
good close to the fixed point (where the flow does not proceed
in a finite system), but is valid across the broad temperature
range of the finite-size transition where the flow does proceed.
This provides a more accurate calculation of the effective cou-
pling, vortex density, anisotropy, and ultimately, the magnetic
susceptibility.

III. RENORMALIZED COUPLING NEAR THE CRITICAL
COUPLING, IN THE PRESENCE OF FOURFOLD

ANISOTROPY

A. Flow equations

This section extends previous work [18,30] by including
the effects of fourfold anisotropy. The coupling in the RG
equations is expanded about its value at the fixed point, to
lowest order in the parameter x:

x = πK − 2, (8)

Y = y0e−π x+2
2 , Y4 = y4e−π 2

x+2 . (9)

This yields the equations to lowest order in x for small x:

dx

d�
= γ 2

[
−

(
x + 2

2

)2

Y 2 + Y 2
4

]
→ γ 2 ( − Y 2 + Y 2

4

)
,

(10)

with γ = 4π ,

dY

d�
= −xY, (11)

dY4

d�
= 2

2 + x
x Y4 → xY4. (12)

Using Eqs. (11) and (12) to substitute for one power of
Y and Y4, respectively, Eq. (10) can be written as a perfect
differential that can be integrated to give

x2(�) = γ 2 [
Y 2(�) + Y 2

4 (�)
] + C, (13)

where C is a constant of integration. Taking the ratio of
Eqs. (11) and (12) gives an expression independent of x that
can be integrated to yield

Y (�)Y4(�) = D, (14)

where D is a second constant of integration. The known pa-
rameter values at the fixed point x = 0 ,Y = ±Y4 require that

Y |x=0 = Y4|x=0 =
√

D, (15)

and indicate that an infinite system with bare anisotropy h4

flows to a fixed point where Y4 = √
D.

The constant C is determined by substituting Eq. (14) into
Eq. (13) and using the known values at the fixed point, to
give C = −2γ 2D. This value describes a flow line leading to
the fixed point. This value of C therefore defines the separa-
trix between different types of flow leading away from this
fixed point (for a system with this anisotropy). The flow for
systems near the separatrix is investigated [14,34] by allow-
ing the integration constant C to deviate from the separatrix
by a small amount proportional to the reduced temperature,
t = (T − TS )/TS , where TS gives flow on the separatrix to the
phase transition represented by the fixed point. Then

C = −2γ 2D − αt, (16)

where [35,36] α = (π/b)2 and b = 1.846 . . . It can be shown1

that negative values of t correspond to flow away from the
fixed point to a low temperature phase with high anisotropy
and vanishing vortex density (fugacity). Positive values of
t give flow to a high temperature phase with vanishing
anisotropy and high vortex density. This type of behavior led
to the original identification of a topological transition at t = 0
in the isotropic system [2,3].

Finally, the value of C is used to complete the square in
Eq. (13) to yield an equation that describes the flow near the
critical coupling:

±
√

x(�)2 + αt = γ [Y (�) − Y4(�)]

= γ

[
Y (�) − D

Y (�)

]
= γ

[
D

Y4(�)
− Y4(�)

]
.

(17)

B. Tuning to the physical parameters of the system

To follow the renormalization of a specific system with a
specific value of fourfold anisotropy it is necessary to follow

1D. Venus (unpublished).
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the flow line with the specific value of D for this system
[34]. This value of D is determined by the initial conditions
x(0), Y (0), and Y4(0) for the system, where “(0)” indicates
that renormalization begins at the microscopic level where
L = 1, � = ln L = 0. To accomplish this, all variables are
expressed in terms of the initial value x(0). In the case of
Y (0) and Y4(0), this requires using the definition of x to sub-
stitute for the temperature:

kBT = πJ

x(0) + 2
. (18)

In addition, the number of free parameters is reduced by
introducing the ratio of the microscopic fourfold anisotropy
to the bare exchange, λ = h4/J , so that

Y4(0) = λ
(x(0) + 2)

2π
e

−2π
x(0)+2 . (19)

Since y0 is a phenomenological parameter, its value is not
known at the microscopic level. To find a reasonable estimate
for Y (0), the fugacity is expressed instead in terms of the
energy of a vortex core, Ec.

Y (0) ≈ e− Ec
kBT . (20)

An approximate expression for the energy of a vortex core,
derived from the Villain model [34] is Ec = πJ ln (γ

√
π ) ≈

3.6J . (Here only, γ is Euler’s constant.) Then, for the purpose
of tuning the system,

Y (0) ≈ e− 3.6
π

(x(0)+2). (21)

When the initial conditions fall on the separatrix (t = 0) for
a system with a particular value of the microscopic anisotropy,
the flow proceeds to the fixed point and the corresponding
value of D can be identified. According to Eq. (17), this occurs
when

x(0) = ±γ [Y (0) − Y4(0)]. (22)

After substituting from Eqs. (21) and (19), this equation can
be solved for xλ(0) for the value of λ that characterizes the
bare system, and the corresponding value of Dλ can be found
using Eq. (14):

Dλ = Yλ(0)Y4,λ(0). (23)

The upper and lower root in Eq. (22) correspond to whether
or not Yλ(0) > Y4,λ(0). The condition Yλ(0) = Y4,λ(0) divides
these cases, and represents a system with initial conditions at
the fixed point at x = 0. It presumably stays at the fixed point
under geometric scaling.

Initial conditions for systems with a wide range of λ are
collected in Table I. It turns out that only the positive root of
Eq. (22) is relevant, as this root produces xλ(0) up to λ = 7.3.
Under the assumptions of the generalized Villain model [22],
the maximum value of y4 is unity. According to Eq. (9),
this implies a maximum value of

√
Dλ = exp (−π ), D ≈

1.9 × 10−3. Therefore, table entries for λ > 1.0 are certainly
not well-founded. Ultrathin metallic films on single-crystal
substrates have anisotropies with the order of magnitude
10−2 > λ > 10−3, giving 2 × 10−6 < D < 2 × 10−5. This is
well within the range of validity of the generalized Villain
model.

TABLE I. For a given ratio λ of the microscopic fourfold
anisotropy and bare exchange, the value of the initial conditions
xλ(0), Yλ(0), and Y4,λ(0) given by Eq. (22), (21), and (19), such that
the system begins on the separatrix are tabulated. From this initial
condition, the system follows the scaling flow line defined for the
value D = Dλ given by Eq. (23).

λ = h4/J xλ(0) Yλ(0) Y4,λ(0) Dλ

7.3 0 0.101 0.101 1.02×10−2

3.0 0.215 0.0790 0.0620 4.90×10−3

1.0 0.421 0.0625 0.0287 1.79×10−3

0.5 0.506 0.0566 0.0163 9.20×10−4

0.1 0.595 0.0512 0.00366 1.87×10−4

0.01 0.620 0.0497 3.81×10−4 1.89×10−5

0.001 0.623 0.0495 3.81×10−5 1.89×10−6

0 0.623 0.0495 0 0

C. Finite-size transition

To find the coupling for an anisotropic finite system of
size L, Eq. (10) must be integrated up to � = ln L. This is
accomplished by solving the quadratic equations in Eq. (17)
for Y (�) and Y4(�), and substituting back into Eq. (10) to give
the integral equation

−
∫

d� =
∫ x f

xi

dx√
x2 + αt

√
x2 + αt + 4γ 2D

. (24)

A standard transformation shows that this is an elliptic integral
of the first kind [37]. It is solved exactly in terms of the Jacobi
elliptic functions in Appendix A.

For an approximate solution for small values of D, such
as those appropriate for ultrathin films, it is useful to rewrite
Eq. (24) as the difference of squares.

−
∫

d� =
∫ x f

xi

dx√
(x2 + αt + 2γ 2D)2 − (2γ 2D)2

. (25)

For small enough D, an excellent approximation2 is to neglect
the contribution from the term (2γ 2D)2. (See Sec. III D).
Then, using the substitution ν =

√
αt + 2γ 2D/x results in

an exact differential of arctangent. As the geometric scaling
described by the RG equations removes the sensitivity to the
initial value of x, let xi → +∞. Then

x f = x(ln L) =
√

αt + 2γ 2D

tan (ln L
√

αt + 2γ 2D)
. (26)

This functional form is identical to that found by Bramwell
and Holdsworth [18] for the isotropic system, with the
substitution

αt → αt + 2γ 2D ≡ ω, (27)

so that, compared to the isotropic system, the effect of the
anisotropy is to shift reduced temperatures by −2γ 2D.

2The validity of this approximation is clear a posteriori from the
fact that in a finite-size transition both x and αt are not simultane-
ously small in comparison to D; that is, the system does not get close
to the critical point.
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Whereas the second-order transition in the infinite system
with fourfold anisotropy occurs at the fixed point [22] x =
0, Y = ±Y4 = √

D, the renormalization flow in the finite sys-
tem avoids the fixed point so that the condition x = 0 occurs at
the reduced temperature ωc,0. (The subscript “c” refers to the
critical approximation.) This condition no longer represents
a sharp transition, but rather marks when the formation of
vortex-antivortex pairs starts to be significant. According to
Eq. (26), x → 0 when

ωc,0 = αt0 + 2γ 2D =
( π

2 ln L

)2
. (28)

Substituting the expression for x(ln L) from Eq. (26) into
Eq. (17) leads to quadratic equations for Y (ln L) and Y4(ln L).
The solutions are most usefully expressed in terms of the
scaled variable ω/ωc,0:

x = 1

ln L

π
2

√
ω

ωc,0

tan
(

π
2

√
ω

ωc,0

) . (29)

P(ω/ωc,0) = 1

(γ ln L)2

(
π
2

)2 ω
ωc,0

sin2
(

π
2

√
ω

ωc,0

) . (30)

Then

Y 2 = 1

2
P(ω/ωc,0) + 1

2

√
P2(ω/ωc,0) − 4D2, (31)

Y 2
4 = 1

2
P(ω/ωc,0) − 1

2

√
P2(ω/ωc,0) − 4D2. (32)

These expressions for x, Y , and Y4 are plotted in Fig. 1,
using scaled variables that exhibit (near) universal curves.
Each of the plots has a curve for ln L = 4 and for ln L = 9.
Only in part (c) for Y4 is there an indication that the curves do
not overlap precisely. For D � 1.9 × 10−5, curves generated
using the exact solutions in Appendix A are indistinguishable
within the linewidth from the approximate solution shown in
Fig. 1.

The finite-size transition ends when the system moves to an
endpoint where the vortex density gets very large due to the
unbinding of the vortex-antivortex pairs, and the anisotropy
is screened away. According to Fig. 1, this occurs when
ω/ωc,0 = 4, independent of system size. Following Bramwell
and Holdsworth [18], this corresponds to x → −∞, and ac-
cording to Eq. (26), occurs at3

ωc,L = αtL + 2γ 2D =
( π

ln L

)2
. (33)

In a finite system, the correlation length ξ is limited by the
system size. This implies that the correlation length is maxi-
mum near ωc,L, where the paramagnetic vortex gas forms. In
the presence of fourfold anisotropy, Eq. (33) can be used to
show that it scales as

ξ ∼ L = exp

(
π√
ω

)
for ω > ωc,L. (34)

3The notation tL is used here, rather than tC as used in Ref. [18], to
reinforce that the separation of t0 and tL is a finite-size effect.

FIG. 1. The solutions in Eq. (29) to (32) to the RG equations for
small anisotropy in the critical approximation are plotted against
the scaled variable ω/ωc,0. Each variable is normalized so that they
they lie on near-universal curves regardless of the values of ln L
for the anisotropy parameter D � 1.9 × 10−5 appropriate for thin
ferromagnetic films. The dashed lines mark ωc,0 where the formation
of vortex-antivortex pairs begins, and ωc,L where the pairs unbind
according to the critical approximation. The plotted variables are
(a) the departure of the effective coupling from the critical value,
x = πK − 2, (b) the fugacity, or vortex density, Y , and (c) the four-
fold anisotropy parameter Y4. The circular dots on the curve in part
(a) indicate the point beyond which the effective coupling becomes
antiferromagnetic for systems of different sizes.

Since D is small for thin ferromagnetic films, the difference
between this relation and the form exp (π/

√
αt ) found for the

isotropic system, will be very difficult to observe.
These results confirm that the finite-size KT transition in

ultrathin ferromagnetic films survives the inclusion of four-
fold anisotropy, and that a second-order transition is not
expected. The effective coupling, correlation length, and tran-
sition points are those found previously for the isotropic
system, if αt → αt + 2γ 2D ≡ ω. The principle new finding
is the expression in Eq. (32) for Y4.

However, it is also clear from Fig. 1 that there are important
quantitative problems with the calculated system properties.
The effective exchange coupling goes to zero (x = −2) before
the vortex gas forms at ωc,L (x → −∞). The condition K = 0
is marked in Fig. 1(a) by the circular dots for systems with
sizes increasing by integer values of ln L from 4 to 9. At
larger values of ω < ωc,L, the coupling becomes large and
antiferromagnetic, a situation that is unphysical. Thus the
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calculation is certainly not reliable near ωc,L, and is unlikely
to be reliable outside the region near ωc,0 where x is indeed
a small expansion parameter. Another example can be seen
in part (c) of the figure, where the anisotropy goes to zero
with a discontinuity in slope and becomes complex above
ωc,L, rather than approaching zero as a smooth and continuous
real function. These are indications that the critical approx-
imation will not be sufficient for a quantitative description
of the system across the full temperature range of the finite-
size transition, including for the calculation of the magnetic
susceptibility.

D. Limiting behaviors in the critical approximation

Although the critical approximation does not provide a
quantitative description throughout the finite-size KT transi-
tion, it can provide guidance as to whether or not the system
will flow away from the critical point towards a free vortex
gas, or towards the critical point and a second-order transi-
tion [22] that is characterized by either Ising exponents, or
nonuniversal exponents. This question can be explored using
the exact solution in the critical approximation developed in
Appendix A, where it is shown that the solution in terms of
trigonometric functions in Eq. (26) is replaced by

x(ln L) =
√

αt + 4γ 2D
cn(B/k, k)

sn(B/k, k)
. (35)

sn(u, k) and cn(u, k) are Jacobi elliptic functions [37], and the
function parameters for the finite 2DXY model with fourfold
anisotropy are

u =
√

αt + 4γ 2D ln L = B

k
, where

k =
√

4γ 2D

αt + 4γ 2D
and B ≡

√
4γ 2D ln L. (36)

The product of the system size and anisotropy in B char-
acterizes the system behavior. The finite-size transition begins
at αt0, and the type of phase transition the system undergoes
is determined by how it approaches the fixed point (x =
0, αt0 → 0) as a function of the system size. As is outlined
in Appendix A, αt0 is determined by the condition

u = B/k0 = κ (k0). (37)

In this transcendental equation, κ (k0) is the complete elliptic
integral of the 1st kind [37], and k0 ≡ k(αt = αt0). These
definitions imply that

αt0 = (
1 − k2

0

)(κ (k0)

ln L

)2

. (38)

To understand the critical behavior, note that the complete
elliptic integral can be represented to a high degree of accu-
racy by the function [37]

κ (k) = m(k) − n(k) ln (1 − k2), (39)

where m(k) and n(k) are slowly-varying polynomials with
positive values. Substituting this in Eq. (38) and solving

for L,

L = exp

[
m(k0)√

αt0 + 4γ 2D

] (
1 − k2

0

)[− k0n(k0 )

2γ
√

D
]
. (40)

When k0 is small, αt0 	 4γ 2D, and the system is in the
limit of small anisotropy. Then m(k0) ≈ m(0) = π/2 and the
Eq. (40) becomes

L = exp

(
π

2
√

αt0 + 4γ 2D

)
. (41)

This has the form of Eq. (28) and describes a system that ap-
proaches the fixed point logarithmically in L and is described
by a finite-size KT transition.

When k0 approaches unity, αt0 
 4γ 2D and the system is
in the limit of large anisotropy. Then n(k0) ≈ n(1) = 1/2 and
the singular part of Eq. (40) is

ξ ∼ L =
[

αt0
4γ 2D

]− 1
4γ

√
D

. (42)

This power law behavior indicates a second-order transition
with critical exponent ν. To find ν, recall that

√
D is the value

of Y4 at the fixed point where k0 = 1. In the limit of large
anisotropy in the generalized Villain model, y4 = 1, so that

ν = 1

4γ
√

D
= eπ

4γ
= 0.46 (43)

This value agrees with the analysis of Taroni et al. [27] for an
infinite system, and represents the 2D Ising limit of the gener-
alized Villain model. The fact the correct 2D Ising value ν = 1
is underestimated is due to the limitation of Villain model to
small anisotropy [22], and does not affect the conclusion that
this is the Ising-like limit of the model.

The boundary where the system crosses over from second-
order to finite-size KT behavior depends upon what deviation
from “pure” limiting behavior is acceptable before the sys-
tem is considered to be in a crossover region. A pragmatic
approach is to begin with the condition where each of the
product terms in Eq. (40) are equal, or equivalently, when
the two terms in Eq. (39) are equal. This occurs when [37]
k0 = 0.967. Eq. (37) then indicates B = 2.72. Because of the
definition of B, this condition defines a line in the parameter
space of D versus ln L, and is marked by a solid line near
the center of Fig. 2), dividing regions labeled “Ising-like” and
“finite-size KT.”

To investigate the power law behavior moving toward the
the boundary line from the region of large D and ln L, recog-
nize that 1 − k2

0 is a small parameter, and set

k0 =
√

1 − (
1 − k2

0

) ≈ 1 − 1

2

(
1 − k2

0

)
. (44)

Substituting this and the association developed in Eq. (43) into
the divergent term in Eq. (40) gives

ξ ∼ L = (
1 − k2

0

)−ν (
1 − k2

0

) ν
2 (1−k2

0 )

≈
(

αt0
4γ 2D

)−ν[
1 + ν

2

(
αt0

4γ 2D

)
ln

(
αt0

4γ 2D

)
+ · · ·

]
. (45)

The correction term in Eq. (45) is of the form αt0 ln αt0. It in-
creases in size moving toward the boundary from large D and
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FIG. 2. An approximate phase diagram for the 2DXY model
wth fourfold anisotropy is plotted in the phase space of the system
anisotropy (represented by the parameter D) and system size (repre-
sented by the parameter ln L). The solid line near the center of the
figure divides the upper right region where an Ising-like transition
occurs, and the lower left region where a finite-size KT transition
occurs. The dividing line is bracketed by two dashed lines that
indicate an approximate region where the system crosses over from
one behavior to the other. In the extreme lower left corner, another
solid line marks off a region “low D” where finite-size KT transitions
can be treated in the approximation given in Eq. (25). The dotted line
bounds a region that is essentially the same as the low D region,
where the perturbative approximation discussed in the next section is
valid. The symbols and dashed straight lines are discussed in the text.

ln L, and makes a correction of about −9% at the boundary
when a conservative value of ν = 1 is used. This represents
a significant departure from pure power law behavior, and is
expected to cause an effective critical exponent νeff > ν to
better describe the system. The size of the change in νeff is dif-
ficult to determine in the present analysis, but it is consistent
with the boundary lying within the crossover region. A dashed
line further into the region labeled “Ising-like” is included in
Fig. 2 to indicate an approximate upper bound to the crossover
region. It is set somewhat arbitrarily by the condition that the
power law term in Eq. (40) is twice the size of the exponential
term.

The finite-size KT behavior at the boundary line is inves-
tigated by assessing deviations from the correlation length
given in Eq. (34). From Appendix A, B/kL = 2κ (kL ), so that

αtL = (
1 − k2

L

)[2κ (kL )

ln L

]2

. (46)

κ (kL ) is expanded [37] about kL = 0 in powers of k2
L, and

terms up to k2
L on the right side of Eq. (46) are retained. The

resulting quadratic equation for αtL is solved and the term in
ln L is isolated. This yields

L = exp

[
π√
ωL

√
ω2

L

ω2
L − (2γ 2D)2

]

ξ ∼ L = exp

[
π√
ω

(
1 − 1

2 k2
)

√
1 − k2

]
; k < kL. (47)

For the boundary at B = 2.72 in Fig. 2, kL = 0.712 and the
characteristic form of the correction length at a finite-size KT

transition is modified by an increasing amount as the boundary
is approached from the region of low D and ln L. The correc-
tion is +7% at the boundary. This is of a similar magnitude
to the modification of the Ising-like correlation length at the
boundary and suggests that the boundary in Fig. 2 is indeed
roughly in the center of the crossover region. A dashed line
further into the region labeled “Finite-size KT” is included in
Fig. 2 to indicate an approximate lower bound to the crossover
region. Again, it is set by the condition that the exponential
law term in Eq. (40) is twice the size of the power law term.

In the infinite system, there is no KT behavior, but rather
the second-order transition persists to low anisotropy [22],
where it exhibits nonuniversal critical exponents with ν ∼
1/h4. The exact solution of the RG equations in the critical
approximation indicates that this type of transition no longer
exists in the finite system, except perhaps as a qualitative
explanation of the continuously varying effective critical ex-
ponents in the transition region.4

A separate, but closely related, question is defining the
parameter space where the description of the entire finite-
size KT transition in the critical approximation is consistent
with the results of the previous section. That is, what is
the “Low D” region within which the approximation leading
from Eq. (25) to (26) is valid at k0 rather than at kL? Since
Eq. (46) and (38) differ only in having π → π/2 and sub-
scripts L → 0, the analysis in Eq. (47) can be applied directly.
To maintain a similar correction of about 7% to the calcula-
tion of properties for the full transition requires k0 = 0.712.
Using Eq. (37), this gives B = 1.35 as the boundary. This
second solid line is marked on Fig. 2 to define a region in the
lower left corner where the low D method of solving the RG
equations is essentially equivalent to the exact solution. This
region certainly contains the parameters describing ultrathin
ferromagnetic films.

The dotted line in Fig. 2 is discussed in the next section.
Figure 2 summarizes a number of important conclusions

concerning the observation of a finite-size KT transition in
a real, finite system with fourfold anisotropy. First, the type
of transition depends upon the product of the anisotropy and
the system size in the combination B = 2γ

√
D ln L, not just

on the size of the anisotropy alone. Second, the second-order
transition with nonuniversal exponents ν ∼ 1/h4, predicted
for the infinite system, does not occur in the finite system.
These observations do not contradict the findings of Taroni
et al. [27], who found nonuniversal effective exponents for
low anisotropy in simulations performed using a Monte Carlo
techniques. These effective exponents arise in the transition
region in Fig. 2. They used planar spins on a 2D square lattice

4As k0 → 1, Eq. (35) can be expanded in hyperbolic functions as

lim
x→0

x =
√

αt0 + 4γ 2D

sinh u

(
1 − 1 − k2

0

4
cosh2 u + . . .

)
.

The second root leads to the Ising-like transition, and this root exists
even when ln L is finite. The first root sinh u → ∞ exists only when
ln L → ∞ and can be shown to be the root for a second-order
transition at low anisotropy. In addition, the product of the roots is
dominated by the stronger, Ising-like root, so that the transition at
low anisotropy is not expressed in a finite system.
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with 104 sites, so that ln L = 4.6. This system size is marked
by the vertical dashed line in the figure. The lower dot on this
line marks the value of D for their calculation when λ = 0.1.
This was the largest anisotropy for which the calculated mag-
netization exhibited finite-size KT behavior. The upper dot
marks the value of D when λ = 0.5, the smallest anisotropy
for which the calculated magnetization exhibited Ising-like
behavior. (No calculations are reported for anisotropy between
these values.) As can be seen, the Monte Carlo simulations are
in good agreement with the present analysis.

Comparing the values in Table I to those in Fig. 2, it is clear
that metallic, ferromagnetic thin film systems will always
exhibit a finite-size KT transition. For other types of systems,
neutron scattering experiments have been reported for a few
magnetic, layered insulators with weak interlayer coupling, so
that they behave as a 2DXY system at low temperature. For
ferromagnetic Rb2CrCl4, it is estimated [27] that λ ≈ 0.013
(so that Table I gives D ≈ 2 × 10−4), and that the system size
is limited by the interlayer coupling to about ln L ≈ 4.8. These
coordinates are indicated by the square in Fig. 2, in a region
where finite-size KT behavior is expected, in agreement with
the analysis of the neutron scattering measurements. A second
example is antiferromagnetic K2FeF4, for which anomalous
exponents have been observed [38]. For this compound, λ is
estimated to be 0.33 due to gaps in the magnon spectrum [27].
The corresponding value of D is indicated by the horizontal
dashed line in the figure. The authors of the neutron scattering
analysis [38] argue that the observed critical exponents are
comparable to those of the 2D Ising model. According to
Fig. 2, this would imply a large system size of ln L ∼ 6, de-
spite the interlayer interactions that limit the range of 2D mag-
netic behavior. On the other hand, Taroni et al. [27] point out
that the measured value of β = 0.15 is intermediate between
the 2D Ising value (0.125) and the effective value for the
finite 2DXY model (0.231). This suggests that the effective
2D system size is smaller, and that antiferromagnetic K2FeF4

sits within the transition region, consistent with Fig. 2.

IV. RENORMALIZED COUPLING ACROSS THE
FINITE-SIZE TRANSITION IN THE PRESENCE

OF FOURFOLD ANISOTROPY

A. Flow equations

In order to explore the entire temperature range of the
finite-size transition, it is better to retain the original RG equa-
tions and work directly with a normalized, effective coupling
πK/2 ≡ δ = 1 + x/2 within the range δ > 0. Then the RG
equations are

Y = y0e−πδ, Y4 = y4e− π
δ , (48)

dδ

d�
= 1

2
γ 2

( − δ2Y 2 + Y 2
4

)
, (49)

dY

d�
= −2(δ − 1)Y, (50)

dY4

d�
= 2(δ − 1)

δ
Y4. (51)

Expressed in these variables, the flow equations have a fixed
point at δ = 1, Y = ±Y4.

These equations are not amenable to a closed solution.
However, an approximation is suggested by the exact solu-
tion in the critical approximation in Appendix A. Because
the renormalization flow approaches the fixed point logarith-
mically in L [see Eq. (29)], finite systems do not get very
close to the fixed point. Rather, they follow a path where
(Y4/Y )2 
 1 in the pertinent range of reduced temperature.
From Eqs. (A19) and (A18),

Y4

Y
= 1 − dn

(
B
k , k

)
1 + dn

(
B
k , k

) , (52)

where dn(u, k) is the third Jacobi elliptic function [37]. This
ratio has its largest value when t = 0 or k = 1. In this limit,
dn(u, 1) → sechu, and

B = arccosh

(
1 + √

ε

1 − √
ε

)
. (53)

When ε = (Y4/Y )2 is small, the term in Y 2
4 in Eq. (49) can be

neglected, and the resulting solutions for δ(�) and Y (�) can
be used to find Y4(�) as a perturbation through the ratio of
Eqs. (50) and (51). Choosing ε = 0.1 gives B = 1.27 as the
upper limit. The resulting boundary for this approximation is
shown on Fig. 2 as the dotted line, where it almost overlaps
the boundary for the “low D” solution. This gives a sizable
parameter space where this approach is valid, and certainly
includes the ferromagnetic thin films that are the focus of the
present analysis.

This approach will be termed the “perturbative approxima-
tion.” The relevant equations in this approximation are

dδ

d�
= −1

2
γ 2 δ2Y 2, (54)

dY

d�
= −2(δ − 1)Y, (55)

dY4

Y4
= −dY

δY
. (56)

It is important to reiterate that although Eqs. (54) to (56) do
not display the fixed point of the original RG equations, they
are a very good approximation in the region some distance
from the fixed point where the renormalization flow carries a
finite system.

Rearranging Eq. (55) as an expression for Y , and substitut-
ing for one power of Y in Eq. (54), leads to a relation between
exact differentials that can be integrated as

ln δ + 1

δ
= γ 2

8
Y 2 + C

8
. (57)

The integration constant C/8 can be identified by expanding
this equation about δ = 1 and comparing to Eq. (17) in the
region where they are both valid. This gives

C = 2γ 2D + αt − 8 = ω − 8. (58)

Incorporating this in Eq. (57), provides a final expression for
the fugacity in the perturbative approximation:

γ 2Y 2 = 8

(
ln δ + 1

δ
− 1

)
+ ω. (59)
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FIG. 3. The function f (δ) in the square brackets of Eq. (60)
is illustrated, along with various approximations to it. The solid
line indicates the exact function. The dashed line 1/2 (δ − 1)2

is the quadratic function used in the critical approximation in Sec. III.
The remaining two lines are piecewise approximating polynomials
for the regions δ > 3/4 and 0 < δ < 3/4.

B. Finite-size transition

Substituting the expression for Y 2 from Eq. (59) into
Eq. (54), and separating variables gives

−d� = dδ

4[δ2 ln δ + δ(1 − δ)] + 1
2ωδ2

≡ dδ

4 f (δ) + 1
2ωδ2

. (60)

Because of the presence of ln δ, this integral cannot be
performed analytically. However, the denominator is well-
behaved so long as δ > 0, and various approximations are
instructive. These approximations are illustrated in Fig. 3,
where the term f (δ) in square brackets in Eq. (60) is plotted.
The solid line is the exact function, and the purely quadratic
function 1/2 (δ − 1)2 is the critical approximation for small
x (δ ≈ 1) used in the previous section. The figure makes it
clear why this approximation is unreliable near δ ≈ 0, where
the free vortex gas forms.

A simple and effective representation of f (δ) is achieved
by piecewise polynomials. In the range δ � 3/4, the polyno-
mial 1/2 δ(δ − 1)2 is used. Then Eq. (60) has the form∫ δ f

δi

dδ

δX (δ)
= − ln L, (61)

where X (δ) = a + bδ + cδ2 with a = 2, b = −4 + ω/2, and
c = 2. This integral is given in Appendix B in Eq. (B9). Its
qualitative form is more easily seen in the limit ω 
 4, where
the expression simplifies to

δ = 1 +
√

ω

2 tan
{√

ω ln
[
L

(
δ2

(1−δ)2+ ωδ
4

) 1
4
]} . (62)

This coupling is closely related to Eq. (26) in the crit-
ical approximation, but represents an important qualitative
change. While there is only a modest difference near δ ≈ 1,
the behavior at δ ≈ 0 is very different. The implicit equa-
tion for δ includes a term in ln δ that rules out solutions for

FIG. 4. (a) The normalized effective coupling δ(ω) is plotted
for both the critical and perturbative approximations to the RG
equations, for the case ln L = 7 and D = 1.9 × 10−5. For the latter,
the solid line is a numerical integration of Eq. (60) and the long
dash line that almost overlaps with the solid line is the polynomial
approximation that gives Eq. (B9) and (B13). The result in the critical
approximation is given by Eq. (26). (b) The polynomial approxima-
tion is used to plot δ(ω) for the same value of D and a range of system
sizes L.

δ � 0. Thus the system approaches the limit of vanishing
exchange coupling (δ = 0) asymptotically in ω.

In the range 3/4 � δ > 0 in Fig. 3, f (δ) is reasonably
approximated by the polynomial δ(δ2 − 1.73δ + 0.77). This
is again of the form in Eq. (61), but the algebra is more
complicated. The result is given in Appendix B in Eq. (B13),
and is qualitatively similar to Eq. (62) with the substitution of
a generalized expression for

ln L → ln L(ω) = ln L + g(ω), (63)

where g(ω) is a function that arises from matching the
two polynomial approximations at δ = 3/4, and is given in
Eq. (B14).

These various expressions for δ(ln L) are compared in
Fig. 4(a) as a function of ω for parameters appropriate for
ultrathin Fe/W(001) films [29]:5 D = 1.9 × 10−5 and ln L =
7. The solid curve is a numerical integration of the relation

5The value of D is relevant only in that it is small enough for the
approximation in Eqs. (54) to (56) to hold, since D and αt occur only
in the combination ω.
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in Eq. (60). The polynomial approximation to it is given by
the long dash line. As can be seen, the closed expressions
in Eqs. (B9) and (B13) reproduce the exact result very well.
The two curves nearly overlap; the deviation is greatest at
the matching point δ = 3/4 and for large ω as δ → 0. The
effective exchange coupling approaches δ = 0 asymptotically,
as is appropriate for a finite system, and there is no region
where the coupling becomes antiferromagnetic.

The result in the critical approximation, given by Eq. (26),
is also shown as a short dash line in Fig. 4(a). Bramwell et al.
[18] have shown, using the critical approximation, that the
effective critical exponent of the magnetization, given by

∂[ln M(t )]

∂ (ln t )

∣∣∣∣
δ=1

= ∂[ln M(δ(t ))]

∂δ(t )

∣∣∣∣
δ=1

∂δ(t )

∂ (ln t )

∣∣∣∣
δ=1

, (64)

has a universal value 0.231..., and that this prediction is well
supported by experiment [27]. Comparing the two approxi-
mations, there is a small shift in the region near δ = 1, but the
slopes of the curves are very nearly the same.6 For this reason,
the value of the effective critical exponent will not be affected.
Figure 4(b) shows δ(ω) for a range of system sizes.

C. Width of the finite-size transition

The onset of the formation of vortex-antivortex pairs con-
tinues to occur when the value of the coupling is equal to
the value at the fixed point (δ = 1, x = 0). In the perturba-
tive approximation, an expression for ω0 can be found from
Eq. (B9), as it applies for δ > 3/4. As δ → 1, a small angle
approximation for the tangent at an angle slightly less than
π/2 yields the solution given in Eq. (B10) in Appendix B.
When 8ω0 
 1, this becomes

π

2
√

ω0
− 1

4
= ln

[
L

(
4

ω0

)1/4]
. (65)

The values of ω0 are plotted against the system size in
Fig. 5(a), using a solid line. The dashed lines are the results of
the critical approximation in Eqs. (28) and (33). The scaling
properties of δ in the perturbative approximation are revealed
by replotting Fig. 4(b) as a function of the scaled parameter
ω/ω0 in Fig. 5(b). A second scaling point occurs at the point
of inflection of all of the curves, at7 ω/ω0 = 4.61 . . . ≡ β,
at which point δ = 0.395 . . . independent of the system size.
For the finite system, this point of steepest descent is all that
remains of the instantaneous jump in the coupling observed at
TKT in the isotropic, infinite system. It is identified as ωL and
the values are plotted in Fig. 5(a) using a solid line.

The scaling ωL = βω0 can be used with Eq. (65) to deter-
mine the scaling of the correlation length

ξ ∼ L =
(

ω

4βe

) 1
4

exp

(
π

√
β

2
√

ω

)
, ω � ωL. (66)

This displays the exponential singularity associated with a KT
transition. The constant in the exponential factor has been
altered by a factor of

√
β/2 = 1.07 from that found in the

6Compare Eqs. (62) and (26).
7Here, the symbol β does not represent a critical exponent.

FIG. 5. (a) The finite-size KT transition is spread out over a range
of reduced temperature (or ω) that depends upon the size of the
system L. ω0 divides the condition where spin waves dominate at
low temperature and the formation of bound vortex-antivortex pairs
begins. ωL divides the conditions where the vortices and anti-vortices
are bound and unbound. The curves defined by the critical and
perturbative approximations are shown by dashed and solid lines,
respectively. (b) δ(ω) for different values of the system size L are
plotted against the normalized parameter ω/ω0. This displays the
expected independence upon system size at ω0, as well as a second
scaling point at ωL ≈ 4.61ω0 at the inflection points of the curves,
where δ = 0.395.

critical approximation. The prefactor to the exponential has
no singularity and does not affect the scaling behavior sub-
stantially within the range ω � ωL where the estimate applies.

D. Screening of the anisotropy

With solutions for δ(ω) and Y (ω) derived under the condi-
tion that Y 2

4 
 Y 2, it is now possible to solve for Y4(ω) as a
perturbation using Eq. (56). First, note from Eq. (59) that γY
is the square root of the function h(δ), where

h(δ) = 8

(
ln δ + 1

δ
− 1

)
+ ω. (67)

Using this relation, Eq. (56) can be written as

dY4

Y4
= −1

4
δ(�)

dh[δ(�)]

dδ(�)
d�. (68)
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As the variables Y4 and � are separated, integration leads to

Y4(ln L, ω) = A exp

[
−2

∫ ln L

0

(
1

δ(�, ω)
− 1

)
d�

]
. (69)

The integration constant A can be determined in the limit
δ → 1, where the critical and perturbative approximations are
both valid. Then, from Eq. (14),

Y4(ln L, ω0) = D

Y (ln L, ω0)

= A exp

[
−2

∫ ln L

0

(
1

δ(�, ω0)
− 1

)
d�

]
, (70)

since δ = 1 at ω0. This notation is understood to mean that ω0

is a constant in the integral and takes the value appropriate for
the system size of the endpoint L. According to Eq. (59),

Y (ln L, ω0) =
√

ω0

γ
. (71)

Using these results, Eq. (69) can be written as

Y4(ln L, ω) = Y 0
4 exp

[
−2

∫ ln L

0

d�

δ(�, ω)

]
, (72)

with Y 0
4 = γ D√

ω0
exp

[
2

∫ ln L

0

d�

δ(�, ω0)

]
. (73)

The fugacity Y (ω) from Eq. (59) and the anisotropy Y4(ω)
from Eq. (72) are plotted against ω/ω0 in Figs. 6(a) and
6(b), respectively. Each fugacity curve rises smoothly with no
marker of either the beginning (ω0) or end (ωL) of the finite-
size KT transition, although the presence of the transition
can be seen through the scaling at ωL. Because the exchange
coupling never renormalizes to zero in these finite systems,
bound vortex pairs and free vortices always coexist. The inset
shows the same data, again plotted against ω/ω0, but now
normalized as γY/

√
ω0. This gives a near universal curve for

ω/ω0 � 2, in good agreement with the critical approximation
in Fig. 1(b) in this range.

The anisotropy Y4(ω) plotted in Fig. 6(b) approaches zero
smoothly and continuously, where it has the functional form
of an exponential of the exponential function. In the inset, the
anisotropy is scaled by

√
ω0/γ D to allow direct comparison

with Fig. 1(c). The near universal curve for ω/ω0 � 2 ob-
served in the critical approximation is seen here as well. The
anisotropy extends beyond ωL, especially for smaller system
sizes. This again reflects the fact that smaller systems contain
a more truncated distribution of vortex sizes.

V. THE MAGNETIC SUSCEPTIBILITY

A. Contribution due to fluctuations in the scalar magnetization

Archambault et al. [32] have studied the magnetic sus-
ceptibility in a finite-size, isotropic 2DXY system, and
demonstrated that a broad peak occurs as the spatial range
over which the effective coupling varies diverges until it
is limited by the system size. Their analysis uses the har-
monic 2DXY model (which is almost equivalent to the Villain
model) on a L × L square lattice of N spins with no explicit
fourfold anisotropy term. The lattice spacing is unity. They
find that the vector magnetization has a well-defined scalar

FIG. 6. (a) The fugacity, or vortex density, is plotted as a function
of ω/ω0 using Eq. (59) and δ(ω) from the perturbative approxima-
tion. Each individual curve shows no clear marker of the finite-size
transition, but ωL is indicated by the scaling point and the dashed line.
The inset shows the same curves with Y for different system sizes
normalized by γ /

√
ω0, still plotted against ω/ω0. (b) The anisotropy

Y4 from Eq. (72) for different system sizes is plotted against the
scaled parameter ω/ω0. The anisotropy goes to zero smoothly and
continuously just beyond ωL . In the insert, Y4 is scaled by

√
ω0/γ D.

magnitude M in the spin wave region at low temperature. The
magnetization rotates “slowly” in the isotropic XY plane, so
that in finite spin systems the scalar magnetization is a well-
defined quantity on experimental timescales despite the lack
of anisotropy. They suggest that when magnetic properties
such as the magnetic susceptibility or critical behavior are
measured in an applied field, the field pins the direction of
the magnetization so that the relevant fluctuations are in the
magnitude of the magnetization.

Defining the scalar magnetization in terms of the in-plane
unit spins Si at site i,

M = 1

N

√√√√(∑
i

Si

)
·
(∑

i

Si

)
, (74)

they calculate the susceptibility per spin, χ , as the fluctuations
in the scalar magnetization:

χ = N

T
[〈M2〉 − 〈M〉2]. (75)

They work in units where the Boltzmann constant is unity. In
the low temperature spin wave region, the magnetization has
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the form

〈M〉 = exp

(
−G(0)

2K

)
, (76)

where G(0) is the 2D Green’s function for the square lattice,
evaluated at the origin (see Appendix C). The second moment
of the scalar magnetization is

〈M2〉 = 1

N

∑
r

〈M〉2 exp

(
G(r)

K

)
, (77)

so that

χT

N
=

[
1

N

∑
r

exp

(
−G(0)

K

)
exp

(
G(r)

K

)]

− exp

(
−G(0)

K

)
. (78)

This expression is generalized to higher temperature in
the range of the finite-size Kosterlitz-Thouless transition by
replacing the bare coupling K by the effective coupling
Keff (r, ω) ≡ 2δ(r, ω)/π as determined by the renormalization
group equations. A choice must be made for the value Keff (r)
to be used in the final term in Eq. (78), as it is outside the sum
over r. Because G(0) is dominated by fluctuations at small
wave vector, the choice Keff (L) is made.

Archambault et al. [32] show that a series expansion of the
exponential in G(r) converges very quickly. When only the
first term beyond unity is kept, then the susceptibility can be
divided into a part χS due to spin waves,

χST

N
= 1

N

∑
r

π2G2(r)

8 δ2(r)
exp

(
−πG(0)

2δ(r)

)
, (79)

and a part χV due to vortices,

χV T

N
= 1

N

[∑
r

exp

(
−πG(0)

2δ(r)

)]
− exp

(
−πG(0)

2δ(L)

)
. (80)

Because a characteristic experimental thin film system size
[29] is L ≈ e7, Eqs. (79) and (80) for the susceptibility can
be evaluated in the continuum limit. This is outlined in
Appendix C.

A comparison of the magnetic susceptibility calculated
using δ for a system with fourfold anisotropy, determined
in both the critical and perturbative approximations in the
previous sections, is shown in Fig. 7. The system parameters
are ln L = 7 and D = 1.9 × 10−5. (A small jump in the solid
curve near ω = 0.11 occurs at the point where the perturbative
approximation for δ moves from one piecewise polynomial
to another.) Both curves are in qualitative agreement, in that
the susceptibility is small in the spin wave region, begins to
increase near ω0 ≈ 0.40, where vortex pairs begin to form,
and has a broad peak over the entire range of the finite-size
transition.

There are, however, important quantitative differences. In
the critical approximation, the susceptibility has a larger
amplitude and reduced full-width at half maximum, and
the position of the peak is significantly below ωc,L ≈ 0.18.
The curve terminates just past its peak, at the point where
δ = 0 and Eqs. (79) and (80) diverge. Although the high

FIG. 7. The calculated magnetic susceptibility is plotted agains ω

using values of the effective exchange coupling δ(ω) determined in
the critical approximation (dashed line) and perturbative approxima-
tion (solid line) to the RG equations. The curves are for a system size
ln(L) = 7 and D = 1.9 × 10−5. The solid dot indicates the point be-
yond which the exchange coupling is no longer ferromagnetic in the
critical approximation, and the susceptibility calculation diverges.

temperature tail of the curve is predicted to have an ex-
ponential dependence on ω−1/2 from general arguments
leading to Eq. (34), it is not possible to demonstrate this
characteristic functional dependence of the vortex gas. In con-
trast, in the perturbative approximation δ → 0 asymptotically
so that the system remains ferromagnetic, and the expres-
sions for the susceptibility remain well defined. The position
of the curve maximum is very nearly at ωL ≈ 0.16 and the
form of the high temperature tail can be determined in detail.
These differences, and the changes in the values of ω0 and
ωL, are important for quantitative fitting of experimental data
to extract magnetic properties and properties of the vortex
distribution.

For these reasons, further analysis of the magnetic suscep-
tibility is restricted to that calculated using the perturbative
approximation. The sum of the spin and vortex contributions
are shown in Fig. 8(a) for a range of system sizes. It can be
seen that the susceptibility gets narrower as the system size
increases. If it were not normalized by a factor of N in the fig-
ure, the susceptibility per spin, χ , would increase dramatically
as the system size increased. In the infinite, isotropic 2DXY
model, the susceptibility χ (TKT )/N scales as L−1/4(ln L)1/8 at
the KT transition [2,3]. In a finite system, the transition begins
instead at the reduced temperature ω0, and, as is shown in
Appendix C, the vortex susceptibility at this transition point
scales as

χV (ω0)T/N ∼ ω0 ln (
√

bL) L−1/4. (81)

In this expression, the explicit logarithmic term arises from es-
sential finite size effects in the magnetization, and the factor of
ω0 is due to finite-size effects in the coupling. As can be seen
in Fig. 5(a), the dependence of ω0 on ln L depends strongly on
the approximations made in solving the RG equations. In the
critical approximation, the expression for ω0 in Eq. (28) gives

χV (ω0)T/N ∼ (ln L)−1L−1/4. (82)
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FIG. 8. (a) The magnetic susceptibility due to fluctuations in the
magnitude of the magnetization [sum of Eqs. (79) and (80)] is plotted
against ω for different system sizes. The value D = 1.9 × 10−5 is
used. (b) The curves in part (a) are replotted against ω/ω0, and
normalized by H (L) L1/4 as defined in Eq. (83) to illustrate more
clearly the change in the shape of the curve as the system size is
changed. (c) The logarithm of the susceptibility at high temperature
is plotted against ω−1/2 to illustrate the characteristic dependence of
a vortex gas, as predicted by Eq. (66).

In the perturbative approximation, the dependence of ω0

on the size of the system can be expressed as a continued
approximation in ln L, using Eq. (65). This gives

χV (ω0)T/N ∼ L−1/4

[ln L + ln (4
√

eπ−1 ln L) + . . .]

≡ 1

H (L)
L−1/4, (83)

where 4
√

e/π ≈ 2.1. This expression contains higher order
logarithmic corrections. In part (b) of the figure, the suscepti-
bilities are scaled by H (L)Ł1/4 and plotted against ω/ω0. The
data collapse at ω0 is very good. The fact that both the critical
and perturbative approximations give the same order for the
simple logarithmic correction provides some confidence that
this order is correct. The correction varying as ∼ ln (ln L)
is necessary, as the scaling at ω0 is much better when it is

included than when it is omitted. However, the exact order of
this correction is likely sensitive to details of the perturbative
approximation, such as the use of piecewise polynomials,
and the truncation of the continued approximation for ω0 in
orders of ln L after two terms. The expression for the magnetic
susceptibility itself has involved approximations in moving
from Eq. (78) to Eq. (80). The spin part of the susceptibil-
ity scales differently than the vortex part, but this does not
effect the overall scaling because it is so much smaller (see
Appendix C).

This plot makes it clear that the susceptibility peak be-
comes narrower in larger system sizes because the high
temperature side is cut off more sharply. This is due to the
inclusion of larger vortices that more completely destroy the
magnetization stabilized by finite-size effects. It can also be
seen that while the peak maxima occur near ωL, where δ(ω)
has a point of inflection, the peak position disperses somewhat
with size.

The high temperature tail of the susceptibility is ex-
pected to scale [3] as χ ∼ ξ 2−η. According to Eq. (66),
it will therefore depend on reduced temperature as
exp [(2 − η)(1.07πω−1/2)], independent of system size. This
behavior is illustrated in Fig. 8(c). The slope of the curves
ranges from 6.17 to 6.24 for system sizes of ln(L)= 5 to
9, respectively. If the predicted value of η = 1/4 at TKT is
used, then the slope is expected to be 5.88. Because the
slopes in Fig. 8(c) are determined significantly above TKT,
the value of η is likely to be less than 1/4 and depen-
dent on the temperature range [24]. If this is indeed the
case, then a value of η = 0.16 ± 0.01 is derived from the
slopes.

B. Contribution due to fluctuations in the
magnetization direction

With the inclusion of explicit fourfold anisotropy, the di-
rection of the magnetization may no longer be determined
by the applied field but rather by the magnetic easy axes.
It is then important to distinguish between the susceptibility
with a small field applied along the magnetization (as in the
previous section), and with a field applied perpendicular to
the magnetization. Experimental measurements are expected
to include both.

The anisotropy can be represented by an anisotropy field
Han, and a small oscillating field Happ can be simultaneously
parallel and perpendicular to an easy axis. The effective field
Heff along which the scalar magnetization is aligned in equi-
librium is

Heff = Happ + Han. (84)

For definiteness, the x axis is chosen along an easy axis, and
the angle φ of the magnetization is measured from this axis.
Applying a field along the y axis and measuring the magnetic
response along the y axis gives the measured susceptibility
tensor component χ

app
yy :

1

χ
app
yy

= ∂H app
y

∂My
= ∂H eff

y

∂My
− ∂H an

y

∂My
, (85)
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where the anisotropy field is derived from the anisotropy
energy density8 E an.

H an
y = −∂E an(M, φ)

∂My
. (86)

Recalling that the effective field is by definition parallel
to the magnetization in equilibrium, the reciprocal of the ef-
fective susceptibility component can be expressed in planar
circular components as

∂H eff
y

∂My
= ∂M

∂My

∂

∂M
H eff sin φ = sin2 φ

∂H eff

∂M
. (87)

∂H eff/∂M is just the (reciprocal of the) susceptibility due to
fluctuations of the scalar magnetization calculated in the pre-
vious section for the finite-size KT transition. For consistency
of notation with previous sections, this susceptibility will be
referred to simply as χ . Combining the results of Eqs. (85) to
(87), the experimentally measured susceptibility per spin is

χ app
yy = χ

sin2 φ + ∂2E an (M,φ)
∂M2

y
χ

. (88)

Since the sum in the second term in Eq. (1) represents
the total anisotropy energy of the system, dividing this sum
by N gives the anisotropy energy per spin. The sum itself is
evaluated through the block spin renormalization procedure
that is halted when the system is represented by a single block
of size L, anisotropy parameter Y4(ln L) and spin orientation
〈θ〉 = φ. The anisotropy energy per spin can therefore be
written as9

E an = 2TY4(ln L)

N
(1 − cos 4φ). (89)

Using planar circular coordinates once again to perform the
partial derivatives in Eqs. (86) and (85) yields

χ
app
yy T

N
= χT/N

sin2 φ + 32Y4
〈M〉2 [χT/N] cos2 φ cos 4φ

. (90)

With the oscillating field applied along the y axis, the low
temperature domains with magnetization aligned along the
easy axis parallel to the y axis have φ = π/2, and

χ
app
yy

N
T → χT

N
≡ χ||T

N
. (91)

This is the result from the previous section.
For domains aligned along the easy axis parallel to the x

axis, φ = 0 at low temperatures where the anisotropy persists,
and the susceptibility is given by

χ
app
yy T

N
→ 〈M〉2

32Y4
≡ χ⊥T

N
. (92)

As the temperature increases, Y4 decreases and goes to zero
near ωL. In the absence of anisotropy in Eq. (90), the scalar

8This section continues to use the same units as Ref. [32]. For
SI units, factors of the saturation magnetization MS and magnetic
permeability μ0 must be included.

9Again, in this section units with kB = 1 and lattice constants of
unit length are used.

FIG. 9. (a) The transverse susceptibility in Eq. (92) is plotted
against ω/ω0 for a range of system sizes. The susceptibility is scaled
by H (L) L1/4 as defined in Eq. (83), to allow direct comparison to
the longitudinal susceptibility plotted in Fig. 8(b). (b) The measured
susceptibility in an applied field, χ app, depends upon the alignment
of the magnetization at low temperature and the applied field. The
curve labeled χ|| is for a low temperature domain aligned parallel to
the applied field. The curve with a small admixture of χ⊥ represents
a low temperature domain slightly misaligned with the applied field.
The curve with a large admixture of χ⊥ represents a situtation where
there is a distribution of low temperature domains aligned both
parallel and perpendicular to the applied field. The inset shows the
high temperature region on an expanded scale. Above ω ≈ ωL , the
anisotropy disappears and χ⊥ → 0. Then all the curves are given by
χ|| and have the characteristic functional form of a KT transition. The
calculations use the parameters ln(L) = 7 and D = 1.9 × 10−5.

magnetization aligns with the applied field, giving φ = π/2.
Then the susceptibility is once again given by Eq. (91). For a
sample with a distribution of both domain types, the suscep-
tibility will be given by a linear combination of the limiting
forms χ|| and χ⊥.

The transverse susceptibility χ⊥T/N in Eq. (92) is plotted
in Fig. 9(a) for a range of system sizes. The susceptibility
is scaled in the same way as the plot of χ||T/N in Fig. 8(b)
to allow comparison. It can be seen that the transverse sus-
ceptibility due to angular fluctuations about the easy axis is
much larger than the longitudinal susceptibility due to fluc-
tuations of the magnitude of the magnetization. In addition,
the low temperature limit (near ω = 0) of χ⊥ increases much
more quickly as the system size is decreased, than does χ||.
However, as the anisotropy is screened near and above ωL,
χ⊥T/N goes quickly to zero and the longitudinal suscepti-
bility is dominant. As a result, the high temperature tail of
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the susceptibility displays the characteristic functional form
of a KT transition regardless of the domain orientations at low
temperature. This is consistent with an isotropic paramagnetic
vortex gas.

This behavior can be seen in part (b) of the figure. The
curve labeled χ||T/N represents a low temperature domain
with the magnetization aligned with the applied field, whereas
that with a small admixture of χ⊥ represents a situation where
the field direction is slightly misaligned with the magnetiza-
tion. These two curves are shown more clearly in the insert
to the figure, using a magnified scale. These curves look very
much like the experimental curves categorized as type I in the
experimental investigation of Fe/W(001) films by Atchison
et al. [29] The third curve, with a large admixture of of χ⊥,
represents a situation where there are equal portions of low
temperature domains aligned along each of the two easy axes.
This curve is similar to those categorized as type II in the
experimental study, including the observed factor of roughly
ten in amplitude compared to type I measurements. Although
the precise numerical factors for the admixtures in Fig. 9(b)
are not fitted, but rather chosen for illustrative purposes, the
similarity between these first-principles calculations and the
experimental measurements is very encouraging. These re-
sults support the suggestion that the difference between type
I and type II measurements in the finite-size KT transition
has to do with the low temperature domain distribution in the
film and the distinction between χ⊥ and χ|| introduced by the
fourfold anisotropy.

VI. CONCLUSIONS

The magnetic response of the finite, anisotropic 2DXY
model has been investigated using the renormalization group
equations, by extending previous work on the infinite,
anisostropic model and the finite, isotropic model. An exact
solution of the RG equations in the critical approximation
confirms previous numerical simulations that showed that a
finite-size KT transition is preserved for low anisotropy, and
a 2D Ising transition occurs at high anisotropy. The boundary
line between these two behaviors depends upon the product
of the anisotropy and system size through the system param-
eter B = 2γ

√
D ln L. In a more restricted region of parameter

space, the effect of fourfold anisotropy can be incorporated
into the description of the isotropic system by the simple
substitution αt → ω ≡ αt + 2γ 2D. The temperature range
within which the critical approximation is valid is consider-
ably narrower than the finite-size KT transition itself, so that
the coupling, fourfold anisotropy and magnetic susceptibility
found in this way provide qualitative insight, but are not
quantitatively reliable.

The results of the critical approximation validate solving
the RG equations by treating the fourfold anisotropy as a
perturbation. This approximation proves to be quantitatively
reliable across the full temperature width of the finite-size KT
transition, so long as the system parameter B is small enough.
A principle finding is that the coupling no longer exhibits
physically unreasonable behavior (moving from ferromag-
netic to antiferromagnetic, and then diverging), but rather
approaches zero asymptotically. The universal jump of the
coupling seen in an infinite system becomes instead a uni-

versal inflection point of steepest descent where ωL = 4.61ω0

and δ = 0.395. At ωL, the unbinding of vortex-antivortex
pairs becomes significant. The dependence of ωL on sys-
tem size implies that the correlation length and magnetic
susceptibility retain the exponential temperature dependence
characteristic of the KT transition. Furthermore, the fourfold
anisotropy Y4(�, ω) calculated in the perturbative approxi-
mation no longer exhibits an unphysical cusp, or becomes
complex, near ωL

The perturbative approximation gives an improved calcu-
lation of the effective exchange coupling, vortex density and
anisotropy throughout the ∼10-K range of the finite-size KT
transition in a ferromagnetic film with fourfold anisotropy.
These in turn permit an improved calculation of the magnetic
susceptibility, χ||, due to the fluctuations in the magnitude of
the magnetization. The improved results for the anisotropy
and scalar magnetization are used to find the transverse sus-
ceptibility, χ⊥, for angular fluctuations of the magnetization
about an easy axis. Together, these susceptibility components
give a more complete account of the magnetic response of the
2DXY model with fourfold anisotropy.

An initial comparison to the measurements of the magnetic
susceptibility of Fe/W(001) ultrathin films is very encour-
aging. Suitable combinations of χ|| and χ⊥ are in good
qualitative agreement with, for instance, Figs. 1(a) and 4(a) in
Atchison et al. [29]. In particular, the two distinct shapes of the
measured susceptibility termed types I and II by those authors
agree well with the combinations of χ|| and χ⊥ expected
for situations where low temperature magnetic domains are
aligned along single or multiple fourfold easy axes. Because
χ⊥ → 0 near ωL, both types of measurements exhibit the
exponential dependence on temperature characteristic of a
finite-size KT transition, indicating an isotropic high temper-
ature phase. The experimental value of η = 0.12 ± 0.09 in
the temperature range where the exponential dependence is
observed is consistent with the present calculations, where
η = 0.16 ± 0.01. The implication is that careful fitting of type
I measurements can be used to understand details of vortex
pair formation, and fitting of type II measurements can be used
to study the evolution of the anisotropy in the finite-size KT
transition. This process is underway.

These results open numerous opportunities to study spin
wave and vortex properties in an ultrathin ferromagnetic
film. The RG treatment of the 2DXY model uses an effec-
tive medium approach, where the presence of vortices and
bound vortex pairs alters the medium in which spin waves
propagate. Therefore these calculations can be a basis for
interpreting the imaginary, dissipative components of the mea-
sured susceptibility. For example, Y4(�, ω) can be used to
determine the energy barrier to dissipative domain switching
due to an applied field. Also, the variation of the domain
wall energy and activation energy for domain wall pinning
in the effective medium are determined by a combination
of Y4(�, ω) and δ(�, ω). These dissipative process can be
studied as the system moves from a low temperature sys-
tem dominated by spin wave excitations to one dominated
by vortices. The imaginary component of the susceptibil-
ity above the transition may provide information on the
dynamics of the vortex gas itself. These investigations are
underway.
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APPENDIX A: EXACT SOLUTION IN THE CRITICAL
APPROXIMATION

Beginning with Eq. (24)

−
∫

d� =
∫ x f

xi

dx√
x2 + αt

√
x2 + αt + 4γ 2D

, (A1)

a standard transformation will show that this is an elliptic
integral of the first kind. Since the flow is from a larger
positive initial value of xi to a final value near x f = 0, it is
advantageous to write the integral in a form where it is domi-
nated by the endpoint near x f = 0. Then it is insensitive to the
initial value and the scaling properties will not depend it, as
is expected. This can be accomplished through the coordinate
transformation z = 1/x. Then

−
∫

d� =
∫ 1/x f

1/xi

−dz√
1 + αtz2

√
1 + (αt + 4γ 2D)z2

. (A2)

Letting ν =
√

αt + 4γ 2D z,

√
αt + 4γ 2D

∫
d� =

∫ √
αt+4γ 2D

x f
√

αt+4γ 2D
xi

dν√
(1 + ν2)(1 + (k′)2ν2)

,

(A3)

where (k′)2 = (αt )/(αt + 4γ 2D). This is a well-known trans-
formation of the standard form of elliptic integrals of the first
kind [37], obtained by letting ν = tan φ. Then

√
αt + 4γ 2D

∫
d� =

∫ arctan(
√

αt+4γ 2D
x f

)

arctan(
√

αt+4γ 2D
xi

)

dφ√
1 − k2 sin2 φ

,

(A4)

where k2 = 1 − (k′)2 = (4γ 2D)/(αt + 4γ 2D). At this point,
as the value of xi is not important, let xi → ∞. Recalling that
the upper limit of � is ln L (in units of the lattice constant), the
integral becomes√

αt + 4γ 2D ln L = F (φ f , k), (A5)

with F (φ f , k) the elliptic integral of the first kind, φ f =
arctan(

√
αt + 4γ 2D/x f ), and x f = x(ln L).

The expression in Eq. (A5) can be formally written in a
way that isolates x(ln L) by using the inverse elliptic function
[37] am(u, k). If

u = F (φ f , k), (A6)

then the inverse function is defined as

φ f = am(u, k). (A7)

In the present case,

arctan(
√

αt + 4γ 2D/x(ln L)) = am(
√

αt + 4γ 2D ln L, k),
(A8)

x(ln L) =
√

αt + 4γ 2D

tan[am(
√

αt + 4γ 2D ln L, k)]
. (A9)

Although the inverse elliptic integral cannot be solved
analytically, some general results can be extracted by employ-
ing the Jacobi elliptic functions sn(u, k), and cn(u, k), defined
as [37]

sn(u, k) = sin[am(u, k)] = sin φ f , (A10)

cn(u, k) = cos[am(u, k)] = cos φ f . (A11)

First note that, for the present problem,

uk = (
√

αt + 4γ 2D ln L)

√
4γ 2D

αt + 4γ 2D

=
√

4γ 2D ln L ≡ B, (A12)

where B is a constant for a given system of size L and
anisotropy h4 → √

D. Then the expression for x(ln L) can be
written as

x(ln L) =
√

4γ 2D

k

cn(B/k, k)

sn(B/k, k)
. (A13)

To determine the functional form of Y4(ln L) and Y (ln L)
in this temperature range, Eq. (17) can be combined with
Eq. (A13) to give

x2 = 4γ 2D

k2

cn2(B/k, k)

sn2(B/k, k)
= γ 2

( D

Y4
− Y4

)2

− αt . (A14)

Using the property [37] cn2(u, k) = 1 − sn2(u, k) and revers-
ing the sign of the square in Y4(ln L),

4γ 2D

k2sn2(B/k, k)
− 4γ 2D

k2
= γ 2

( D

Y4
+ Y4

)2

− 4γ 2D − αt .

(A15)

Recalling the definition of k2, the second term on the left side
cancels with the last two terms on the right. The third Jacobi
elliptic function [37],

dn(u, k) =
√

1 − k2 sn2(u, k), (A16)

is used to substitute for sn2(B/k, k). Then the square root of
both sides can be taken to give

2
√

D√
1 − dn2(B/k, k)

= D

Y4
+ Y4. (A17)

This quadratic equation, and the corresponding quadratic
equation for Y , can be solved for two physical roots:

Y4√
D

=
√

1 − dn(B/k, k)

1 + dn(B/k, k)
, (A18)

Y√
D

=
√

1 + dn(B/k, k)

1 − dn(B/k, k)
. (A19)
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The condition for the beginning of the finite-size transition
[18] is that K = 2/π or x = 0. According to Eq. (A13), this
corresponds to

cn(B/k0, k0) = 0, (A20)

where

k0 =
√

4γ 2D

αt0 + 4γ 2D
(A21)

defines the value of reduced temperature t0 where the transi-
tion begins. The periodic property [37] of the function cn(u, k)
requires that

B/k0 = κ (k0), (A22)

with κ (k0) the complete elliptic integral of the first kind.
Combining the definition of B in Eq. (A12) with these results
gives an expression for the transition point

αt0 = (
1 − k2

0

) [
κ (k0)

ln L

]2

. (A23)

In the limit of vanishing fourfold anisotropy, k0 → 0, and
κ (0) = π/2, so that finite-size transition point is in agreement
with Eq. (28). The end of the finite-size transition, where the
vortices unbind, occurs when[18] x → −∞ at k = kL. This
condition is given by Eq. (A13) as

sn(B/kL, kL ) = 0, or B/kL = 2κ (kL ). (A24)

This implies kL � k0. In the limit where there is no anisotropy,
this agrees with Eq. (33). The correlation length at and above
tL is

ξ ∼ L = exp

[
2κ (kL )√

αt + 4γ 2D

]
; t > tL, (A25)

and has the functional form expected for a KT transition.

APPENDIX B: POLYNOMIAL APPROXIMATION OF THE
INTEGRAL EXPRESSION FOR δ(�)

The critical approximation uses the quadratic approxima-
tion f (δ) = 1/2 (δ − 1)2. When this expression is used in
Eq. (60) of the perturbative approximation, the integral for
δ(�) become

dδ

4
[

1
2 (1 − δ)2

] + 1
2ωδ2

= dδ

X (δ)
= −d�, (B1)

where

X (δ) = a + bδ + cδ2. (B2)

with a = 2, b = −4 and c = 2 + ω
2 . This standard integral

yields the expression [37]

δ =
1 +

√
ω

2 tan (
√

ω ln L)

1 + ω
4

. (B3)

For comparison, the solution for the critical approximation,
given by Eq. (26), is

δ = 1 +
√

ω

2 tan (
√

ω ln L)
. (B4)

A better representation of f (δ) is given by two piecewise
polynomials. For δ � 3/4, the integral expression for δ(�) in
Eq. (60) is well-approximated by

dδ

4
[

1
2δ(1 − δ)2

] + 1
2ωδ2

= −d�. (B5)

The integral in δ is now of the form

∫ δ f

δi

dδ

δX (δ)
(B6)

with a = c = 2, and b = −4 + ω/2, and the discrimanent q =
4ac − b2 = 1

2ω(8 − 1
2ω). The solution is [37]

1

2a
ln

δ2

X (δ)

∣∣∣∣
δ f

δi

− b

a
√

q
arctan

(
2cδ + b√

q

)∣∣∣∣
δ f

δi

, (B7)

Evaluating this expression in the limit δi → ∞ is well-
behaved and gives

1

2a
ln c + b

a
√

q

π

2
. (B8)

After considerable algebra, the following closed expression
for δ f = δ(�) is obtained

δ = 1 − ω

8
+

√
ω
2

(
8 − ω

2

)
4 tan

{√
ω
2 (8− ω

2 )

2− ω
4

ln
[
L

(
δ2

(1−δ)2+ ωδ
4

) 1
4
]} . (B9)

In the limit that ω/8 
 1, this reduces to Eq. (62).
When δ = 1, the coupling reaches the critical value where

the finite-size KT transition begins. This is denoted by ω =
ω0. This condition can be found by using a small angle ap-
proximation for the tangent function in Eq. (B9), when the
angle is just less than π/2. Then

π

2
√

ω0

(
1 − ω0

8√
1 − ω0

16

)
− 1

4

(
1 − ω0

8

1 − ω0
16

)
= ln

[
L

(
4

ω0

)1/4]
.

(B10)
In the limit where ω0/8 
 1, this reduces to Eq. (65).

For δ � 3/4, the polynomial approximation to f (δ) in
Fig. 3 is given by

δ[δ2 − 1.73δ + 0.77)] = δ

[(
7

8
− δ

)2]
+ 1

40
δ2. (B11)

This leads to an integral for δ(�) of the same form as Eq. (B6),
but with a = (7/4)2, b = −7 + (1/10 + ω/2), c = 4, and

q =
(

1

10
+ ω

2

)(
14 −

(
1

10
+ ω

2

))
. (B12)
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After considerably more algebra, the result is

δ = 6.9 − ω
2

8
+

√(
1

10 + ω
2

)(
13.9 − ω

2

)
8 tan

{
49
16

√
( 1

10 + ω
2 )(13.9− ω

2 )
(6.9− ω

2 )

[
ln L(ω) + 8

49 ln
(

δ2

( 7
4 −2δ)2+( 1

10 + ω
2 )δ

)]} . (B13)

In this expression,

ln L(ω) = ln(L) + 1

4
ln

(
9

1 + 3ω

)
− 8

49
ln

(
9

2(1 + 3ω) + 1
5

)
−

(
2 − ω

4

)
√

ω
2

(
8 − ω

2

) arctan

⎡
⎣−

√
ω
2

(
8 − ω

2

)
1 − ω

2

⎤
⎦

+ 16

49

(
6.9 − ω

2

)
√(

1
10 + ω

2

)(
13.9 − ω

2

) arctan

⎡
⎣−

√(
1

10 + ω
2

)(
13.9 − ω

2

)
0.9 − ω

2

⎤
⎦. (B14)

The complicated expression for ln L(ω) arises due to match-
ing the two quadratic approximations at δ = 3/4. Note that
both of the arctangent functions return angles in the second
quadrant.

APPENDIX C: EVALUATION OF THE SUSCEPTIBILITY

In the low temperature, spin wave limit of the harmonic
model, Archambault et al. [32] show that the magnetization is
of the form

〈M〉 = exp

(
−G(0)

2K

)
, (C1)

where G(0) is the Green’s function propagator for the square
lattice, evaluated at the origin. That is,

G(r) = 1

N

∑
q �=0

e−iq·r

εq
, (C2)

evaluated at r = 0. In this Fourier sum over wave vectors q in
2D,

εq = 4 − 2 cos qx − 2 cos qy. (C3)

A discrete evaluation gives

G(0) = ln (bN )

4π
, (C4)

where [36] b = 1.845 . . ., as before. Because of this logarith-
mic dependence on system size, the 2DXY model has intrinsic
finite-size effects, with

〈M〉 =
(

1

bN

) 1
8πK

(C5)

converging very slowly even for macroscopic N .

1. The vortex susceptibility

Since the experimental system [29] has ln L ≈ 7, the con-
tinuum limit of the sum should be a very good approximation.
Because δ is a function of the scalar ln L in the perturbative ap-
proximation, there is no differentiation between the in-plane
x and y axes, and the integral can be most easily performed in
circular, planar coordinates (ρ, θ ). In moving from a square to

a circular system while maintaining the number of spins,

N = L2 = π

4
�2, (C6)

where �/2 = L/
√

π is the maximum value of ρ. The min-
imum value of ρ, corresponding to the bare lattice spacing
before geometric scaling, is 1/

√
π . In the continuum limit,

the vortex susceptibility in Eq. (80) is

χV T

N
= 1

N

[∫ 2π

0
dθ

∫ �
2

1√
π

ρdρ exp

(
− πG(0)

2δ(ln 2ρ )

)]

− exp

(
− πG(0)

2δ(ln �)

)
. (C7)

Using the change of variables � = ln 2ρ,

χV T

N
= π

2N

[∫ ln �

ln 2√
π

d� exp (2�) exp

(
−πG(0)

2δ(�)

)]

− exp

(
− πG(0)

2δ(ln �)

)
. (C8)

Finally, substituting for G(0) and N ,

χV T

N
= 2

�2

[∫ ln �

ln 2√
π

d� exp (2�) exp

(
− ln (

√
bπ�/2)

4δ(�)

)]

− exp

(
− ln (

√
bπ�/2)

4δ(ln �)

)
. (C9)

Recall that this is an equation for χV (ω) because of the
implicit temperature dependence of δ(�, ω). In the low tem-
perature limit, the coupling δ renormalizes very slowly with
size, so that it is essentially constant. Then the vortex suscep-
tibility is identically zero.

To display the scaling properties of the vortex susceptibil-
ity, the first term in Eq. (C7) is integrated by parts. One portion
of the integration by parts cancel exactly with the second term
in Eq. (C7), leaving

χV (ω)T

N
= − 8

�2

∫ �
2

1√
π

dρ ρ2 dδ

dρ

πG(0)

2δ2(ρ, ω)

× exp

(
− πG(0)

2δ(ρ, ω)

)
. (C10)
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Here the dependence of the susceptibility on ω through the
coupling is displayed explicitly. The universal point where
the finite-size transition begins, regardless of the system size,
is ω = ω0, where δ = 1. In the finite, anisotropic system,
Eq. (B9) is used to give

dδ(ρ, ω0)

dρ

∣∣∣∣
δ→1

= −ω0

2ρ

1

1 + sin2 [
√

ω0 ln
(
ρ
(

4
ω0

)1/4
)] .

(C11)
Equation (65) is used to substitute for the expression
ln (4/ω0)1/4 within the argument of the sine function.

dδ(ρ, ω0)

dρ

∣∣∣∣
δ→1

= −ω0

2ρ

1

1 + sin2
[

π
2 + √

ω0(ln (ρ/�)−1/4)
] .

(C12)

Because ω0 is small, the sine function is essentially unity.
Replacing these results, and the expression for G(0) from
Eq. (C4), into Eq. (C10) produces

χV (ω0)T

N
≈ ω0

2�2
ln (

√
bπ�/2)

×
∫ �

2

1√
π

dρ ρ

δ2(ρ, ω0)
(
√

bπ�/2)−
1

4δ(ρ,ω0 ) . (C13)

This integral contains only powers of 1/δ(ρ, ω0), and this is
well-behaved near ω0, as can be seen in Fig. 4. The integral
over ρ dρ will cancel the prefactor of �−2. The expected
scaling with size at the onset of the finite-size transition is
therefore approximately

χV (ω0)T

N
= 4χV (ω0)T

π�2
∼ ω0 ln (

√
bπ�/2) �−1/4. (C14)

The detailed scaling of the susceptibility depends on the de-
pendence of ω0 on ln L. As can be seen in Fig. 5(a), this
depends upon the approximations made in the solution of the
RG equations.

2. The spin wave susceptibility

In the continuum limit, the expression for the spin wave
susceptibility in Eq. (79) can be written as

χST

N
= π2

8N

∫ �
2

1√
π

dρ

δ2(ln 2ρ)
exp

(
− πG(0)

2δ(ln 2ρ)

)

×
∫ 2π

0
dθρ G2(ρ, θ ). (C15)

This can be integrated by parts by identifying

dv =
∫ 2π

0
dθρ G2(ρ, θ )dρ, (C16)

so that

v =
∫

dρ

∫ 2π

0
dθρ G2(ρ, θ ) ≡

ℵ(ρ)∑
r=1

G2(r). (C17)

In this expression, ℵ(ρ) = πρ2 limits the sum to the spins
within a disk of radius ρ. A numerical summation [32] shows
that

N∑
r=1

G2(r) = 1

N

∑
q �=0

(
1

εq

)2

= N

c
, (C18)

with c = 258.59 . . . Letting

u = π2

8N

1

δ2(ln 2ρ)
exp

(
− πG(0)

2δ(ln 2ρ )

)
, (C19)

du = π2

8N

(
πG(0)

2δ
− 2

)
1

δ3
exp

(
−πG(0)

2δ

)
dδ. (C20)

Collecting these together,

χST

N
= π2ℵ(ρ)

8cN

1

δ2(ln 2ρ )
exp

(
− πG(0)

2δ(ln 2ρ)

)∣∣∣∣
�/2

1/
√

π

− π2

8c

∫ δ(ln �)

δ(ln 2√
π )

dδ

(
2ρ(δ)

�

)2(
πG(0)

2δ
− 2

)

× 1

δ3
exp

(
−πG(0)

2δ

)
. (C21)

Since ℵ(ρ = �/2) = N , the lower limit in the first line of
Eq. (C21) is ∼1/N smaller than the upper limit, and is ne-
glected. In the remaining integral, the expression 2ρ(δ, ω)
can be evaluated by isolating the term ln(L) = ln(2ρ) in the
geometric scaling equations (B9) or (B13) and (B14) that give
δ(ln 2ρ, ω).

χST

N
= π2

8c

1

δ2(ln �)
exp

(
− πG(0)

2δ(ln �)

)

− π2

8c

∫ δ(ln �)

δ(ln 2√
π )

dδ

(
2ρ(δ)

�

)2(
πG(0)

2δ
− 2

)

× 1

δ3
exp

(
−πG(0)

2δ

)
. (C22)

Again, in the low temperature limit, δ = πJ/2kBT scales very
slowly with size, so that the coupling J is essentially constant.
This means the integral portion of the spin wave susceptibility
is zero because the limits of the integral are essentially the
same. The first term is then equivalent to

χST

N
= T 2

2J2c
〈M〉2, (C23)

in agreement with Archambault et al. [32].
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