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Qubit-photon bound states in superconducting metamaterials
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We study quantum features of electromagnetic radiation propagating in a one-dimensional superconducting
quantum metamaterial composed of an infinite chain of charge qubits placed within two stripe massive su-
perconducting resonators. The quantum-mechanical model is derived assuming weak fields and that, at low
temperatures, each qubit is either unoccupied or occupied by a single Cooper pair. We demonstrate the emergence
of two bands of single-photon qubit bound states with the energies lying outside the photon continuum—one is
above and the second slightly below the linear photon band. The higher energy band varies slowly with the
qubit-photon center of mass quasimomentum. It becomes practically flat provided that the electromagnetic
energy is far below the Josephson energy when the latter is small compared to the charging energy. The
dispersion of the lower band is practically identical to that of free photons. The emergence of bound states may
cause radiation trapping indicating possible applicability for the control of photon transport in superconducting
qubit-based artificial media.
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I. INTRODUCTION

During the last two decades, there has been considerable
progress in the design of quantum devices based on waveguide
structures. The latter is composed of quantum emitters with
natural or artificial atoms, i.e., qubits, that are coupled with a
one-dimensional (1D) optical channel. Numerous applications
in quantum simulation, quantum information processing, and
communication have already been discussed in the literature
[1–10]. Despite all efforts, the level of control and preserva-
tion of quantum coherence achieved in these media is still
beyond the requirements for a practical realization of operable
quantum information devices. This difficulty could be over-
come by a better understanding of the nature of the interaction
between matter and radiation. Accordingly, intensive studies
of light-matter interaction in waveguide structures are neces-
sary.

Superconducting quantum metamaterials (SCQMMs) are
man-made material units that are physically interesting while,
additionally, quite promising in the fabrication of quantum
devices [11–18]. These engineered media are made of peri-
odically arranged artificial atoms that form superconducting
quantum (SCQ) bits while interacting with electromagnetic
(EM) fields inside one-dimensional transmission lines (TLs).
Owing to spatial confinement, tunability of the SCQ param-
eters, as well as the ability to tailor the photon dispersion
relation in specific setups, SCQMMs may be conveniently en-
gineered to provide tunable “atom”-field interaction that can
reach regimes ranging from weak to ultrastrong coupling. This
is of particular interest in the case of qubit interaction with
quantized radiation fields when strong qubit-photon coupling

leads to effective photon-photon and qubit-qubit correlations.
The latter allows for the emergence of interference effects
with possible practical applications. For example, photons
may exhibit a nontrivial dispersion relation such as band edges
and band gaps. Thus quantum metamaterials (QMMs) may
be viewed as a photonic crystal [19] with strong potential for
practical applications. Additionally, they provide a means for
devising comprehensive studies of practical and fundamental
aspects of the artificial atom-field interaction.

Investigations of the emergence of atom-photon or qubit-
photon bound states [20–32] are of particular importance due
to their consequences for radiation propagation [28,33–35],
preservation of quantum coherence, and entanglement
[32,35,36]. For example, the prohibition of the free propaga-
tion of radiation could be attributed to the formation of these
bound states. Band generation within the continuum can be
used potentially for quantum information storage [28,33,34]
and construction of photon memory devices [22]. On the
other hand, the recent discovery of topological excitations in
SCQMMs implies that, by the engineering of topologically
nontrivial QMMs, it would be possible to tackle unavoid-
able structural irregularities in SCQMMs. This is since the
creation of photon-bound states provides the preservation of
quantum coherence for times large enough to perform quan-
tum information processing [35]. A further important possible
application is the exploitation of qubit-photon bound states in
what regards entanglement preservation in quantum informa-
tion processing [32,36].

In the present paper we study qubit-photon bound states
that emerge via the interaction of an EM field propagat-
ing through SCQMMs; the latter consist of a massive, two
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stripe superconducting resonator filled with a large num-
ber (N � 1) of Cooper pair box (CPB) or charge qubits.
Such an essentially three-dimensional structure differs sub-
stantially from the most common realization of SCQ-based
waveguiding structures [1] and SCQMM setups [12] in which
pointlike SCQs are built-in coplanar resonators. In these
two-dimensional architectures, the qubit-photon interaction is
described within the Jaynes (Tavis)-Cummings [1] and Dicke
model Hamiltonians [29,30]. A realistic theoretical model for
the proposed setup is derived in the next section in terms of
classical variables, while its quantization is performed in the
third section.. It differs substantially from those used in other
studies of atom-light interaction in the engineered media so far
[29,30], i.e., the modified Dicke Hamiltonian. In particular,
while the pure photon part is practically identical to those
encountered so far, here the qubit-photon interaction comes
from the two-photon processes and has been rarely studied
within the cavity and circuit QED.

Analogous two-photon interactions were studied within a
quite different context by Fistul and Ustinov [37]. It was
shown that the excitation of cavity modes in distributed
Josephson junctions (JJs) or parallel arrays of junctions may
lead to an enhancement or suppression of the escape rate from
the superconducting state. Predicted effects are determined
through the applied magnetic field and may be experimentally
verified. Additionally, we point to the examples in which
one encounters formally equivalent effective two-photon in-
teractions, appearing in the model Hamiltonian after the
application of dispersive, Schriefer-Wolf–type, unitary trans-
formation to the Rabi, Dicke, and Jaynes-Cummings models.
Of particular relevance are theoretical studies of cavity QED
systems [2] in the ultrastrong dispersive regime. Finally, an
additional example in this direction is provided by a scheme
for nondestructive detection of microwave photons [38]. A
practical realization is a device based on an ensemble of
transmon qubits dispersively coupled to a single resonator.

The paper is organized as follows: Descriptions of the
model and the classical Hamiltonian are introduced in Sec. II.
The quantization procedure is given in Sec. III. The two-
particle Schrödinger equation and its solutions are discussed
in Sec. IV. Results and conclusions are summarized in Sec. V.
Details of the mathematical derivation are given in the Appen-
dices.

II. EXPERIMENTAL SETUP: THE PROPOSAL

We investigate the nonclassical properties of electromag-
netic radiation propagating along the SCQMM in a design
visualized in Fig. 1. It is made of an infinite (N → ∞), 1D
periodic SCQ array, with period �, placed in a TL consisting
of two infinite bulk superconductors separated by a distance
d; we consider d being of the same order of magnitude as �

[15–18] [Figs. 1(a) and 1(b)]. The thickness of the supercon-
ducting strips is taken for simplicity to be �. Each SCQ is a
tiny superconducting island connected to each bank of the TL
through a JJ. The control circuitry for each SCQ [Fig. 1(c)]
consists of a gate voltage source Vg coupled to it through a
gate capacitor Cg and allows for local control of the SCQMM
by altering independently the state of each SCQ [11]. The
SCQs exploit the nonlinearity of the Josephson effect and the

FIG. 1. Illustration of the proposed setup of SCQMM. (a) A
chain of Cooper pair box qubits inside the two-stripe transmission
line. Each unit cell contains a tiny superconducting island connected
with TL banks through two Josephson junctions, for the regions of
the dielectric layers (blue). The light-red pulse represents a distri-
bution of the EM field within the device; the vector potential of the
propagating EM pulse is shown schematically out of scale. (b) The
side view of the SCQMM. The magnetic field penetrates through
free space between the islands. (c) Schematic view of the SCQMM
unit cell (left pane) and its equivalent scheme (right pane). The
tunnel junctions (supposed identical) are connected in series with
an isolated island (enclosed in dashes) between them. The control
circuitry of the charge qubit consists of a gate potential Vg coupled to
a superconducting island through the gate capacitor Cg. V indicates
applied voltage on banks. Cu,d denotes capacitance of the upper lower
JJ, while Qu, d and ϕu, d denote charges passing through them (u and
d) and their conjugated phase differences, respectively. In particular,
ϕu(d ) = φu(d ) − φm stands for the phase difference between the SC
order parameters in the upper (lower) bank and SC island.

large charging energy resulting from nanofabrication to create
artificial mesoscopic two-level systems.

A. Classical model Hamiltonian

To set up the problem, we first derive the classical model
Hamiltonian and subsequently perform its quantization. We
assume that an EM wave with vector potential �A = Az(x, t )ẑ
propagates along with the superconducting TL. The direction
of propagation is parallel to the superconducting electrodes
while �A is perpendicular to the direction of the EM wave
propagation.

The total Hamiltonian is a sum of isolated single unit cell
Hamiltonians; the latter is considered to be in the form of
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a two junction serially connected JJ segment. In the case
when all islands between the neighboring JJs are identical and
satisfy the criteria for application of semiclassical approxima-
tion, the Hamiltonian of such a multijunction system may be
easily deduced employing the straightforward generalization
[39] of Feynman’s semiclassical treatment of a single JJ [40].
Thus, as sketched in Appendix A4, the two-node truncation
of the JJ array Hamiltonian leads to the simple model of two
independent JJs [15–18]. In the present case, the semiclassical
approximation is not satisfied since the tiny island, the core of
the “device,” is highly sensitive to charge fluctuations so that
even a single Cooper pair (CP) substantially affects the state of
the CPB. For that reason, the model Hamiltonian electrostatic
energy should be treated appropriately taking into account
quantum effects and discreteness of charge in addition to
the effects of external voltages and currents. Comprehensive
treatment of these effects is far beyond the scope of the present
paper. Thus, we shall focus on the main points, discussing, in
brief, the impact of applied voltages: the gate (Vg) and bias (V )
ones. In the present context, accounting for these effects has
no practical importance, since we will restrict ourselves to the
unbiased case, also neglecting the gate voltage. In that sense,
our treatment here could be understood as an attempt at the
consistent foundation of the model and to point out some ways
for further work in the framework of more realistic models.
In particular, applied voltages and currents may provide the
means for external control of the properties of a proposed
device. Derivation of the single unit Hamiltonian relies on
extensive work on studies of the properties of nanoscale JJs
[41–49] used for manipulation of the tunneling of single elec-
trons and Cooper pairs and design of so-called single electron,
Bloch, and Cooper pair transistors.

Single unit Hamiltonian

The equivalent scheme of the single unit cell of our device
is represented in Fig. 1(c). The total energy of each of these
units consists of the electrostatic and Josephson tunneling en-
ergies. The electrostatic energy includes the charging energies
of the JJs as well as the energy stemming from the external
circuit and gate circuits characterized by the voltages V and
Vg, respectively. In Appendix A we give a brief derivation of
both energy terms.

The charging energy of the JJ with a certain number of
Cooper pairs passing through it is simply that of a charged
capacitor. In the absence of external voltages this circuit may
be described in terms of charges, Qu and Qq on capacitors
Cu and Cd , respectively. Alternatively we may use the net
charge on the island q = Qu − Qd and the total charge Q as
seen from the outside as defined in Eq. (A2). Both pairs of
these variables have their conjugated phases. Thus, one may
choose either {Qu, ϕu}, {Qd , ϕd}, or {Q, ψ} and {q, ϕ}, where
relative phases read ψ = (ϕu + ϕd )/2 and ϕ = ϕu − ϕd . For
further convenience, we took the latter possibility and the
model Hamiltonian is given by Eq. (A7):

H = Q2

4CΣ

+ a2(n − Qg/e)2

2CΣ

+ V Q − 2EJ cos(ψ/2) cos ϕ,

CΣ = Cu + Cd + Cg ≡ 2CJ + Cg. (1)

We assume that both junctions are identical, so that Cu =
Cd = CJ and Eu

J = Ed
J . Introducing the numbers of Cooper

pairs (nu, nd ) passing through the junctions we may ex-
press charges (Q and q) as follows: Q = −e(nu + nd ) and
q = −2e(nu − nd ) ≡ −2en. Finally, Qg = VgCg/2 stands for
the offset charge.

The first term in (1) corresponds to electrostatic energy
coming from the total charge across the two JJs connected in
series. The second one is the electrostatic energy of the island
with the two junctions in parallel, while the third one is the
work done by the DC voltage source on the total charge passed
through it. The gate charge and corresponding contribution
were neglected.

B. Truncated model

In a given moment of time, the system dynamics
may be characterized by the number n and its conjugated
phase, while Q and ψ represent the external control param-
eters. Their role will be discussed subsequently. We restrict
ourselves to the zero voltage case where the classical system
Hamiltonian becomes that of the sum of two noninteracting
JJs:

H =
∑
i=l,u

h̄2

Ec
ϕ̇i

2 − EJ

∑
i=l,u

cos ϕi. (2)

For convenience, we have reintroduced here the phase differ-
ences ϕu,(d ).

In order to express charges with phases we employed the
following correspondence: ni = − h̄CJ

e2 ϕ̇i. Following [17], we
may choose the order parameters of massive superconduct-
ing banks as φd = φu ≡ 0 so that these phases read ϕu =
φu − φm ≡ −φm and ϕd = φm − φd ≡ φm. This choice could
be justified in the present special case in the absence of the
applied voltages. Otherwise, for example when Vg �= 0, bank
phases should be introduced. For example, one may choose
φu = −φd ≡ φ0/2 [41,44], leading to a renormalization of the
Josephson energy: EJ −→ EJ (φ0) = EJ cos(φ0/2). Phase φ0

plays the role of control parameter determined by external
parameters, Vg in particular.

The energy parameters Ec = 2e2

CJ
, EJ = �0IC

2πc , �0 = hc
2e , Ic,

CJ , and c are the junction charging energy, so-called Joseph-
son energy, flux quantum, critical current, junction capacity,
and speed of light, respectively. In the presence of an EM
field Josephson phase difference ϕi acquires the gauge term
and reads

ϕu(t ) = −φm − 2π

�0

∫ 2

1

�A(�r) · d�l,

ϕd (t ) = φm − 2π

�0

∫ 2

1

�A(�r) · d�l. (3)

Generalizing (2) to the whole qubit lattice and accounting
for the energy of the EM field inside the SCQMM {Hem =

1
8π

∫
[E2

n (�r) + B2
n(�r)]d3r} we may derive a total model Hamil-

tonian.
To facilitate practical calculation we first introduce a di-

mensionless amplitude of the vector potential αn = 2πd
�0

An.

Next we perform an approximate integration in (3):
∫ 2

1
�A(�r) ·

d�l ≡ 2πd
�0

An. It is justified for the present setup provided that
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the separation d between the superconducting stripes and the
period �, i.e., the center-to-center distance between qubits, is
of the same order of magnitude and much smaller than the
wavelength of EM radiation. Under these conditions one may
neglect variation of the vector potential within each cell. As
a result, the integration in Eq. (3) is trivial (see for example
[15–17]). The same approximations were used in evaluating
EM energy. Thus, neglecting the spatial variation of an electric
and magnetic field within the unit cell, the energy of the EM
field, in particular the unit cell, may be approximated as

Hem ≈ V

8π

(
E2

n + B2
n

)
,

V = �2d, −volume of the unit cell. (4)

Following [15,17] we have neglected the contribution of
the electric field, while the fraction that originates from the
magnetic field was accounted for through the discretization
procedure introduced in [15–17]:

B(x, t ) = ∂A(x, t )

∂x
→ Az

n+1 − Az
n

�
. (5)

Here Eem = 1
8π�d ( �0

2π
)
2

is the so-called electromagnetic en-
ergy introduced in [15], determining the speed of “light” in
the qubit chain, which, in dimensionless units, reads β =√

Eem/EJ . It, together with the ratio γ = EC
EJ

, represents the
main quantitative characteristic of CPB qubits, their deriva-
tives (transmons for example), and networks made of them. In
our analysis the reciprocal value plays the role of qubit-photon
coupling constant: μ = 1/γ ≡ EJ/EC .

In accordance with the preceding analysis, the semiclassi-
cal Hamiltonian reads

H =
∑

n

[
2h̄2

Ec
φ̇2

n − 2EJ cos φn cos αn

+2h̄2

Ec
α̇2

n + Eem(αn+1 − αn)2

]
. (6)

III. QUANTIZATION AND TWO-LEVEL APPROXIMATION

The quantum-mechanical versus (semi)classical descrip-
tion of qubit–EM-field coupled systems still has certain
controversies [50]. Nevertheless, at low temperatures, a fully
quantum treatment is justified, while the dissipation is negli-
gible. Under these conditions, the quantum state of an island
is determined by the number of extra Cooper pairs on them.
In addition, EM radiation exhibits quantum features for weak
(small amplitude) EM fields when their modes are populated
with just a few photons, one or two, per wavelength [51]. At
this stage, we must note that the tunneling of the single CP
between the banks and island does not affect the state of the
former which contains a large number of CPs so the deficiency
or the excess of the single CPs has no particular significance.
Formally we quantize our model by introducing the photon
creation and annihilation operators in real (direct) space and
Josephson phase and Cooper pair number operator in a Cooper
pair number basis. In such a way, through a few intermediate
steps, described in Appendix A, the classical Hamiltonian
Eq. (6) can be approximated by the quantum one describing

the interaction of a collection of two-level systems and the
quantized multimode electromagnetic field.

A. EM field

In the quantum regime the electromagnetic field is weak,
i.e., the dimensionless amplitude of its vector is small and can
be treated as quantum fluctuation, i.e., αn → α̂n 
 1. This en-

ables us to expand cos α̂n ≈ 1 − α̂2
n

2 . Next, we quantize the EM
field in two steps: first we define the generalized momentum
Pn = 2h̄2

Ec
α̇n canonically conjugated to αn. Subsequently we

treat photon variables as operators αn → α̂n, Pn → P̂n satis-
fying the commutation relation [α̂n, P̂m] = ih̄δm,n. It holds for
the transformation Eq. (7) through which we introduce photon
creation and annihilation operators in real (direct) space:

α̂n = 1

2

√
EC

h̄ω
(an + a†

n), P̂n = ih̄

√
h̄ω

Ec
(a†

n − an). (7)

B. Qubit subsystem

Similarly, in quantization of the CPB qubit subsystem we
introduce a pair of canonically conjugated variables (opera-
tors): the phase φ → φ̂ and Cooper pair number operator N̂ =
−i ∂

∂φ̂n
, [φn, N̂n] = i. Then we rewrite Eq. (6) in the Cooper

pair number basis |N〉, using the correspondence N̂ = −i ∂
∂φn

and noticing that e±iφ̂n |N〉 = |N ± 1〉. Next, in the obtained
Hamiltonian we exploit the fact that in charge and transmon
regimes only the few lowest levels are relevant and we may
restrict ourselves to the reduced state space in which the single
island can be unoccupied (N = 0) or occupied by a single
Cooper pair (N = 1). The resulting Hamiltonian is nondiag-
onal in reduced number basis |0〉, |1〉, and in the next step we
diagonalize the free qubit part by means of transition to the
energy eigenbasis (|e〉, excited state; |g〉, ground state) per-
forming the norm preserving unitary transformation Eq. (A3).
Finally, after neglecting the photon number nonpreserving
terms, i.e., those ∼a2

n and ∼a†2
n , we obtain the quantized

model Hamiltonian:

H = �
∑

n

|e〉n〈e| + h̄ω
∑

n

a†
nan − J

∑
n

a†
n(an+1 + an−1)

+
∑

n

[B(|e〉n〈g| + |g〉n〈e|) − A|e〉n〈e|]a†
nan. (8)

Here the first term represents the Hamiltonian of the qubit sub-
system with level splitting between the excited- and ground-
state � = 2ε (ε = √

E2
J + E2

C). It is represented here in terms
of the operator |e〉〈e| to emphasize that initially the system is
prepared so that all qubits are excited. Such atoms are usually
called emitters. In the pure photon Hamiltonian, the two terms
in the second line correspond to the typical boson tight bind-
ing model describing photon hopping between neighboring
qubits. Parameters ω and J stay for the photon frequency and
the photon interqubit tunneling amplitude, respectively:

h̄ω =
√

2EemEC + ECE2
J

�
, J = EemEC

2h̄ω
. (9)

Considering the noninteracting case, pure photon, and qubit
system, the present model is analogous to those appearing
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frequently in a theoretical description of charge and energy
transfer in various contexts. Recent application concerns the
photonic band-gap materials where it addresses the photon
hopping motion in coupled resonator (cavities) waveguides
[30,31]. Quantum metamaterials built of such structures with
embedded tunable quantum emitters, i.e., qubits, opened a
perspective for further development of quantum technological
devices, and for studies of nonclassical features of light [51].
Finally, the last term is related to the qubit-photon interaction.
It possesses two components: the attractive one, measured by
the parameter A, and repulsive ∼B:

A = E2
J Ec

4h̄ωε
, B = EJE2

c

8h̄ωε
. (10)

For the convenience we rewrite the interaction Hamiltonian
in terms of “atomic” (pseudospin) operators (σ †,−,z):

Hi =
∑

n

[B(σ †
n + σ−

n ) − Aσ †
n σ−]a†

nan. (11)

The operators in the attractive interaction term may be
rearranged as follows: σ †σ−a†a ≡ σ †aσ−a† − σ †σ−. Thus,
it may be understood to originate on account the simultaneous
excitation (σ †a) and deexcitation (σ−a†) of the nth qubit by
an absorption and emission of the single photon. On the other
hand, repulsive interaction comes from the photon scattering
by qubits resulting in their excitation (|e〉〈g|) and deexcitation
(|g〉〈e|).

For the comparison, we recall that in coplanar geometry
setups [1,2] a qubit-photon interaction may be accounted for
within the Dicke and Jaynes-Cummings models in which the
coupling term, in rotating wave approximation, reads

HJC = g
∑

n

σ †
n an + σ−

n a†
n. (12)

Here the qubit-photon interaction is achieved by single-
photon processes corresponding to the excitation of a qubit
atom in general, by the absorption of the single photon
(|e〉〈g|a) and vice versa: qubit deexcitation by the emission
of a single photon.

Note that here we cannot distinguish whether the inter-
action is attractive or repulsive. This becomes possible only
through deriving the eigenvalue equation, the counterpart of
Eq. (21) from the next paragraph, based on the sign of the
effective interaction parameter.

So far, the interaction resulting from the setup proposed
here was not encountered in the studies of the light-matter
interaction either with natural or artificial media. Neverthe-
less, formally very similar models may appear in solids and
magnetic semiconductors [52], when a single electron creates
microferromagnetic domains flipping the spins of neighboring
ions, while the interaction Hamiltonian is given in terms of the
s − d ( f ) being very similar to (11).

In addition, an effective qubit-photon interaction formally
equivalent to the attractive part of (11) appears in a theoretical
examination of QED systems [2] by means of the Schriefer-
Wolf–type unitary transformation. By analogy with [2] the
present setup may be suitable for studies and achievement of
qubit readout. We also point out that the studied waveguide
is a chain of unit cells [sketched in Fig. 1(b)] each of which
contains a single qubit (atom) and may be viewed as an optical

resonator. That is, our waveguide is the set of a large number
(N � 1) of coupled resonators (unit cells) with one atom per
“cavity,” which imply translational invariance of the system.
Nevertheless, most often, the waveguide is a set of “res-
onators” designed independently of atoms. In these structures
atoms are arranged arbitrarily, depending on the particular
application or research subject. Various settings are possible
and a particular waveguide may be populated by a few (N )
atoms, with one or more atoms per cavity [22–32]. One more
distinction must be made in comparison with related systems.
In that respect we refer to a quantum metamaterial designed of
a coplanar, mostly superconducting, resonator waveguide and
several embedded qubits [1–4], where the qubits are linearly1

coupled to the resonator modes.

IV. QUBIT-PHOTON BOUND STATES

A. Vector of state and the Schrödinger equation

The wave function which diagonalizes Hamiltonian Eq. (8)
has the form of a single-photon dressed qubit (atom) state:

|�〉 =
∑

m

uma†
m|0〉|g〉 +

∑
m,n

�m,nσ
†
n a†

m|0〉|g〉m,

σ †
n = |e〉n〈g|, �m,n = �n,m. (13)

Here the probability amplitudes satisfy the normalization con-
dition ∑

m

|um|2 +
∑
m,n

|�m,n|2 = 1. (14)

The first term in state Eq. (8) corresponds to the case when a
single photon is excited in site m with probability amplitude
um, while the qubit remains in its ground state. The second
term of a vector of state Eq. (8) corresponds to synchronized
excitation of nth qubit and photon at site m. The symmetry
property �m,n = �n,m reflects the translational invariance of
the chain: solutions must remain invariant when the photon
and qubit excitation exchange position in simultaneous exci-
tation of the qubit at site m and the photon at the nth site.
Owing to orthogonality of 〈g|〈0|am and 〈g|〈0|σ−

m an and |�〉
we may project Schrödinger equation H |� >= E |� > onto
σ †

ma†
n|g〉|0〉 and a†

m|g〉|0〉. In this way we obtain a system of
coupled equations for the amplitudes �m,n and um:

(E − �)�m,n + J

2
(�m,n+1 + �m,n−1 + {m � n})

= −A�m,nδm,n + Bumδm,n,

Eum + J (um+1 + um−1) = B�n,n. (15)

We will solve it by employing Fourier transform. Owing to
the translational invariance we pick

�m,n = 1√
N

ei K (m+n)
2 ��m−n, um = 1√

N
∑

k

ukeikm�. (16)

In this way, the second equation in Eq. (15) attains a simple
form and may be readily solved for um, which then may be

1The interaction is of the first order in field amplitude and contains
only the terms linear in photon operators.
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eliminated from the first one. In the resulting equation we em-
ploy the translational invariance and take m − n = l; next we
perform Fourier transform �l = 1

N 1/2

∑
q �qeiql�. This finally

yields

[E − � + 2J cos(K�/2) cos �q]�q

=
[

− A + B2

(E + 2J cos K )

](
1

N
∑

q

�q

)
, (17)

where K and q stand for center of mass and relative qubit-
photon quasimomenta, while E = E − h̄ω. On the basis of
this equation it is easy to find the relation for eigenvalues:
we first find �q = . . ., then we multiply both sides of the last
equation with 1/N and then sum up both sides over q. This
results in

1 = 1

N
∑

q

1

(ε − δ + cos(K�/2) cos q�)

×
[

− a + b2

(ε + cos K�)

]
, (18)

where a = A/2J , b = B/2J , δ = �/2J , and ε = E/2J stand
for the normalized coefficients. For further convenience we
express Eq. (21) in terms of just two parameters, β and γ ,
which fully characterize the proposed system:

a = 1

4β2

1√
1 + γ 2

, b = γ a

2
,

h̄ω

2J
= 2 + 1

2β2
√

1 + γ 2
, (19)

δ = 2

√
2

(1 + γ 2)

γ β2
+

√
1 + γ 2

2γ β4
.

Bound state solutions, if any exist, must lie outside the two-
particle continuum (TPC) appearing in the absence of qubit-
photon interaction, that is, in accordance with Eqs. (8) and
(11) for (A = B = 0). In that case Eq. (17) has solution

ε(q, K ) = δ − cos q� cos
K�

2
, (20)

so that the bound state energy must lie either below the lower
energy bound

δ − | cos(K�)/2|
or above the higher one:

δ + | cos(K�)/2.

B. Eigenvalue equation

The summation over q may be performed in accordance
with the rule 1

N
∑

q〈· · · 〉 = 1
2π�

∫ π/�

−π/�
dq〈· · · 〉. This, provided

that |ε − δ| > 1, yields the self-consistent equations for en-
ergy eigenvalues:

1 = a′(K )
sgn(ε − δ)√

(ε − δ)2 − cos2 K�/2
,

a′(K ) = −a + b2 1

ε + cos K�
. (21)

Eigenequation (21) is a nonlinear [in ε(K )] transcendental
equation and cannot be solved analytically. Nevertheless, its
nonlinearity implies that it may have multiple solutions. That
is, qubit-photon bound states if any exist should exhibit multi-
band structure. To facilitate practical calculations, to examine
the possible appearance of multiband structure of the qubit-
photon spectra, and finally to compare the present analysis
with the related preceding ones [52–54] we rewrite Eq. (21)
in the self-consistent form

ε(K ) − δ = ±
√

a′2(K ) + cos2 K/2, (22)

in which, on the right hand side, ε(K ) appears implicitly
through a′(K ) in accordance with Eq. (21). This “solution”
recalls the exact one in the limit a′(K ) → a, appearing fre-
quently in different contexts. Examples are numerous, and,
despite different physical backgrounds, formally identical so-
lutions may be found in many cases such as bound states of
two photons, phonons, or excitons [53]. In addition, the prob-
lem of the bound state of an impurity atom and its vibrational
or magnetic environment [52–54], within the simplest models,
also reduces to this elementary solution.

C. Existence of solutions

Solubility of Eq. (21) requires non-negativity of its right
hand side; thus, for ε − δ < 0 (ε − δ > 0), eigenenergy solu-
tions exist provided that a′(K ) < 0 [a′(K ) > 0]. Accordingly,
signs (+ or −) in Eq. (22) stand for ε − δ < 0 and ε − δ > 0,
respectively. Also, throughout the paper, we may call a′(K )
the effective qubit-photon interaction strength. The term “ef-
fective” is used here to emphasize the self-consistency of (22),
and to point to its formal equivalence with the exact ones ap-
pearing when a′(K ) → a. To find ε(K ) we have performed the
numerical calculation focusing on the case ε − δ < 0 when
an effective qubit-photon interaction is attractive. An oppo-
site case was not considered since our numerical calculations
have shown that the solutions to the eigenvalue problem exist
for unrealistic values of system parameters, for example, for
γ ≈ 100.

D. Solutions: Analytical considerations

Before presentation of the results of our numerical calcula-
tions we perform some auxiliary analytic analysis evaluating
explicitly eigenenergies at band edges: ε(±π ) ≡ ε(π ). In that
limit (22) becomes

ε(π ) − δ = ±a

(
1 − a( γ

2 )2

ε(π ) − 1

)
. (23)

The signs (+) or (−) correspond to ε − δ > 0 and ε − δ < 0,
respectively. The last equation, in both cases, is the quadratic
in ε(π ) implying the appearance of two bands, both for attrac-
tive and repulsive effective interaction. Solutions of Eq. (23)
are

ε±(π ) = 1 + δ − a

2
± 1 − δ + a

2

√
1 +

( aγ

1 − δ + a

)2

for the attractive effective interaction,

ε±(π ) = 1 + δ + a

2
± 1 − δ − a

2

√
1 −

( aγ

1 − δ − a

)2

for the repulsive one. (24)
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For the present setup δ is large as compared with other sys-
tem parameters. Thus, the ratios in both square roots may
be regarded as small quantities. This enables us to expand
both square roots in Eq. (24) in terms of “small parameter”
{aγ /[1 − (δ ± a)]}2 which yields the corresponding asymp-
totic relations:

ε− ≈ δ − a −
( aγ

2

)2

1 − δ + a
,

ε+ ≈ 1 +
( aγ

2

)2

1 − δ + a
for the attractive effective interaction, (25)

ε− ≈ δ + a −
( aγ

2

)2

δ + a − 1
,

ε+ ≈ 1 +
( aγ

2

)2

1 − δ − a

for the “repulsive′′ effective interaction.

Based on these equations we may estimate under which con-
ditions particular types of solutions exist. For that purpose, we
recall the existence conditions of the solutions (Sec. IV C). We
focus on repulsive interaction for which our numerical calcu-
lations do not find meaningful solutions for reliable parameter
values. According to Eq. (21) its solutions exist provided that
a′(K ) > 0. Substituting the corresponding asymptotic solu-
tion from Eq. (24), the third equation in Eq. (25), into a′(π )
we obtain the following condition:

a

(
γ

2

)2

> ε(π ) − 1 ⇔ δ + a < 1 + a

(
γ

2

)2

for ε+. (26)

On the other hand, solution ε−, after subtracting the δ on both
sides, attains the form

ε − δ = 1 − δ +
γ 2

4

δ + a − 1
.

Note that neither of these conditions can be satisfied in the
present case. Namely, the condition for the existence of so-
lutions in the case of repulsive interaction reads ε − δ < 0,
which cannot be satisfied in practice due to large values of δ.
In particular, for that purpose γ � 100 is required.

E. Solutions: Numerical results

Numerical calculations were performed for the values of
system parameters covering both charging (large γ ) and
Josephson (small γ ) regimes. In view of coupling strength,
i.e., μ = 1/γ , charging and Josephson regimes correspond to
the weak and strong coupling limit, respectively. Note that,
besides β < 1, there are no particular restrictions on the value
of the dimensionless speed of light β in QMM. In particular, in
literature [15,16,18,55], β was taken to vary from a few tenths
up to 1. Here we restrict ourselves to β � 0.5 since the results
for its larger values do not exhibit any substantial qualitative
difference. Thus, we used β = 0.1, 0.2, and 0.5, while, for
each β, we took four values of coupling constant ranging from
weak to strong coupling limit: μ = 0.1, 0.2, 1, and 5. For
the comparison with previous work [53,54] we, in parallel

with current results, present those corresponding to pure at-
tractive interaction, choosing B = 0.

Our results are illustrated in Figs. 2–4. The energy spec-
trum consists of the TPC, green shaded area, and two
well-separated bands of qubit-photon bound states (band 1
and band 2). They both appear for each set of system parame-
ters and lie below TPC.

The magnitude of the energies of the band 1 bound states
as well as the gap between them and TPC are largest for very
small β (Fig. 2). As the coupling constant increases, both the
gap and band 1 magnitude increase. At the same time, we
observe the band 1 flattening with the rise of the coupling
constant, implying the possible slowing down and stopping of
qubit-photon bound states. These are general characteristics
of energy spectra for all β. To be more specific, qualitatively
the same behavior is observed for higher values of β with a
somewhat different degree of change.

For example, for β = 0.1 (Fig. 2) the magnitudes of the
band 1 bound state energies and those of the free states, for
each K , are almost 20 times higher than for β = 0.5. In addi-
tion, in the strong coupling limit (μ = 5), band 1 is practically
indistinguishable from bound states corresponding to pure
attractive interaction. As μ decreases band 1 and solutions for
the pure attractive interaction separate and both gradually tend
towards the TPC.

As presented in the lower part of Figs. 2–4, in parallel with
band 1 the second one (band 2) appears. This is the band
lying deeply below band 1. It emerges from the competition
between the attractive and repulsive interaction and lies below
the free photon band. Its dependence on parameters β and μ

exhibits similar behavior as for band 1. That is, for large β,
irrespective of the values of μ, band 2 and the free photon
band are practically identical, due to complete compensation
of the effective attractive and repulsive interactions. That is,
QMM is fully transparent, and there are no bound states. For
smaller values of β attractive interaction dominates over the
repulsive and qubit-photon bound states to emerge, provided
that γ is high enough. Nevertheless, QMM is still transparent
but for qubit-photon bound states.

V. CONCLUDING REMARKS

In this paper, we have studied the energy structure and
cooperative qubit-photon excitation of a one-dimensional su-
perconducting quantum metamaterial. The system consists
of a large number (N � 1) of periodically arranged charge
qubits placed inside a massive two-strip superconducting res-
onator. In such a setup each unit cell of SCQMM [sketched
in Fig. 1(b)] can be viewed as an electromagnetic resonator,
while the system as a whole represents a coupled-resonator
(cavities) waveguide with a single atom per cavity. This setup,
upon quantization, exhibits interesting features in comparison
to those used so far in the studies of matter-light interaction.
In particular, the system is translationally invariant since the
number of cavities and atoms match: each cavity contains a
single qubit. So far the studies on the subject were carried
out under the condition that the individual atoms [22–26,28–
32] or their ensembles [27] are placed in different resonators
and where translational invariance has been rarely accounted
for [32,57]. Furthermore, the qubit-photon interaction is
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FIG. 2. Graphical illustration of the energy spectrum [ε(K )] of the system for β = 0.1, and for four different values of μ. The green shaded
area corresponds to a two-particle continuum. Blue solid lines correspond to qubit-photon bound states. For comparison we have a band of
bound states in the absence of repulsive interaction (red dotted lines) and pure photon dispersion curve ε(q) (green dotted lines).

substantially different from that utilized in most studies on the
subject [22–31] which were carried out within certain mod-
ifications of the celebrated Dicke model [56]. The essential
difference is that it now has two components, the attractive

and the repulsive one originating on account of different two-
photon processes: (i) the attractive one due to simultaneous
excitation (σ †a) and deexcitation (σ−a†) of the nth qubit by
absorption and emission of the single photon and (ii) the
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FIG. 3. Energy spectrum [ε(K )] of the system for β = 0.2, and for the same values of μ as in the preceding case.

repulsive one from the photon scattering by qubits accompa-
nied by their excitation and deexcitation.

The main consequence of these peculiarities is the emer-
gence of the mixed qubit-photon bound states. In particular,
the energy spectrum of the qubit-photon bound states consists

of two widely separated bands. The higher energy one lies far
over the photon continuum. It is very close to that observed
in the simple case of pure attractive interaction and appears
for large ε when a′ → a. The results, almost identical to the
preceding ones [53,54], were observed. The lower band, near
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FIG. 4. Same as in previous cases for β = 0.5.

the band edges, lies within the photon continuum. Based on
the recent findings [29,30] we expect that these bound states
may exert a considerable influence on the photon transport
properties. It relies upon the possibility of radiation trapping
due to the creation of these bound states [29,30]. In the present

case, due to translational invariance of the system, radiation
trapping concerns the qubit dressing by photon cloud. The
formation of bands of such complexes implies their free prop-
agation. Band flattening with changes in the values of system
parameters points to the slowing down and stopping, in the
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final instance, of these mixed states. In such a way, devices
based on SCQMM described here could be used for manip-
ulating light propagation and open up a means for realizing
operable quantum devices.

The proposed setup is convenient for the practical realiza-
tion of such devices with controllable parameters which could
be achieved by applying external voltages. The simplest way
is to attach a gate voltage leading to a renormalization of the
Josephson energy: EJ −→ EJ cos φ0/2 with the bank phase
playing the role of external control parameter determined by
a gate voltage.

Alternatively, one may apply a constant external magnetic
field in parallel with a propagating EM field. Thus, both cases
may be described by an effective interaction Hamiltonian
resulting from (1) after the following redefinition of the di-
mensionless vector potential αn → αn + α0. This leads to a
modified interaction term in (6):

Hi ≈ −2EJ cos ϕn

[
cos α0

(
1 − α2

n

2

)
− sin α0 αn

]
.

Varying external parameters it would be possible to change the
tunneling energy and to “flip” between different regimes. A
particularly interesting situation arises when α0 = π/2 when
the interaction term, upon quantization, attains the form iden-
tical to that encountered in coplanar arrangements.

Finally, let us comment on the generality of our results. We
do not expect that the features of the propagating signal, in the
proposed geometrical arrangement, should not qualitatively
depend on the particular choice of the type of qubit [11]. Thus,
for simplicity and a certain flexibility for the manipulation of
the single qubit, we use here charge qubits, while any other
type would give analogous results.
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APPENDIX A: CLASSICAL MODEL HAMILTONIAN

1. Electrostatic energy

The equivalent scheme of the single unit cell of our de-
vice is represented in Fig. 1(c). The Hamiltonian of such a
system contains two terms: electrostatic energy and Joseph-
son’s coupling term. The electrostatic energy contains the
charging energies of the JJs and the ones coming from the

external circuit and gate circuits characterized by the voltages
V and Vg, respectively.

The charging energy of the JJ with a certain number of
Cooper pairs passing through it is simply that of a charged
capacitor. In the absence of external voltages this circuit may
be described in terms of charges, Qu and Qq on capacitors Cu

and Cd . Alternatively, we may use the net charge on the island

q = Qu − Qd

and the total charge Q as seen from the outside. Now we recall
[49] that the external circuit sees the two JJs in series as a
single capacitor with total capacitance:

C = CuCd

Cu + Cd
. (A1)

On the other hand voltage across the junctions is U = Qu

Cu
+

Qd

Cd
and may be represented as a ratio of the total charge over

the total capacitance Q
C . Accordingly, the total charge reads

Q = CuQd + Cd Qu

Cu + Cd
. (A2)

On the basis of the preceding analysis we obtain a well-known
result for electrostatic energy in the absence of applied volt-
ages.

Thus, accounting for both contributions, the electrostatic
energy [49] attains a relatively simple form:

EC = Q2
u

2Cu
+ Q2

d

2Cd
≡ Q2

2C
+ q2

2(Cd + Cu)
. (A3)

The first term here stays for the charging energy of the two
seriously connected JJs; the second one corresponds to the
electrostatic energy of the island, which sees two JJs in paral-
lel. Accounting for the charge discreteness we may represent
charges Qu(d ) and q through the corresponding numbers of
Cooper pairs nu(d ) and elementary unit of charge e: Qu(d ) =
−2enu(d ) and q = 2e(nu − nd ). External voltages modify the
above expressions and give rise to additional electrostatic en-
ergy. More precisely, applying gate voltage Vg to the electrode
of the gate capacitor attached to the island induces a “gate
charge,” Qg = CgVg. As a result, the net charge on the island
is reduced by that amount [7] and now reads

q = Qu − Qd − Qg ≡ ne − CgVg, (A4)

while the island capacitance CΣ = CU + CD + CG. Thereby,
the gate voltage contribution to electrostatic energy may be
accounted by means of (A3) after the substitution q → q − Qg

and CU + CD → C.
The external voltage (V ) attached to the banks produces

another contribution coming from the fact that the whole sys-
tem behaves like an effective charged particle [total charge Q
as given by (6)] in the external voltage so that the electrostatic
energy is simply E ext

c ∼ QV . As in the case of gate voltage,
we have to take CU + CD → CΣ .

2. Josephson tunneling energy

We show that the tunneling part of the Hamiltonian of
the double barrier Josephson junction (DBJJ) may be rep-
resented simply as a sum of two terms corresponding to
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FIG. 5. An array of JJs connected in a series. A two junction
segment, corresponding to a single unit cell of SCQMM introduced
in Sec. II and represented in Fig. 1, is singled out.

tunneling energy on the particular junction. For that purpose,
we employ Feynman’s semiclassical theory. We focus on the
Josephson part since the electrostatic energy was considered
in the preceding subsection. In the case of the DBJJ, three
superconducting segments separated by two JJs [Fig. 1(c)]—a
wave function in upper, middle, and lower segments—may
be written as �p(t ) = √

npeiφp(t ) and p = u, m, l , while the
tunneling between them now is simply

Ht = −K
√

nunu(�∗
u �m + �∗

m�l + c.c.)

≡ −K[cos(φu − φm) + cos(φm − φd )],

where K represents a phenomenological parameter, the so-
called Josephson constant [40]. Substituting the CP wave
function as given above and, in analogy with [40], assuming
that CP numbers in each segment are almost the same and
equal to n0, we found that the interaction (tunneling) Hamil-
tonian of the double JJ system is the sum of Hamiltonians of
two independent JJs:

Ht = −Kn0(cos ϕu + cos ϕd ) (A5)

where parameter Kn0 may be identified with Josephson en-
ergy.

3. Total classical Hamiltonian

On the basis of the preceding analysis we may write the
total model Hamiltonian. Taking that junctions are identical,
in terms of pairs {Qu; ϕu} it reads

H = Q2
u + Q2

d

2CJ
+ V Q + (Qu − Qd )Qg − EJ (cos ϕu + cos ϕd ),

(A6)

while in terms of {Q; ψ} and {q, ϕ} it is

H = Q2

2CTot
+ (n − Qg)2

2CΣ

+ V Q − 2EJ cos(ψ/2) cos ϕ.

(A7)

4. Classical model Hamiltonian: An alternate derivation

The simplest way to derive the Hamiltonian of a single unit
of the qubit chain illustrated in (1) is to view it as an isolated,
two junction, segment of a 1D array of a large number of
connected JJs [39,46]. Provided that the structure illustrated
in Fig. 5 is built of a large number of identical JJs separated

by identical macroscopic islands, it may be described by the
following Hamiltonian:

H = Ec

∑
l

φ̇2
l −

∑
〈n,m〉

EJ cos(φl − φp), (A8)

where < l, p > denotes summation over the nearest neigh-
bors, while Ec and EJ stand for the charging and Josephson
energy, respectively. Restricting the whole system to just two
JJs (A8) attains the form of two independent JJs.

APPENDIX B: QUANTIZATION OF
THE MODEL HAMILTONIAN

1. Quantization of the qubit subsystem

After expansion cos αn ≈ 1 − α2
n/2, and transition in

Cooper pair basis number |N〉 together with the correspon-
dence N̂ = −i ∂

∂φn
, and noticing that e±iϕ̂n |N〉 = |N ± 1〉, we

rewrite Hamiltonian Eq. (6) in the charge basis as follows:

H =
∑

n

2ECN̂2
n |N〉n〈N | − EJ

∑
n

|N〉n〈N + 1|

+ |N + 1〉n〈N | + EJ

2

∑
n

(|N〉n〈N + 1| + |N + 1〉n〈N |)

×α2
n +

∑
n

(
2h̄2

Ec
α̇2

n + Eem(αn+1 − αn)2

)
. (B1)

In the reduced state space, in which a single island can be
unoccupied (N = 0) or occupied by a single Cooper pair
(N = 1), we obtain the reduced Hamiltonian

H = −EcN +
∑

n

[
Ecτ

z
n − EJτ

x
n

] +
∑

n

×
(

2h̄2

Ec
α̇2

n + Eem(αn+1 − αn)2 + EJ

2
τ x

n α2
n

)
(B2)

where τ x
n = |1〉n〈0| + |0〉n〈1| and τ z

n = |1〉n〈1| − |0〉n〈0|,
while in deriving the above result we have used an apparent
relation N̂n = |1〉n〈1| + |0〉n〈0| ≡ 1. The qubit component of
this Hamiltonian may be diagonalized by means of the norm
preserving (1 = |e〉n〈e| + |g〉n〈g|) transformation:

τ x
n = cos η(|e〉n〈g| + |g〉n〈e|) − sin η(|e〉n〈e| − |g〉n〈e|),

τ z
n = cos η(|e〉n〈e| − |g〉n〈g|) + sin η(|e〉n〈g| + |g〉n〈e|),

tan η = EJ

EC
, sin η = − EJ√

E2
c + E2

J

, cos η = EC√
E2

c + E2
J

.

(B3)
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In such a way, up to an irrelevant constant, the above Hamiltonian becomes

H =
∑

n

{
2ε|e〉n〈e| +

[
EJEc

2ε
(|e〉n〈g| + |g〉n〈e|) − E2

J

ε
|e〉n〈e|

]
α2

n

}
+

∑
n

(
2h̄2

Ec
α̇2

n + Eem(αn+1 − αn)2 + E2
J

2ε
α2

n

)
. (B4)

Here ε =
√

E2
c + E2

J , so that ±ε denote the ground (−) and excited (+) energy eigenstates.

2. Quantization of the EM field

As usual we consider αn 
 1 and expand the corresponding “cosine” term in interaction. First we define the generalized
momentum Pn = 2h̄2

Ec
α̇n canonically conjugated to αn. Now we treat photon variables as operators αn → α̂n and Pn → P̂n,

requiring that they satisfy the commutation relation [αn, Pm] = ih̄δm,n, which holds for the following transformation:

α̂n = 1

2

√
EC

h̄ω
(an + a†

n), P̂n = ih̄

√
h̄ω

Ec
(a†

n − an). (B5)

Substitution of the above expressions in Eq. (A4) yields the following model Hamiltonian:

H =
∑

n

[
2ε|e〉n〈e| + h̄ωa†

nan − EemEC

2h̄ω
a†

n(an+1 + an−1)

]
+ EJEC

8h̄ωε

∑
n

[Ec(|e〉n〈g| + |g〉n〈e|) − 2EJ |e〉n〈e|](a†
n + an)2,

Hs = �
∑

n

|e〉n〈e| + h̄ω
∑

n

a†
nan − J

∑
n

a†(an+1 + an−1) −
∑

n

[A|e〉n〈e| − B(|e〉n〈g| + |g〉n〈e|)a†
nan], (B6)

h̄ω =
√

2EemEC + ECE2
J

�
, J = EemEC

2h̄ω
, A = E2

J Ec

4h̄ωE
, B = EJE2

c

8h̄ωE
. (B7)
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M. PEJIĆ et al. PHYSICAL REVIEW B 105, 235439 (2022)

[20] S. John and J. Wang, Quantum optics of localized light in a
photonic band gap, Phys. Rev. B 43, 12772 (1991).

[21] S. John and T. Quang, Photon-hopping conduction and collec-
tively induced transparency in a photonic band gap, Phys. Rev.
A 52, 4083 (1995).

[22] Z. R. Gong, H. Ian, L. Zhou, and C. P. Sun, Controlling
quasibound states in a one-dimensional continuum through
an electromagnetically-induced-transparency mechanism,
Phys. Rev. A 78, 053806 (2008).

[23] T. Shi and C. P. Sun, Lehmann-Symanzik-Zimmermann reduc-
tion approach to multiphoton scattering in coupled-resonator
arrays, Phys. Rev. B 79, 205111 (2009).

[24] Tao Shi, Ying-Hai Wu, A. Gonzalez-Tudela, and J. I. Cirac,
Bound states in boson impurity models, Phys. Rev. X 6, 021027
(2016).

[25] N. M. Sundaresan, R. Lundgren, G. Zhu, A. V. Gorshkov,
and A. A. Houck, Interacting Qubit-Photon Bound States with
Superconducting Circuits, Phys. Rev. X 9, 011021 (2019).

[26] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atom-field
dressed states in slow-light waveguide QED, Phys. Rev. A 93,
033833 (2016).

[27] Lei Qiao and Chang-Pu Sun, Atom-photon bound states and
non-Markovian cooperative dynamics in coupled-resonator
waveguides, Phys. Rev. A 100, 063806 (2019).

[28] A. Goban, C. L. Hung, S. P. Yu, J. D. Hood, J. A. Muniz, J. H.
Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O.
Painter, and H. J. Kimble, Atom-light interactions in photonic
crystals, Nat. Commun. 5, 3808 (2014).

[29] P. Longo, P. Schmitteckert, and K. Busch, Few-Photon Trans-
port in Low-Dimensional Systems: Interaction-Induced Radia-
tion Trapping, Phys. Rev. Lett. 104, 023602 (2010).

[30] P. Longo, P. Schmitteckert, and K. Busch, Few-photon trans-
port in low-dimensional systems, Phys. Rev. A 83, 063828
(2011).

[31] C. Vega, M. Bello, D. Porras, and A. González-Tudela, Qubit-
photon bound states in topological waveguides with long-range
hoppings, Phys. Rev. A 104, 053522 (2021).

[32] C. Cascio, J. C. Halimeh, I. P. McCulloch, A. Recati, and I. de
Vega, Dynamics of multiple atoms in one-dimensional fields,
Phys. Rev. A 99, 013845 (2019).

[33] P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single
photons and single quantum dots with photonic nanostructures,
Rev. Mod. Phys. 87, 347 (2015).

[34] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and
S. Bay, Fundamental quantum optics in structured reservoirs,
Rep. Prog. Phys. 63, 455 (2000).

[35] I. S. Besedin, M. A. Gorlach, N. N. Abramov, I. Tsitsilin,
I. N. Moskalenko, A. A. Dobronosova, D. O. Moskalev, A. R.
Matanin, N. S. Smirnov, I. A. Rodionov, A. N. Poddubny, and
A. V. Ustinov, Topological excitations and bound photon pairs
in a superconducting quantum metamaterial, Phys. Rev. B 103,
224520 (2021).

[36] Q.-J. Tong, J.-H. An, H.-G. Luo, and C. H. Oh, Mechanism of
entanglement preservation, Phys. Rev. A 81, 052330 (2010).

[37] M. V. Fistul and A. V. Ustinov, Quantum cavity modes in
spatially extended Josephson systems, Phys. Rev. B 75, 214506
(2007)

[38] B. Royer, A. L. Grimsmo, A. Choquette-Poitevin, and A. Blais,
Itinerant Microwave Photon Detector, Phys. Rev. Lett. 120,
203602 (2018).

[39] R. P. Douglas, Topics in the theory of Josephson arrays and
disordered magnetic systems, Ph.D. dissertation, Ohio State
University, 2011.

[40] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, MA, 1965),
Vol. 3, Chap. 21.

[41] K. A. Matveev, L. I. Glazman, and R. I. Shekter, Effects of
charge parity in tunneling through the superconducting grain,
Mod. Phys. Lett. B 08, 1007 (1994).

[42] G. Carapella, G. Costabile, R. luca, S. Pace, A. Polcari, and C.
Sorino, Josephson equations for the simplest superconducting
multilayer system, Physica C 259, 349 (1996)

[43] M. Tinkham, Introduction to Superconductivity (McGraw-Hill,
New York, 1996), Chaps. 6 and 7.

[44] A. Zagoskin, Quantum Theory of Many-Body Systems: Tech-
niques and Applications (Springer-Verlag, Berlin, 2014),
Chap. 4.6.1, pp. 217–223.

[45] D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in
Solids, edited by B. Al’tshuler, P. Lee, and R. Webb (Elsevier,
Amsterdam, 1991), Chap. 6, Sec. 3.1.

[46] K. K. Likharev, Single-electron devices and their applications,
Proc. IEEE 87, 606 (1999).

[47] G. L. Ingold and Y. V. Nazarov, Charge tunneling rates in
ultrasmall junctions, in Single Charge Tunneling, edited by
H. Grabert and M. H. Devoret (Plenum, New York, 1992),
Chap. 2.

[48] A. N. Korotkov, D. V. Averin, K. K. Likharev, and S. A.
Vasenko, Single-electron transistors as ultrasensitive electrom-
eters, in Single Electron Tunneling and Mesoscopic Devices,
edited by H. Koch and H. Lübbig (Springer-Verlag, Berlin,
1992).

[49] H. Grabert, G. L. Ingold, M. H. Devoret et al., Single electron
tunneling rates in multijunction circuits, Z. Phys. B 84, 143
(1991).

[50] J. E. Marchese, M. Cirillo, and N. Grönbech-Jensen, Investiga-
tion of resonant and transient phenomena in Josephson junction
flux qubits, Phys. Rev. B 79, 094517 (2009).

[51] S. I. Mukhin and M. V. Fistul, Generation of non-classical
photon states in superconducting quantum metamaterials,
Supercond. Sci. Technol. 26, 084003 (2013).

[52] Yu. A. Izyumov, F. A. Kassan-Ogly, and M. V. Medvedev,
Magnetic polaron in a ferromagnetic crystal, J. Phys. Colloq.
32, C1-1076 (1971).

[53] J. C. Kimball, C. Y. Fong, and Y. R. Shen, Anharmonicity,
phonon localization, two-phonon bound states, and vibrational
spectra, Phys. Rev. B 23, 4946 (1981).

[54] V. M. Agranovich and O. A. Dubovsky, in Phonon Multimode
Spectra: Biphonons and Triphonons in Crystals with Defects,
edited by R. J. Elliott and I. P. Ipatova, Modern Problems
in Condensed Matter Sciences Vol. 23 (Elsevier, Amsterdam,
1988), Chap. 6, p. 297.
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