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Magnetoplasmonic coupling in graphene nanodisk dimers: An extended coupled-dipole
model for circularly polarized states
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Plasmonic coupling is one of the most important effects in compact plasmonic systems, and it has been
studied intensively. In contrast, magnetoplasmonic coupling (MPC) is rarely mentioned, even in graphene
nanostructures supporting the strong magneto-optic effect. Here, we theoretically investigate MPC in graphene
nanodisk dimers in the presence of either parallel (case I) or antiparallel (case II) magnetic fields. We find the
hybridized modes always appear for two states with same chirality, while their excitations depend on incident
polarization. Moreover, two antisymmetric modes are dark in case I, but all four modes are bright in case II.
To provide better insight, an extended coupled-dipole model is presented, in which the fundamental circularly
polarized magnetoplasmons are decomposed into two linear and orthogonal dipoles, with a π/2 phase difference,
and then the coupling is described by two linear dipoles along the two orthogonal directions separately. The
parameters for the magneto-optic effect and coupling strengths are independent and can be easily extracted from
their individual simulations. The eigenvalues and wave functions obtained from the model can describe well
the resonance frequency and excitation strength of each hybridized mode. We finally discuss MPC in touching
graphene nanodisks, where the charge transfer plasmon is immune to the magneto-optic effect, and in case II,
a circular resonance state will be replaced by a linear one with the incident electric field along the touching
direction. In this paper, we provide a general framework for investigating mode coupling of two circular states
and pave the way to magneto-optic and plasmonic applications.
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I. INTRODUCTION

Plasmonics, a rapidly developing field of optics beyond the
diffraction limit [1–3], has been widely explored for decades
in noble metals. It can serve as a bridge between photonics and
electronics, thus holding the potential to design devices with
both benefits [4–6]. However, the lack of dynamic tunability
of metals hinders its further development. As an emerging
two-dimensional (2D) material, graphene has attracted the
great attention of the plasmonics community since it was iso-
lated by mechanical exfoliation [7]. It has been demonstrated
that graphene can be a promising platform for plasmonics,
exhibiting active tunability through electrostatic gating [8],
which is confirmed experimentally by near-field scattering
microscopy [9,10]. Moreover, due to its excellent electronic
properties, the supporting plasmonic resonances show bet-
ter performance in confinement, enhancement, and lifetime
[11–13]. Graphene plasmonics opens an avenue toward the ac-
tive manipulation of light-matter interaction at the nanoscale,
which enables the manufacture of compact optical devices
with functionalities, especially working at terahertz and in-
frared regimes [14–16]. Meanwhile, with the rise of this field
(also known as 2D flatland optics [17]), the study of even more
2D materials, such as molybdenum disulfide [18], transition
metal dichalcogenides [19], and black phosphorus [20], has
drawn widespread interest.

*wh.wang@outlook.com

In plasmonic nanostructures, multiple elements are usually
designed compactly in a single unit cell, in which plas-
monic coupling is inevitable and even plays an important
role in engineering required functionalities and broad band-
width. On the other hand, plasmonic coupling has received
its own interest in the study of physics phenomena in optical
systems, e.g., Fano resonance [21–23], electromagnetically
induced transparency [24–26], and bound states in continuum
[27–29]. However, authors of most of these studies con-
sider only the coupling effects between the modes carrying
linear momenta, such as that of dipole-dipole [30–32], dipole-
multipole [33], and multipole-multipole [34]. Discussion of
coupling between the modes with angular momenta (e.g.,
circularly polarized states) is generally lacking. In graphene, it
is easy to encounter such coupling since the strong magneto-
optical response can be seen as a direct consequence of its
electronic structures (e.g., well-separated Landau levels). Ac-
cordingly, the quantum Hall effect can be measured even
at room temperature [35–37], whereas this was previously
only possible at liquid-helium temperatures [38]. In the pres-
ence of magneto-optic effects, the plasmonic resonance in
graphene will be strongly modified to show mode splitting
and angular momentum [39–41]. This collective excitation
of free electrons/holes in cyclotron motion is usually termed
a magnetoplasmon (MP). Comparing with the electric field,
the magnetic field provides a different manner to actively
tune graphene plasmons, through changing the motion of the
carrier rather than its concentration. Although MPs have been
studied in various nanostructures of graphene [42–44], the
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magnetoplasmonic coupling (MPC) effects are usually not
considered.

In this paper, we theoretically investigate MPC in graphene
nanodisk dimers in the presence of either parallel (case I) or
antiparallel (case II) magnetic fields. As usual, the full wave
simulations are carried out by modeling graphene as a very
thin three-dimensional (3D) film, characterized by in-plane
magneto-optical conductivity. We show that the extinction of
such magnetoplasmonic dimers is also attributed to the typical
symmetric and antisymmetric modes, which can be regarded
as the combination of MPs with the same chirality. However,
two antisymmetric modes are dark in case I, while they turn
to be bright in case II. In both cases, the mode excitation
relies on incident polarization, e.g., parallel or perpendicular
to the dimer. We find such MPC effects can be well described
by an extended coupled-dipole model, generally applicable
to any circularly polarized oscillators, in which a circular
MP on each nanodisk is presented by two orthogonal linear
dipoles with a π/2 phase difference. By merging the straight
dipole-dipole coupling between the two nanodisks, a 4 × 4
Hamiltonian is formulated, from which the eigenresonance
frequencies are in good agreement with those from simula-
tions. Meanwhile, the wave functions can also be used to
predict the excitation strength of each hybridized mode in both
cases. Finally, MPC in nanodisk dimers of limited condition
(the touching nanodisks), is also discussed, in which some
hybridized modes are seen to exhibit strong suppression of
magneto-optic effects.

II. OPTICAL RESPONSE OF GRAPHENE

Despite being a 2D material, the optical response
of graphene can be treated macroscopically through its
frequency-dependent surface conductivity σ (ω). In general,
σ (ω) can be derived within the framework of linear response
theory (equivalently random phase approximation) by con-
sidering both intraband and interband transitions. However,
for low-energy excitations, the intraband transition dominates,
and then σ (ω) can be reduced to a simple Drude formula
[45–47]. In the presence of a magnetic field, a similar treat-
ment can be implemented at the limit of high doping, e.g.,
considering only the Landau levels around the Fermi level
[48–50]. In this instance, the magneto-optical conductivity
σ (ω) of graphene will take a similar formula as that of
traditional 2D electron gases [44], which has been adopted
throughout this paper. To carry out 3D simulations, we follow
the common practice to model graphene as a very thin film
with an artificial thickness tg (0.5 nm throughout this paper),
and then the in-plane components εin of the effective 3D
dielectric function ε(ω) can be represented as

εin(ω) = ε0 + i

ωtg

[
σxx(ω) σxy(ω)
σyx(ω) σyy(ω)

]
, (1)

while the other off-diagonal components of ε(ω) are simply
zero and εzz(ω) = ε0. The Drude formula of the conductivity
terms in parentheses can be expressed by

σxx(ω) = σyy(ω) = e2μc

π h̄2

i(ω + iτ−1)

(ω + iτ−1)2 − ω2
c

,

σxy(ω) = −σyx(ω) = e2μc

π h̄2

ωc

(ω + iτ−1)2 − ω2
c

. (2)

FIG. 1. Schematic diagram of the graphene nanodisk dimer in
the presence of (a) parallel and (b) antiparallel magnetic fields. The
dimer consists of two identical nanodisks of 50 nm radius and sepa-
rated by a distance L.

Here, μc is the chemical potential, which is set as a con-
stant value 0.6 eV throughout this paper, τ is the intrinsic
relaxation time defined as τ = μμc/ev2

F (in graphene, the
charge carrier mobility μ = 104 cm2/Vs, and Fermi velocity
vF = 106 m/s), and ωc = eB/m∗ = eBv2

F/μc is the cyclotron
resonance frequency. The dependence of Drude weight D =
e2μc/h̄2 on the Planck constant and that of effective mass
m∗ = μc/v

2
F on chemical potential originate exactly from the

nature of Dirac fermions, which are different from those in
2D electron gases with parabolic energy dispersion. Since
it is linearly proportional to B/μc, the cyclotron frequency
ωc determining the strength of magneto-optic effects can be
tuned actively through both magnetic and electric fields.

III. RESULTS AND DISCUSSION

A. MPC in graphene nanodisk dimers

We now study the optical excitations of graphene nanodisk
dimers in the presence of two perpendicular magnetic fields
that are either parallel (case I) or antiparallel (case II), as
shown in Fig. 1. It is worth noting that, in case II, the magnetic
field changes its direction over a few nanometers as the sepa-
ration L → 0. This is a practical issue for fabrication, which
might be treated by using the technique proposed recently
[51]. Under the normal incidence of a plane wave with electric

field
⇀

E = ⇀

E0exp[i(k0z−ωt )], the extinction efficiency can be
calculated by implementing the optical theorem, which can be
written as [52,53]

σext = 4π

Sk0

Im{⇀

E
∗
0 · ⇀

F (
⇀

k = k0ẑ)}
|⇀

E0|
2 , (3)

where S is the cross-section of the nanostructure, k0 is the

wave vector in free space,
⇀

E0 is the incident amplitude,

and
⇀

F (
⇀

k ) is the scattering amplitude of the electric far field
evaluated in the forward direction (along the incident wave
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vector), with its component along the incident polarization

vector extracted from the product
⇀

E
∗
0 · ⇀

F (
⇀

k ). According to the
definition, the relationship between the scattering amplitude
⇀

F (
⇀

k ) and the electric far field
⇀

E far (
⇀

k ) is simply given by

⇀

E far (
⇀

k ) = eikr

r

⇀

F (
⇀

k ).

To obtain this scattering amplitude
⇀

F (
⇀

k ), the full-wave
simulations are carried out by using the commercial finite
element method package COMSOL MULTIPHYSICS. In practice,
the nanodisk dimer is placed at the center of a computational
domain truncated by a perfect match layer, and the forward

scattering amplitude
⇀

F (
⇀

k = k0ẑ) can be directly extracted
from the built-in function. Note that, in COMSOL, the variable
Efar used for far field calculation is exactly the scattering

amplitude
⇀

F (
⇀

k ) rather than
⇀

E far (
⇀

k ). To identify the plasmonic
resonance modes, the field pattern (Ez field distribution) at
each resonance frequency will be plotted at 1 nm above the
disks, and by monitoring its time evolution, the oscillating
path of each mode can be obtained.

Because of the very small thickness of graphene nanodisks,
the convergence of COMSOL simulations is a typical issue
that needs to be treated carefully. In principle, fine meshing
is required to resolve the nanodisks and guarantee numeri-
cal precision. For the dimers studied below, the separation
between two graphene nanodisks varies from tens of nanome-
ters to zero (touching case), in which the meshing would be
even more crucial. To make the simulation results reliable,
a convergence check has been conducted for each dimer.
Specifically, the quality of the mesh element in COMSOL can
be customized by two variables, the maximum and minimum
element sizes, and by tuning them gradually, the numerical
convergence of those simulations can be easily verified. For
simplicity, the detailed convergence tests of several typical
cases are summarized in the Appendix. It is seen that, in those
figures, the convergence results are achieved, as shown by the
green curves, for which the mesh setting is used in the studies
below.

To proceed, we first calculate the extinction spectra of the
dimer of distance L = 20 nm and radius R = 50 nm for each
nanodisk. Since changing the radius will cause a global shift
of resonance frequency, e.g., yielding a simple scaling law
[30,54,55], the coupling behavior for different radii is very
similar. Thus, without loss of generality, a constant radius is
used in this paper. The simulation results are shown in Fig. 2,
and for purposes of comparison, that of an individual nanodisk
is also present in Fig. 2(a). As we know, in the presence of
a magnetic field, the linearly polarized and doubly degen-
erate dipole mode in a nanodisk (peak at the black curve)
will undergo symmetrical mode splitting (peaks at the red
curve). The two emerging resonance states carry the right-
handed/left-handed circular polarization (RHCP/LHCP), as
shown by the inset. Here, the double degeneracy is crucial for
the phenomenon, e.g., as in the absence of this degeneracy,
the mode splitting will disappear [40]. It is very easy to think
of the coupling between these two circularly polarized states,
which should be fundamentally different from that of two
linearly polarized states.

FIG. 2. Extinction spectra of a single graphene nanodisk and the
dimer in cases I and II. The black curves in (a) and (b) are the
extinction of the nanodisk and the dimer as B = 0 T, respectively.
The insets show the field patterns of each hybridized mode and
the values of κx and κy. The two dotted curves mark the resonance
frequencies of two circular magnetoplasmons (MPs) of right-handed
circular polarization (RHCP) and left-handed circular polarization
(LHCP), respectively.
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In graphene nanodisk dimers, the extinction spectrum will
be different for different magnetic field layouts and incident
polarizations. In case I, there is a dominating resonance peak
in the spectra of both polarizations [curves in Fig. 2(b)] yet at
different frequencies. For x polarization, the resonance mode
can be regarded as the hybridized mode of two RHCP states
(see insets), while for y polarization, the resonance mode
is a combination of two LHCP states. Like the coupling in
linear polarizations, the coupling here will cause a blueshift
of LHCP and a redshift of RHCP. Because of the orthogo-
nality of two wave functions, the cross-coupling between the
states of RHCP and LHCP is prohibited. It is also noted that
two small peaks exist with frequencies and wave functions
identical to those of the major peaks. This indicates only two
hybridized modes are present here, which possess different
overlapping functions from the external excitation of different
polarizations. From the general coupling picture, they are both
symmetrically hybridized, while the antisymmetric modes are
completely absent (dark). Comparing the resonances with
B = 0 T (black curve), the state of RHCP is redshifted, while
that of LHCP is blueshifted. In case II, the extinction spectrum
of each polarization is also dominated by a major resonance
peak, which is always the lower energy one. Meanwhile, the
small peaks are more pronounced than those in case I and do
not possess identical frequencies to those of major resonances.
Here, four (rather than two) hybridized modes appear, which
can be thought of as a direct consequence of the inversion
symmetry breaking caused by the antiparallel magnetic fields.
However, as shown by the insets, their wave functions seem
not to be the pairs of two states of either RHCP or LHCP, e.g.,
different rotation directions on two nanodisks. Specifically,
two major resonances are a combination of two states rotating
anticlockwise and clockwise, respectively, which behave like
the cross-coupling between the states of RHCP and LHCP. To
understand the observation, we must recognize the origin of
wave rotation, namely, the charge carrier cyclotron resonance.
Therefore, to determine the chirality of each state, the external
magnetic field will be the rotating axis naturally. Then it is
easy to find that the right one carries also RHCP since the
magnetic field is in the opposite direction [see Fig. 1(b)]; thus,
accordingly, they are hybridized modes of RHCP. To classify
them, we further examine their wave functions and find a π

phase difference between two rotations in y polarization. The
two major resonances are symmetrically (lower energy) and
antisymmetrically (higher energy) hybridized, with none of
them dark, which is significantly different from case I. The
same analysis can also be applied to the two minor resonances,
which are symmetrically (lower energy) and antisymmetri-
cally hybridized modes of LHCP.

B. Mode decomposition and coupled-dipole model

To understand the above observations, exploring the im-
plicit coupling mechanism between two circularly polarized
states is of crucial importance. As we know, the coupling
between two linearly polarized states has been well studied,
which can be formalized as an empirical coupled-oscillator
theory, with a parameter κ generally used to describe the
coupling strength [30,31,33]. If the two states have resonance
frequencies ωa and ωb, respectively, it is easy to write the

FIG. 3. Schematic diagram of the extended coupled-dipole
model. The circular magnetoplasmons (MPs; yellow rings) are de-
composed into two orthogonal and linear dipoles (red and blue
arrows), with a π/2 phase difference. The wavy lines depict the
coupling of two dipoles of x polarization (κx) and y polarization (κy).

Hamiltonian of the coupled system, for example, as

H =
(

ωa κ

κ ωb

)
.

Diagonalization of H will give the frequencies of symmet-
ric and antisymmetric states and their wave functions which
are a linear superposition of the wave functions of states a and
b. The theory is constructed from a perturbation framework,
which requires a weak coupling, e.g., the wave functions
strongly bounded to the oscillators. In plasmonics, due to
extreme field localization, the theory is generally valid and
works even better in graphene nanostructures. Thus, we adopt
the theory in this paper as well. However, because of the
circularly polarized states, the direct application is impossible,
and a specific treatment should be incorporated. Inspired by
our previous work [56], a perfect circularly polarized state
was decomposed into two orthogonal linearly polarized states
yet with a π/2 phase difference. Here, the fundamental states
are linear dipole resonances

⇀

px and
⇀

py, so the circular dipole

resonances are
⇀

pR/L = ⇀

px ± i
⇀

py, which result in the radiation
of RHCP and LHCP waves. Based on this decomposition, it
can formulate an extended coupling theory for circular states.

For two linear dipoles
⇀

pa and
⇀

pb, the coupling strength κ

is proportional to a volume integral ∫ ⇀

pa · ⇀

E
∗
bdV , where

⇀

Eb is

the local field generated by
⇀

pb at the position of
⇀

pa. Here,
⇀

Eb

is determined by
⇀

pb, e.g., approximately
⇀

Eb ∝ ⇀

pb/R3, with R
the separation of two dipoles. In this sense, for point dipoles,
κ is proportional to

⇀

pa · ⇀

p
∗
b/R3 or simply

⇀

pa · ⇀

p
∗
b, supposing

a constant separation. It is usual to consider two basic cases,
namely, two horizontal dipoles (κx ∝ px p∗

x , the subscripts a
and b are omitted for simplicity) or two vertical dipoles (κy ∝
py p∗

y), where κx and κy are often unequal. Following this strat-

egy, we investigate the coupling of two circular dipoles
⇀

pR/L.

Similarly, the coupling strength is taken as κ ∝ ⇀

pR/L · ⇀

p
∗
R/L,

while by incorporating the decomposition, we can easily ob-
tain κ ∝ px p∗

x + py p∗
y . Here, it is quite impressive that the

coupling of two circular states can be represented by a linear
combination of the coupling of two linear states. Such an
extended model can be summarized and shown intuitively in
Fig. 3 (case I as an example), where the coupling between
px and py in each resonance is induced by the magneto-optic

235435-4



MAGNETOPLASMONIC COUPLING IN GRAPHENE … PHYSICAL REVIEW B 105, 235435 (2022)

effect, and the coupling between two resonances is determined
by κx and κy. Accordingly, the Hamiltonian of this coupled
system can be derived readily from the above Hamiltonian,
which is

H± =

⎡
⎢⎣

ωp − iγ iβ κx 0
−iβ ωp − iγ 0 κy

κx 0 ωp − iγ ±iβ
0 κy ±(−iβ ) ωp − iγ

⎤
⎥⎦, (4)

with the sign ± indicating cases I and II, respectively, and
γ the phenomenological damping of MPs. It is seen that
the submatrices in top left and bottom right corners describe
magnetoplasmonic resonances at each nanodisk, e.g., the res-
onance frequencies (the real part of the eigenvalues) satisfying
ωp ± β, corresponding to LHCP and RHCP, respectively. In
practice, β can be easily extracted from Fig. 2(a), which is
roughly ωc/2 in circular nanodisks. On the other hand, as in
the absence of a magnetic field, the resonance frequencies of
two coupled linear states are either ωp ± κx or ωp ± κy, which
are identical to those from Eq. (4) and used to extract the
values of κx and κy.

Moreover, it is worth noting that the term –iγ in Eq. (4) is
well separated from other terms. In other words, each complex
eigenvalue of the Hamiltonian can always be expressed as a
real component and an imaginary component –iγ . This means
the coupling effect acts mostly on the real component, namely,
resonance frequency. Generally, the value of γ consists of the
contributions from dissipative and radiative losses, which are
determined by intrinsic relaxation time τ [see Eq. (2)] and
photon radiation [57], respectively. In graphene plasmonic
systems, because of the tightly bounded feature of resonance
modes, the dissipative loss dominates [58]. Hence, when a
constant τ is used throughout this paper, it is not difficult
to imagine that magnetoplasmonic damping remains almost
unchanged. In practice, the value of γ can be obtained by
directly carrying out eigenvalue calculation in simulations or
calculated from the full width at half maximum of the reso-
nance peaks in extinction spectra. By adopting the modeling
used in Fig. 2, eigenvalue calculation gives γ = 0.085ωc in a
single graphene nanodisk, and when B = 5 T, γ = 0.083ωc

and 0.086ωc for the states of RHCP and LHCP, respectively;
in case I, γ = 0.092ωc and 0.095ωc for the lower and higher
frequency hybridized modes, respectively; in case II, γ =
0.091ωc, 0.096ωc, 0.093ωc, and 0.095ωc for the four modes
with resonance frequency from low to high, respectively. It
is seen that the variation of γ is negligible since ωc = 1.326
THz is much smaller than the resonance frequency of each
mode, e.g., ωc ≈ 0.03ωp. Thus, for simplicity, we focus on
the real component of the eigenvalues (resonance frequency)
in the following discussion.

1. Resonance frequencies and wave functions in case I

To diagonalize the Hamiltonian H±, it can obtain resonance
frequencies and wave functions of those hybridized modes in
such coupled systems. In case I [see Fig. 1(a)], the resonance
frequencies are

ωuv = ωp ∓ 1
2

√
4β2 + (κx − κy)2 ± 1

2 (κx + κy), (5)

where the first sign ∓ is for RHCP and LHCP (index u = R
or L), respectively, and the second sign ± is for symmetric
and antisymmetric mode (index v = S or A), respectively. The
corresponding wave functions for RHCP are

ψRS|RA =

⎛
⎜⎝

ηR

i
±ηR

±i

⎞
⎟⎠, (6)

with a positive auxiliary parameter

ηR = 1

2β
[
√

4β2 + (κx − κy)2 ∓ (κx − κy)],

and for LHCP are

ψLS|LA =

⎛
⎜⎝

ηL

−i
±ηL

∓i

⎞
⎟⎠, (7)

with a positive auxiliary parameter

ηL = 1

2β
[
√

4β2 + (κx − κy)2 ± (κx − κy)].

It is easy to find that, if κx = κy = κ , the two kinds of inter-
actions will work independently, e.g., the frequencies ωuv =
ωp ∓ β ± κ , in the absence of the cross-term. Meanwhile, the
two wave functions are reduced to the linear combination of
two exact circular states of RHCP or LHCP. However, due
to their different dipole orientations, κx and κy always have
different values and are opposite in sign, where κx � 0 and
κy � 0 [30,31,59]. This indicates the only condition for κx =
κy is that they are both zero, namely, at a sufficiently large
separation (L → ∞). Otherwise, the interplay between these
two kinds of coupling channels [the second term in Eq. (5)] is
always present.

2. Resonance frequencies and wave functions in case II

Similarly, in case II [Fig. 1(b)], the resonance frequencies
can be readily written as

ωuv = ωp ∓ 1
2

√
4β2 + (κx + κy)2 ± 1

2 (κx − κy), (8)

with the indices u and v and the signs ∓ and ± share the
same definitions as those in Eq. (5). Accordingly, the wave
functions for RHCP are

ψRS|RA =

⎛
⎜⎝

ηR

i
±ηR

∓i

⎞
⎟⎠, (9)

with

ηR = 1

2β
[
√

4β2 + (κx + κy)2 ∓ (κx + κy)],
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and for LHCP are

ψLS|LA =

⎛
⎜⎝

ηL

−i
±ηL

±i

⎞
⎟⎠, (10)

with

ηL = 1

2β
[
√

4β2 + (κx + κy)2 ± (κx + κy)].

It is very interesting to see that both the resonance frequen-
cies and wave functions are very similar in cases I and II. For
instance, by simply replacing κx by −κx (or κy by −κy), the
resonance frequencies are the same, and the wave functions
exhibit the only difference in the signs of the last component.
It is also worth noting that, in both cases, the two modes
with the same chirality (the same index u) will have their
frequency difference determined by the third term, a straight
dipole-dipole coupling term; on the contrary, with the same
symmetry (the same index v), their frequency difference will
be given by the second term, a cross-term. Moreover, κx and
κy always appear in pairs, e.g., κx + κy and κx − κy, which
then contribute to the cross-term and dipole-dipole coupling
term separately, and only the pair shown in the cross-term will
emerge in the wave functions. As discussed above, in case
II, κx = −κy (disappearance of the cross-term) can only be
satisfied when the separation is sufficiently large (L → ∞).

3. Numerical investigations

To verify such an empirical model, we first investigate
MPC under a constant magnetic field B = 5 T (β = 0.47ωc)
and varying separation L. As shown by the insets in Fig. 4,
the resonance peaks in both cases occur roughly at the fre-
quencies indicated by the dashed lines, which are calculated
from Eqs. (5) and (8). With increasing L, a better agreement is
achieved, between the model (curves) and simulations (dots),
and the resonances in both cases exhibit a redshift for two
higher energy branches yet a blueshift for two lower energy
branches, which is a clear repulsive effect in coupling systems.
The largest and smallest energy branches are always ωLA and
ωRS, respectively, but the other two branches are different.
In case I, ωLS is larger than ωRA, and ωLS (ωRA) will merge
with ωLA (ωRS) quickly, and finally, the energy gap between
them remains at the value of 2β (approaching the limit of
κx = κy = 0, e.g., at L = 50 nm). In case II, ωLS is smaller
than ωRA at smaller separation and becomes larger than ωRA

as L > 50 nm. We find here the merging of symmetric and
antisymmetric modes is much slower than that in case I, which
means the straight dipole-dipole coupling decays slowly in
this case.

Another significant difference between these two cases is
the resonance strength of each hybridized mode. In case I, two
antisymmetric modes ωRA and ωLA are completely dark; mode
ωRS dominates the excitation spectrum with x-polarized inci-
dence, while mode ωLS dominates for y-polarized incidence.
In case II, none of them are dark; for x-polarized incidence,
mode ωRS is stronger than mode ωLS, and for y-polarized
incidence, mode ωRA is stronger than mode ωLA. In principle,
these observations should be connected to the wave function

FIG. 4. Resonance frequencies of symmetric and antisymmetric
modes as a function of the separation at a constant magnetic field
B = 5 T. The circles and dashed curves are obtained from simulation
and the model, respectively. The sizes of the circles represent the
relative height of each peak. The inset shows a detailed comparison
between the model and simulation at L = 20 nm.

of each mode. The second and fourth components are quite
simple, e.g., either i or –i, corresponding to the y field dis-
tributed at the right and left nanodisks, respectively. In turn,
the first and third components correspond to the x field that
can be evaluated by directly substituting the values of the
three parameters in ηR and ηL. Naturally, they are varied but
are always positive, which gives the symmetry of each wave
function and can be used to determine the mode excitation.
In case I, it is seen that, for ψRS and ψLS, both electric and
magnetic fields are in phase (carrying the same sign), which
means they can be excited by x- and y-polarized incidence;
for ψRA and ψLA, both electric and magnetic fields are out
of phase (carrying the opposite signs), indicating darkness
under any linearly polarized incidence. Considering κx � 0
and κy � 0, ηR for ψRS is much larger than ηL for ψLS, e.g.,
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ηR = 5.0 and ηL = 0.2 at L = 20 nm; thus, for x-polarized
incidence, the resonance strength of ψRS is much stronger. For
y-polarized incidence, they seem to have the same imaginary
unit, but if the normalization is present for the x field, it is
quite easy to find the y field of ψLS is much larger than that of
ψRS.

In case II, each wave function has an odd number of minus
signs, which is completely different from that in case I, with
an even number of minus signs. A significant consequence
will raise up since the only opposite sign cannot make a dark
mode in both directions and will make each mode only excited
by one polarization. For ψRS and ψLS, the electric field is
in phase, but the magnetic field is out of phase; it is just
the opposite for ψRA and ψLA. Such a simple argument is
exactly consistent with the simulations. To further investigate
the relative resonance strength, the actual values of ηR and
ηL are required. For example, ηR = 2.0 for ψRS is larger
than ηL = 0.5 for ψLS at L = 20 nm, which corresponds to a
stronger resonance of ψRS; while ηR = 0.5 for ψRA is smaller
than ηL = 2.0 for ψLA, corresponding to a stronger resonance
of ψRA.

To further confirm the validity of the model, we investigate
here another situation, when the separation is fixed (L = 50
nm) and the magnetic field (B) is varied. As mentioned above,
in case I, the symmetric and antisymmetric modes are roughly
merged with a tiny constant energy difference given by κx +
κy = 0.03 ωc [see Eq. (5)]. As shown in Fig. 5(a), a larger
magnetic field will cause a larger energy difference between
the modes with different chirality, a typical repulsive effect in
coupling systems. It is also easy to find that they are roughly
symmetrically distributed with respect to the frequency ωp, as
indicated by the dashed line. In case II, the observation is quite
different, as shown in Fig. 5(b). With increasing the magnetic
field, ωLA and ωLS increase almost linearly, with a constant en-
ergy difference given by κy − κx = 0.99 ωc; meanwhile, ωRA

and ωRS decrease almost linearly, with a 0.99 ωc energy differ-
ence. The average frequency of two antisymmetric modes is
ωp − (κx − κy)/2, as indicated by the upper dashed line, and
that of two symmetric modes is ωp + (κx − κy)/2, as indicated
by the lower dashed line. The approximate linear relation here
is a direct consequence of κx + κy → 0, which is included
in the cross-term in case II. We find, with increasing the
separation (equivalently κx + κy → 0), the two cases exhibit
different behaviors, which are clearly presented by the model,
e.g., the merging of symmetric and antisymmetric modes in
case I and the disappearance of the interplay between these
two kinds of coupling channels in case II.

C. MPC in touching graphene nanodisks

Regarding a graphene nanodisk dimer, there exist two
cases which correspond to two nanodisks far away from each
other (L → ∞) and touching (L = 0 nm). As L → ∞, it is
quite clear that the dimer will be reduced to two individual
nanodisks without coupling, namely, κx = κy = 0. Thus, the
optical excitation will be solely determined by the magneto-
optic effect, the same as that shown in Fig. 2(a). It is also
interesting to explore the behavior at the other limit as L = 0
nm, which is so far not transparent to us. Therefore, we study
here the MPC in touching graphene nanodisks. For compar-

FIG. 5. Resonance frequencies of symmetric and antisymmetric
modes as a function of magnetic field at a constant separation L =
50 nm. The circles and dashed curves are obtained from simulation
and the model, respectively. The sizes of the circles represent the
relative height of each peak. The black horizontal and vertical dashed
lines are the constant central frequency of two modes with same
symmetry and the constant frequency difference of two modes with
same chirality, respectively, as predicted by the model. The inset
shows the values of κx and κy.

ison, we present the corresponding extinction spectrum as
B = 0 T in Fig. 6(a). Although being contacted at a point,
the excitation of y polarization keeps the same behavior as
that of the above well-separated cases, e.g., dominated by a
resonance peak consisting of two vertical dipoles. However,
the excitation of x polarization is quite distinct. In addition to
the resonance peak at point b (two horizontal dipoles), there
is a new one at point a, which exhibits a completely different
field pattern (see the inset). The corresponding resonance is
seen as a strong dipole contributed by two nanodisks and an
opposite and weak dipole confined at the touching point. We
can image the two nanodisks forming a coherent whole, as
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FIG. 6. Extinction spectra of the touching nanodisks for different
cases. The insets show the field patterns of modes a, b, and c. The
three dotted curves mark the frequencies of the three modes as B =
0 T. The frequency and field pattern of mode a is conserved in three
situations and those of mode b as B = 0 T and in case II.

bridged by the current flowing through the touching point.
This indicates the charge transfer effect appears to determine
this mode, which thus is usually termed a charge transfer
plasmon (CTP) [60–62]. It is obvious that, because of their
different mechanisms, modes a, b, and c will show diverse
magneto-optic effects.

As shown in Figs. 6(b) and 6(c), the resonance frequency
and wave pattern of the CTP mode are reserved, in both cases I
and II. It seems the magneto-optic effect is totally suppressed,
which has been demonstrated in narrow graphene rectangles
[42], due to the lack of mode degeneracy. However, modes b
and c will show different variations in cases I and II. In case I,
mode b exhibits a redshift, while there is a blueshift for mode
c. Their wave functions are the linear combinations of two
waves of either RHCP or LHCP. It is easy to find that the
behavior is identical to that shown in Fig. 2(b), which means
there is no significant effect caused by the touching point,
only at quantitative level. In case II, mode c (y polarization)
also undergoes a similar redshift and carries a similar wave
function, as compared with Fig. 2(c). Nevertheless, mode b
with its polarization parallel to the touching direction shows
roughly the same resonance frequency as that in the absence
of a magnetic field (see the dashed line), and its wave function
is a linear combination of two linear states rather than circular
states. Obviously, it is another suppression of the magneto-
optic effect yet different from that in CTP, as clearly seen from
their wave functions. The suppression here seems to be very
obscure and hard to understand. At least one will be curious
about why it only happens for x polarization, and if so, why
it does not happen for x polarization in case I? The circular
edge current caused by cyclotron resonance of electrons is
the key to understanding the behavior, which is also a typical
label of the magneto-optic effect in confined systems [39,47].
For CTP, no circular edge currents are involved, and thus,
no magneto-optic effect will appear. In case I, although edge
currents are present in each nanodisk, because of the same
rotation direction, they will cancel out at the touching point
for both polarizations, which means no edge currents are
required for the magneto-optic effect in this case. In case II,
because of the different rotation directions of edge current in
each nanodisk, a y-direction edge current flowing through the
touching point is required to maintain the magneto-optic ef-
fect here. For y polarization, the incident electric field is along
the y direction as well, and hence, the y-direction edge cur-
rent at the touching point will be preserved and consequently
the magneto-optic effect. However, for x polarization, the y-
direction edge current at the touching point will be destroyed
by the incident electric field along the touching direction. As
a result, even in the presence of a magnetic field, no frequency
shift appears, and the wave function is a combination of two
linear states.

IV. CONCLUSIONS

To conclude, we theoretically investigate MPC in graphene
nanodisk dimers, which as we know, is not well understood
to date. The fundamental states are circularly polarized MPs
caused by the magneto-optic effect rather than plasmons of
linear polarization for which the coupling has been studied
intensively. We find that, like usual plasmonic coupling, MPC
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FIG. 7. Convergence test of the simulations of a single graphene
nanodisk as B = 5 T. The colored curves are obtained by using
different mesh setting, which are converged as maximum/minimum
element sizes <50 and 6 nm, respectively.

also appears for the two states with the same polarization,
e.g., between RHCP/LHCP and RHCP/LHCP, respectively.
Here, the chirality is determined by the direction of cyclotron
resonance, namely, the external magnetic field. The excitation
of specific MPC depends on the polarization of the incident
wave; generally, only two symmetric modes can be excited in
case I, while in case II, none of the symmetric and antisym-
metric modes are dark. Inspired by the perturbation theory
of two coupled linear oscillators (2 × 2 Hamiltonian), we
treat MPC of two circular oscillators by directly incorporating
the magneto-optic effect, which results in an extended 4 × 4
Hamiltonian. The crucial point here is the decomposition of
each circular oscillator as two orthogonal linear oscillators yet
with a π/2 phase difference. Intuitively, they are connected by
the magneto-optic effect (the parameter β) in each nanodisk,
and between two nanodisks, their interactions are described
by the straight dipole-dipole coupling (the parameters κx and
κy). All these parameters can be extracted from simulations
independently and before MPC investigations. To diagonalize
the extended Hamiltonian, we show the resonance frequencies
of the MPC systems, which are in very good agreement with

FIG. 8. Convergence test of the simulations of a graphene nanodisk dimer as the separation L = 20 nm and B = 5 T. The colored curves
are obtained by using different mesh setting. For all situations, the convergence results are achieved as maximum/minimum element sizes <55
and 2.4 nm, respectively.
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FIG. 9. Convergence test of the simulations of a graphene nanodisk touching dimer (L = 0 nm) as B = 5 T. The curves of different colors
correspond to different mesh setting. For all situations, the dominate peaks are converged as maximum/minimum element sizes <50 and
2.4 nm, respectively.

those from simulations. Moreover, the resonance strength of
each mode can be well predicted by the wave functions. Fi-
nally, we study MPC in a limited case of a dimer, namely,
touching nanodisks. The CTP appears at a lower frequency,
which is immune to the magneto-optic effect. In case II, under
x-polarized excitation, the circular motion of MPs will also
be suppressed. In this paper, we push forward the fundamen-
tal understanding of MPC in graphene nanostructures, which
should be generally valid in other 2D materials, and pave the
way for magneto-optical and plasmonic applications.
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APPENDIX: CONVERGENCE ANALYSIS OF NUMERICAL
SIMULATIONS

In this Appendix, we provide detailed convergence analysis
of numerical simulations. Because of the artificial thickness
(tg = 0.5 nm) of graphene nanodisks, fine meshing is gen-
erally required, and the simulations are rather memory and

time consuming. In practice, we mesh the computational do-
main by using tetrahedral elements adapted for the physics
settings of the model, where the smaller (larger) elements
are generated close to (away from) graphene. The meshing
can be further specified by two built-in variables, maxi-
mum/minimum element sizes. Through reducing either one
of them, the total number of elements will increase, which in
principle will lead to a more accurate result, offering a fea-
sible way to check numerical convergence. Below, we check
convergence of several typical simulations, e.g., those carried
out for producing Figs. 2 and 6 in the main text. Note that the
radius of the graphene nanodisk is 50 nm, and the radius of the
spherical computational domain is 300 nm. For convenience,
the mesh setting used in the main text is indicated by the green
curve in all figures.

In fact, for a single graphene nanodisk, it is not that difficult
to achieve convergence. As shown in Fig. 7, with increasing
the number of elements, the change of the extinction spectrum
of a single graphene nanodisk gets slower and slower. When
the maximum/minimum element sizes are reduced to 50 and
6 nm, respectively, the number of elements reaches 26 416
(green curve), and then the result exhibits very high accuracy.
With further decreasing maximum or minimum element size
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(purple and dark yellow curves, respectively), it is seen that
they nearly coincide with the green curve.

For the dimer of a finite separation, e.g., L = 20 nm, much
more elements should be used, and the convergence test is
summarized in Fig. 8. The optimal maximum/minimum ele-
ment sizes are 55 and 2.4 nm, respectively, and the number
of elements is 46 944 (green curve). If further decreasing
maximum/minimum element sizes, e.g., the purple and dark
yellow curves, respectively, the result remains almost un-
changed, clear evidence of convergence. Another important
feature is, for this dimer, the convergence will be reached
simultaneously in cases I and II and does not depend on the
polarization.

The simulations of a touching dimer should be carried out
more carefully. Comparing the simulations of the dimer with
separation L = 20 nm (the above case), the maximum element
size should be reduced. The convergence test is shown in
Fig. 9. It is seen that, as maximum/minimum element sizes are
set to be 50 and 2.4 nm, respectively, the number of elements
is 44 902 (green curve). The result with reasonable accuracy is
obtained. With decreasing maximum/minimum element sizes
(purple and dark yellow curves, respectively), it is easy to
find that the main resonance peaks remain almost unchanged,
and two minor peaks in Figs. 9(b) and 9(c) change slightly.
However, since our discussion focuses mostly on the main
peaks, this meshing is quite acceptable.
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