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We present a theoretical study of second-harmonic generation from a singular metasurface. The singular
metasurfaces strongly interact with the incident light, where the large field enhancement forms an intense
surface polarization that generates the second-harmonic field. By using transformation optics, the calculation
of nonlinear optical response is converted from the metasurface frame to that of a simple slab geometry, largely
reducing the complexity of the problem. In addition, the singular metasurface exhibits a weak dependence on the
incident angle of light, which can be potentially used as an all-angle device for harmonic generations. Finally,
we study the symmetry dependence of second-harmonic generation in the far field for the singular metasurface
and show how to enhance the conversion efficiency under normal incidence by breaking the surface inversion
symmetry.
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I. INTRODUCTION

Optical nonlinear effects [1,2] have received considerable
interest since the discovery of second-harmonic generation
(SHG) in 1961 [3]. With the development of nanofabrica-
tion processes in past decades, nanoscale structures have
become an important component in nonlinear optics. Unlike
traditional nonlinear crystals, nanostructured materials can
provide strong light–matter interaction and simultaneously
relax the phase-matching condition constraint [4,5]. Nanos-
tructures may be classified into two groups: All-dielectric and
plasmonic systems [6–8]. All-dielectric nanostructures utilize
both electric and magnetic resonances, whose excitation can
contribute to an efficient harmonic generation [9,10]. In con-
trast, plasmonic structures take advantage of the excitation of
surface plasmon polaritons, creating a strong field enhance-
ment at the metal surface. This strong field then gives rise to
a large nonlinear optical response [11] in a close by dielectric
[12] or in the metal itself [13] through the dynamics of free
electrons [14,15]. Hybrid metal-dielectric resonators have also
been proposed [16].

Many scenarios have been suggested to further enhance
the nonlinear response of nanostructures. For instance, the
application of the epsilon-near-zero (ENZ) concept boosts
the nonlinear response [17–19]. Alam et al. have shown that
ITO films display ENZ properties at near-infrared frequencies,
leading to a giant Kerr nonlinearity [19]. The concept of
bound state in the continuum (BIC) [20] has also been em-
ployed to greatly enhance SHG because the excitation of BIC
contributes to a large quality factor [21,22]. Another method
to further enhance the nonlinear effect is introducing a singu-
larity in the nanostructure. A singularity can be an ultrasmall
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gap between two metallic interfaces or a sharp metallic tip
[23]. These singular structures exhibit a much stronger field
enhancement than conventional plasmonic structures, so a gi-
ant nonlinear response is expected near the singularities. The
nonlinearity enhancement by singularities has been confirmed
in a variety of experiments, such as nanoparticle dimers [24],
bowtie antennas [11], particles on metal surface [25], etc.

Even though nonlinear nanophotonics have received sub-
stantial attention for a few decades, most research relies on
experimental measurements and numerical simulations. Only
a few works give analytic solutions to the nonlinear optical
response of nanostructures, such as flat surface, cylinder, and
sphere [26–28].

In the past decade, transformation optics have been suc-
cessfully applied in the field of plasmonics, providing the
tools to convert calculations for a complex nanostructure into
a simple slab geometry problem [23,29]. After obtaining the
analytical solution in the slab frame, it is in fact possible to
derive the corresponding field profile of the nanostructure by
mapping the fields between two frames. Recently, this pow-
erful analytical tool has been utilized to study the SHG from
a kissing nanowire dimer [30,31]. However, a transformation
optics approach to extended structures such as a metasurface
has not been explored yet.

Based on our previous work about the linear optical
response of singular metasurfaces [32], in this article we
analytically investigate the SHG process in analogous sys-
tems. In particular, we consider the nonlinear response of
free electrons at the metal surface [33,34]. We show that the
intense field enhancement in the singular metasurface pro-
vides a strong nonlinear excitation for the second-harmonic
field. In addition, the singular metasurface supports a hidden
dimension that enables a continuous mode excitation when
changing the k vector of incident waves [35], thereby leading
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FIG. 1. Mapping of nonlinearity. (a) The geometry of the singular metasurface with the singularity scaled by δ. The period is T . (b) The
corresponding slab frame and the nonlinear surface polarization, where the slab period is d and the cavity length is L. (c) The linear reflection
spectrum of a singular metasurface, where the incident angle θin of the plane wave is π/4. (d) The nonlinear surface susceptibility χ (2) in the
slab frame. The geometric parameter settings in panels (c) amd (d) are T = 10 nm, θ = 0.2π , d1 = d2 = 0.05d , and L = d = 1.

to an all-angle high SHG efficiency. Finally, the singular
metasurface possesses a few surface symmetries that strongly
affect SHG efficiency in the far field.

II. MAPPING OF NONLINEARITY

The singular metasurface investigated in this paper is
shown in Fig. 1(a). The metasurface considered here has a
period T along the y′ axis and a translation invariance along
the z′ axis. For practical consideration, the sharp singular point
is scaled by the width δ. We consider the singular metasur-
face made up of a centrosymmetric plasmonic material [cyan
region in Fig. 1(a)] parameterized with a Drude model ε =
1 − ω2

p/(ω2 + iωγ ), where ωp = 1.36×1016 rad/s and γ =
1×1014 rad/s. In a centrosymmetric medium, the second-
order nonlinear process is not allowed [1]. However, the
inversion symmetry can be broken at the material surface. It
is reasonable then to define a surface second-order nonlinear
susceptibility. The nonlinear optical response of a plasmonic
material can be described by the hydrodynamic model, which
is simple but accurate in the description of nonlinear optical
response near the metallic surface [33]. We assume that all
nonlinear contributions come from the metal surface [30].
Applying this approximation in hydrodynamic model, the two
nonzero surface susceptibilities can be written as [33]

χ
(2)′
⊥⊥⊥ = − ε0

4n0e

3ωF + iγ

2ωF + iγ
(εF − 1)2

χ
(2)′
‖⊥‖ = − ε0

2n0e
(εF − 1)2, (1)

where εF is the relative permittivity at fundamental
pump frequency ωF , ε0 is the free space permittivity,
n0 = 5.7×1028 m−3 is the equilibrium charge density, and −e
is the electron charge [33]. The prime denotes the physical
quantity in the metasurface frame, i.e., Fig. 1(a), and the two
nonlinear surface polarizations can be expressed in the form

P′
⊥ = ε0χ

(2)′
⊥⊥⊥E ′2

⊥

P′
‖ = ε0χ

(2)′
‖⊥‖E ′

⊥E ′
‖, (2)

where E ′
⊥ (E ′

‖) is the electric field normal (parallel) to the
metal interface at fundamental frequency ωF , which is eval-
uated at the point immediately inside the metal interface [26].
The direction of P′

⊥ and P′
‖ is denoted in Fig. 1(a), shown

as red arrows. These two polarizations can be linked with
two surface currents: The electric surface current Je′

and the
magnetic surface current Jm′

. Their relations are [36,37]

Jm′ = 1

εb
n × ∇‖P′

⊥

Je′ = ∂P′
‖

∂t
, (3)

where εb is the background permittivity experienced by P′
⊥,

and Jm′
and Je′

are along the parallel direction. The origins
of these two surface currents are the induced electric sur-
face polarizations, where the parallel component contributes
to the common electric surface current, while the normal
one (a dipole layer) gives rise to an effective magnetic
surface current. In our surface polarization model, the back-
ground permittivity experienced by the induced polarization
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at second-harmonic frequency ωS is ε0εS [33], where εS is the
metal permittivity at frequency ωS .

According to Eq. (2), the fundamental field oscillating at
frequency ωF generates, through the second-order process, a
nonlinear source that in turn gives rise to a pair of surface po-
larization components (P′

⊥, P′
‖). These two polarizations lead

to the following boundary conditions at the second-harmonic
frequency ωS [36,37],

E ′+
‖ − E ′−

‖ = −Jm′
z = − ik′

‖
εb

P′
⊥

H ′+
z − H ′−

z = −Je′
‖ = iωSP′

‖, (4)

where the superscript + (−) represents the point immediately
outside (inside) the metal interface.

Now we are going to map the above boundary conditions to
the slab frame in Fig. 1(b). A singular metasurface with blunt
singular points in Fig. 1(a) can be mapped to a periodic slab
system with the period d in the y direction and the finite cavity
length L shown in Fig. 1(b) by following conformal mapping
[32],

z = d

2π
ln

(
2

e2πz′/T − 1)
+ 1

)
, (5)

where z = x + iy and z′ = x′ + iy′ are complex coordinates in
the slab frame and the metasurface frame, respectively. When
the size of singularity vanishes, the cavity length L diverges,
i.e., an infinite cavity.

From the rule of transformation optics, electric-field E ′
‖

and k-vector k′
‖ have been stretched by the same factor

1/
√

det(
) when mapping from the metasurface frame in
Fig. 1(a) to slab frame in Fig. 1(b) [38,39]. Here det(
) is
the Jacobian matrix whose elements are defined as 
i j =
∂x′

i
∂x j

. Transformation optics preserves the validity of elec-
tromagnetic boundary condition when mapping from the
physical space to the transformed space. Therefore accord-
ing to Eq. (4), the surface polarization P′

⊥ is conserved
when transforming from the metasurface frame to the slab
frame. On the other hand, the z component of magnetic-
field H ′

z is also conserved under the transformation, leaving
the other surface polarization P‖ unchanged as well. Since
the surface polarization P′

⊥,‖ is a conserved quantity, we
have

P′
⊥ = ε0χ

(2)′
⊥⊥⊥E ′2

⊥ = ε0χ
(2)′
⊥⊥⊥

E2
⊥

det(
)
= ε0χ

(2)
⊥⊥⊥E2

⊥ = P⊥

P′
‖ = ε0χ

(2)′
‖⊥‖E ′

⊥E ′
‖ = ε0χ

(2)′
‖⊥‖

E⊥E‖
det(
)

= ε0χ
(2)
‖⊥‖E⊥E‖ = P‖ (6)

from which the transformation rule of the surface nonlinear
susceptibility χ

(2)
⊥⊥⊥,‖⊥‖ can be written as

χ
(2)
⊥⊥⊥,‖⊥‖ = χ

(2)′
⊥⊥⊥,‖⊥‖
det(
)

= χ
(2)′
⊥⊥⊥,‖⊥‖

∣∣∣∣ dz

dz′

∣∣∣∣
2

= χ
(2)′
⊥⊥⊥,‖⊥‖

(
d

T

∣∣∣∣ sinh

(
2π

d
z

)∣∣∣∣
)2

, (7)

which is coordinate dependent in the slab frame. In this
frame, the metal-air interfaces are located at y = d1 and y =
−d2. Therefore the surface nonlinear susceptibility in the slab
frame is a function of x, shown in Fig. 1(d).

III. INDUCED SURFACE POLARIZATION

In the above section, we have demonstrated that the sur-
face polarization conserves under the transformation from
the metasurface to the slab geometries. Thus the nonlinear
surface polarization profile P′

⊥,‖(x′, y′) along the interface of
metasurface can be obtained by directly mapping P⊥,‖(x, y)
from the slab frame, which can be evaluated by using Eq. (6).
The electric-field profile of E⊥,‖ and E ′

⊥,‖ can be found in our
previous linear response theory [32]. In Fig. 2, the distribution
of electric field at the interface E ′

⊥,‖ and the induced polariza-
tion P′

⊥,‖ are shown. The singular metasurface supports two
kinds of modes with different symmetries: The ax (ay) mode
below (above) ωsp in the reflection spectrum in Fig. 1(c) [32].
In the first column in Fig. 2, we illustrate ax and ay modes
in panels (a) and (b), respectively, where the ax (ay) mode
is excited by the parallel (normal) electric-field component.
In the reflection spectrum, the resonance peaks correspond
to the excitation of a few discrete modes, which merge into
a continuous spectrum when the width of singularity δ → 0
[32]. Because an exact singular point corresponds to an infi-
nite slab system, the modes are excited in a continuous manner
[35]. In Fig. 2(a), we study the ax mode whose electric field
is antisymmetric for the normal field component E ′

⊥ while
symmetric for the tangential component E ′

‖. As a comparison,
the electric field of the ay mode shown in Fig. 2(b) exhibits
the opposite symmetry for the corresponding normal and tan-
gential field components.

From the definition in Eq. (2), the nonlinear surface polar-
ization P′

⊥ is a quadratic function of electric-field E ′
⊥. Despite

the different symmetry of the electric-field E ′
⊥ for ax and ay

modes in Figs. 2(a) and 2(b), the surface polarization P′
⊥ of

these two modes are both symmetric (an even function of
y′). For the other surface polarization P′

‖, the results in Fig. 2
shows that both ax and ay modes have antisymmetric property
(an odd function of y′). This can be explained by observing
that the electric fields E ′

⊥ and E ′
‖ share different symmetries

for both ax and ay modes, so the product of these two fields
(∝P′

‖) remains antisymmetric.
In the right two columns in Fig. 2, the two nonlinear surface

polarizations P′
⊥ and P′

‖ are projected on x and y axes, respec-
tively. We observe that the x component is symmetric, while
the y component is antisymmetric. In the following text, we
show that the symmetry of these surface polarizations strongly
affects the SHG in the far field.

IV. INDUCED BULK POLARIZATION

The induced nonlinear surface polarization becomes a
source excitation at the second-harmonic frequency ωS . In
order to provide an analytical solution for the excited second-
harmonic field, we implement the calculation in the slab
frame shown in Fig. 1(b). The surface polarization at the
metal-dielectric interface in the slab frame varies along the
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FIG. 2. Surface polarization of singular metasurface with period T = 10 nm, vertex angle θ = 0.2π , d1 = d2 = 0.05d , L = d = 1, and
θin = π/4.(a) ax mode excited by the parallel electric component (red arrow) at ω = 0.449ωp and the corresponding electric field and induced
nonlinear surface polarization; (b) ay mode excited by the electric field normal to the metasurface (red arrow) at ω = 0.888ωp and the
corresponding electric field and induced nonlinear surface polarization.

x direction, which can be expanded as a Fourier series

P⊥,‖ =
∞∑

n=−∞
Pn

⊥,‖eiknx. (8)

With this mode expansion of the source excitation, the excited
field can also be expanded as Hz = ∑∞

n=−∞ Hn
z eiknx, where the

mode kn in the slab frame can be expressed as

Hn
z (kn, y) =

⎧⎨
⎩b+e−

√
k2

n y + b−e
√

k2
n y, −d2 < y < d1

c+e−
√

k2
n y + c−e

√
k2

n y, −(d2 + d3) < y < −d2

(9)

and the corresponding tangential electric field is

En
x (kn, y) =

⎧⎪⎨
⎪⎩

− i
√

k2
n

ωSε0
(b+e−

√
k2

n y − b−e
√

k2
n y), −d2 < y < d1

− i
√

k2
n

ωSε0εS
(c+e−

√
k2

x y − c−e
√

k2
n y), −(d2 + d3) < y < −d2.

(10)

The excited mode coefficients b± and c± can be obtained by imposing the following boundary conditions for the second-
harmonic near-field

Hn+
z − Hn−

z

∣∣
y=−d2

= Je
x

∣∣
y=−d2

= iωSPn
‖ |y=−d2

Hn+
z − Hn−

z

∣∣
y=d1

= −Je
x

∣∣
y=d1

= iωSPn
‖ |y=d1

En+
x − En−

x

∣∣
y=−d2

= Jm
z

∣∣
y=−d2

= − ikn

ε0εS
Pn

⊥|y=−d2

En+
x − En−

x

∣∣
y=d1

= −Jm
z

∣∣
y=d1

= − ikn

ε0εS
Pn

⊥|y=d1 (11)
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from which we obtain the following system of equation in the matrix form

⎛
⎜⎜⎝

e|kn|d2 e−|kn|d2 −e|kn|d2 −e−|kn|d2

e−|kn|d1 e|kn|d1 −e|kn|(d2+d3 ) −e−|kn|(d2+d3 )

|kn|e|kn|d2 −|kn|e−|kn|d2 −|kn|e|kn|d2/εS |kn|e−|kn|d2/εS

|kn|e−|kn|d1 −|kn|e|kn|d1 −|kn|e|kn|(d2+d3 )/εS |kn|e−|kn|(d2+d3 )/εS

⎞
⎟⎟⎠

⎛
⎜⎝

b+
b−
c+
c−

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

iωSPn
‖ |y=−d2

iωSPn
‖ |y=d1

ωSkn
εS

Pn
⊥|y=−d2

ωSkn
εS

Pn
⊥|y=d1

⎞
⎟⎟⎟⎟⎠. (12)

By solving the above system of equation, we obtain the ex-
cited near field by the surface polarization at ωS . In Figs. 3(a)
and 3(b), we show the profile of near field and polarization for
ax and ay modes, respectively. From Fig. 2 it can be observed
that the nonlinear surface polarizations for ax and ay modes
have the same kind of symmetry, thereby inducing the same
symmetry for near field and polarization in Fig. 3. In the
linear optical response [32], the singular metasurface supports
a giant field enhancement near the singularities. As expected,
the singular points also generate hot spots for the second-
harmonic field, because a singular point can adiabatically
compress the wavelength of surface plasmon at ωS , leading
to a high density of states and a strong field enhancement near
the singularities.

V. FROM NEAR FIELD TO FAR FIELD

The induced surface polarization and near field at second-
harmonic frequency are obtained in the previous section.
The near field gives rise to an effective surface polarization
macroscopically, which can be obtained by averaging the po-
larization in one period. Here the grating period is assumed
to be subwavelength so that the higher diffraction order can
be ignored. In this approximation, the k vector of the second-
harmonic field parallel to the metasurface is kωS

0y = 2kωF
0y . This

macroscopic surface polarization has two origins: One is from
the surface polarization P′

⊥,‖ defined in Eq. (2), while the other
one is from the bulk polarization induced by P′

⊥,‖.
The application of transformation optics enables the cal-

culation of these polarizations in the slab frame where the

FIG. 3. Excited near field in the second-harmonic frequency ωS

for a singular metasurface with period T = 10 nm, vertex angle
θ = 0.2π , d1 = d2 = 0.05d , L = d = 1, and θin = π/4. (a) Electric
field and polarization profile for ax mode; (b) electric field and
polarization profile for ay mode.

analytic calculation becomes possible. Let us first discuss the
contribution from nonlinear surface polarization P′

⊥,‖, whose
contribution to the effective surface polarization can be calcu-
lated by

P′
x1 = 1

T

∫
P′

xdl ′ = 1

T

( ∫
P′

⊥dy′ +
∫

P′
‖dx′

)

= 1

T

( ∫
P⊥dy′ +

∫
P‖dx′

)

P′
y1 = 1

T

∫
P′

ydl ′ = 1

T

(∫
−P′

⊥dx′ +
∫

P′
‖dy′

)

= 1

T

( ∫
−P⊥dx′ +

∫
P‖dy′

)
, (13)

where the line integration is along the metasurface interface,
and the quantity with overline stands for the effective surface
polarization. Then, by using the chain rule and Cauchy-
Riemann conditions, we have

P′
x1 = 1

T

∫ (
−P⊥

∂x′

∂y
+ P‖

∂x′

∂x

)
dx

P′
y1 = 1

T

∫ (
−P⊥

∂x′

∂x
− P‖

∂x′

∂y

)
dx. (14)

The other contribution to the effective surface polarization
is the induced bulk polarization in the metallic region at
second-harmonic frequency ωS , which can be integrated as

P′
x2 = 1

T

∫∫
metal

P′
xdx′dy′

P′
y2 = 1

T

∫∫
metal

P′
ydx′dy′. (15)

Since the transformation of bulk polarization follows [40](
P′

x

P′
y

)
= 1

det(
)

(
∂x′
∂x

∂x′
∂y

− ∂x′
∂y

∂x′
∂x

)(
Px

Py

)
(16)

and the bulk region integration follows [41],∫∫
metal

dx′dy′ =
∫∫

metal
det(
)dxdy. (17)

Therefore we obtain the following integration formulas to
calculate the contribution of bulk polarization to the effective
surface polarization of the metasurface, which reads

P′
x2 = 1

T

∫∫
metal

(
∂x′

∂x
Px + ∂x′

∂y
Py

)
dxdy

P′
y2 = 1

T

∫∫
metal

(
−∂x′

∂y
Px + ∂x′

∂x
Py

)
dxdy. (18)
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FIG. 4. Far-field calculation for the singular metasurface. (a) The pump field at fundamental frequency ωF excites SHG in the far field at
ωS; (b) simplified flat surface geometry for SHG calculation, where the nonlinear source is modeled as two current source (Je

y , Jm
z ); (c) the

dependence of SHG on incident angle of plane-wave θin for singular metasurface with T = 10 nm, θ = 0.2π , d1 = d2 = 0.05d , and L = d = 1;
(d) the dependence of SHG on period of metasurface T , where θ = 0.2π , d1 = d2 = 0.05d , L = d = 1 and θin = π/4; (e) the dependence of
SHG on size of singularity δ with period T = 10 nm, where θ = 0.2π , d1 = d2 = 0.05d , and θin = π/4.

The above two contributions can be summed up to form a
total surface polarization

P′
x = P′

x1 + P′
x2

P′
y = P′

y1 + P′
y2 (19)

from which an effective electric surface current and magnetic
surface current can be obtained by

Jm
z = ikωS

0y

ε0
P′

x

Je
y = −iωSP′

y. (20)

Here the background permittivity experienced by P′
x is ε0.

We can now analyze how the symmetry of induced sur-
face polarization P′

⊥,‖ and bulk polarization P′
x,y affects the

effective macroscopic surface polarization and current. The
projection of P′

⊥,‖ along the x direction is an even function (see
Fig. 2) whose average in a period gives a nonzero effective po-
larization P′

x1 
= 0. On the other hand, the projection along the
y direction of the surface polarization P′

⊥,‖ is an odd function,

resulting in a zero effective polarization contribution, P′
y1 = 0.

Similarly, the bulk polarization in Fig. 3 also demonstrates
that P′

x is even while P′
y is odd, resulting in P′

x2 
= 0 and P′
y2 =

0. Therefore the total effective surface polarization is nonzero
for P′

x but zero for P′
y. Then from the relation between surface

current and polarization in Eq. (20), we conclude that the
second-order nonlinear effect in singular metasurface gives a

nonzero effective magnetic surface current but a zero electric
current.

The effective surface currents generate a second-harmonic
wave in the far field, shown in Fig. 4(a). Assuming the grating
period is subwavelength, the metasurface at ωS can be sim-
plified as a flat metal surface with a pair of surface current
(Je

y , Jm
z ) and a pair of surface conductivity (σe, σm) (electric

and magnetic), see Fig. 4(b), where the calculation of two
surface conductivities is given in linear response theory of
singular metasurface [32]. These two surface conductivities
are utilized to model the energy dissipation by the excited
plasmonic mode on the metasurface. The generated far field
is expressed as

HωS
z =

{
rωS H0eik

ωS
0x x+ik

ωS
0y , x > 0

tωS H0e−ik
′ωS
0x x+ik

ωS
0y , x < 0,

(21)

where rωS and tωS are defined as the coefficients for reflected
and transmitted second-harmonic fields, respectively. Since
the metasurface studied in this paper is semi-infinite, we only
consider a reflected second-harmonic field, whose generation
efficiency is |rωS |2. By matching the tangential field HωS

z and
EωS

y at the interface x = 0 in Fig. 4(b), we arrive at

(
1 −1

Za Zm

)(
rωS H0

tωS H0

)
= −

(
Je

y

Jm
z

)
−

( σeZa
2 − σeZm

2
σm
2

σm
2

)(
rωS H0

tωS H0

)
(22)
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where Za = k
ωS
0x

ωSε0
and Zm = k

′ωS
0x

ωSε0εS
. After some algebraic ma-

nipulation, we obtain(
rωS H0

tωS H0

)
= −

(
1 + σeZa

2 −(
1 + σeZm

2

)
Za + σm

2 Zm + σm
2

)−1(
Je

y

Jm
z

)
(23)

and the SHG efficiency is

|rωS |2

=
∣∣∣∣ 2

(
Jm

z (2+Zmσe)+Je
y (2Zm+σm)

)
4(Za+Zm + ZaZmσe) + (4+(Za + Zm)σe)σm

∣∣∣∣
2

/|H0|2.

(24)

The SHG from a flat metal surface can be calculated fol-
lowing the same procedure. By setting σe = 0 and σm = 0, we
arrive at the SHG by a flat surface

|rωS |2 =
∣∣∣∣ZmJe

y + Jm
z

Zm + Zd

∣∣∣∣
2

/|H0|2, (25)

where Je
y and Jm

z in the case of a flat surface can be obtained
straightforwardly by calculating the induced surface polariza-
tion. We omit the overline on top of the electric and magnetic
surface current because no averaging of surface polarization
is required for a flat surface. Details regarding the calculation
of a flat metal surface can be found in Appendix B.

In Fig. 4(c), we calculate the SHG efficiency as a function
of the incident angle for an incident plane wave of frequency
ωF = 0.449ωp, the first resonance peak in Fig. 1(c). Through-
out this paper, the pump field is a TM wave with a peak
intensity of 55 MW/cm2. By changing the incidence angle,
it is surprising to observe that the SHG shows a quite flat
curve (solid lines), which means the SHG of the singular
metasurface weakly depends on θin. Therefore the singular
metasurface can realize all-angle SHG. This weak dependence
on the incident angle is due to a hidden dimension of the
singular metasurface [35]. The additional dimension gives the
k vector of the mode one more degree of freedom, making the
mode excitation in a continuous manner when changing the
incident angle. We have also divided the SHG contribution
from the two components of nonlinear surface susceptibility
χ

(2)
⊥⊥⊥ and χ

(2)
‖⊥‖. The blue curve corresponds to the case when

only χ
(2)
⊥⊥⊥ is considered, while the red curve refers to the

contribution of χ
(2)
‖⊥‖. The green curve shows the case when

both surface susceptibilities are considered. These theoretical
results have also been confirmed with numerical simulation,
where the detailed simulation setup and results can be found
in Appendixes A and C.

For reference, we compare the SHG from the singular
metasurface with the SHG from an unstructured metal surface,
i.e., a flat surface. The SHG from a flat surface made up of
the same metal as the metasurface is presented in Fig. 4(c) as
dashed lines, where three different colors correspond to three
kinds of combinations of nonlinear surface susceptibilities.
The comparison in Fig. 4(c) proves that the singular meta-
surface strongly improves the SHG efficiency by 10 orders of
magnitude when compared with a flat surface.

In Fig. 4(d), we keep the incident angle at 45 degrees but
change the grating period T in the calculation of SHG. In tun-

ing the parameter T , the shape of the metasurface is preserved.
These results show that the SHG from a singular metasurface
decreases when increasing the grating period. This is expected
because the number of singular points reduces in a given area
when T increases, leading to weaker harmonic generation.

In the above far-field calculation of SHG, the shape of
the singular metasurface preserves such that the ratio of sin-
gularity size δ to period T is a constant. The ratio δ/T
characterizes the degree of singularity, where δ/T → 0 gives
an ideal singular point [32]. In Fig. 4(e), we study how δ/T
affects the SHG in the far field by fixing the grating period
T and simultaneously shrinking the size of singular point δ,
which corresponds to elongating the cavity length L in the slab
frame. The calculation results show that the SHG increases
when reducing δ/T and finally diverges as δ/T → 0. How-
ever, both the nonclassical effects from electrons [42] and
the experimental imperfection [32] result in a blunt singular
point for surface plasmons, which ends up with a finite SHG.
Another takeaway emerging from Figs. 4(d) and 4(e) is that
the SHG efficiency is determined by the size of the singular
point and grating period that we can achieve.

VI. SHG AT NORMAL INCIDENCE

As shown in the previous section, the nonlinear source
in the singular metasurface can be modeled as two effec-
tive surface currents (Je

y , Jm
z ) with only the magnetic one

being nonzero. From the definition in Eq. (20), the effective
magnetic surface current is proportional to wave-vector kωS

0y .
Therefore both electric and magnetic surface currents become
zero under normal incidence, resulting in a zero harmonic
field generation in the far field. This situation is often im-
practical in experimental setups where instead being able to
generate at normal incidence is preferable. Is it then possible
to modify the metasurface in order to generate SHG in the far
field under normal incidence?

The answer is yes. The singular metasurface shown in
Fig. 1(a) possesses two kinds of inversion symmetries along
with the interface. To quantify the degree of asymmetry for
the singular metasurface, we define two factors: αL and αd ;
αL is defined as L1/L in Fig. 1(b), quantifying the asymmetry
of two singular points in one period. In contrast, αd measures
the asymmetry of two bumps of singular surface, defined as
αd = d1/(d1 + d2) in Fig. 1(b). Particularly, αL = 0.5 gives
two identical singular points, while αd = 0.5 leads to two
bumps with the same shape. In Fig. 5(a), we have shown four
cases of the singular metasurface: (1) αL = 0.5 and αd = 0.5;
(2) αL = 0.5 and αd 
= 0.5; (3) αL 
= 0.5 and αd = 0.5; (4)
αL 
= 0.5 and αd 
= 0.5. For the pure symmetric case (1), two
kinds of inversion centers are marked as black dashed lines.
For the asymmetric bump shape in case (2), the inversion
center is the center of the bumped region. In contrast, for
asymmetric singular points in case (3), the inversion center
locates at the center of the singularity. Finally, when the sym-
metries of both the pumped region and the singular points are
broken, the surface inversion center disappears. Therefore we
expect only case (4) without a surface inversion symmetry to
contribute an SHG in the far field.

To confirm the above assertion, we calculate the effective
surface current and SHG in the parameter space of αL and αd .
Note that changing the value of αL and αd shifts the resonance
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FIG. 5. SHG under normal incidence by breaking the surface inversion symmetry. (a) symmetry of singular metasurface quantified by two
parameter αL and αd , where dashed line show the inversion center; (b) The effective electric surface current as a function of αL and αd ; (c) SHG
as a function of αL and αd . The parameter setting for the singular metasurfaces are T = 10 nm and θ = 0.2π .

peak position, so we calculate SHG for the corresponding
first-order mode. Despite a lack of inversion symmetry, the
effective magnetic surface current keeps zero under normal
incidence. However, the story differs for the effective electric
surface current Je

y . Figure 5(b) illustrates the evolution of Je
y in

parameter space, which shows that the nonzero effective elec-
tric surface can only be achieved by deviating both αL and αd

from 0.5. The nonzero surface electric current subsequently
gives rise to a large SHG in the far field, shown in Fig. 5(c).

VII. CONCLUSION

In conclusion, we have studied the SHG for singular meta-
surfaces following a transformation optics approach. This
work further extends the previous transformation optics-based
work about SHG from kissing cylinders to the extended meta-
surface geometry, bringing new insight into the light–matter
interaction for the singular plasmonic structures. By means
of transformation optics we have mapped a complex singular
surface into a simple slab geometry, such that an analytical
solution to SHG can be obtained. Also, the nonlinear source
of SHG is modeled as a surface polarization, whose symmetry
determines the induced near- and far-field patterns. In addi-
tion, the singular metasurface in this paper possesses a variety
of symmetries. We show that broken symmetry is necessary to
receive a nonlinear far-field signal, which can be realized by
using oblique incidence or by breaking the surface inversion
symmetry. Finally, we found that SHG of the singular meta-
surface weakly depends on the incident angle of light, which
can be applied to realize an all-angle SHG device.
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APPENDIX A: COMSOL SETUP FOR SHG CALCULATION

To check the validity of our theory, we have implemented a
Comsol model to perform numerical simulations. We solve a
system of two one-way coupled equations for the fundamental
and second-harmonic fields, respectively. The critical point
in the numerical simulations is the setup of the two surface
polarizations P⊥ and P‖ in Comsol. Accounting for P‖ is
straightforward as it is directly related to an electric surface
current by Je

‖ = −iωSP‖, which can be easily implemented
using Comsol built-in source options. Considering a surface
polarization normal to the interface, on the other hand, is
not as simple. In order to account for such a polarization we
need to add a weak form contribution. For a bulk polariza-
tion vector, Pb, this is μ0ω

2
S

∫



Pb · ẼdV where Ẽ is the test
function and 
 is the volume inside the metal. The relation
between a bulk polarization and the surface polarization, P,
can be expressed as Pb = δ∂
P, where the delta function δ∂


is nonzero only at the metal surface. Finally, for a surface
polarization normal to the surface, i.e., P = P⊥n̂, we get the
following weak form contribution:

μ0ω
2
S

∫
∂


P⊥Ẽ · n̂dS, (A1)

where the integral is now performed only on the metal bound-
ary ∂
. Both P⊥ and Ẽ are evaluated inside the metal using
the built-in operators down or up. With this setup in Comsol,
we were able to perform numerical simulations of SHG from
singular metasurfaces.

APPENDIX B: SHG FROM A FLAT SURFACE

Now, we assume a TM-polarized plane-wave (Ex, Ey, Hz)
incident on a flat metallic surface (x = 0) from air with in-
cident angle θin, where x > 0 and x < 0 correspond to air
and metal domain, respectively. The transmitted field inside

the metal can be expressed as Htra
z = tH0e−ik

′ωF
0x x+ik

ωF
0y y with
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kωF
0y = kωF

0 sin θin, where t is the transmission coefficient for
the magnetic field and can be written in terms of incident angle
as

t = 2εF cos θin

εF cos θin +
√

εF − sin2 θin

. (B1)

The electric field at ωF inside the metal (x < 0) is

Ex = − kωF
0y

ωF ε0εF
tH0e−ik

′ωF
0x x+ik

ωF
0y y

Ey = − k′ωF
0x

ωF ε0εF
tH0e−ik

′ωF
0x x+ik

ωF
0y y. (B2)

From the electric field, the surface polarization can be ob-
tained as

Px = ε0χ
(2)
⊥⊥⊥(Ex )2 = χ

(2)
⊥⊥⊥

(
kωF

0y

)2

ω2
F ε0ε

2
F

t2H2
0 eik

ωS
0y y

Py = ε0χ
(2)
‖⊥‖ExEy = χ

(2)
‖⊥‖

k′ωF
0x kωF

0y

ω2
F ε0ε

2
F

t2H2
0 eik

ωS
0y y, (B3)

FIG. 6. SHG from a flat metallic surface with incident angle
θin = π/4. (a) χ

(2)
⊥⊥⊥ 
= 0 and χ

(2)
‖⊥‖ = 0; (b) χ

(2)
⊥⊥⊥ = 0 and χ

(2)
‖⊥‖ 
= 0;

(c) χ
(2)
⊥⊥⊥ 
= 0 and χ

(2)
‖⊥‖ 
= 0. The solid line and the dashed line

correspond to theoretical calculation with Eq. (B7) and Comsol
simulation, respectively.

where kωS
0y = 2kωF

0y . Finally, the two surface currents can be
expressed as

Jm
z = i

kωS
0y

ε0εS
χ

(2)
⊥⊥⊥

(
kωF

0y

)2

ω2
F ε0ε

2
F

t2H2
0 eik

ωS
0y y

Je
y = −iωSχ

(2)
‖⊥‖

k′ωF
0x kωF

0y

ω2
F ε0ε

2
F

t2H2
0 eik

ωS
0y y. (B4)

The generated second-harmonic field can be easily ob-
tained with these two currents by mode matching. The
generated second-harmonic fields by the surface current
(Je

y , Jm
z ) are expressed as

Hre f (ωS )
z = rωS H0eik

ωS
0x x+ik

ωS
0y y

Htra(ωS )
z = tωS H0e−ik

′ωS
0x x+ik

ωS
0y y, (B5)

where rωS and tωS are the corresponding coefficients for
reflected and transmitted second-harmonic fields. Then by
matching the field at the boundary with following boundary

FIG. 7. Numerical verification for theoretical calculation of SHG
from singular metasurfaces. (a) χ

(2)
⊥⊥⊥ 
= 0 and χ

(2)
‖⊥‖ = 0; (b) χ

(2)
⊥⊥⊥ =

0 and χ
(2)
‖⊥‖ 
= 0; (c) χ

(2)
⊥⊥⊥ 
= 0 and χ

(2)
‖⊥‖ 
= 0. The solid line and the

dashed line correspond to theoretical calculation with Eq. (24) and
Comsol simulation, respectively. The geometric parameter settings
for the singular metasurface are T = 10 nm, θ = 0.2π , and d1 =
d2 = 0.05d . The incident angle of the plane wave is π/4.
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conditions

HωS+
z − HωS−

z = −Je
y

EωS+
y − EωS−

y = −Jm
z , (B6)

we have the following SHG efficiency for the flat metal sur-
face

|rωS |2 =
∣∣∣∣ZmJe

y + Jm
z

Zm + Zd

∣∣∣∣
2

/|H0|2. (B7)

As a benchmark, we check the theoretical calculation of
SHG efficiency of a flat metal surface by Eq. (B7) with Com-
sol simulation in Fig. 6, where three combinations of two
surface susceptibility are considered. The excellent agreement

between theory and simulation demonstrates the correctness
of our theoretical approach.

APPENDIX C: NUMERICAL VERIFICATION

Using the Comsol simulation, we further check the cor-
rectness of our theoretical calculations. Here we compare the
frequency dependence of SHG (as a function of fundamental
frequency ωF ) between theory and simulation. In Fig. 7, we
compare our theory with Comsol results, where a good agree-
ment is achieved. A small discrepancy comes from neglecting
the integration of the polarization in the region x > L1 and
x < −L2 in the slab frame. The agreement between our
theoretical calculation and Comsol simulation confirms the
validity of our analytical framework on SHG from a singular
metasurface.
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