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Friction and chaos: Influence of the damping coefficient on atomic-scale
stick-slip on hexagonal crystal lattices
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We have numerically investigated the occurrence of long slips when a point mass representing a tip of a solid
surface is elastically driven on a hexagonal surface lattice along an arbitrary direction. Tip pathways and slip
length histograms are estimated for different values of the damping coefficient γ defining the duration of the
slip phases. The results are compared with a map of all possible “slip channels” as obtained analytically with
the Prandtl-Tomlinson model in two dimensions. The histograms of the corresponding force drops obtained for
different values of γ could be directly compared with experimental data obtained by friction force microscopy,
which would allow us to quantify the energy dissipation in the slip phase in different loading conditions and shed
light on quantum effects (phonon and/or electron-hole generation) accompanying sliding friction on the atomic
scale.
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I. INTRODUCTION

The damping coefficient γ smoothing the oscillations of
a sharp tip sliding on a solid surface is one of the most elu-
sive parameters to characterize experimentally. If the sliding
occurs in a vacuum, γ is related to the excitation of phonons
and possibly of electrons, both of which propagate from the
contact area into the bulk [1–3]. In a humid environment,
the situation is complicated by the viscous and electronic
properties of the surrounding liquid. A direct estimation of γ

from the duration of the slip phases is difficult even using fast
controllers (3 MHz bandwidth) in atomic force microscopy
(AFM) measurements under ultrahigh vacuum (UHV) con-
ditions [4]. Nevertheless, indirect information on γ can be
obtained from the distribution of the lateral force variations
or, equivalently, of the slip lengths [5–12]. In dry conditions,
the average slip length �x tends to increase by increasing
the normal force or, more precisely, the value of the pa-
rameter η = 4π2U0/(ka2), where U0 and a are, respectively,
the amplitude and the periodicity of the potential, and k is
the spring constant [9,13]. Alternatively, �x increases if the
driving velocity V decreases [5] or the damping coefficient
γ determining the energy dissipation rate in the slip phase
decreases [8]. The last two possibilities are not equivalent
since the parameters V and γ do not appear on equal footing
in the equation of motion, see below. Note also that the en-
vironmental conditions can introduce a nontrivial dependence
of γ on the loading conditions [14–16], but this issue is not
considered in the present work.

In [8] the combined influence of the parameter γ and
the temperature T was studied numerically in one dimension

*Correspondence should be addressed to enrico.gnecco@uj.edu.pl

(1D). Here we extend the analysis to two dimensions (2D) on
the important example of hexagonal lattices [17]. Histograms
of the slip length for different lattice orientations of the crystal
lattice are presented and compared to the tip trajectories in
the phase space for a given value of η where stick-slip is
fully established in overdamped conditions, and for different
values of γ , with special focus on two cases corresponding
to critically damped and underdamped oscillations. Not so
surprisingly, the complexity of the problem is considerably
increased, as compared to 1D, by the presence of several slip
channels with a broad distribution of orientations.

II. MODEL

We consider the tip motion in a hexagonal energy land-
scape:

Uint (x, y) = −U0

(
2 cos

2πx

a
cos

2πy

a
√

3
+ cos

4πy

a
√

3

)
. (1)

The spring support is driven over a length of 200 nm along a
direction forming a given angle α with respect to the x axis
with a velocity V = 25 nm/s. The corresponding equation of
motion

mv̇ + mγ v + ∇Uint + k(r − Vt ) = ξ (t ) (2)

has been solved numerically for a = 0.246 nm (correspond-
ing to the lattice constant of HOPG), and a tip mass m =
5 × 10−11 kg. The vector r denotes the tip position on the
x-y plane, v = ṙ is the tip velocity, and V is the driving ve-
locity. The spring constant is supposed to take the same value
k = 1 N/m in both x and y directions, as usually observed
in lattice-resolved AFM friction measurements in UHV [18].
The critical value of γ distinguishing between overdamped
and underdamped oscillations in the slip phase is defined as
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FIG. 1. Stability regions and tip pathways in the xy plane corresponding to increasing values of the parameter η defined in the text. The tip
is pulled under overdamped conditions at an angle of α = 12◦ starting from the red dot. The length unit is defined by the lattice constant a.

γc = 2
√

k/m. Thermal vibrations are introduced by means
of a random noise function ξ (t ) satisfying the fluctuation-
dissipation theorem: 〈ξ (t )ξ (t ′)〉 = 2mγ kBT , where kB is the
Boltzmann’s constant, and T is the temperature. In the fol-
lowing, the Langevin equation (2) is solved by means of the
Ermak algorithm [19] with a time step �t = 10−8 s. From
the coordinate x of the tip as a function of time t , the com-
ponent of the spring force along the x axis is obtained as
Fx = k(V t − x).

At T = 0 we define the onset of the slip phase by the con-
dition that the spring elongation, or, equivalently, the spring
force F starts to decrease. This approximation is accurate for
sufficiently large values of η. If T �= 0 this definition is not ap-
plicable, due to thermal vibrations. In this case we assume that
the slip starts when the difference between the actual value of
Fx and the value recorded after a time �t = 30 μs is above a
certain threshold �Fth = 0.1 nN (these values turn out to be
adequate for the time evolution of the spring force reported
below). The estimation of the force variation accompanying a
slip is made difficult by the tip oscillations concluding the slip
phase. Here this quantity is calculated (for the ith slip) as

�Fi = Fi+1 − Fi + η

η + 1
k�Xi, (3)

where Fi is the lateral force at the slip onset, �Xi is the dis-
tance between the minimum in the F (X ) curve corresponding
to the shot point and the next one, and η is the parameter
introduced previously. The corrective factor in front of k in
Eq. (3) accounts for the difference between the average value
of |F ′(X )| and k, as discussed in [20] based on the Prandtl-
Tomlinson model in 1D.

III. RESULTS AND DISCUSSION

A. Allowed transitions

In 1D the occurrence of slips corresponding to n lattice
constants becomes possible under overdamped conditions,
at well-defined values of the parameter η. These values are
given by the solutions of the equation f (η) ≡

√
η2 − 1 +

arccos(−1/η) = nπ corresponding to n = 1, 2, 3, . . . and
they are equal to 1, 4.603, 7.790,...[8,13,21]. In 2D the situ-
ation is much more complex [22]. On the hexagonal potential
defined by Eq. (1) stick-slip is again possible only if η >

1. If η is increased up to 1.454 the stability region on the
x-y plane breaks apart into two lattices of large and small
patches with approximately hexagonal and triangular shapes.
If η increases further the triangular patches shrink, and they
completely disappear when η = 2. The remaining hexagonal
patches become more and more round shaped as η → ∞. The
limit shape is approximately a circle with radius R = a/4, as
demonstrated in [22]. In Fig. 1 the breaking up of the regions
of stability is illustrated for different values of η between 1
and 10. Note also how the tip path, as estimated numerically
(with α = 12◦ and T = 0), evolves from a continuous curve
to a series of wavy segments connecting consecutive pinning
points on the lattice. As also shown in [22], the path inside the
stability regions is described by the implicit equation

tan α =
√

3y + η sin y√
3

(
cos x + 2 cos y√

3

)
√

3
(
x + η sin x cos y√

3

) (4)

[with a/(2π ) as length unit].
The “landing points” (x, y) where the slips can end

are given by the solutions of the equation ∇(Uint + Uel ) =
0 located inside the stability regions, where Uel(x, y; t ) =
(k/2)(r − Vt )2 is the variable elastic potential associated with
the spring elongation. The landing points can be estimated for
the very first slip observing that, due to the quasi-isotropy of
static friction on the hexagonal potential [22], the time tc when
the equilibrium becomes unstable is approximately given by
vtc = (a/2π ) f (η), as in 1D. Substituting the expression for
the potential (1), one gets

2πx
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− f (η) cos α + η sin

2πx

a
cos

2πy√
3a

= 0,

2πy

a
− f (η) sin α + η√

3
sin

2πy√
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(
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2πx

a
+ 2 cos

2πy√
3a

)

= 0. (5)

We have solved Eq. (5) for η = 10 and α = 0◦, 12◦, and
30◦ and estimated 11, 13, and 12 possible landing points, as
shown in Figs. 2(a)–2(c). Slight deviations from this “attractor
pattern” are expected in the subsequent slips, when the tip
position is initially offset with respect to the scan line [23]
and additional locations may become accessible. The corre-
sponding slips have been marked in Fig. 2(b), numbered from
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FIG. 2. Landing points (red dots) theoretically accessible by a point mass shot from the green dots at the angles (a) α = 0◦, (b) α = 12◦,
and (c) α = 30◦ over the stability region patches (light purple) when the stick-slip parameter η = 10.

1 to 12. Note that the sites 1 and 12 are not present. Their lack
of appearance is due to the aforementioned offset of the tip
coordinate with respect to the scan direction (x axis).

B. Influence of damping coefficient and
moderate thermal effects

In the following, the pulling direction is kept fixed at an
angle α = 12◦ with the x axis. Figures 3(a) and 3(d) show
the beginning of the tip path at T = 0 K with η = 10. The
tip oscillations are either critically damped (γ = γc) or un-
derdamped (γ = 0.1γc). The corresponding attractor patterns,
as estimated from the entire tip path, are shown in Figs. 3(b)
and 3(e). Here the attractors are simply represented by blue
dots. The position of each one is defined by the change of
the tip coordinates �x and �y, occurring in a jump, and
numbered according to the scheme in Fig. 2(b). In the first
case, the three landing points (4, 5, and 7) are close to the
shot point. The situation is more complex if the damping
coefficient is lowered to 0.1γc. In this case many more lo-
cations become accessible [Fig. 3(e)], but as seen from the
tip path in Fig. 3(d), not all landing attempts are concluded
successfully. We have also plotted the statistical distribution
of the horizontal tip shift during the slip, �x ( �= �X ), see
Figs. 3(c) and 3(f). In both cases, single slips with small
deviation from the scan direction (type 7) are the most com-
mon. Interestingly, when γ = 0.1γc, triple slips with the same
orientation (type 9) are much more frequent than double slips
(type 8).

In the presence of thermal vibrations, slip events become
thermally activated [24]. If γ = γc the long jumps of type 5
observed at 0 K tend to be replaced by two single slips 4
and 7, as seen in Figs. 3(g) and 3(h) for T = 70 K. In the
�x distribution all peaks are lowered and broadened, and the
third peak (5) almost disappears [Fig. 3(i)]. Similarly, if γ =
0.1γc, most of the longer slips observed at 0 K are suppressed
[Figs. 3(j) and 3(k)]. The peak distribution is again lowered
and broadened, and only slips 7 and 8 remain distinguishable
in the histogram [Fig. 3(l)]. Figure 4 shows the corresponding
time evolution of the lateral force Fx and the statistical dis-

tribution of its variation in the slip phases �F , as estimated
from Eq. (3) with γ = γc and at T = 0 [Figs. 4(a)–4(d)] and
T = 70 K [Figs. 4(e)–4(h)]. The force Fx has an average value
|F x| = 0.288 and 0.181 nN, respectively at T = 0, and 0.209
and 0.137 nN at 70 K, consistently with the fact that the static
friction is reduced by thermal vibrations.

C. Route to chaos

For γ � γc the tip path at T = 0 in 1D becomes chaotic
[8]. This is also the case in 2D. Here it makes sense to describe
the tip motion in the (x, vx ) plane of the 4D phase space,
where vx = ẋ. In Fig. 5(a) we first show a phase plot of the
results obtained for γ = γc. The horizontal segments (see
insets) correspond to the stick phases, where the tip slowly
moves to the right following the spring support. When the shot
point is reached, the unpinned tip explores the (x, vx ) plane
along a curvy line and finally lands into another pinning site
following a spiral pattern [25]. If the x coordinate of the tip is
referred to the position X = V t of the support, the distinct at-
tractors can be easily identified [5]. The plot of vx as a function
of x − X or, equivalently, of the lateral force Fx = k(x − X ),
is shown in Fig. 5(c). If γ = γc the three landing points 4, 5,
and 7 are easily recognized, but the same cannot be said for
the 12 locations corresponding to γ = 0.1γc [Figs. 5(b) and
5(d)]. In this case, the attractors are reached only after several
windings initially embracing most or even all of them. We
have also extracted the distribution of Fx in the slip phase by
removing all data points with vx < 1 μm/s (Fig. 6). The three
peaks in Fig. 6(a) correspond to the attractors in Fig. 3(c).
The spurious peak highlighted by the arrow is caused by the
winding ending into the main attractor 7. If γ = 0.1γ the
attempt of identifying the attractors by comparing the peaks
in the histogram in Fig. 6(b) with the sequence in Fig. 3(f)
is made difficult by the spreading of the shot points within
the two spots highlighted by the red and orange arrows in
Fig. 5(d). This gives rise to secondary attractors and corre-
sponding satellite peaks highlighted in orange in Figs. 3(d)
and 6(b).
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FIG. 3. (a) Tip path (in blue) over the potential defined by Eq. (1) rotated by an angle of −12◦. The red dots correspond to the landing e-off
points defined in the text. Stick-slip parameter: η = 10. Damping coefficient: γ = γc. (b) Attractor pattern as obtained from the change of the
tip coordinates, �x and �y, between consecutive shot points. (c) Statistical distribution of �x. (d)–(f) Same as (a)–(c) with γ = 0.1γc. (g)–(l)
Same as (a)–(f) with a temperature T = 70 K.

D. Application to atomic force microscopy

Finally, we briefly discuss up to which point the previous
analysis may help to interpret lateral force maps acquired
using AFM. Figure 7 shows simulated maps of Fx and cor-
responding force drop histograms obtained after scanning
256 lines left to right and backward (not shown) on a 5 ×
5 μm2 area in the same conditions of Figs. 3(g) and 3(j).
While the surface lattice can be clearly recognized when γ =
γc, this is not the case when γ = 0.1γc and only one crystal-
lographic direction is clearly visible. When similar maps are
acquired by AFM, the poor quality of images corresponding
to Fig. 7(c) could be erroneously attributed to experimental

issues such as thermal drift. However, the previous discussion
rather suggests that the force drop histograms, when com-
pared with those simulated at different values of γ , could
be efficiently used for an indirect estimation of the damping
coefficient. An anticipation (based on single scan lines) is
given by Fig. 8, where we have plotted the peak intensities
for γ ranging from 0.1 to 2 times γc. We must also notice that
Eq. (1) is the lowest order approximation for an interaction
potential with hexagonal symmetry. Significant deviations can
be expected not only due to the material properties of the sam-
ple surface, but also to the arrangement of the atoms forming
the tip apex. This is well exemplified in the MD simulations
accompanying friction anisotropy measurements on MoS2,
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FIG. 4. (a) x component of the spring force as a function of the support position X = V t . Damping coefficient: γ = γc. (b) Distribution of
the force drop �F occurring in the slip phases. (c) and (d) Same as (a) and (b) with γ = 0.1γc. (e)–(h) Same as (a)–(d) with T = 70 K.

which were recently presented by Vazirisereshk et al. [26].
The sixfold symmetry of MoS2 is significantly broken in the
potential energy surface (PES) resulting from the simulations.
As a next step, the analysis presented in this work could be
repeated with the function Uint (x, y) obtained by 2D Fourier

FIG. 5. Pathways in the (x, vx) subspace at T = 0 K for η = 10
and (a) γ = γc, (b) γ = 0.1γc. The inset highlights the stick phase at
the first landing site. (c) and (d) Pathways corresponding to (a) and
(b) with the spring force F = k(x − X ) in lieu of x (for sake of clarity
only data points at time intervals of 1 μs have been plotted).

expansion of a PES obtained in a similar way with different
orders of approximation.

IV. CONCLUSION

In summary, we have investigated how the stick-slip
experienced by a sharp tip elastically driven on a hexago-
nal crystal lattice is influenced by the damping coefficient
and the temperature for an arbitrary scan direction and se-
lected values of those parameters. The effect of γ can be
recognized in the histogram of the force drops accompanying
the stick-slip, which could be directly compared with analo-
gous histograms obtained from AFM friction measurements.
The sliding direction determines the position of the peaks in

FIG. 6. (a) and (b) Histograms of the spring force (in the slip
phase) as obtained from the data points in Figs. 5(c) and 5(d). Red
and orange numbers label the force values at the end of the slips
starting with the values in the regions indicated by the arrows of the
same colors.
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FIG. 7. (a) Simulated lateral force map (including FFT) and
(b) force drop distribution corresponding to T = 70 K, η = 10,
α = 12◦, and γ = γc. (c) and (d) Same with γ = 0.1γc.

the histogram, provided that the spring constant is known. The
damping coefficient changes the number of neighbor locations
accessible through a slip and, consequently, the number and
intensity of the histogram peaks. In doing that, one has to
consider that this scenario is considerably influenced by the
temperature. Thermal vibrations limit the occurrence of long
slips, and broaden the width of the peaks, merging minor ones
in the tails of the main ones. As a next step, a systematic
investigation of force drops histograms at different values of γ

and T , including empirical fitting equations, will be crucial for

FIG. 8. Damping coefficient dependent slip probabilities of the
possible landing sites on the hexagonal potential when T = 0 K, η =
10, and α = 12◦.

accurate estimations of the damping coefficient from AFM-
based friction experiments.

For the aforementioned reasons, a comprehensive analysis
should include measurements at cryogenic temperatures, a
possibility which was recently demonstrated in standard con-
tact mode at 30 K by Wang et al. [27] and, indirectly, with the
pendulum configuration adopted by Kisiel et al. at 5 K. [28].
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