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Thermoelectric phenomena in a one-dimensional diffusive quantum medium
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The quantum diffusion in a one-dimensional lattice in a tunneling regime under the influence of spatially
inhomogeneous Gaussian noise is studied theoretically. It is shown that the thermopower appears at an arbitrary
value of the tunneling coupling. In the strong tunneling regime at an extremely high temperature, when the drift
component of the charge transport can be neglected, the thermoelectric effect takes place only in the presence of
a constant external electric field. The Seebeck and Peltier coefficients for the closed-circuit mode are obtained
for a one-dimensional quantum diffusion medium in the tunneling regime. In the strong tunneling regime, both
the thermopower and the Peltier effect are essentially nonlinear phenomena.
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I. INTRODUCTION

A stochastic potential being applied to a quantum one-
dimensional (1D) system reveals a wide range of physical
effects. An essential feature of quantum transport in a dis-
ordered 1D structure (e.g., a nanowire) is the phenomenon
of the Anderson localization [1], preventing the charge trans-
port through such a system. In many papers, the effect of a
dynamic stochastic potential on the dynamics of a quantum
system [2,3], in particular, on the ballistic quantum trans-
port and charge transfer in 1D metallic systems [4] was
studied. Among other things, the electron localization and
delocalization processes were considered [4–6]. It is found
that the presence of fluctuating potential in such a system
(for example, at nonzero temperature due to the interaction
with phonons) can break localization, giving rise to pro-
cesses known as quantum diffusion [7–9] and superdiffusion
[10,11] in inhomogeneous 1D systems. In the limiting case of
quickly fluctuating potential and, therefore, lack of coherence,
quantum transport in the localized system can be treated as
classical hopping dynamics [6].

One of the simplest models of a 1D system, convenient
for studying quantum diffusion, is an infinite linear chain
of sites, each interacting only with its closest neighbors. In
contrast to the case of the Anderson localization, the electron
transport along the chain is assumed to be incoherent. The
probabilities of the tunneling transition in such a system were
intensively studied [12,13]. In Ref. [14] it is shown within
the framework of the tight-binding model that, in a linear
chain of weakly coupled atoms subjected to Gaussian noise,
the quantum diffusion of electrons occurs and the diffusion
coefficient is derived. In Ref. [15] this result is generalized
to an arbitrary tunneling coupling within the Landau-Zener
model. In particular, it was shown that, in the strong tunneling
limit, the electron transport along the chain is pure diffusive
by its nature, and there is no drift component. On the contrary,
applying an external electric field suppresses the quantum
diffusion (decreases the diffusion coefficient) and strengthens
the electron localization.

When studying the effect of noise on the transport prop-
erties of the 1D chain, the noise parameters are widely
considered to be spatially homogeneous. Here, we study the
effect of spatial inhomogeneity on quantum diffusion in the
infinite 1D linear chain of sites. The physical mechanisms
of thermoelectric effects in 1D quantum diffusion systems
at high temperatures are considered. Noise inhomogeneity
can represent the spatial inhomogeneity of the temperature,
allowing the study of the quantum thermodiffusion and ther-
moelectric phenomena in such a simple 1D quantum system
with no ballistic charge transport.

In this paper, grounding on the model of a 1D diffusion
medium proposed in [15], we investigate the electric current
that flows in a closed circuit due to the spatial inhomogeneity
of the amplitude of the noise potential correlation function and
derive the Seebeck and Peltier coefficients.

II. STATEMENT OF THE PROBLEM

Let us consider the generation of the thermoelectric current
in the 1D linear chain that is described by the Schrödinger
equation with the following time-dependent Hamiltonian in
the second quantization form:

H =
∑

j

�
(
a†

j a j+1 + a†
j+1a j

) + χ j (t )a†
j a j, (1)

where � is the tunneling constant and a† j and a j are re-
spectively the creation and annihilation operators in the jth
site; χ j (t ) represents the fluctuations allowing diffusion in
the system. We assume that χ j (t ) is the Gaussian noise be-
ing uncorrelated between nodes with time correlation law
〈χi(t ′)χ j (t + t ′)〉 = δi jC(t ). The decay time of C(t ) is the
correlation time τ ; the typical magnitude of fluctuations
is represented by W , which is defined as W 2 = C(0); the
characteristic noise velocity is defined as v = cW/τ with di-
mensionless constant c > 1.

The presence of noise in the Hamiltonian provides per-
manent repetition of the intersection of energy levels of
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neighboring nodes, causing diabatic tunnel transitions. We
consider all successive acts of tunneling between nodes in-
coherent and completely independent. We also consider the
ballistic motion of the electron and its jumps over the lattice
node (i.e., j → j ± 2) to be impossible.

According to the Landau-Zener theory [16,17], in the case
under consideration, the transition probability p is given by
[15]

p = 1 − exp

(
− 2π�2

h̄vC

)
, (2)

where vC is the energy level crossing velocity.
Obtaining kinetic coefficients involves averaging over vC .

It requires the distribution of vC to be correctly defined. The
noise sequences χ j (t ) must be differentiable to meet this re-
quirement. Following [15], it can be obtained as a solution of
a stochastic equation

mχ̈ + ηχ̇ + kχ = ξ (t ), (3)

representing a harmonic oscillator excited by Gaussian white
noise ξ (t ) with 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The oscillator parame-
ters in Eq. (3) are related to the desired parameters of the χ (t )
distribution as follows [15]:

m = τ 2

W c c̃
, η = τ c̃

W c
, k = c

W c̃
, c̃ =

√
2(c2 + 1).

To apply the Landau-Zener approach, the following con-
ditions must be met. First, the fluctuation frequency should
be small enough, so the crossing event duration should be
sufficiently long. Second, adjacent energy levels should not
affect the transitions by the Landau-Zener mechanism. Last,
the inconstancy of the energy level crossing velocity in the
tunneling time interval can be neglected. To meet these re-
quirements of the model, the noise parameters must satisfy the
following criteria, which are generalizations of ones derived in
[15] for the spatially uniform noise:

min(Wj ) � c�, min(Wj ) � h̄c3/τ.

It should be noted that Eq. (2) might be incorrect in the
“slow” Landau-Zener because of the Langevin noise in po-
tential fluctuations. However, this issue may be neglected in
the strong tunneling mode when the above conditions are met,
and therefore the transition probability is close to unity.

We also assume that the spatial inhomogeneity of noise is
small enough:

Wj = W0 + j	W, 	W/W0 � N−1, (4)

where N is the number of sites in the 1D lattice under consid-
eration.

The Schrödinger equation for the Hamiltonian in Eq. (1)
can be written down in terms of the wave function amplitudes
of the nodes Aj as follows:

ı h̄
dA j

dt
= �(Aj+1 + Aj−1) + χ j (t )Aj . (5)

Solving it by successive approximations on the small pa-
rameter �/W0, one gets the following master equation for the

probability Pj (t ) = |Aj |2 to find an electron in the jth site:

dPj

dt
= D[Pj+1 + Pj−1 − 2Pj] + DT [Pj+1 − Pj−1]	W, (6)

where D = 2�2
∫ ∞

0 C2
φ (t )dt is the diffusion coefficient, Cφ =

〈e−ıφ(t )〉, and φ(t ) = ∫ t
0 χ0(t ′)dt ′.

Probabilities Pj in Eq. (5) should be considered as averaged
probabilities over the ensemble of realizations of the noise
sequences χ j (t ). As far as we consider the short circuit mode,
there is no electric potential in Eq. (6). In the general case
(open circuit or finite value of the resistance of the external
load), the electric potential appears in the master equation.
Below, it will be discussed in more detail when considering
the strong tunneling coupling case.

When solving Eq. (5), two key assumptions are used. First,
all terms containing product (A0

j )
∗A0

j+1 (here A0
j is the zero-

order solution in jth node) vanish when averaging over the
ensemble. Second, diffusion is assumed to be a much slower
process than dephasing. The latter assumption allows separat-
ing scales of the probability change rate and the dephasing
rate.

The thermodiffusion coefficient DT in Eq. (6) is defined as
DT = ∂D/∂W .

III. RESULTS AND DISCUSSION

Identifying the amplitude of the noise correlation function
with the temperature Wj ∼ kBT (kB is the Boltzmann constant;
T is the temperature), we can refer to the diffusion processes
under the influence of spatially inhomogeneous noise as to
the thermodiffusion of charge carriers, being a physical origin
of thermoelectric effects in the quantum diffusive medium. In
the considered approximation, all thermoelectric effects result
from quantum thermodiffusion. In turn, the thermodiffusion
coefficient DT is entirely defined by the functional depen-
dence of the diffusion coefficient D on the noise magnitude W .
Therefore, to calculate the value of thermoelectric parameters
of the medium (the Seebeck and Peltier coefficients), it is
necessary and sufficient to find the diffusion coefficient D.
Analytical expressions for the diffusion coefficient for the
model under consideration were obtained in [15]. Based on
them, we obtain explicit expressions for the Seebeck coeffi-
cients in two opposite limiting cases when the expressions for
D(W ) have the simplest form.

If the coupling is small enough �2τ � h̄cW0, the diffusion
coefficient is D = √

π�2/W [15]. Thus the thermodiffusion
coefficient DT is equal to

DT = −D/W0. (7)

In the opposite limit case �2τ � h̄cW0, according to [15]
the diffusion coefficient is independent of the noise mag-
nitude in the node: D = c/πτ . It means that, in the case
of extremely strong tunneling, there is no thermodiffusion,
DT = 0. However, the situation changes if the 1D lattice under
consideration is exposed to a constant uniform electric field E
applied lengthwise to the chain. As shown in [15], in the case
of the strong tunneling regime, the electric field suppresses
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FIG. 1. Dependence of the normalized thermodiffusion coef-
ficient on the tunneling constant and noise parameters, D∗

T =
2c/πkBT τ , and �̄ = π 2�4τ 2/4c2W 2

0 .

quantum diffusion: D = D0e−e2	V 2/4W 2
0 , where D0 is the dif-

fusion coefficient without the electric field, 	V = El is the
difference of electric potentials in two neighboring nodes, and
l is the lattice period.

Thus, in the case of the extremely strong tunneling regime
in a constant electric field, the thermodiffusion is nonzero and
is determined by the thermodiffusion coefficient

DT = e2	V 2

2W 3
0

D. (8)

Our results of numerical calculations of DT for some inter-
mediate values of the tunneling coupling are shown in Fig. 1.

As can be seen from Fig. 1, in the limiting cases of weak
� = 0 and strong � → ∞ tunneling coupling, there is no
thermodiffusion. The physical reason why the thermodiffu-
sion vanishes in these limiting cases is apparent. As follows
from Eq. (2), at � = 0, there is no exchange of electrons
between lattice sites. It means the disappearance of both diffu-
sion and thermodiffusion in this limiting case. In the opposite
limiting case � → ∞, an electron passes with a probability
of 1 to another lattice site. A random walk takes place and
the diffusion coefficient remains nonzero. In this case, the
tunneling probability does not depend on the noise magnitude
at the node. Therefore, the diffusion coefficient is independent
of the noise magnitude and the thermodiffusion coefficient
equals zero. There is no physical reason for forming a directed
flux of charge carriers in this limiting case, as the tunneling
probability at each lattice node to any closest neighbor is the
same.

Thus the thermodiffusion manifests itself to the maximum
extent at a particular intermediate value of the tunneling con-
stant. Our numerical calculation shows that the optimal value
of the tunneling constant at which the thermodiffusion coeffi-
cient reaches its maximum is approximately equal to

�∗ ≈ 1

π

√
2W0c

τ
.

The thermoelectric current arising in the system under
consideration can be written in the usual form j = −σαT ∇T
[18] (here σ = eμn is the conductivity of the medium, e is

FIG. 2. Dependence of the Seebeck coefficient on the tunneling
constant and noise parameters, �̄ = π 2�4τ 2/4c2W 2

0 .

the elementary charge, μ is the electron mobility, and n is
the electron density) if we consider the Seebeck coefficient
αT associated with the thermodiffusion. Indeed, the last term
in Eq. (6) corresponds to the electric current j = ekBDT n∇T .
Using the Einstein relation for the diffusion coefficient and the
charge carrier mobility D = μkBT/e, we obtain the following
expressions for the Seebeck coefficient of the quantum diffu-
sion medium under consideration:

αT = −k2
BT

e

DT

D
. (9)

In the case of weak tunneling coupling (�2τ � h̄cW0), the
Seebeck coefficient is −k2

BT/eW0. Or, assuming W0 = kBT ,
we get the universal constant Seebeck coefficient depending
on no medium parameter:

αT = −kB

e
. (10)

In the opposite case of the strong tunneling regime (�2τ �
h̄cW0), the Seebeck coefficient can be formally written down
as

αT = el2E2

2kBT 2
. (11)

According to Eq. (11), in the short circuit mode, the ther-
moelectric current vanishes because E = 0 in this case. For
a finite resistance of the load, the thermoelectric effect takes
place in the strong tunneling mode. However, it can be de-
scribed by the Seebeck coefficient in the form as in Eq. (11)
only formally, as the latter depends strongly on the applied
electric field and, thus, on the load resistance and the thermo-
electric current in the closed circuit.

Our numerical calculation results of the Seebeck coeffi-
cient for various values of the tunneling constant are depicted
in Fig. 2.

Even in the limiting case of isolated lattice sites, the
Seebeck coefficient remains nonzero, despite the disappear-
ance of thermodiffusion, since in this case, the diffusion
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coefficient also vanishes. Physically, monotonic decrease in
the value of the Seebeck coefficient with the strengthening of
the tunneling coupling is explained by the fact that, according
to Eq. (2), the asymmetry of the tunneling probability mono-
tonically decreases with increase of �.

It is interesting to compare the results above with ther-
moelectric properties of other physical models of solids with
localized states and diffusion of charge carriers, studied by
various methods. Among the closest models, there are 1D
disordered conductors with metallic conductivity, classical
disordered and amorphous conductors with hopping conduc-
tivity, and molecules of organic semiconductor polymers.

In the case of weak tunneling, the thermopower defined by
Eq. (10) does not depend on the temperature and parameters
of the medium. A disordered lattice of two-level sites with a
nondegenerate electron gas at a sufficiently high temperature
(kBT > εg, where εg is the band gap) has similar properties
[19]. Comparison of the model under consideration with or-
ganic semiconductor polymers is somewhat tricky because
both the thermopower value and its temperature dependence
rely on the chosen model for the density of states [20–24].

In the limiting case of strong tunneling, the thermoelec-
tric properties of the considered model differ significantly
from those described in the literature. The physical reason
for the difference between our approach’s results and other
hopping transport models associated with the thermally ac-
tivated transfer of electrons over potential barriers (e.g., the
Miller-Abrahams approach [25,26]) is that we consider elec-
trons only tunneling through barriers of infinite height.

Nevertheless, the trend common with many other models
remains: the Seebeck coefficient decreases with increasing
temperature if the system’s conductivity decreases with in-
creasing temperature [4,6]. In our opinion, some uniqueness
of thermoelectric properties of the presented model in the
strong tunneling case, compared to related models, is due
to two points. First, in the present work, the thermoelectric
parameters of the diffusion medium are obtained in the closed-
circuit mode, while the Seebeck effect is usually studied in
the open circuit mode [18]. Secondly, in the limit of strong
tunneling, the medium under consideration is an insulator. The
thermoelectric properties of weakly conductive media have
been studied much less intensively since they are of no interest
from the standpoint of applications as a thermal converter.

In Ref. [15], the physical reason for the vanishing conduc-
tivity in the strong tunneling limit has been revealed. The same
physical reason suppresses the thermoelectric current in the
problem under consideration. It can be formulated as follows.
In the strong tunneling limit, the overbarrier hopping is neg-
ligible, electrons tunnel through the barrier, and the tunneling
rate is determined mainly by the energy level change velocity
rather than their position. The electric potential does not affect
this velocity. The difference in the tunneling probabilities to
left and right neighboring cities, which determines the drift
current, vanishes. However, due to the Einstein relations,
the diffusion rate remains nonzero, representing the high-
temperature limit of a medium with vanishing conductivity.
In the absence of the electric field, the thermal gradient does
not break the equality of the tunnel probabilities in opposite
directions, so thermal emf does not arise. In the uniform case,
the external electric field just suppresses diffusion [15]. With

the temperature gradient, the uniform external electric field
makes the diffusion coefficient spatially nonuniform, giving
rise to the thermoelectric current in the closed circuit.

Following the Onsager principle [27], the existence of ther-
mal diffusion in the system under consideration means that the
inverse process exists—the Peltier effect.

Using Onsager’s relations [18,27], based on Eqs. (10) and
(11), we can write down the Peltier coefficients for a 1D
quantum lattice with the pure diffusive transport of electrons:

�T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−kBT

e
, �2τ � h̄cW0,

el2E2

2kBT
, �2τ � h̄cW0.

(12)

In the strong tunneling regime, the Peltier effect, like the
thermopower, is essentially nonlinear. Therefore, the Peltier
coefficient introduced in Eq. (12) in the limiting case of the
strong tunneling coupling should be regarded formally.

It should be emphasized that the thermoelectric effect stud-
ied in this paper is related to the peculiarities of quantum
diffusion in the spatially uniform 1D system caused by apply-
ing spatially nonuniform stochastic potential. The presented
analysis is obtained for the initial spatially uniform distri-
bution of charge carriers at the lattice nodes. A nonuniform
distribution of electrons is formed when the sample is con-
nected to the external circuit, giving rise to diffusion and drift
fluxes which tend to cancel out the initial thermodiffusion
flux. In addition, in a closed circuit, along with the considered
mechanism, other physical processes at the contact of the 1D
lattice with the electrodes may play an important role. The
joint manifestation of these mechanisms forms the resulting
thermoelectric effect, the magnitude of which may differ sig-
nificantly from Eqs. (10) and (11).

IV. CONCLUSIONS

The above analysis shows that, in the infinite linear 1D
chain of sites coupled by tunnel junctions, the spatial inho-
mogeneity of the random fluctuating potential leads to the
quantum thermodiffusion, generating the electric current in
the closed circuit. Thermopower strongly depends on the
strength of the tunnel coupling between the lattice sites. In
the strong tunneling regime, when the drift component of
the current is negligible and the diffusion coefficient does
not depend on the noise amplitude, the thermoelectric effect
occurs only in the presence of the electric field. In this case,
the Seebeck coefficient quadratically depends on the electric
field and increases with decreasing the average temperature
of the system. In the case of a weak tunneling regime, the
Seebeck coefficient does not depend on the temperature and
medium parameters, being of the order of 10−4 V/K.

The ability of the spatial noise inhomogeneity to result
in the appearance of a directed diffusion electron flux along
the chain of sites bonded by tunnel junctions proves not only
the existence of a direct thermoelectric effect (thermopower)
but also means the possibility of manifestation of the inverse
thermoelectric effect—the Peltier effect.

If the tunneling coupling is weak in the system un-
der consideration, the Seebeck and Peltier coefficients are
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universal constants not depending on the material properties.
The Peltier coefficient depends on the temperature linearly. In
the strong tunneling regime, both the Seebeck effect and the
Peltier effect are essentially nonlinear effects and exist only
in the presence of the electric field along the length of the 1D
system.
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