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Transmission line approach to transport of heat in chiral systems with dissipation
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Measurements of the energy relaxation in the integer quantum Hall edge at filling factor ν = 2 suggest the
breakdown of heat current quantization [H. le Sueur et al., Phys. Rev. Lett. 105, 056803 (2010)]. It was shown in
a hydrodynamic model that dissipative neutral modes contributing apparently less than a quantum of heat can be
an explanation for the missing heat flux [A. Goremykina et al., arXiv:1908.01213]. This hydrodynamic model
relies on the introduction of an artificial high-energy cutoff and lacks a way of a priori obtaining the correct
definition of the heat flux. In this work we overcome these limitations and present a formalism, effectively
modeling dissipation in the quantum Hall edge, proving the quantization of heat flux for all modes. We mapped
the quantum Hall edge to a transmission line by analogy and used the Langevin equations and scattering theory
to extract the heat current in the presence of dissipation.
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I. INTRODUCTION

The missing heat paradox, reported in the integer quan-
tum Hall (QH) edge at filling factor ν = 2 [1–3], challenges
two of the most fundamental phenomena in mesoscopic and
nanoscopic physics. On the one hand many experiments con-
firm that heat flux is quantized, more specifically, the rate
at which any type of carrier can transport heat at most in a
ballistic channel is proportional to a universal value known

as the heat flux quantum quantum Jq = πk2
B

12h̄ T 2 [4,5]. Ballistic
channels can be found in a variety of different systems includ-
ing quasi-one-dimensional semiconductor nanostructures [6],
carbon nanotubes [7], or QH systems, both at integer [1,2]
and fractional fillings [8–10]. On the other hand introducing
dissipation may resolve the paradox, since it is suggested to be
able to break the aforementioned heat flux quantization [11].

In contrast to charge transport which is often protected by
symmetries or topology [12], heat transport in such systems
requires a more elaborate theoretical framework. Taking into
account the smooth confining potential and screening of the
gate electrodes in QH systems, edge states manifest them-
selves as a charge density profile consisting of alternating
compressible and incompressible strips [13,14]. This picture
has been experimentally confirmed [15]. The effects of inter-
action, disorder, or finite temperature effects predict additional
nontrivial neutral counterpropagating excitations in the edge
[16–24]. Aleiner and Glazman (AG) analyzed the low-energy
spectrum of excitations of a compressible electron liquid in a
strong magnetic field and showed that the integer QH edge can
host neutral copropagating excitation [25]. Theory predicts
an infinite number of neutral downstream AG excitations,
but they were never detected in experiment. What has been
measured is a leakage of the injected energy into the QH edge
at different integer fillings [2,3], suggesting the presence of
additional degrees of freedoms for energy to be redistributed.

A detailed study of the QH edge at filling factor ν = 2 fol-
lowed [1]. In the experiment, energy was injected in the form

of Joule heat into a QH edge at a constant rate. This creates a
nonequilibrium distribution function which eventually relaxes
to a “hot” Fermi distribution function, which can be probed
by a quantum dot downstream. They found no energy transfer
towards the excitation of thermalized states and an efficient
energy redistribution between the two channels without parti-
cle exchanges. However, after long equilibration lengths L �
10 μm the corresponding temperature of the equilibrium dis-
tribution function saturated at a value which was 13% lower
than expected for two interacting edge channels. The effective
temperature becomes independent of the propagation length
indicating that no energy leaked into the bulk of the system or
is lost to some external mechanisms not taken into account
by the experimental procedure. The authors concluded that
the presence of additional degrees of freedom can explain the
outcome of the experiment; however, to match the numbers
this additional mode would need to carry less than a quantum
of heat to explain the loss.

In a previous work we addressed the possibility of a third
AG excitation carrying less than a heat flux quantum due to
dissipation [11]. The charged mode of the system carries a
flux quantum J = Jq = π

12h̄β2 . The neutral mode subject to a
transverse current proportional to the longitudinal conductiv-
ity σxx in the compressible strip will result in this mode having
a dissipative term in its low-energy spectrum and thus carrying
apparently a reduced amount of heat. The model is limited to
the low-energy degrees of freedoms with a wavelength much
larger than the inverse size of the compressible strip due to the
inhomogeneity of the edge in the transverse direction. Despite
the introduction of this artificial cutofff the found reduction
of the carried heat is universal, J = σxx

2πσxy
Jq. We also note

here that the reported loss of heat might be due to nonlocal
relaxation mechanisms [26–29]. However, the results of the
present paper show a more complete picture of the low-energy
theory of the edge.

The goal of this paper is to apply a combination of
Langevin equations and scattering states to model dissipation
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FIG. 1. Possible origin of dissipation in the QH edge: Due to
imperfections of the edge, electrons have the possibility to tunnel,
resembling a simple reservoir for electrons. This allows us to make
an analogy with a transmission line, which has distributed capacitors
and resistors. The reservoirs act as a heat bath with a self-consistently
determined temperature.

in chiral systems effectively [30]. We attach a chiral system to
a bath modeled as an open system, having the advantage to be
able to address equilibrium and nonequilibrium situations, as
well as being analytically treatable. These advantages make
it a unique approach to modeling dissipation, complementary
to the Caldeira-Leggett model, which successfully captured
the features of dissipation on a quantum level. We provide
an effective theory for chiral dissipative systems which is not
restricted to the low-energy degrees of freedom and prove the
quantization of heat for these systems, which, to the best of
our knowledge, has never been addressed. Furthermore, we
present the correct definition of heat flux, which is unobtain-
able starting from a hydrodynamic point of view, we try to
resolve the experimental paradox of the “missing heat,” and
we discuss the role of AG modes in QH systems.

II. THEORETICAL MODEL

Our goal is to capture the physics of a compressible strip
in the presence of disorder. We propose a minimal model and
focus on the experimental situation of filling factor ν = 2 and
model two copropagating modes with a typically large (spin)
resistance between them [31]. Interactions and dissipation can
be conveniently introduced using a transmission line (TL)
approach. We formally discretize the system into many nodes
which interact longitudinally (within the same mode) with a
chiral quantum resistor of strength Rq = 2π h̄

e2 and transversely
(between the modes) with a quantum resistor of, in principle,
arbitrary strength R⊥.

One can view this discretization also as the attempt to
model inhomogenities of the edge; see Fig. 1. Electrons mov-
ing along the edge might be disturbed or stored in these
inhomogenities for some time and then are reemitted at a later
time. This physically resembles an Ohmic reservoir similar
to the one presented in [32]. We consider the situation where
the level spacing of the reservoir is smaller than the charging
energy, the other limit will be considered elsewhere. Thermal
fluctuations incident to the Ohmic contact are absorbed and
lead to the creation of voltage δV (t ) and current fluctuations
δI (t ) being reemitted; see Fig. 2(b). This can be captured
within the framework of Langevin equations [33].

d

dt
δQ(t ) = �Iin(t ) − �Iout(t ), (1)

�Iout = δQ(t )

RqC
+ δI (t ), (2)

FIG. 2. (a) The transmission line. The two copropagating modes
consist of many reservoirs, which can interact longitudinally and
transversely. (b) A single node. The incoming current is fully dis-
sipated in the Ohmic reservoir heating it in return. The outgoing
current contains a contribution of the collective mode δV (t )/Rq and
a Langevin source contribution δI (t ) due to the thermal noise of the
resistor.

where the first equation is Kirchoff’s law guaranteeing current
conservation in the Ohmic contact and the second equation is
the Langevin equation with C being the capacitance of the
node. In our notation �I corresponds to the total fluctuation
of current containing charge and current fluctuations and δI
refers to the current fluctuations in the form of a Langevin
source. We take the Langevin equation as a starting point and
introduce two chains of N nodes interacting with a transverse
resistor. The equation of motion for the voltage fluctuation
δV α

j = δQα
j /C at position j in the upper/lower part of the TL

α = 1, 2 is given by

d

dt
δQα

j = �Iα
in, j − �Iα

out, j ∓ �I⊥
j , (3)

�I⊥
j = 1

R⊥

(
δV (1)

j − δV (2)
j

) + δI⊥
j , (4)

�Iα
out, j = 1

Rq
δV α

j + δIα
j , (5)

where the incoming current �Iα
in, j = �Iα

out, j−1 [34] is given
by the outgoing current of the previous node, and δIα

j and
δI⊥

j denote a Langevin source and the negative (positive) sign
is chosen for α = 1(2). The full transmission line is shown
in Fig. 2(a) and the equivalent circuit corresponding to the
equation of motion is depicted in Fig. 3.

The outgoing current fluctuations consist of the collective
mode contribution and thermal fluctuations. We define the
symmetric and antisymmetric combination of all voltages and
currents, i.e., the charged and neutral mode X c/n = 1

2 (X (1) ±
X (2) ):

d

dt
δQc

j = �Ic
out, j−1 − �Ic

out, j, (6)

d

dt
δQn

j = �In
out, j−1 − �In

out, j −
2

R⊥
δV n

j −δI⊥
j . (7)

The Fourier transformations

Xj (t ) =
N−1∑
k=0

∫
dω

2π
ei 2πk

N j−iωt Xk (ω), (8)

Xk (ω) = 1

N

N−1∑
j=0

∫
dte−i 2πk

N j+iωt Xj (t ) (9)

in time and position allow us to formally solve the equation of
motions and express the collective mode contribution δV c/n as
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FIG. 3. A transverse cross section of the transmission line de-
picted in Fig. 2(a). The Ohmic reservoirs longitudinally emit a
current according to Ohm’s law with the resistance Rq plus thermal
fluctuations given by Eq. (5). The upper and lower modes interact via
a transverse resistor R⊥ according to Eq. (4). The capacitor represents
the self-capacitance C of the Ohmic contacts.

a function of the Langevin sources δIc/n and δI⊥, which have
a known correlation function. Furthermore, we can read off
the spectra of the charged mode

−iωc
k = (RqC)−1(e−2π ik/N − 1) (10)

and neutral mode

−iωn
k = (RqC)−1(e−2π ik/N − 1 − 
), (11)

which contain highly nonlinear terms responsible for dissipa-
tion and dispersion of the modes. The neutral mode contains
furthermore an additional imaginary part governed by the
strength of the perpendicular resistor 
 = 2Rq/R⊥.

A. Computation of the heat flux

The advantage of the TL formulation is that we can
compute the heat flux locally by considering a cross sec-
tion between nodes. Each node is connected to perfect chiral
channels, a Hamiltonian system, for which a continuity
equation for the energy density ∂t ĥ + ∂xĴ = 0 can be de-
rived. Starting from the Hamiltonian density of free chiral
bosons ĥ = h̄vF

4π
[∂xφ(x, t )]2, applying the equation of mo-

tion ∂tφ(x, t ) + vF ∂xφ(x, t ) = 0 and using the definition for
the bosonic charge density ρ̂(x, t ) = e

2π
∂xφ(x, t ) and bosonic

current ĵ(x, t ) = − e
2π

∂tφ(x, t ). We arrive at the following
expression for the average heat flux [36]:

J = 〈Ĵ〉 = π h̄

e2
〈 ĵ(x, t )2〉. (12)

By means of Fourier transformation we obtain the current-
current correlation function 〈�Ic/n

out,k (ω)�Ic/n
out,q(ω′)〉 from the

equation of motion, Eqs. (6) and (7). Using the inverse Fourier
transform of Eq. (12) we can directly substitute the correlation
function and obtain the heat carried by the charged and neutral
mode. The details of how to solve the equations of motion
and how to compute the resulting integrals can be found in the
Supplemental Material [37].

B. Noise power from FDT

Equation (12) allows us to express the heat flux through
the correlation function of the Langevin sources appearing
in Eqs. (6) and (7). Due to locality in space and time of the
Langevin sources the following simplification arises:

〈
δIx

k (ω)δIx′
q (ω′)

〉 = 2πδ(ω + ω′)δx,x′
δk,−q

N
Sx(ω), (13)

where x, x′ ∈ {c, n,⊥} labels the sources belonging to the
charged, neutral, or perpendicular source. Additionally, we
have a Kronecker δ function for the momenta and a Dirac δ

function for the frequencies with their proper normalization.
The noise spectral density Sx is evaluated assuming a local
thermal equilibrium in the channel, thus the fluctuation dissi-
pation theorem (FDT) applies,

Sx(ω) = Gx

[
h̄ω

1 − e−β h̄ω
− Svac(ω)

]
, (14)

where the vacuum noise Svac(ω) = h̄ωθ (ω) is subtracted, with
the inverse temperature β = (kBT )−1, Gc/n = 1/(2Rq), and
G⊥ = 
/Rq. Note the difference of factor 2 between the lon-
gitudinal and transverse resistor, which is due to the chirality
of the longitudinal resistors [30]. With these ingredients the
average heat flux can be computed. Note that for equilibrium
noise, one finds the aforementioned heat flux quantum

J =
∞∫

−∞

dω

4π

[
h̄ω

1 − e−β h̄ω
− h̄ωθ (ω)

]
= π

12h̄β2
= Jq. (15)

III. RESULTS

The heat flux through the upper and lower arm can be
expressed as the contribution carried by the charged mode and
the neutral mode

J

Rq
= 1

2

∑
α=1,2

〈(
�Iα

out, j

)2〉 =
∑

α′=c,n

〈(
�Iα

out, j

)2〉
. (16)

We will compute the charged Jc and neutral mode Jn con-
tributions separately. Note that the charged mode contribution
can be computed simply by taking the limit Jc = lim


→0
Jn. We

proceed with the following steps: (1) take the limit of infinitely
many nodes N → ∞, which allows us to replace the discrete
k summation by a k integration, but keep the nodes separated
by the distance ξ . (2) Compute the k integral by mapping it
onto the unit circle z → eikξ and use the residue theorem with
the poles enclosed by the unit circle contour. (3) Compute the
ω integral.

A. Heat flux of the charged and neutral mode

In this section we give the results for the fluxes computed
as described above. For the charged mode we find

Jc=
∫ ∞

−∞

∫ π/ξ

−π/ξ

dω dk

8π2

ξω2S0(ω)

[ω − ωc(k)][ω + ωc(−k)]
= Jq, (17)

where the dispersion relation of the collective mode is given
by Eq. (10), and we abbreviate the noise power with S0(ω) =
h̄ω(1 − e−β h̄ω )−1 − Svac(ω). The charged mode carries a full
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flux quantum as expected. For the neutral mode we surpris-
ingly find

Jn =
∫

dω dk

4π2

ξ
(
R2

qC2ω2 + 
 + 
2

2

)
S0(ω)

R2
qC2[ω − ωn(k)][ω + ωn(−k)]

=Jq, (18)

with the limits of integration being the same as the ones for the
charged mode and the spectrum of the neutral modes given by
Eq. (11). The heat carried by the neutral mode is given by
a full flux quantum and completely independent of R⊥. This
can be seen after computing the momentum integral, which
makes it equivalent to Eq. (15). See the Supplemental Material
[37] for details on the calculation. This is unexpected since the
dispersion relation of the neutral mode is subject to arbitrary
strong dissipation, e.g., in the strongly damped limit 
 → ∞.
This is part of our proof, showing that heat is universally
quantized even in the strongly overdamped regime.

B. The sum rule

The second part of our proof can be understood as a
generalized sum rule [32] originating from each individual
node of the transmission line. This is the direct manifestation
of the unitarity of the scattering matrix at each node. This
is one strength compared to the Caldeira-Leggett model our
formalism offers. One can straightforwardly solve (3) to (5)
for the outgoing current �Iα

out, j as a function of the incoming
current �Iα

in, j and the Langevin sources. This gives for the
current fluctuations of the α ∈ {1, 2} channel

�Iα
out, j =

∑
β=1,2

T α
in,β�Iβ

in, j + T α
‖,βδIβ

j + T α
⊥ δI⊥

j . (19)

The corresponding coefficients are given by

T 1
in,1 = T 2

in,2 = 1
2 [A(ω) + B(ω)],

T 1
in,2 = T 2

in,1 = −T 1
‖,2 = −T 2

‖,1 = 1
2 [A(ω) − B(ω)],

T 1
‖,1 = T 2

‖,2 = 1 − T 1
in,1,

T 1
⊥ = −T 2

⊥ = −B(ω),

with A(ω) = (1 − iRqCω)−1 and B(ω) = R⊥(R⊥ + 2Rq −
iR⊥RqCω)−1. If one computes the noise power in the
upper/lower channel one finds
〈
�Iα

out, j (ω)�Iα
out, j (−ω)

〉 =
∑

β=1,2

∣∣T α
in,β

∣∣2〈
�Iβ

in, j (ω)�Iβ

in, j (−ω)
〉

+∣∣T α
‖,β

∣∣2
S‖,β + |T α

⊥ |2S⊥. (20)

The sum rule states, that if the current incident to a node is
equilibrium, i.e., it has a noise power given by Eq. (14) with
Gin = 1

Rq
we find that

∑
β=1,2

∣∣T α
in,β

∣∣2
Gin + ∣∣T α

‖,β
∣∣2

G‖ + |T α
⊥ |2G⊥ = 1

Rq
, (21)

with Gin = G‖ = 1
Rq

and G⊥ = 2
R⊥

. This immediately explains
the earlier findings since every outgoing current from a node
will be in equilibrium if the incident currents are in equilib-
rium.

C. Exact cancellation of Joule heating and
backaction in equilibrium

The structure of the outgoing current is always of the form
�Iout = R−1

q δV (t ) + δI (t ), hence the total current-current cor-
relation function in Eq. (16) consists of three parts. The first
contribution contains the autocorrelation function of the col-
lective mode CVV , the second the cross-correlation function
between the collective mode contribution and the Langevin
sources CIV , and finally the autocorrelation function of the
Langevin sources CII . We find the remarkable result

1

Rq

∫
dk

2π
CVV = −

∫
dk

2π
(CIV + CV I ),

CXY = 〈δX α′
(k, ω)δY α′

(−k,−ω)〉,
which holds for the charged and neutral mode, α′ = c, n and
X,Y ∈ {V, I}. The exact cancellation after taking the mo-
mentum integral implies that the Joule heating on the nodes,
given by CVV , is fully compensated by the backaction of the
sources on the nodes, (CIV + CV I ). The correlation function of
the source CII is the only remaining part of Eq. (16), which
explains why there is always a flux quantum for the charged
and neutral modes. The sources are thus not just auxiliary but
real physical entities of the system. This principle of exact
cancellation due to the backaction of thermal noise was first
mentioned in [38] by Nyquist who stated that two resistors in
thermal equilibrium connected by ideal wires excite thermal
fluctuations, which in principle leads to a heat flux from one
resistor to another, but is compensated by the fluctuations of
the second resistor. This also holds true in every frequency
window, since one would be able to extract energy by placing
a frequency filter in the system. The same is true here. The
cancellation holds before the integration over frequencies is
done. The simple reason to explain the exact cancellation is
the second law of thermodynamics, which forbids the extrac-
tion of heat, i.e., dissipation of heat in the present case, if the
system is in thermal equilibrium. This is a key difference with
[11], where the energy flux was defined as potential energy
flux proportional to CVV , a contribution which is now canceled
by the backaction effect of the sources. The implications of
this will be discussed in the next section.

IV. LOW-ENERGY THEORY OF AN EDGE WITH
INTRINSIC DISSIPATION

In this section we want to address the differences be-
tween the hydrodynamic model [11] and the transmission
line approach presented in this paper and why the former
yields different results, despite correctly applying fluctuation-
dissipation relations, a standard procedure, to obtain equilib-
rium correlation functions.

The general idea is now to obtain a low-energy theory
from the discrete transmission line model, to compare it to
the one obtained in the previous paper and to comment on its
universality. It is clear that in the low-energy limit, e.g., for
small temperatures, not all possible modes of the nonlinear
spectrum of the charged and neutral mode will be excited.
This justifies linearizing the spectrum, if possible, to the point
where the heat flux integrals Eqs. (17) and (18) converge and
yield the same heat flux quantum. This is equivalent to finding

235417-4



TRANSMISSION LINE APPROACH TO TRANSPORT OF … PHYSICAL REVIEW B 105, 235417 (2022)

the low-energy field theory, which correctly describes chiral
heat transport in the QH edge in the presence of dissipation.
We will discuss the charged and neutral mode separately.

A. Low-energy field theory for the charged mode

The dispersion relation of the charged mode is given by
Eq. (10). It contains a “hidden” type of dispersion coming
from the discreteness of the transmission line. This can be
seen by expanding the dispersion relation in small ξ :

−iωc(k) ≈ −ikvq − k2ξvq

2
+ i

k3ξ 2vq

6
, (22)

where we rescaled to intensive quantities by introducing the
velocity vq = ξ/RqC. The second term plays the role of a
dissipative term coming from the retardation of the collective
mode and vanishes in the true continuum limit ξ → 0. Notice
that this crossover is nontrivial; physically this means that the
decay length of the collective mode becomes much larger than
the distance between the nodes, so no dissipation is happening
and thus no heating and backaction effect, as discussed in the
previous section. In this limit the system is susceptible to its
boundary conditions, and the potential energy flux described
in [11] correctly predicts a flux quantum. If one keeps dissi-
pation in the system, the definition of the heat flux in terms of
the current current correlation function correctly gives a heat
flux quantum, if one restricts the energies to be small; see the
Supplemental Material [37] for details on the calculation. This
allows us to write the equation of motion in a coarse grained
fashion, i.e., depending on a continuous variable, rather than
a discrete node index. This can be understood as the minimal
expansion of the discrete difference operator in Kirchhoff’s
law in order to capture the feature of dissipation correctly
at low energies plus a Langevin equation. In real space the
equation of motion for the coarse-grained collective mode
V c(x, t ) and source δIc(x, t ) read

�Ic
out(x, t ) = 1

Rq
δV c(x, t ) + δIc(x, t ), (23)

∂tδV c(x, t ) + vqRqD�Ic
out(x, t ) = 0, (24)

where D = ∂x − ξ

2 ∂2
x + ξ 2

6 ∂3
x . With these modified hydro-

dynamic equations one can proceed as follows: (1) Solve
Eqs. (23) and (24) for the collective mode contribution δV c.
(2) The heat flux carried by the chiral system is given by
J = Rq〈[�Ic

out(x, t )]2〉. (3) Take into account only low ener-
gies and momenta, i.e., expand the cubic and quartic terms in
the momenta around k → ω/vq, which will result in a heat
flux quantum, shown explicitly in the Supplemental Material
[37]. This completes the low-energy hydrodynamic theory for
chiral dissipative systems.

B. Low-energy field theory for the neutral mode

The dispersion relation of the neutral mode is given by
Eq. (11) and contains two types of dissipation. The dissipation
due to the discreteness of the transmission line, similarly to the
charged mode and the dissipation introduced by the transverse
resistor. Focusing on the transverse dissipation only, we keep

the leading order terms

−iωn(k) ≈ −ivqk − vq


ξ
. (25)

As we show explicitly in the Supplemental Material [37],
if 
 ≈ kξ � 1 we find that the heat integral gives a flux
quantum. If the above condition is not met, the integral does
not come from low momenta, but from the bandwidth of the
system, and one needs to integrate over all nonlinearities of
the spectrum. Physically this means that the neutral collective
mode decays over distances shorter than the nodes for stronger
dissipations and is essentially pinned. There is no low-energy
description of the strongly overdamped neutral mode. The
thermal fluctuations, however, still carry a flux quantum. We
are able to write a coarse-grained equation of motion for the
case that the low-energy theory exists [39]:

�In
out(x, t ) = 1

Rq
δV n(x, t ) + δIn(x, t ), (26)

�I⊥(x, t ) = 2

R⊥
δV n(x, t ) + δI⊥(x, t ), (27)

∂tδV n(x, t ) + vqRq∂x�In
out(x, t ) − �I⊥(x, t ) = 0. (28)

We are now able to discuss the role of the artificial cutoff
ξa introduced in [11] for the momentum integration, roughly
given by the transverse size of the compressible strip. This
was the restriction of the low-energy approach to the edge.
We can see that if the integral comes from small energies and
momenta, replacing the artificial cutoff by the true cutoff can
change only the numerical prefactor, but not the parametrical
suppression found in the heat flux of the neutral mode. We
want to emphasize once more that the definition of heat flux
as potential energy flux was the cause for this result, but the
mistake is rather conceptual. It can be seen that the Langevin
sources introduced in the present formalism are not just a
mathematical trick, but a real part of the system leading to a
cancellation of the autocorrelator of the collective mode. The
Joule heating is canceled by the backaction of the sources on
the collective mode in thermal equilibrium. We thus conclude
that a Langevin equation is the more complete approach to
dissipative systems, and we naturally give a more correct def-
inition of energy flux in these systems, which is unobtainable
starting from the hydrodynamic point of view.

V. THE ROLE OF ALEINER-GLAZMAN MODES

So far we have been able to write an effective model for
a system with either two copropagating modes, i.e., filling
factor ν = 2 with a transverse spin resistance or, equivalently
after rescaling Rq → Rq/2, the hydrodynamic model con-
sisting of one charged and one half-filled Aleiner-Glazman
neutral mode, stemming from approximating the density pro-
file obtained by the electrostatic analysis of the edge [25].

However, writing an effective model for dissipation in
these systems, we see that it is not permitted to write a
low-energy theory for the neutral mode at all in the pres-
ence of dissipation. We are not able to properly construct
the continuum limit of the TL based on the edge recon-
struction of the AG modes. Furthermore, the dissipation in
the charged mode of the system depends on length scales,
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FIG. 4. An effective description of edge defects as quantum
Hall puddles and the corresponding density profile in black, cut-
ting through the red dashed line. The blue dashed line shows the
“average” hydrodynamic density, which suggests the presence of
a half-filled neutral mode. The model presented in this paper sug-
gests the presence of the disorder length scale in the hydrodynamic
equations of motions. This implies that viewing the nonhomogenous
density profile at the edge due to quantum puddles as an on average
“half-filled” neutral mode is wrong, or, if it exists, the neutral mode
will decay on length scales comparable to the disorder length scale.

e.g., the correlation length of disorder, which are not cap-
tured in the low-energy approach. We thus conclude that
the electrostatic/hydrodynamic picture is not applicable to
describe dissipative chiral transport in QH systems and fur-
thermore neglects the experimental truth in the QH edge.
The picture of QH puddles (see Fig. 4) is not compatible
with the prediction of AG modes. The half-filling is an ar-
tifact of coarse graining many puddles which have co- and
counterpropagating modes. This is different from a half-filled
copropagating mode.

VI. CONCLUSION

We have shown that the heat flux quantization in chiral
systems in thermal equilibrium is robust and reflects fun-
damental thermodynamic laws. We analyzed chiral quantum
systems with the “transmission line approach,” an extension of
the Langevin formalism in combination with scattering states
developed in earlier works [30,32]. The formalism allows to
take into account dissipation on an effective level. Similarly
to the Caldeira-Leggett model, we attach a bath consisting of

many oscillators to a chiral system. In contrast to the Caldeira-
Leggett model, we consider the baths to be an open system,
which allows for the analytical treatment of equilibrium and
nonequilibrium situations. We were not only able to address
the question of the apparent reduction of heat flux carried
by the strongly overdamped neutral mode in [11], but have
proven the quantization of heat flux for chiral systems in
the presence of different types of dissipation. In a next step
we considered chiral systems in the presence of additional
diffusive modes, making the system essentially nonchiral.

For all of the systems above we could prove that heat flux is
quantized if the system is in thermal equilibrium and could re-
late this to the local unitarity condition of the scattering matrix
and the backaction principle of the Langevin sources on the
collective mode. We have shown the correct definition of heat
flux for chiral dissipative systems and discussed the crossover
to the potential energy flux used in [11]. This question of the
definition of energy flux reveals the nature of the Langevin
sources as true physical entities which are able to give back
heat to the system rather than just being a mathematical aid.
We continued formulating the low-energy theories which can
be deduced from the transmission line model and capture the
universal aspects of the edge. We discussed the minimal ex-
pansion of Kirchhoff’s law, which completes the low-energy
theory.

The results of this paper are not able to answer the missing
heat paradox [1], but expand a field containing many inter-
esting ideas. An explanation for the experiment could be a
potential discrepancy between the actual and measured heat
flux. To proceed further one needs to look into the physics
of probing the edge states. This involves the construction of
a electronic operator which is not just the bosonized vertex
operator but goes beyond the bosonization formalism due to
correlations through the collective mode if a tunnel probe is
connected. The results of this paper also show that the strongly
overdamped AG modes cannot be described in a low-energy
theory and if they are present cannot explain the experiment.
So far their experimental detection remains an open question.
Finally, the formalism developed in this paper can be easily
applied to different edge reconstructions and to fractional
quantum Hall systems.
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