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Nonlinear magnetoconductivity in Weyl and multi-Weyl semimetals in quantizing magnetic field
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Magnetotransport and magneto-optics experiments offer a very powerful probe for studying the physical
properties of materials. Here, we investigate the second-order nonlinear magnetoconductivity of the tilted
type-I Weyl and multi-Weyl semimetals. In contrast to the existence of chiral charge pumping in the linear
response regime, we reproduce the absence of chiral charge pumping in the nonlinear transport regime, using
the Boltzmann transport framework with the Landau levels. We predict that an inversion symmetry broken and
tilted Weyl semimetal can support finite longitudinal nonlinear magnetoconductivity, which is otherwise absent
in untilted Weyl semimetals. The nonlinear magnetoconductivity vanishes in the ultraquantum limit, oscillates
in the intermediate magnetic field regime, and saturates in the semiclassical limit. The nonlinear magnetocon-
ductivity depends intricately on the tilt orientation, and it can be used to determine the tilt orientation in Weyl
and multi-Weyl semimetals, via nonlinear magnetoresistivity or second harmonic generation experiments.
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I. INTRODUCTION

Since their discovery, Weyl semimetals (WSMs) have
attracted significant attention due to their unusual linear quasi-
particle dispersion mimicking the Weyl fermions with novel
topological properties [1–6]. The combination of Weyl points
in the bulk, which act as source and sink of Berry curvature
with topological charges, and nontrivial Fermi arc surface
states, support diverse novel transport and optical phenomena
including the quantum anomalies [7–15]. Several of these
phenomena have been experimentally realized in a wide range
of materials showing Weyl characteristics, starting from the
three-dimensional Dirac semimetal in the presence of a mag-
netic field [16,17] to transition metal mononictides [18–21]
and magnetic materials [22–24]. Furthermore, the realization
of WSMs in space inversion symmetry (SIS) broken sys-
tems has facilitated the exploration and potential application
of second-order nonlinear (NL) responses [25–27]. It has
been shown that the SIS broken WSMs exhibit photogalvanic
responses [28–32] such as injection current [33] and shift
current [34], second harmonic generation [35,36], sum and
difference frequency generation [37], and the nonlinear Hall
effect [38–40], among others.

Recently, there have been several studies focusing on how
the NL transport and optical responses in WSMs are modified
in the presence of a magnetic field. Treating the magnetic field
within the semiclassical framework, it has been shown that
the Berry curvature induces a finite NL magnetoconductivity
[41–46]. In addition, the interband transition of carriers, com-
bined with the chiral magnetic velocity gives rise to the helical
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magnetic effect [47]. On the other hand, in the presence of a
strong magnetic field where quantized Landau levels (LLs)
are formed, optical transitions have been shown to generate
photocurrent [30,48] in gyrotropic WSMs. More recently, sec-
ond harmonic generation has been demonstrated in isotropic
WSMs, in the presence of a DC electric field [49].

Motivated by these exciting studies, in this paper we ex-
plore the second-order NL magnetotransport/optical response
in WSMs and in multi-WSMs [50–60] in the presence of
a strong magnetic field that gives rise to discrete LLs [see
Fig. 1(a)]. In order to treat the semiclassical, quantum oscil-
lation, and the ultra-quantum transport regimes on the same
footing, we apply the Boltzmann transport framework to the
quantized LLs. Specifically, we calculate the intraband contri-
bution to the NL longitudinal conductivity σzzz, which relates
the second-order NL current to the applied electric fields,
jz = σzzzEzEz [see Eq. (13)].

We consider a low energy model Hamiltonian describing
a pair of tilted Weyl nodes of opposite chirality (χ = ±1),
specified by [61–63]

Hχ = χvF h̄k · σ + h̄wχ · kσ0. (1)

Here, vF is the Fermi velocity, σ = (σx, σy, σz ) denotes the
Pauli matrices, σ0 is the identity matrix, and wχ represents the
tilt velocity. We find that for having a finite NL longitudinal
response, in addition to the broken SIS, the time-reversal
symmetry (TRS) also needs to be broken. Different possible
tilt orientations for the pair of opposite chirality Weyl nodes,
and the resulting NL longitudinal conductivity are summa-
rized in Fig. 1(b). We reproduce that WSMs do not support
second-order NL chiral anomaly, i.e., there is no chiral charge
pumping that is quadratic in electric field. Consequently, the
whole NL longitudinal conductivity is determined by the in-
tranode scattering times. We show that the NL longitudinal
conductivity vanishes in the ultraquantum limit, indicating
that the chiral LLs do not contribute to it. The NL conductivity
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FIG. 1. (a) A schematic of the second harmonic generation
[σ (2ω)] in the presence of a quantizing magnetic field. Panel
(b) presents a summary of the various tilt orientations in WSMs, and
the corresponding nonlinear responses. We show that the nonlinear
longitudinal response is finite only when both the space inversion
symmetry and time-reversal symmetry in WSMs are broken, with
the tilt direction in the Weyl nodes of opposite chirality being aligned
with each other.

shows an oscillating behavior in 1/B in the intermediate mag-
netic field regime, and the period of quantum oscillations can
be used to measure the tilt velocity. In the semiclassical limit,
the NL conductivity becomes independent of B reducing to the
NL counterpart of the Drude conductivity. Our calculations
reveal that these features of NL longitudinal response also
persist in multi-WSMs.

II. SYMMETRIES AND TILT ORIENTATION IN WEYL
SEMIMETAL

The TRS and SIS play a fundamental role in determining
the low energy Hamiltonian of tilted WSMs [5,29,64,65], and
consequently the NL responses. In space inversion symmetric
(TRS broken) WSMs, minimum two nodes are feasible and
the Weyl nodes of opposite chirality are related via the center
of inversion [5]. In such systems, if the low energy model
of one Weyl node in the Brillouin zone is given by H =
σ · k + w · k, then the Hamiltonian of the other node related
through SIS is obtained by k → −k as HP = −σ · k − w · k.
This indicates that the SIS related Weyl nodes will always
be oppositely tilted (w− = −w+). On the other hand, in a
TRS preserving (SIS broken) WSM, a minimum of four nodes
are needed. The Weyl nodes of the same chirality are related
through a time-reversal invariant momentum while there is no
symmetry restriction between the nodes with opposite chiral-
ity [5]. In this case, if the low energy model of one of the Weyl
nodes is given by H = σ · k + w · k, then the Hamiltonian of
the other same chirality node related to it via TRS is obtained
to be HT = σ · k − w · k [64]. This implies that nodes with
the same chirality have opposite tilt. Since the second-order
NL response vanishes in the presence of SIS, we consider the
case of SIS broken WSMs, in which the Weyl nodes of oppo-
site chirality have the same tilt velocity (w+ = w−). Within
the family of SIS broken WSMs, we can consider systems
either with TRS or without TRS. We show later that in TRS
preserving WSMs, the longitudinal NL response vanishes [see

Eq. (15)]. Therefore, our work is focused on WSMs without
any fundamental symmetries (both TRS and SIS are broken).

III. LANDAU LEVELS IN TILTED WEYL SEMIMETAL

The eigenvalue problem of massless tilted Dirac fermions
in the presence of a strong magnetic field has been earlier
explored in three-dimensional [64,66] systems as well as in
two-dimensional [67,68] systems. Here, we sketch the cal-
culation for a three-dimensional Weyl Hamiltonian given in
Eq. (1). To be specific, we consider the magnetic field to be
applied along the z axis (B = Bẑ), and the tilt velocity to be
in the x-z plane, wχ = (w⊥,χ , 0,w‖,χ ) having components
parallel to and perpendicular to the applied magnetic field.
We define the dimensionless quantities (i) tχ = wχ/vF =
(t⊥,χ , 0, t‖,χ ) = |tχ |(sin θ, 0, cos θ ), θ being the angle be-
tween the wχ and B, and (ii) α = (1 − t2

⊥,χ )1/2, which will
be used later. Depending on the dimensionless tilt strength,
WSMs are categorized into two classes. For |tχ | < 1, the
Fermi surface of each Weyl node hosts only a closed electron
or a closed hole pocket (in the absence of magnetic field)
and such systems are called type-I WSMs. The systems with
|tχ | > 1 are called type-II WSMs, and in these systems the
Fermi surface (in the absence of magnetic field) at the charge
neutrality point consists of an open electron and an open hole
pocket with the Weyl node connecting the two. In this paper,
we focus on type-I WSMs.

To calculate the LLs, we use the Landau gauge to rep-
resent the magnetic field in the z direction via the vector
potential A = (−By, 0, 0). In the presence of the vector po-
tential, the Peierls substitution transforms the Hamiltonian as
Hχ = χvF (h̄k̂ + eA) · σ + wχ · (h̄k̂ + eA)σ0. The choice of
the Landau gauge breaks the translational symmetry of the
system along the y axis, but kx and kz remain good quantum
numbers. Furthermore, the tilt in the Hamiltonian combined
with the vector potential introduces a term like −eyw⊥,χ B,
which can be seen as a potential resulting from an effective
electric field Eeff = w⊥,χB along the negative y direction.
Importantly, the LLs can exist only when the effective drift ve-
locity vd = Eeff/B is less than the Fermi velocity, i.e., w⊥,χ <

vF [69]. Now, introducing a Lorentz boost to eliminate the
Eeff field, and after some little algebra we obtain the energy
spectrum to be [64,66]

εχ
n =

{
(−χα + t‖,χ )h̄vF kz n = 0,

sgn(n)αEn,kz + h̄vFt‖,χkz n �= 0.
(2)

Here, we have defined ωc = vF /lB with lB = √
h̄/(eB) and

En,kz =
√

2|n|α(h̄ωc)2 + (h̄vF kz )2. After Landau quantiza-
tion, the three-dimensional problem effectively becomes a
one-dimensional problem along the kz axis. The LLs for a
pair of Weyl nodes with opposite chirality and the same tilt
velocity, are shown in Fig. 2. Some interesting facts about
the LLs spectrum of tilted Weyl nodes are as follows: (i) For
the lowest LL, the tilt only modifies the strength of the band
velocity while for higher LLs the tilt introduces an additional
term in the dispersion which is an odd function of kz. We show
below that the latter significantly modifies the NL conduc-
tivity. (ii) The tilt displaces the minima of the nonchiral LLs
in the kz axis and also squeezes their dispersion. The energy
separation between consecutive LLs (at the minima) is given
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FIG. 2. Landau level spectrum of tilted type-I Weyl nodes with
chirality χ = +1 (left panel) and χ = −1 (right panel). The energy
axis is scaled with h̄ωc and the kz axis is scaled with magnetic
length lB. The tilt has been considered to be oriented in the same
direction for both Weyl nodes of opposite chirality. We have used
tχ = 0.6(sin θ, 0, cos θ ) with θ = π/6, Fermi velocity vF = 2 × 105

m/s, and magnetic field B = 10 Tesla.

by εn+1 − εn = [α(1 − t2
χ )]1/2h̄ωc

√
2(|n + 1| − |n|), which is

[α(1 − t2
χ )]1/2 times smaller than that in isotropic WSMs. (iii)

The tilt removes the particle-hole symmetry which is other-
wise present in isotropic Weyl nodes. (iv) The tilt does not
alter the degeneracy of energy levels and it is the same as
in isotropic WSMs, D = 1/2π l2

B per unit cross-section area
perpendicular to the magnetic field [66].

It is straightforward to calculate the density of states, ρ(ε).
For μ > 0, we obtain ρ(ε) to be

ρ(ε) = ρ0

[
1

α − χt‖,χ
+

nc∑
j=±,n=1

(∣∣∣t‖,χ + h̄vF αk j
z0

En,k j
z0

∣∣∣)−1
]
.

(3)
Here, we have defined ρ0 = 1/(4π2l2

Bh̄vF ), and k j
z0 are the

momentum points where the constant energy line (ε) inter-
sects the LLs. The k j

z0 ( j = ±) are given by

k±
z0(ε) =

±
√(

1 − t2
χ

)(
k2 − 2|n|α3/l2

B

) + k2t2
‖,χ − kt‖,χ

1 − t2
χ

,

(4)
with k = ε/h̄vF . The density of states (DOS) in Eq. (3) is
for the conduction band side (μ > 0) and for more general
form, we refer readers to Ref. [70]. For each of the LLs,

the density of states diverges at εn =
√

2|n|α(1 − t2
χ )h̄ωc. The

group velocity along the z direction is calculated to be

vχ
z,n =

{
(−χα + t‖,χ )vF n = 0,

sgn(n)αh̄v2
F kz/En,kz + vFt‖,χ n �= 0.

(5)

The tilt introduces a constant velocity in each LL. The LL
DOS and the group velocities will be used later to calculate
the NL longitudinal conductivity.

IV. VANISHING NONLINEAR CHIRAL ANOMALY

It is well known in quantum field theories that there is
no chiral charge pumping in the nonlinear transport regime
[71]. Here, we reproduce this fact explicitly using the discrete
LLs in combination with the Boltzmann transport framework.
In the Boltzmann transport formalism, the current is cal-
culated via the equation j(t ) = −eD

∑
n,χ

∫
[dkz]vχ

z,n f χ
n (t ).

Here, “−e” denotes the electronic charge, [dkz] ≡ dkz/(2π ),
and f χ

n (t ) is the nonequilibrium distribution function (NDF)
in the presence of the applied external fields. To calculate the
NL longitudinal conductivity, we consider a spatially uniform
electric field oscillating at frequency ω and applied parallel
to the magnetic field, E(t ) = ẑEze−iωt . In the linear response
regime, the parallel electric and magnetic fields configuration
(finite E · B) induces chiral anomaly [7], the nonconservation
of chiral charge in WSMs. The chiral charge pumping is
countered by internode scattering to establish a steady state.
Incorporating this in the Boltzmann equation, we can calculate
the NDF [9].

Using the relaxation time approximation [11,66,72], we
have

∂t f χ
n (t ) + k̇

χ

n · ∇k f χ
n (t ) = − f χ

n (t ) − f̄ χ
n (t )

τ
− f̄ χ

n (t ) − f 0
n

τv

.

(6)
Here, f̄ χ

n (t ) represents the “local equilibrium” distribution
function for each Weyl node. The global equilibrium distri-
bution function is defined as f 0

n = [ f̄ χ
n (t ) + f̄ −χ

n (t )]/2, which
we assume to be the Fermi function, f 0

n = 1/[1 + eβ(εχ
n −μ)] at

chemical potential μ and inverse temperature β = 1/(kBT ),
with T and kB being the temperature and the Boltzmann
constant, respectively. The first term in the right-hand side
of Eq. (6) represents the collision integral for the intranode
scattering (with scattering rate 1/τ ), which establishes the
local equilibrium. The intranode scattering does not change
the number of carriers in the respective node. The collision
integral for internode scattering is represented by the sec-
ond term in Eq. (6) with the internode scattering rate 1/τv .
For simplicity, we ignore the energy dependence of both the
scattering times. The NDF can be expressed as a sum of the
equilibrium and nonequilibrium parts by expanding it in pow-
ers of the electric field strength, f χ

n (t ) = f 0
n + f (1),χ

n e−iωt +
f (2),χ
n e−i2ωt + · · · . Here, f (1),χ

n is linear order in the electric
field, f (2),χ

n is quadratic order in the electric field (∝|E|2),
and so on. In this paper, we are interested in the second-order
response and hence we focus on calculating f (2),χ

n . The first
question we address is the possibility of having NL chiral
charge pumping in WSMs in which the rate change of chiral
charge carriers will be proportional to |E|2.

To explore the NL chiral anomaly in WSMs, we start by re-
viewing the linear chiral anomaly and build the second-order
response on top of that. The existence of linear chiral anomaly
can be deduced from the collisionless Boltzmann equa-
tion [Eq. (6) with τv and τ → ∞], by using the equilibrium
distribution function in the k̇ · ∇k f χ

n term and constructing a
continuity equation [13,73]. Integrating over all the momen-
tum states, we obtain [13]

∂N (1),χ

∂t
= −D

∑
n

eEz

∫
[dkz]v

χ
n,z

(−∂ε f 0
n

)

= χe2

4π2h̄2 EzB. (7)

Here, N (1),χ = D
∑

n

∫
[dkz][ f (0),χ

n + f (1),χ
n ] is the particle

number density in each Weyl node. Clearly, the chiral charge
density is not conserved and this chiral charge pumping ∝
E · B is the hallmark of linear chiral anomaly [9,13].
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Using the same approach, we now verify for a NL version
of the chiral anomaly by constructing a continuity equa-
tion with the NL distribution function. For the second-order
NL chiral charge pumping equation, we need the first-order
NDF. The first-order NDF can be calculated to be

f (1),χ
n =

(
− eτωEzv

χ
z,n + κ

τω

τv

〈δg(1),χ
n 〉χ

)(−∂ε f 0
n

)
. (8)

Here, we have defined 〈δg(1),χ
n 〉χ = −eτv,ωEz〈vχ

z,n〉χ , with
〈· · · 〉χ = [

∑
n

∫
[dkz](−∂ε f 0

n )(· · · )]/[
∑

n

∫
[dkz](−∂ε f 0

n )]
denoting the average over all the electronic states at the
Fermi level. Additionally, we have used τω = 1/(1 − iωτ ),
τv,ω = 1/(1 − iωτv ), and κ = (τv/τ − 1). Integrating the
collisionless Boltzmann transport equation over all the states
in the DC limit (ω = 0) we obtain

∂N (2),χ

∂t
= e2E2

z τ

4π2l2
B

[(
Iχ + Cχ

22

) + κ
Cχ

11

Cχ

01

Cχ

12

]
. (9)

Here, we have defined

Iχ =
∑

n

∫
dkz

∂vχ
z,n

h̄∂kz

(
∂ε f 0

n

)
, (10a)

Cχ

lm =
∑

n

∫
dkz

(
vχ

z,n

)l(
∂m
ε f 0

n

)
. (10b)

In the coefficient Cχ

lm, the first subscript denotes the power
of the magnetic band velocity, and the second subscript de-
notes the order of the derivative of the Fermi function with
respect to the energy. We find that Iχ + Cχ

22 = 0, along with
Cχ

12 = 0, and consequently, ∂N (2),χ /∂t = 0. This reproduces
the significant result that there is no NL chiral anomaly that
is second order in the electric field strength. This is consistent
with the absence of the nonlinear chiral anomaly in quantum
field theories [71]. Thus, all chiral anomaly related NL trans-
port phenomena in WSMs involve the linear chiral anomaly
in combination with some other impact of the electric field.

V. NONLINEAR LONGITUDINAL CONDUCTIVITY

Having verified that the NL chiral anomaly vanishes, we
show that the NL longitudinal conductivity is determined only
by the intranode scattering contributions (see Appendix A for
more details). The corresponding NDF is given by

f (2),χ
n = e2τωτ2ωE2

z

h̄

∂

∂kz

[
vχ

z,n

(
∂ε f 0

n

)]
, (11)

where τ2ω = τ/(1 − iτ2ω). Using the NDF in Eq. (11), the
2ω component of the longitudinal current density can be ex-
pressed as

j2ω
z = −eD

n=nc∑
χ=±1,n=0

∫
[dkz]v

χ
z,n f (2),χ

n . (12)

Here, nc is the number of filled (empty) LLs in the conduc-
tion (valence) band, and it is specified by nc = int[ (μ/h̄ωc )2

2α(1−t2
χ ) ].

Evaluating Eq. (12) yields

σzzz(2ω) = − e3τωτ2ω

4π2h̄2l2
B

∑
χ

Iχ , where

Iχ = −
∑

n

∫ (
∂kzv

χ
z,n

)(
∂kzε

χ
n

)
∂ε f 0

n dkz. (13)

In deriving Eq. (13), we have used
∫

h̄vχ
z,n∂kz [v

χ
z,n∂ε f 0

n ]dkz =
− ∫

(∂kzv
χ
z,n)(∂kzε

χ
n )∂ε f 0

n dkz. Using the LL spectrum in
Eq. (13), we can now calculate the explicit form of the NL
longitudinal conductivity, which is completely independent of
the internode scattering timescale.

Clearly, the finite frequency NL conductivity is complex.
The real part of the NL conductivity can be probed in nonlin-
ear transport measurements. The imaginary part provides the
information of second harmonic generation [74] where the NL
optical susceptibility is given by χzzz(2ω) = σzzz(2ω)/(i2ωε0)
[49] with ε0 being the vacuum permittivity. Furthermore, the
conductivity can be extracted in two different limits: (i) the
transport (dominated by scattering) limit where ωτ � 1 and
we get the transport conductivity proportional to τ 2 and in-
dependent of frequency, and (ii) the optical or clean limit
ωτ  1, where the NL optical conductivity is proportional to
1/ω2 and independent of the scattering time.

A. Quantum oscillations in the nonlinear conductivity

In the presence of a strong magnetic field, the NL conduc-
tivity is expected to show quantum oscillation owing to the
discrete LLs. To demonstrate this explicitly we calculate the
contributions to the NL conductivity for each LL in the zero-
temperature limit where the derivative of the Fermi function is
approximated by the Dirac delta function. For the lowest LL
(n = 0) we calculate

Iχ = 0, (14)

which implies that the chiral LL does not contribute to the
longitudinal second-order NL response. This is in contrast
to the linear response regime, where the chiral LLs have a
finite contribution in the longitudinal conductivity [11,13,72].
However, this actually can be seen from Eq. (13). Since the
velocity v

χ

z,0 has no kz dependence, the integrand of Eq. (13)
itself is zero. The importance of this result can be appreciated
from the fact that for a large enough magnetic field where
only the lowest LL (n = 0) is filled, known as the ultraquan-
tum limit, the NL longitudinal conductivity of the WSMs
will vanish. More specifically, the ultraquantum regime is
specified by B > Bmax ≡ μ2

2h̄ev2
F α(1−t2

χ )
, and we predict that the

NL longitudinal conductivity vanishes in this regime. This is
also consistent with the vanishing NL chiral anomaly shown
earlier.

The contributions from the higher LLs to the NL longitu-
dinal conductivity, in the low-temperature limit (for μ > 0) is
given by

Iχ =
∑

n

h̄v2
F 2|n|(αh̄ωc)2

[
1/E3

n,k̃+
z0

− 1/E3
n,k̃−

z0

]
n � 1. (15)

Here, the momentum cuts k̃±
z0 on the Fermi surface (μ) are

obtained from Eq. (4) after substituting k → kF = μ/h̄vF . We
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note that Eq. (15) is independent of chirality and Iχ = 0 for
zero tilt (t‖,χ = 0). The latter can be seen from the fact that
for zero tilt velocity, the momentum cuts on the Fermi surface
satisfy k̃+

z0 = −k̃−
z0 and consequently En,k̃+

z0
= En,k̃−

z0
.

The result presented above is for a single Weyl node, and
contributions from different Weyl nodes need to be added
to obtain the total NL response. This is where the different
symmetries of the WSMs, play a significant role in deter-
mining the total NL response from all Weyl nodes. We find
that when t+ = −t−, the total NL conductivity, after summing
over nodes of opposite chirality (J+ + J−), is identically zero.
Using the explicit expression of En,kz along with Eq. (4) in
Eq. (15), we can simplify that Iχ ∝ 1/(A − t‖,χ )3/2 − 1/(A +
t‖,χ )3/2 where A is a quantity independent of the sign of tilt. It
is clear from this simplified form that if we add contributions
from opposite tilt, the total contribution becomes zero. This is
also consistent with the fact that we have t+ = −t− in WSMs
with SIS [36,65]. Therefore, the total NL response is only
nonzero when the Weyl nodes of opposite chirality have the
same tilt orientation and in that case, the total contribution is
double that of a single Weyl node. In a TRS invariant WSMs,
a minimum of four nodes are allowed and the nodes with
same chirality have opposite tilt orientation. In that case, since
Eq. (15) is chirality independent, the total NL response from
the same chirality nodes will be opposite to each other and the
total response will be identically zero. Therefore, we conclude
that the NL conductivity discussed in this paper is nonzero
only in WSMs where both the TRS and the SIS are broken.

The oscillating nature of the NL conductivity as a func-
tion of the applied magnetic field is shown in Fig. 3(a). As
expected the NL conductivity increases with the increase in
tilt. Depending on the strength of the magnetic field, three key
features can be inferred from the plot. In the small magnetic
field (semiclassical) regime with a large number of filled LLs,
the NL conductivity is almost independent of the magnetic
field. In the ultraquantum regime for a large magnetic field,
B > Bmax to be precise, the NL conductivity vanishes. In the
intermediate range of the magnetic field, we see a pronounced
quantum oscillation feature. The usual periodic nature of the
quantum oscillations in 1/B can be clearly seen in Fig. 3(b).
We calculate the oscillation period to be

�(1/B) = 2α
(
1 − t2

χ

)
eh̄(vF /μ)2. (16)

At its core, this period of quantum oscillations arises from
the corresponding period in the density of states, and it man-
ifests in linear as well as in NL magnetotransport. We show
the chemical potential dependence of the NL conductivity
in Fig. 4. For a fixed value of the magnetic field, we find
quantum oscillation in the intermediate range of chemical
potential and the NL conductivity vanishes for a small value of
μ (ultraquantum regime). For a large value of μ, when several
LLs are filled (semiclassical regime), the NL conductivity has
a linear μ dependence. We emphasize here that the presence
of a finite tilt velocity, breaks the particle-hole symmetry and
consequently the NL conductivity of the valence band side
(μ < 0) is different from that in the conduction band side. The
NL conductivity of the valence band side has the same form

(a)

(b)

-1

FIG. 3. The nonlinear conductivity of a pair of Weyl nodes as
a function of (a) the magnetic field (B) and (b) the inverse of
the magnetic field (1/B) for μ = 20 meV. The conductivity axis
has been scaled by e3τωτ2ωμ/h̄3 × 10−2 and we have considered
tχ = −|tχ |(sin θ, 0, cos θ ) with θ = π/6. We note that both the plots
complement each other. Clearly, the NL conductivity vanishes in the
ultraquantum limit [right (left) side of the panel (a) [(b)]], and it
becomes constant in the semiclassical regime.

as Eq. (15); however, the Fermi surface cuts are modified to

k̃v,±
z0 =

kFt‖,χ ±
√(

1 − t2
χ

)(
k2

F − 2|n|α3/l2
B

) + k2
Ft2

‖,χ(
1 − t2

χ

) , (17)

where kF = |μ|/h̄vF . Using this we can see that the NL con-
ductivity has a different sign depending on whether μ is lying
in the conduction band or in the valance band. This can be
clearly seen in Fig. 4.

B. Semiclassical limit of the nonlinear conductivity

In the semiclassical limit where many LLs are filled, we
can assume the LL index n to be a continuous variable and
replace the

∑
n by

∫ nc

0 dn in Eq. (13). Using this integra-
tion trick with appropriate limits, it is straightforward to
calculate the semiclassical limit of Eq. (13). Unfortunately,
it has quite a complicated form which obfuscates physical
insights. However, the limiting case of small tilt velocity is
more tractable, and offers useful insights. So we retain the
tilt velocity in Eq. (15) only up to linear order, and then take
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FIG. 4. The nonlinear conductivity of a pair of Weyl nodes as
a function of chemical potential μ for B = 2 Tesla. The NL con-
ductivity has been scaled by e3τωτ2ω/(h̄2τ ). We find that the NL
conductivity has opposite sign for the chemical potential lying in the
valence band and in the conduction band. While the tilt breaks the
particle-hole symmetry, the difference between the magnitude of the
NL conductivity in the conduction band and the valance band is not
significant. The tilt parameter used here is the same as that in Fig. 2,
and we have chosen τ = 10−12 s.

the semiclassical limit. Following this, we approximate k̃±
z0 ≈

±
√

(k2
F − 2|n|/l2

B) − kFt‖,χ , and consequently En,k̃±
z0

≈ [μ2 ∓
2μt‖,χ

√
μ2 − 2|n|(h̄ωc)2]1/2. Using these simplifications, we

find that Iχ in the small tilt velocity approximation is given
by

Iχ ≈
∑

n

h̄v2
F 2|n|(h̄ωc)2 6t‖,χ

μ4

√
μ2 − 2|n|(h̄ωc)2. (18)

The approximate expression of the NL conductivity is ob-
tained using Eq. (18) in Eq. (13). We find that the NL
conductivity exhibits quantum oscillation behavior in 1/B,
due to the LL crossing the chemical potential [see the term√

μ2 − 2|n|(h̄ωc)2 in Eq. (18)], with periodicity �(1/B) =
2eh̄(vF /μ)2. This period is identical to that found in the linear
magnetoconductance of a WSM without any tilt velocity [49].
Within the linear order tilt approximation, the maximum filled
LL index is simplified as nc = int[μ2/2h̄2ω2

c ].
Using these, it is straightforward to obtain J

χ

SC = 4
5h̄ l2

Bt‖,χμ

in the semiclassical regime. Consequently, the semiclassical
NL conductivity is given by

σ SC
zzz (2ω) = −e3τωτ2ω

π2h̄3

μ

5

∑
χ

t‖,χ . (19)

We find that the NL conductivity in the semiclassical regime
is (i) B independent, and (ii) it varies linearly with μ. The
first observation is quite remarkable, and this is also con-
sistent with the more general plot of Fig. 3. To understand
this better, let us take the extreme limit of zero magnetic
fields. In the B → 0 limit, the longitudinal NL conductivity
should be identical to the NL Drude conductivity, speci-
fied by σzzz(2ω) = −e3τωτ2ω/h̄

∑
χ

∫
[dk]vz∂kz (vz f ′) [38,75].

Evaluating this expression, we find that it is identical to the

magnetoconductivity obtained in Eq. (19), establishing the
consistency of our calculations. Since the NL Drude conduc-
tivity can only be finite in materials in which both the TRS and
SIS are broken, this also helps in understanding the symmetry
imposition (absence of both TRS and SIS) for having a finite
NL longitudinal magnetoconductivity in tilted WSMs.

VI. NONLINEAR CONDUCTIVITY IN
MULTI-WEYL SEMIMETAL

Having demonstrated longitudinal NL magnetoconduc-
tivity in tilted WSMs, we now show their presence in
multi-WSM [52,53]. The multi-WSMs possesses nodes with
chirality that have a nonzero integer value. The WSMs can be
considered to be a special case with the chirality of ±1. The
low energy model Hamiltonian of multi-WSMs is given by
[54,55]

Hν
χ = χ [αν (h̄k⊥)ν{cos(νφ)σx + sin(νφ)σy} + h̄vkzσz]

+ h̄wχ · kσ0. (20)

Here, k⊥ =
√

k2
x + k2

y is the perpendicular momentum,

tan φ = ky/kx, ν denotes the chiral charge, and αν is a
material-dependent parameter. The LL problem of a system
described by Eq. (20) in the absence of tilt (wχ = 0) has been
earlier explored in Refs. [50,51]. Here, we generalize the LL
spectrum for the tilted type-I multi-WSMs (see Appendix B
for details). For simplicity, we assume that the tilt is parallel
to B, i.e., wχ = (0, 0,w‖,χ ) = v(0, 0, t‖,χ ). We find the LL
spectrums to be

εχ
n =

{−χ h̄vkz + h̄w‖,χkz for n < ν,

s
√
F (n, αν, B) + ε2

z + h̄w‖,χkz for n � ν.
(21)

Here, we have defined F (n, αν, B) = n(n − 1) . . . (n − ν +
1)ω2

ν , ων = αν (
√

2h̄/lB)ν , εz = h̄vkz, and s = ± where + (−)
represents the energy for the conduction (valence) band side.
The lowest LLs are chiral, disperse linearly, and they are
ν-fold degenerate.

The NL conductivity in the quantum oscillation regime in
multi-WSMs has the same form as Eq. (13), with the modified
Jχ specified by

Jχ =
∑

n

h̄v2F (n, αν, B)
[
1/E3

n,k̃+
z0

− 1/E3
n,k̃−

z0

]
, n � ν.

(22)

Here, En,k̃z0
= [F (n, αν, B) + (h̄vk̃z0)2]

1/2
. The momentum

corresponding to the Fermi surface is specified by

k̃±
z0 = [ ±

√(
1 − t2

‖,χ
)
[k2

F − F (n, αν, B)/(h̄v)2] + k2
Ft2

‖,χ

− kFt‖,χ
](

1 − t2
‖,χ

)−1
. (23)

Here, we have used kF = μ/(h̄v). To calculate the total
NL current, we sum over all the occupied nondegenerate
(n � ν) LLs in Eq. (13) where the maximum filled LL in-
dex nc is specified by F (n, αν, B) = μ2/(1 − t2

‖,χ ). We have
shown the oscillating NL conductivity of a double WSMs in
Fig. 5 as a function of the magnetic field with nc = int

[
1/2 +√

1/4 + μ2/[ω2
2(1 − t2

‖,χ )]
]
. We find that the multi-WSMs

shows features in the NL conductivity, which are very similar
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FIG. 5. The nonlinear conductivity of a double Weyl node as a
function of the magnetic field B for μ = 0.15 meV. The NL conduc-
tivity axis has been scaled by e3τωτ2ωμ/h̄3 and we have considered
tχ = −|t‖,χ |(0, 0, 1). Here, we have used α2 = 0.4 eV Å/h̄2 and
v = 0.37 eV Å/h̄ [55].

to those calculated for WSMs. Specifically, we find that the
NL conductivity vanishes in the ultraquantum limit, oscillates
in the intermediate regime, and saturates in the semiclassical
regime. Furthermore, the fundamental symmetry constraints
and the relative tilt orientation of the multi-Weyl nodes of
opposite chirality to get nonzero σzzz(2ω) in multi-WSMs are
also the same as those in WSMs. However, we note that the
double WSMs can withstand the oscillation in NL conduc-
tivity for a relatively large magnetic field value or very low
chemical potential as compared to the WSMs.

VII. DISCUSSIONS AND CONCLUSION

To summarize, we have demonstrated the existence of fi-
nite NL longitudinal magnetoconductivity in type-I WSMs
with quantized LLs. We show that the NL longitudinal con-
ductivity is finite only in WSMs where both the TRS and
SIS are broken. We demonstrate that the NL conductivity is
solely determined by intranode scatterings and (i) vanishes
in the ultraquantum limit where only the chiral LL are oc-
cupied, (ii) displays quantum oscillations in 1/B with a tilt
velocity-dependent period, and (iii) becomes B independent
in the semiclassical regime, reducing to the NL generaliza-
tion of the Drude conductivity. Further analysis reveals that
similar physics is also at play in the broader class of tilted
multi-WSMs. The NL conductivity discussed in this paper
will manifest through NL resistance in the case of transport
experiments while through second harmonic generation in
optical experiments. Due to the decisive dependence of the NL
conductivity on the tilt orientation, we believe that our study
will play a pivotal role in determining the tilt configuration of
real Weyl materials.

Note added. Recently, we came across Ref. [76] by Zeng
et al. where the nonlinear planar Hall effect is explored.
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APPENDIX A: DERIVATION OF SECOND-ORDER
NONEQUILIBRIUM DISTRIBUTION FUNCTION

In this Appendix, we provide the intermediate steps for
calculating the second-order NDF. To calculate this, first we
need the linear order distribution function. The latter has been
calculated earlier in several references [11,66,72]. With an
ansatz of the form f (1),χ

n = δg(1),χ
n (−∂ε f 0

n ), the Boltzmann
equation up to linear order in electric field can be constructed
as

−iωδg(1),χ
n − eEzv

χ
z,n = −δg(1),χ

n − δḡ(1),χ
n

τ
− δḡ(1),χ

n

τv

. (A1)

Using the particle number conservation within each node, it
is straightforward to calculate the linear distribution function
which is given in Eq. (8) of the main text. To calculate the
second-order NDF, we extend the same formalism to include
the quadratic electric field effects. Since the second-order
NDF is expected to contain both the first and second derivative
of the Fermi function, we consider an ansatz of the form

f (2),χ
n = δg(21),χ

n

(−∂ε f 0
n

) + δg(22),χ
n

(−∂2
ε f 0

n

)
. (A2)

Here, the first superscript (i) in δg(i j),χ
n denotes the electric

field dependence and the second superscript ( j) denotes the
order of energy derivative on the Fermi function. To begin
with, we consider that the second-order distribution function
changes the local equilibrium and the local part has the fol-
lowing form:

f̄ (2),χ
n = δḡ(21),χ

n

(−∂ε f 0
n

) + δ ¯̄g(22),χ
n

(−∂2
ε f 0

n

)
. (A3)

Here, δḡ(21),χ
n ≡ 〈δg(21),χ

n 〉χ , and the definition of average
is the same as defined in the main text. However, for the
δ ¯̄g(22),χ

n ≡ 〈〈δg(22),χ
n 〉〉χ we define

〈〈· · · 〉〉χ =
∑

n

∫
[dkz]

( − ∂2
ε f 0

n

)
(· · · )∑

n

∫
[dkz]

( − ∂2
ε f 0

n

) . (A4)

Now, using Eqs. (A2) and (A3) in the Boltzmann equation, we
obtain the nonlinear version of it as

−2iω
[
δg(21),χ

n

(−∂ε f 0
n

) + δg(22),χ
n

(−∂2
ε f 0

n

)] − eEz

h̄
∂kz

[
δg(1),χ

n

(−∂ε f 0
n

)]
= − 1

τ

[
δg(21),χ

n − δḡ(21),χ
n

](−∂ε f 0
n

) − 1

τ

[
δg(22),χ

n − δ ¯̄g(22),χ
n

](−∂2
ε f 0

n

) − 1

τv

[
δḡ(21),χ

n

(−∂ε f 0
n

) + δ ¯̄g(22),χ
n

(−∂2
ε f 0

n

)]
. (A5)
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Now, we integrate both sides of the above equation with
∑

n

∫
[dkz] and divide by

∑
n

∫
[dkz](−∂ε f 0

n ). As the intranode
scattering does not alter the number of particles within each node, all the terms ∝1/τ on the right-hand side will get canceled.
Consequently, we are left with the equation

−2iωδḡ(21),χ
n − 2iωD

∫
n,kz

δg(22),χ
n

(−∂2
ε f 0

n

) − eEzD
∫

n,kz

vχ
z,nδg(1),χ

n

(−∂2
ε f 0

n

) − eEz/h̄D
∫

n,kz

∂kzδg(1),χ
n

(−∂ε f 0
n

)

= − 1

τv

δḡ(21),χ
n − 1

τv

D
∫

n,kz

δ ¯̄g(22),χ
n

(−∂2
ε f 0

n

)
. (A6)

Here, we have defined
∑

n

∫
[dkz] ≡ ∫

n,kz
and 1/D ≡∑

n

∫
[dkz](−∂ε f 0

n ) for brevity. Now, from our definition of
δḡ(21),χ

n , in the above equation we identify

δḡ(21),χ
n = eτv,2ωEz/h̄

∑
n

∫
[dkz](−∂ε f 0

n )∂kzδg(1),χ
n∑

n

∫
[dkz](−∂ε f 0

n )
. (A7)

With this, the integrated Boltzmann equation, Eq. (A6), re-
duces to

2iω
∫

n,kz

δg(22),χ
n

( − ∂2
ε f 0

n

) + eEz

∫
n,kz

vχ
z,nδg(1),χ

n

( − ∂2
ε f 0

n

)

= 1

τv

∫
n,kz

δ ¯̄g(22),χ
n

( − ∂2
ε f 0

n

)
. (A8)

Dividing the above equation by
∑

n

∫
[dkz](−∂2

ε f 0
n ), we obtain

the other part of the local distribution function as

δ ¯̄g(22),χ
n = eτv,2ωEz

∑
n

∫
[dkz]vχ

z,nδg(1),χ
n

( − ∂2
ε f 0

n

)
∑

n

∫
[dkz]

( − ∂2
ε f 0

n

) . (A9)

Finally, we use Eqs. (A7) and (A9) in Eq. (A5) to obtain the
second-order NL distribution function. The two components
are calculated to be

δg(21),χ
n = eτ2ωEz/h̄∂kzδg(1),χ

n + τ2ω

κ

τv

δḡ(21),χ
n , (A10a)

δg(22),χ
n = eτ2ωEzv

χ
z,nδg(1),χ

n + τ2ω

κ

τv

δ ¯̄g(22),χ
n . (A10b)

Now using the NDF, we calculate the 2ω component of the
longitudinal current density, defined as

jz(2ω) = −eD
∑
n,χ

∫
[dkz]v

χ
z,n

[
δg(21),χ

n

(−∂ε f 0
n

)
+ δg(22),χ

n

(−∂2
ε f 0

n

)]
. (A11)

After a little algebra, we find that the NL longitudinal conduc-
tivity has the following form:

σzzz(2ω) = −e3τωτ2ω

4π2l2
B

∑
χ

[
Iχ

h̄2 + κ

τv

{
Cχ

11

Cχ

01

(
τv,ωCχ

22

+ τv,2ωIχ
) + τv,2ω

Cχ

12

Cχ

02

(
Cχ

22 + κ
τv,ω

τv

Cχ

11

Cχ

01

Cχ

12

)}]
.

(A12)

This is the exact expression of the NL conductivity discussed
in this paper. Note that σzzz(2ω) contains all the NL chiral
anomaly coefficients defined in the main text in Eqs. (10a) and
(10b). Using the results of the main text, Cχ

12 = 0 and Cχ

22 =

−Iχ , it is evident that the chiral anomaly contribution to the
NL magnetoconductivity becomes identically zero in the DC
limit (ω = 0). Furthermore, in the case of AC transport limit,
where we can consider ωτv � 1, which is the interest of this
paper, we can ignore all the contributions from the internode
scattering since in this limit τv,ω ≈ τv,2ω.

APPENDIX B: CALCULATION OF LANDAU LEVELS IN
MULTI-WEYL SEMIMETALS

In this Appendix, we present the details of the LL calcu-
lation of the tilted multi-WSMs [51]. For that, we write the
Hamiltonian given in Eq. (20) as

Hν
χ = χ [αν{(h̄k̂−)νσ+ + (h̄k̂+)νσ−} + h̄vkzσz] + h̄wχ · kσ0,

(B1)
where k̂± = k̂x ± ik̂y, σ± = 1

2 (σx ± iσy). We choose the gauge
potential to be A = (−By, 0, 0) for the magnetic field along
the z direction, parallel to the tilt velocity wχ = (0, 0,w‖,χ ) =
v(0, 0, t‖,χ ). Consequently, the translation symmetry remains
invariant along the x and z directions. Hence, we look for the
solution of the form Hν

χ� = εn�, where � = ψ (y)eih̄(kxx+kzz).
With such plane wave basis the Hamiltonian is modified as

Hν
χ = χ

(
h̄vkz + χ h̄w‖,χkz αν (h̄kx − eBy − ih̄k̂y)ν

αν (h̄kx − eBy + ih̄k̂y)ν −h̄vkz + χ h̄w‖,χkz

)
.

(B2)
To diagonalize the above Hamiltonian, we introduce a new
variable ỹ = (y/lB − kxlB), and subsequently the creation and
annihilation operators â† = 1/

√
2(ỹ − ∂ỹ) and â = 1/

√
2(ỹ +

∂ỹ), satisfying the commutation relation [â, â†] = 1. Using
these we obtain

Hν
χ = χ

(
h̄vkz + χ h̄w‖,χkz (−1)νων (â)ν

(−1)νων (â†)ν −h̄vkz + χ h̄w‖,χkz

)
, (B3)

with ων = αν (
√

2h̄/lB)ν . One can obtain the LLs for the above
Hamiltonian using the spinor (i) ψ (y) = [aνψn−ν bνψν]T

when n � ν, and (ii) ψ (y) = [0 ψ0]T when n < ν. Here, ψν

are the usual harmonic oscillator wave functions, and aν and
bν are the normalization constants. We have provided the LL
spectrums in Eq. (21).

From Eq. (21), we notice that similar to the WSMs, for
the multi-WSMs also the tilt introduces a constant velocity
parallel to the magnetic field, which is crucial for nonzero NL
response in the system. Furthermore, the topological charge
of the WSMs (ν) manifests through the LL spectrum when
subjected to a strong magnetic field, which in turn modifies
the NL magnetoconductivity in multi-WSMs.
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