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Circular dichroism as a probe for topology in three-dimensional semimetals
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Higher-pseudospin fermions, associated with multiple band crossings in topological semimetals, are con-
densed matter analogs of higher-spin fermions in high-energy physics. In this paper, we demonstrate that
analyzing the response of a circular drive is an effective way to detect the topology of the lowest-energy Bloch
band, as it can be connected to a frequency-dependent probe. The response exhibits circular dichroism due to
the differential excitation rates by the left- and right-circular orientations of a time-periodic drive, induced on
a filled band, because of the geometrical properties of the Bloch bands. Our analytical approximation reveals
that the dichroic response is quantized for isotropic systems, when the frequency of the drive is above a critical
value, and thus correctly infers the ground-state Chern number. We demonstrate this through explicit numerical
computations by considering three kinds of semimetals with pseudospin values of 1/2, 1, and 3/2, respectively,
and all having linear dispersions. Furthermore, we investigate the effects of tilt and anisotropy on the systems,
and find that although tilt does not have any effect on the response, the presence of anisotropy can drastically
hamper the quantization. Our scheme thus provides an important methodology for designing future experiments
to detect the topology of band structures.
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I. INTRODUCTION

Recently, there has been a surge of interest in gapless
topological phases that arise in multiband fermionic systems
harboring a band-crossing point [1,2] in the Brillouin zone
(BZ), where two or more bands cross and have nonzero
Chern numbers. Some of these have high-energy counterparts
(e.g., Dirac and Weyl semimetals). Since the prediction of
these topological semimetals, a plethora of efforts has been
made through the last decade to detect and characterize their
topological signatures in real materials. This requires mea-
surement of topological invariants, which often necessitates
novel experimental strategies, such as quantum interference
[3], resonant x-ray probing [4], or neutron scattering [5]. For
systems like Weyl semimetals (WSMs), one of the promising
ideas has been the utilization of its chiral anomaly. This can
be measured as the chiral magnetic effect (CME), where the
hallmark signature involves a current, as the DC limit of the
response to a time-dependent magnetic field [6,7]. Other pro-
posals [8–12] include measurements of nonlinear responses
like the circular photogalvanic effect (CPGE), or studying the
trace of quantum metric from the spread of Wannier functions
[13].
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In this paper, we focus on a scheme based on circular
dichroism [14–19], which probes the topology of the bands
by measuring the excitation rate of a quantum state. Initially
proposed for two-dimensional (2D) systems, this method in-
volves subjecting the lowest Bloch band (LBB) to a circular
time-periodic perturbation (or circularly polarized light), with
frequency ω, which generates a chirally sensitive response
γ ±(ω). Here, γ ±(ω) (with ± referring to the orientation or
chirality of the drive) denotes the extraction rate of particles
from the populated band, and can be measured experimentally
by counting the total number of particles [N±(t ) ∼ γ ±(ω) t]
scattered out of the LBB, after an elapsed time t . When-
ever the LBB is characterized by a nontrivial Chern number
C0, we have N+ �= N−, that gives a nonzero net contribution
�γ = (γ + − γ −)/2. For a 2D system, integrating �γ over
the BZ, as well as a relevant frequency range, we get a quan-
tized response (proportional to C0), dubbed as the differential
integrated rate in Ref. [18]. This result crucially hinges on
the differential excitation rates induced on the LBB, by the
left- and right-circular orientations of the drive, because of
the geometrical properties of the Bloch bands.

Following the above scheme, we build a proposal to de-
cipher band topology in three-dimensional (3D) momentum
space. For a given plane of polarization, we compute �γ for
a transition from the LBB to a higher-energy band, and mul-
tiply it with the corresponding difference in band velocities.
Summing this quantity over all such allowed transitions gives
a differential current, directed perpendicular to the plane of
polarization. Finally, summing the contributions from differ-
ential currents in the three mutually perpendicular directions,
and integrating over the 3D BZ, we get the 3D differential

2469-9950/2022/105(23)/235403(11) 235403-1 Published by the American Physical Society

https://orcid.org/0000-0001-6981-5329
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.235403&domain=pdf&date_stamp=2023-01-07
https://doi.org/10.1103/PhysRevB.105.235403
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


SAJID SEKH AND IPSITA MANDAL PHYSICAL REVIEW B 105, 235403 (2022)

integrated rate per unit volume (which we abbreviate as DIR),
denoted by �int (ω), which encodes the topology of the Bloch
bands. For a system with isotropic energy dispersions, �int (ω)
turns out to be quantized above a critical frequency value ωc.

Plane-polarized circular drives can be realized through cir-
cular shaking in ultracold atoms trapped in optical lattices
[20], using piezoelectric actuators [21]. Recently, this method
has been implemented to measure the Chern numbers of the
two-band Haldane model [18] and topological Floquet bands
[22]. Furthermore, a similar technique with linear shaking has
been proposed [23] to probe the quantum metric tensor in
periodically driven systems.

In particle physics, the Rarita-Schwinger (RS) equa-
tion represents the relativistic field equation of spin-3/2
fermions. Unfortunately, RS particles do not appear in the
standard model, and have not been observed in any high-
energy experiments or cosmological observations. Unlike the
Poincaré symmetry in high-energy physics, the quasiparti-
cles in condensed matter physics are constrained by the rich
space-group symmetries, providing a pathway for potentially
realizing exotic excitations that do not have a high-energy
counterpart. Examples include multifold semimetals, which
harbour excitations of pseudospin-1 [1] and pseudospin-
3/2 [24–28]. Pseudospin-3/2 excitations are often called the
Rarita-Schwinger-Weyl (RSW) fermions, as they are the con-
densed matter analogs of the elusive high-energy RS fermions.
The discovery of such multifold semimetals is of great im-
portance, as it enables researchers to probe excitations with
different pseudospin (analog of the real spin) values, in the
form of massless quasiparticles within the low-energy limit.
For instance, Dirac and Weyl quasiparticles have already been
observed in graphene [29] and TaAs semimetals [30], respec-
tively, and there exist clear-cut theoretical predictions for the
emergent Majorana quasiparticles at the edges of a topological
nanowire [31–36]. Furthermore, the signatures of the RSW
fermions have recently been associated with the large topo-
logical charges found in various materials like CoSi [37], RhSi
[38], AlPt [39], and PdBiSe [40].

The central idea behind realizing such massless quasiparti-
cles is rooted in the low-energy expansion of the Hamiltonian
around the nodal points, which can be described as

H = h̄ vF δk · S, (1)

where h̄ is the reduced Planck’s constant, vF is the Fermi
velocity, and δk = k − k0 denotes the momentum with re-
spect to a band-touching point at k = k0. Furthermore, S is
a three-vector, made up of the matrices Sj obeying the algebra
[S j, Sk] = i ε jkl Sl [with j, k, l ∈ (1, 2, 3)], that represents the
pseudospin degrees of freedom. For example, the Hamilto-
nian for the pseudospin-1/2 Weyl quasiparticles (with two
nodes and opposite topological charges ±1) is governed by
the 2 × 2 Pauli matrices σ, such that S = 1

2σ. The topological
charge at a nodal point of a semimetal simply indicates the
total Chern number of either the positive energy or negative
energy bands (the zero of the energy being taken at the nodal
/ band-touching point). This topological charge is the man-
ifestation of band-touching at nodal points, which acts as a
source or sink of Berry flux. As a result, higher-pseudospin
systems provide a fertile playground for realizing materi-
als with higher-order topological charges. A prime example

is the four-band RSW model with Chern numbers ±1,±3,
which can thus harbor topological charges of ±4. In this
paper, we focus on the �int response of these 3D semimet-
als having pseudospin-3/2 quasiparticle excitations. We also
consider WSMs and pseudospin-1 systems, exhausting the
cases of 3D topological semimetals with linear dispersions.
The pseudospin-1 system is sometimes referred to as Maxwell
fermions [41], and has a flat band in addition to two linearly
dispersing bands. Last but not least, we investigate the effects
of tilt and anisotropy on the �int features.

The paper is organized as follows. In Sec. II, we describe
the low-energy effective Hamiltonian for the RSW system,
and illustrate the topological charges carried by such band
structures. In Sec. III, we elaborate on the formalism to com-
pute the response �int (ω). Section IV is devoted to the details
of our numerical computations and results. In Sec. IV A, we
discuss the results for various topological semimetals with
linear dispersions, in addition to the RSW case. We also point
out the changes in the response for the cases of anisotropic
dispersions. In Sec. IV B, we consider the effects of tilt and
anisotropy, and elucidate the consequences. Finally, we con-
clude in Sec. V with a summary and some outlook.

II. THE RSW MODEL

In 3D, the low-energy single-particle RSW Hamiltonian, in
the spirit of Eq. (1), reads

HRSW = h̄ vF k · J. (2)

Here, k = {kx, ky, kz} denotes the wave vectors in the 3D BZ
(measured with respect to the band-touching point), and J is
given by the 4 × 4 pseudospin-3/2 matrices. These matrices
follow cyclic commutation relations, and have the form

Jx =

⎛
⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎠,

Jy =

⎛
⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎠,

Jz =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 1 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠. (3)

The energy eigenvalues are ± 3 k
2 ,± k

2 , each associated with
the respective Chern number ∓3,∓1. Since the components
of J are the generators of rotation, and they commute with the
Hamiltonian, HRSW is rotation-invariant.

However, full rotational symmetry is not always guar-
anteed in real materials, and SO(3) often reduces to the
cubic rotation group Oh. In such cases, the most generic
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FIG. 1. (a) The Chern number C of each of the four bands of the Hamiltonian in Eq. (5) is plotted against α. The sum of the Chern numbers
of the conduction bands E± represents the monopole charge, which changes at α = 1, indicating a topological phase transition. On the right,
we consider three α values, and show the corresponding energy dispersions (denoted by E), and the contour plots of the z component of the
ground-state Berry curvature � (i.e., 	z for the LBB with dispersion −E+). (b) For α = 0, the dispersion is twofold degenerate. But as soon
as we set α �= 0, the band degeneracy is lifted (except at k = 0). Here we show plots for α = 0.05. (c) There is a topological phase transition
at α = 1, and we show the behavior at α = 1 + 10−4. (d) Finally, at α = 2, the Hamiltonian shows the RSW feature, with four bands crossing
linearly at k = 0. The 	z lobes for α = 1 + 10−4 or α = 2 have signs opposite to those for α = 0.05, which demonstrates a change in the
topological charge during the tuning of α. .

Hamiltonian can be written as

HIF = h̄ vF k · (V + αU)

= h̄ vF

∑
μ

kμ

(
13 α − 14

6
Jμ + 8 − 4 α

6
J3
μ

)
, (4)

where α is real. Vμ = −7 Jμ+4 J3
μ

3 and Uμ = 13 Jμ−4 J3
μ

6 , related
by tr[Vμ Vν] = tr[Uμ Uν] = 4 δμν , and tr[Vμ Uν] = 0. The sec-
ond term is constructed from a set of 4 × 4 matrices that

transforms as a vector under Oh, and reduces full rotational
symmetry to cubic rotation only. This problem was studied
in detail by Isobe and Fu [43] in the context of S = 3/2 pseu-
dospin fermions. Several candidate materials [1,44] have been
proposed which realize the Isobe-Fu Hamiltonian. Examples
include antipervoskite materials [43,45] and transition metal
silicides [28]. Thus we use the Isobe-Fu type Hamiltonian
to understand the topology and symmetry of the S = 3/2
fermions. When written explicitly in terms of the 4 × 4 ma-
trices, this takes the form [25,46]

HIF/(h̄ vF ) =

⎛
⎜⎜⎜⎜⎝

kz(1 + α)
√

3(kx−i ky )α
2 0 (kx+i ky )(2−α)

2√
3(kx+i ky )α

2 kz(−1 + α) (kx−i ky )(2+α)
2 0

0 (kx+i ky )(2+α)
2 kz(1 − α)

√
3(kx−i ky )α

2
(kx−i ky )(2−α)

2 0
√

3(kx+i ky )α
2 −kz(1 + α)

⎞
⎟⎟⎟⎟⎠. (5)

The eigenvalues are given by ±E±, where

E± = h̄ vF

√
k2(1 + α2) ± α

√
4
(
k4

x + k4
y + k4

z

) + (3 α2 − 4)
(
k2

x k2
y + k2

y k2
z + k2

x k2
z

)
. (6)

E± and −E± represent the dispersions of the conduction and
valence bands, respectively. The most important feature of this
Hamiltonian is that not only does it capture the pseudospin-
3/2 behavior, but it also connects back to its other siblings
like pseudospin-1/2 (or Weyl) system, through the tuning of
the single parameter α. The Chern number of each band for
all the relevant ranges of α is illustrated in Fig. 1.

The parameter α essentially controls the interplay between
the linear (Jμ) and the cubic (J3

μ) terms. For α = 0, we find

HIF ∼ k · V, which gives isotropic dispersions. In this limit,
the Hamiltonian reduces to two pseudospin-1/2 Weyl cones of
equal chiralities, and is distinctive from the Dirac semimetals
that decompose into a pair of Weyl points of opposite chirali-
ties. This can be better understood via a basis transformation
J̃ = S̃ J S̃−1 (S̃ = unitary operator), where connection to the
WSM case or Pauli matrices becomes clearer as V → Ṽ ma-
trices take a more suggestive form, viz., Ṽ = I ⊗ σ∗. The
band dispersion in this limit is linear in k, and has a pair of
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FIG. 2. Schematic band diagram representing the central idea
behind the response �int (ω): The dispersion E is displayed against
the momentum-component kx , with μ as the Fermi level. Absorption
of a probing photon of energy h̄ω leads to chiral transition rates
γ ±. The net chiral depletion rate, multiplied by the difference in
band velocities (v), yields a quantized quantity upon integration over
the 3D BZ. Since a pair of Weyl nodes, with chiralities ±χ , lie at
different energies, the Fermi level can be tuned to Pauli-block one of
the nodes. In that situation, a single monopole contributes, yielding
a quantized response.

degenerate bands with energy ±k, as shown in Fig. 1(b) [note
that Fig. 1(b) considers an α value slightly greater than zero,
so that the degeneracy is slightly lifted]. The contour plot of
the z component of the corresponding Berry curvature (�) of
the LBB is shown below the dispersion plot, where a pair of
lobes highlights the monopole structure (� ∼ k/|k|3). Since
the Chern numbers are either +1 (for conduction bands) or
−1 (for valence bands), the topological charge turns out to be
2. However, this topological charge changes from 2 to −4 as
α is tuned from 1− to 1+ [see Figs. 1(b) and 1(c)]. At α = 2,
the Hamiltonian reduces to HRSW, which is rotation-invariant,
and realizes the RSW fermions with linear dispersions [see
Fig. 1(d)]. The corresponding Berry curvature landscape of
the LBB is shown below the dispersion plot. Note that the
inverted orientation of the lobes and increase in color bar
intensity, in contrast with those for α = 0.05, confirm the
changes in topological charge.

III. FORMALISM

Let us consider a 3D topological semimetal with the
Hamiltonian H0, subjected to a monochromatic circularly
polarized light of frequency ω. We assume that the nodes of
opposite chiralities lie at different energies, such that only the
response of a single node matters (see Fig. 2). This circular
drive, with two possible orientations (chiralities) denoted by
±, can be written as a time-dependent perturbation H′±(t ) =
2 E[− sin(ω t ) μ̂ ± cos(ω t ) ν̂], where E is the amplitude of
the circular drive, and has the units of force [47]. Furthermore,
μ̂ and ν̂ denote the mutually perpendicular position vector
operators, in the plane of polarization of the applied drive.

The perturbation results in a modulation of the momenta as

kμ → kμ + 2 E
h̄ ω

cos(ω t ), kν → kν ± 2 E
h̄ ω

sin(ω t ). (7)

First, we perform a unitary transformation to a frame where
the Hamiltonian is translation-invariant [18,23]. Then, assum-
ing that the amplitude of the drive is small [i.e., E/(h̄ ω) 
 1],
we expand the Hamiltonian in a Taylor expansion, and restrict
ourselves to the first-order terms, to obtain the form

H±(t ) ≈ H0 + 2 E
h̄ ω

[
cos(ω t )

∂H0

∂kμ

± sin(ω t )
∂H0

∂kν

]
. (8)

For a system with nondegenerate bands, we populate an initial
state, usually the LBB (labeled by n), and compute the tran-
sition rate to an excited state (labeled by m) for long times.
This transition (or depletion) rate is given by Fermi’s golden
rule [48] in the time-dependent perturbation theory, and can
be written as (see the Appendix)

γ ±
mn(kμ, kν, ω)

= 2 π

h̄

( E
h̄ ω

)2∣∣Pμ
mn ∓ iPν

mn

∣∣2
δ(Emn − h̄ ω). (9)

Here, Pμ
mn = 〈m| ∂H0

∂kμ
|n〉 is the μ component of the optical

matrix element between mth and nth bands, and the energy
difference is Emn = Em − En. To check that the dimensions
match correctly on both sides of the equation, we note that
on the right-hand side, δ(Emn − h̄ ω)/h̄ has the dimension of
inverse time and the rest of the expression is dimensionless.
Thus, γ ±

mn(kμ, kν, ω) gives the total number of quasiparticles
scattered from the LBB per unit time, which can be mea-
sured experimentally. Due to the delta function, a transition
involving the mth and the nth bands yields a finite response
when an incident photon has an energy exactly equal to Emn.
However, this precise energy matching is only an idealization;
in reality, there exists a small energy window (due to the un-
certainty relation) within which photons of slightly different
frequencies will get absorbed. Thus, the delta function is often
approximated as a Lorentzian with a small broadening. We
further point out that the interband transitions create a Rabi
oscillation at each k, contributing to a linear growth of γ ±

mn.
But as pointed out in Ref. [18], this effect is suppressed in a
realistic material with disorder.

We now define the local differential rate by

�γ μν
mn (k, ω) = γ +

mn(kμ, kν, ω) − γ −
mn(kμ, kν, ω)

2
, (10)

and multiply it with the difference in band velocities, vλ
mn =

∂Emn/∂kλ, along the direction λ which is perpendicular to the
plane of the drive. This defines the quantity (more details are
provided in the Appendix)

�(k, ω) =
∑
n∈FB

∑
m �=n

∑
μ,ν,λ

ελμν

2
vλ

mn �γ μν
mn

= 2 π i E2

h̄3 ω2

∑
n∈FB

∑
m �=n

∑
μ,ν,λ

εμνλ vλ
mn

× Pμ
mn Pν

nm δ(Emn − h̄ ω), (11)

where εμνλ denotes the cyclic permutation (Levi-Civita sym-
bol), and the index n spans over the initially filled bands
(FBs). Finally, integrating �(ω) over the BZ leads to a net
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depletion rate

�int (ω) =
∫

[dk] �(k, ω), [dk] = dkx dky dkz

(2 π )3
, (12)

which depends on the frequency of the incident photons,
and is the DIR for 3D systems explained in the introduc-
tion. This response can be measured experimentally for Weyl
semimetals without any mirror symmetry. Materials like CoSi,
RhSi, and AlPt have space group P213 (SG 198), and have a
chiral tetrahedral symmetry. Lack of mirror planes in these
structurally chiral materials causes the Weyl nodes to lie at
different energies [49], such that the Fermi level can be tuned
to Pauli-block one of the nodes, rendering it inert, so that a
single node contributes to the optical response (cf. Fig. 2). The
Pauli blockade is an important factor to prevent cancellations
from nodes carrying opposite topological charges. Consider-
ing energy resolution, RhSi hosts a fourfold point at �, with
the lowest two topological bands having a span of 40 meV.
This is well within the range of THz spectroscopy (∼0.1–10
THz), and coherent meV photons can be used to probe this
system.

We now discuss the situation when �int (ω) is quantized.
Let us take a system of nondegenerate bands, where the band
index is denoted by integers. We initially populate the ground
state (LBB) of this system at time t = 0. Considering tran-
sitions that are only taking place from the LBB (n = 0) to
higher excited states (m = 1, 2, 3, . . .), we can write

�int (ω)

= 2 π i E2

h̄3 ω2

∫
[dk]

∑
μ,ν,λ

εμνλ

[
vλ

10 P
μ
10 Pν

01 δ(E10 − h̄ ω)

+ vλ
20 P

μ
20 Pν

02 δ(E20 − h̄ ω) + · · · ]. (13)

We exploit the presence of the delta function and keep ω

low (in particular, compared to the next to lowest energy
difference E20), which makes every other term vanish except
the first. From the definition, the Berry curvature of the LBB
is

	0
λ = i

∑
μ,ν

εμνλ

∑
m �=0

Pμ
m0 Pν

0m

E2
m0

. (14)

It is convenient to rewrite the above identity as

i
∑
μ,ν

εμνλ Pμ
10 Pν

01

= E2
10

[
	0

λ − i
∑
μ,ν

εμνλ

∑
m �=0,1

Pμ
m0 Pν

0m

E2
m0

]
, (15)

which immediately leads to

�int (ω)

� 2 π E2

h̄3 ω2

∑
λ

∫
[dk]

(
	0

λ − i
∑
μ,ν

εμνλ

∑
m �=0,1

Pμ
m0 Pν

0m

E2
m0

)

× vλ
10 E2

10 δ(E10 − h̄ ω).
(16)

Equation (16) involves a 3D integral in general, but it
can be reduced to a surface integral for isotropic systems.

This is better understood if we switch to the spherical polar
coordinates (k, θ, φ), and consider the case of an isotropic sys-
tem, such that generically the dispersion E10 is a function of k
only (i.e., with no dependence on the angular coordinates).
This implies that v10 = 1

h̄
dE10
dk k̂. With this prescription, the

first term on the right-hand side of Eq. (16) can be reduced
to

2 π E2

h̄

∫
dk dθ dφ sin θ k2

(2 π )3

(
E2

10

h̄2 ω2

)
δ(E10 − h̄ ω) v10 · �0

=
(E

h̄

)2 ∫
dE10

E2
10

h̄2 ω2
δ(E10 − h̄ ω)

× 1

(2 π )2

∫
dθ dφ sin θ k2 k̂ · �0

∣∣∣
E10(k)=h̄ ω

=
(E

h̄

)2 1

(2 π )2

∫
S

dS · �0 =
(E

h̄

)2 C0

2 π
, (17)

where C0 is the Chern number of the LBB. In the intermedi-
ate steps, dS = k̃2 sin θ dθ dφ k̂ denotes an infinitesimal area
vector on the surface of the sphere S centered at the origin
(i.e., k = 0), whose radius k̃ is obtained by solving for k in
E10(k) = h̄ ω. The second term of Eq. (16) can be treated in
an identical manner. This leads to the central result that

�int (ω)

= (E/ h̄)2

2 π

[
C0 − i

2 π

∫
S

dS ·
∑

m �=0,1

Pm0 × P0m

E2
m0

]
. (18)

Interestingly, in the quantized limit (i.e., when the first term on
the right-hand side dominates), �int (ω) is independent of the
microscopic parameters of the Hamiltonian, and is controlled
only by the external drive strength E . Experimentally, E is set
by the ratio of the recoil energy Er to the lattice spacing a.
For example, in an optical lattice setup [22] with 40K atoms,
a = 410 nm, Er/h = 4.41 kHz, and E is equal to 0.6%–1.2%
of Er/a.

It is crucial to note that we could arrive at this quantized
result for an isotropic system. For an anisotropic system,
with the energy and other physical quantities depending
on the angular coordinates, this simplification is not possi-
ble. The multiband correction terms, captured by �m>1 ≡
− iE2

4 π2 h̄2

∫
S dS · Pm0×P0m

E2
m0

, are present for a system with more
than two bands, and the quantization condition emerges in the
limit when we can neglect these correction terms. For a system
with linear dispersions, Emn ∼ k, which makes it straightfor-
ward to infer that Em0 ∼ h̄ ω due to the delta function integral,
suggesting that the correction terms decay quadratically with
frequency.

To elucidate the quantization features of �int, we con-
sider three kinds of topological semimetals, viz., WSM,
pseudospin-1, and the four-band model defined in Eq. (5), and
compute the normalized differential current as a function of
the drive frequency ω. Note that the linearized k · p Hamilto-
nian for pseudospin-1 fermions has the form

H1(k) = h̄ vF k · L, (19)
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where L represents the vector spin-1 operator with the three
components

Lx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Ly = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

Lz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (20)

IV. NUMERICAL RESULTS

In our numerical calculations, we have used Eq (12) (with-
out any analytical approximation) to compute the response in
the range ω ∈ [0, 3], with a scanning interval of �ω = 0.1.
The Dirac delta functions in the equation are incorporated by
δ(x) = 1

π
limε→0

ε
x2+ε2 , where ε controls the broadening of the

function, and should be kept small (we have set it to 10−4 in
our numerics). Due to the radial symmetry of the systems, we
have used the spherical polar coordinates, and evaluated the
integrals via the “global adaptive” method (with a precision
goal of 10−5) of the Mathematica software. Note that the
upper limit of the k integral is ∞ in a continuum model. In our
numerics, we have set this upper limit to 100, which ensures
convergence of the results.

A. Untilted isotropic cone

As seen from Figs. 3(d) and 3(e), the quantized re-
sponse characteristics exist for both the pseudospin-1/2 and
pseudospin-1 cases. At low-frequency ranges of ω 
 1, �int

yields a small response, which dramatically increases as ω

crosses a threshold value ωc. This threshold value arises in
experimental measurements due to the limitations in instru-
mental accuracy. In our numerics, it depends on the k-mesh
resolution. In the regime ω > ωc, the response decays with
ω in a quadratic fashion. As ω increases, �int saturates to
a constant number, determined by the LBB Chern number.
This quantization is accurate up to two decimal places in our
numerics, and prevails beyond ω = 3.

However, our results for the four-band model of Eq. (5)
reveal that the quantization observed for the above cases is
not universal, as the quantization disappears depending on the
value α. In Fig. 3(f), �int is quantized in the range ω > ωc, and
correctly probes the Chern numbers for α = 10−3 and α = 2.
For example, in the RSW limit of α = 2, we find that �int

saturates to 3, which is consistent with the CPGE results for
RhSi at the fourfold point [42]. But, such a quantization is
absent in the case of α = 1 + 10−4, as the response decays
to zero. We further point out that the absence of quantization
prevails for any α value, except the special points of α = 0+, 2
(where the energy dispersions depend linearly in k). This
seems to be related to the fact that the energy dispersion is
not isotropic for α �= 0, 2. The anisotropy makes the integral
in Eq. (12) frequency-dependent for all ω values, such that it
cannot be reduced to a quantized form (modulo the correction
terms �m) of Eq. (18). As the probing frequency increases and
goes beyond the scale of the band gaps, the response function
quickly decays to zero due to the delta function, which is
consistent with the α = 1 + 10−4 result.

spin-1/2

spin-1

3-band 4-band2-band

spin-3/2

FIG. 3. (Left panel) The energy bands of the (a) WSM, (b)
pseudospin-1 fermions, and (c) four-band model of Eq. (2) are
shown, along with the respective Chern numbers. (Right panel) Nu-
merical plots of �int as a function of ω are shown for comparison.
(d, e) For each of the WSM and pseudospin-1 cases, �int versus ω

is found to be quantized (above a critical value ωc) at moderate to
high frequencies, and is equal to the LBB Chern number. (f) This
plot shows �int versus ω for the four-band model of Eq. (5), at three
distinct values of α. While �int (ω > ωc ) correctly infers the Chern
numbers for α = 10−3 (red) and α = 2 (green), the response decays
to zero for α = 1 + 10−4 (blue). (Bottom panel) (g) The deviation
of �int from the expected quantized value is shown to highlight
the effect of higher band inclusions. The “4-band” here refers to
the isotropic RSW case. Each additional band increases the peak
response in accordance with the theory. In all the plots, �int is in
units of E2

2 π h̄2 .

Lastly, we want to focus on the multiband correction
terms �m>1 in the analytical expression of Eq. (18), which
are crucial for higher-pseudospin systems. As shown before,
the key to quantization in Eq. (18) comes from h̄ ω ∼ E01,
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which generally requires the probing frequency to be small.
At the same time, the presence of multiple bands adds a
frequency-dependent term, that is coincidentally strongest in
a similar frequency range. This can deviate the result from
the expected Chern number. We provide the plots of �int in
Fig. 3(g) for lower frequency ranges to showcase this effect.
Since �int ∼ 0 for ω < ωc, an insight into �m(ω) can be
gained by looking at the peak value �int

max(ω → ω+
c ) of |�int|,

just as ω goes above ωc. Evidently, this correction is very
low (∼0.07) for the two-band WSM. The fact that it is not
exactly zero for the Weyl case can be explained when we
note that we have implemented the Dirac delta function via
numerical approximation. Thus, when h̄ ω → Ek + δEk , the
delta function δ(Ek − h̄ ω) still picks up a small nonzero con-
tribution, which causes this overestimation. However, as we
consider the pseudospin-1 system, and have one more band
compared to the two-band scenario, �int

max increases by an
order of magnitude (from ∼0.07 to ∼0.2). The same effect
can be seen for the four-band case as well, supporting the
calculations done in this paper. Our analytical calculations,
followed by in-depth numerics, test the idea of using circular
dichroism to detect topological invariants, particularly in 3D,
complementing existing optics-based techniques. Moreover,
our results strengthen previous works on DIR, in the sense
that it shows how monitoring DIR can be a viable scheme
to obtain a quantized response, at least for two-band systems
where many-band correction terms are negligible.

So far, we have shown results for systems carrying nonzero
topological charges only; our methodology should obtain zero
response for cases with zero topological charges. Here we
present a trivial situation, for which the response is zero.
In particular, we consider the 3D Dirac semimetal with the
Hamiltonian [50]

Hdirac = h̄ vF (kx σy τx − ky σx τx + kz τz ), (21)

where σ and τ denote the vectors of the three Pauli ma-
trices, acting on the spin and Nambu spaces, respectively.
The system contains doubly-degenerate cones with disper-
sions ±k. Adding the perturbation δ σx τy splits a Dirac node
into two distinct Weyl nodes, separated in the kx momentum
direction. These have dispersions ±EWeyl,s, where EWeyl,s =
h̄ vF

√
[kx + (−1)s δ]2 + k2

y + k2
z and, s = 1, 2 labels the two

Weyl nodes. Notice that the inversion symmetry is preserved,
and the response integral for �int now contains two Weyl
nodes of opposite chiralities at the same energy. This leads to a
trivial zero response, as in Eq. (18), we have now two C0’s with
values ±1. A nontrivial response is obtained when the integral
contains one or more Weyl nodes with the same chirality [e.g.,
the α = 0 case of the Isobe-Fu Hamiltonian of Eq. (5)]. We
can further add a term b sz τz to break the inversion sym-
metry, which shifts the Weyl nodes to different energies (cf.
Fig. 4), such that the dispersions are now E±

Weyl,s/(h̄ vF ) =
(−1)s b ±

√
[kx + (−1)s δ]2 + k2

y + k2
z . Experimentally, such

Dirac to Weyl transitions can be achieved in 3D sonic crystals
with the introduction of chiral hoppings [51]. If these nodes
are reasonably separated in energy, we can tune the chemical
potential such that it lies in the conduction band (i.e., E+

Weyl,1)
of the Weyl node with the lower energy, while cutting the
valence band (i.e., E−

Weyl,2) of the other Weyl node. With this

FIG. 4. Energy spectra of the pair of Weyl nodes obtained by
adding a perturbation (δ sx τy + b sz τz ) to the 3D Dirac semimetal of
Eq. (21), thereby splitting the Dirac cone. Here, the parameter δ tunes
the distance between nodes in the momentum space, and b separates
the nodes in energy. In the figure, we have set δ = 1 and b = 0.4.

Fermi level tuning, only the second Weyl node contributes to
the currents, and the problem reduces to the 2 × 2 Hamil-
tonian HW = h̄ vF χ k · σ, after linearizing the momentum
dependence around node 2 (where χ denotes the chirality of
the node in consideration). We have already shown this to
yield a quantized response [cf. Figs. 3(a), 3(d), 3(g)].

B. Effects of tilt and anisotropy

In real materials, the dispersion around the band-touching
point is not perfect. Depending on the space-group symme-
tries, one may encounter possible factors, especially tilt and
anisotropy, that are ubiquitous in semimetals. We use this sec-
tion to discuss how such factors, when present, affect the DIR.
Tilt appears due to the absence of particle-hole symmetry, and
is constrained by the point-group symmetries of condensed
matter physics. On the other hand, anisotropy may arise from
imperfections in materials, leading to a deviation from the
isotropic band dispersions. Particularly, recent experimental
Fermi surface data of AlPt [39] suggest that the role of such
effects can be a prominent factor. Therefore, we consider an
effective RSW Hamiltonian with tilt and anisotropy (in the
spirit of Ref. [52] for the Weyl case), given by

Hmod = (h̄ vt kz − mχ )I4 + h̄ vF

∑
μ,ν

ημν kμ Jν . (22)

Here, vt represents the tilt velocity along the z axis, I4 de-
notes the 4 × 4 identity matrix, vF is the Fermi velocity, χ =
sgn[Det(η)] determines the chirality, and mχ sets the energy
at which the node of chirality χ is located. We set mχ to zero
at one of the nodes for simplicity, and consider that one for
further calculations. Being proportional to I4, the first term
is trivial, and is responsible for breaking inversion symmetry.
The second term in Hmod contains the 3 × 3 anisotropy matrix
η (with components ημν). It is easy to check that ημν = δμν
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for the isotropic case. Note that every possible anisotropy of
a cone (up to linear order in k) can be modeled by an upper

triangular form for η. Thus, we write the anisotropy matrix,
without any loss of generality, as

η =
⎛
⎝ηxx ηxy ηxz

0 ηyy ηyz

0 0 ηzz

⎞
⎠. (23)

We set the diagonal terms equal to one (i.e., ηxx = ηyy = ηzz = 1), and the off-diagonal terms to r (i.e., ηxy = ηxz = ηyz = r). In
this way, we consider a particular realization of anisotropy caused only by off-diagonal terms of equal values.

The linear energy dispersion of the untilted and isotropic RSW gets modified to

E p
±/(h̄ vF ) = ζ kz ± p

√
k2 + 2 r(kx ky + ky kz + kx kz ) + r2

(
2 k2

x + 2 kx ky + k2
y

)
, p = 1

2 , 3
2 . (24)

We set ζ = vt/vF , so that the eigenspace is characterized by
two parameters, namely, ζ and r. In the following, we take
r and ζ to be zero alternatively to understand the individual
effects of tilt and anisotropy.

First, we set r = 0 and ζ �= 0, in order to consider the
case of isotropic tilted cones. The presence of a finite tilt
can be inferred from the asymmetric dispersion of the LBB,
as shown in Fig. 5(a). We have shown �int for two differ-
ent tilt phases in Fig. 5(b). It is clear that the response is
independent of any tilt value. This is because, tilt, being cou-
pled to the identity matrix, does not affect the eigenspinors
- hence, the optical matrices Pμ in Eq. (11) do not change.
Additionally, the difference of band velocities vmn also re-
main invariant under tilt. By virtue of these combined facts,
Eq. (16) can be reduced to Eq. (18), leading to the quantization
of �int.

The above picture changes when anisotropy is turned on
(r �= 0, ζ = 0), as the quantization of �int depends on the
scale of r. This is because, unlike tilt, anisotropy affects
eigenspinors, making the transition matrices depend on it.
Since Chern number is defined as a surface integral about the
source or sink of Berry flux, it is necessary to reduce the 3D
integral in Eq. (16) into a surface integral, in order to connect
it with the topological invariant. This maneuver is not possible
for a finite r, and requires the limit r → 0. We have shown
the dependence of �int on r in Fig. 5(c). As expected, the
quantization is lost if r is increased. The fact that it follows
a power-law decay in a log-linear plot, shows how sensitive
the quantization is to the presence of anisotropy. This also
hints at the fact that there must be a scale of r, beyond which
quantization vanishes. To estimate this, we have computed
�int for three different scales of r, as shown in Fig. 5(d). We
notice that �int is in fact quantized, and equal to the Chern
number, for r ∼ 10−3. Increasing r by one order of magnitude
by setting r ∼ 10−2, we find that although the behavior of
�int remains similar to the former case (r ∼ 10−3) in the
lower frequency ranges, the response deviates dramatically
with increasing ω. Note that a small quantized plateau still
forms at a lower frequency, despite the deviation. As we set
r = 10−1, the response continues to fall off with a faster decay
rate, and asymptotically tends to zero. This also explains the
lack of quantization for α �= 0, 2 in the previous section, as
the energy dispersion is anisotropic for those cases, which is
analogous to the explicit addition of external anisotropies.

In addition to the linear terms in the components
of k, higher-order anisotropic terms may also appear
within the energy resolution window. For example,
(a)

(b)

(c) (d)

FIG. 5. RSW semimetal in the presence of tilt and anisotropy
[cf. Eq. (24)]: (a) The contour plot of the dispersion of the LBB
(denoted by E0) is shown in the kx-kz plane, in the presence of tilt
(left), or anisotropy (right). With r = 0 and ζ = 0.3 in the left panel,
we see that ζ controls the tilt along the z axis. In the right panel, we
have r = 0.3 and ζ = 0, showing that a finite value of r amounts to
“squeezing” of the dispersion in certain directions. (b) Since tilt does
not affect �int , the responses in type-I (r = 0, ζ = 0.3) and type-II
(r = 0, ζ = 1.5) phases are similar. (c) For r = 10−3 and ζ = 0, �int

exhibits a quantized plateau at all frequencies above a critical value
ωc. A considerable deviation from the plateau is seen at moderate
to high frequencies if we set r = 10−2, followed by a nonquantized
response at r = 10−1. (d) Here we show �int against log(r) for three
different photon frequencies. In all the plots, �int is in units of E2

2 π h̄2 .
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FIG. 6. (a) Energy dispersion in the absence (β = 0, blue line)
and presence (β = 0.1, red line) of the cubic term in Eq. (25). The
dispersion is linear in both cases at small energies. But much away
from the node, the cubic term starts to dominate, and curves the
dispersion. (b) Here we show �int (in the units of E2

2 π h̄2 ) versus ω,
for β = 0 and β = 0.1. Contrary to the linear case, quantization for
β = 1 only exists at low frequencies, and eventually disappears as ω

increases.

the Hamiltonian [53]

Hcubic = h̄ vF
[
kx σx + ky σy + (

kz + β k3
z

)
σz

]
(25)

includes a cubic order correction with coefficient β. The dis-
persion of Hcubic is shown in Fig. 6(a) for β = 0.1. We find
that the dispersion is approximately linear at low energies, but
as the energy increases, the bands start to bend and deviate
from the linear behavior. The �int versus ω plot in Fig. 6(b)
reveals that, in the presence of the cubic term, the quantized
plateau only exists within a frequency window, the range of
which is set by the magnitude of β. This is because, Eq. (17)
is no longer valid for higher frequencies, when the cubic term
contribution becomes comparable to the linear terms.

V. SUMMARY AND OUTLOOK

In this paper, we have described a probe (denoted by �int)
to detect the Chern number of the LBB in a 3D topologi-
cal semimetal. This framework exploits the chiral nature of
systems featuring Bloch bands with nonzero Chern numbers.
However, unlike the DIR for probing Chern numbers in 2D
systems [18], the quantization of �int depends on the nature of
the dispersions. For systems with linear dispersions, we found
that �int is quantized above a critical frequency value ωc. It is
important to note that this response is nonlinear with respect
to the amplitude of the circular drive, and it explicitly depends
on interband transitions.

It is important to emphasize that the DIR response for
3D systems (which we denote by �int) is different from the
DIR formula for 2D systems (see Eq. (8) of Ref. [18]). First,
�int (ω) is a function of ω (i.e., integration over ω is not
performed while deriving it). Second, �γ μν

mn is computed for
each 2D projection of the 3D system, lying in the μν-plane.
With λ denoting the direction perpendicular to the 2D plane
under consideration [cf. Eq. (10)], we then multiply �γ μν

mn
with the band velocity difference ∂kλ

Emn, and integrate it over
the entire 3D BZ to get the differential current along the λ

direction. This is followed by a summation over the three mu-
tually perpendicular directions. This complicated expression
happens to overlap with the expression of the Chern number

of the LBB, at leading order, only for systems with isotropic
dispersions, as we show in our derivations.

As one of the first examples, Bradlyn et al. [1] provided a
comprehensive classification of space-group symmetry pro-
tected band crossings, and pointed out that multifold band
touching points harness fermions with higher pseudospins.
While pseudospin-1/2 fermions can occur at any generic
points of the BZ, multiple band crossings (three, four, eight)
associated with higher pseudospins are only possible at high-
symmetry points. In particular, both the pseudospin-1 and
RSW fermions, considered in this paper, can only occur at
high-symmetry points of the BZ. Additionally, the threefold
band structure of the pseudospin-1 fermions requires a non-
symmorphic structure of the space group, in contrast with
the RSW fermions. As a part of the space-group classifi-
cation, Bradlyn et al. proposed several candidate materials,
supported by first-principle calculations, that can host higher-
pseudospin fermions. For example, materials like Pd3Bi2S2

and Ag3Se2Au are predicted to have three band crossings
near the Fermi level, while Fu et al. [45] showed that per-
ovskite materials (with the chemical formula A3BX ) can host
pseudospin-3/2 fermions. Another set of proposals includes
cubic silicides (ASi) and germanium materials (AGe), with
A = Rh, Co.

Recent ARPES measurements [37] showed that CoSi hosts
pseudospin-1 and double-Weyl fermions, at the center and
corner of the BZ, respectively. Similarly, RhSi is reported [38]
to have both threefold and fourfold band degeneracy at the �

and R points. In such crystalline solids, circular dichroism can
be probed by measuring orbital polarization through ARPES
[54,55].

The search for higher-pseudospin fermions has also ex-
panded beyond conventional condensed matter crystals, and
continues to explore non-electronic structures like cold-
atomic and photonic frameworks. In particular, ultracold
atoms trapped in optical lattices have received a lot of at-
tention due to their ability to provide a highly tunable yet
clean environment, making them one of the most promising
platforms to realize topological semimetallic phases. Very
recently, Wang et al. [56] realized a two-node ideal Weyl
semimetal in ultracold atomic gases with synthetic spin-orbit
coupling. This opens up the possibility of exploring various
optoelectronic processes, especially DIR, which was origi-
nally proposed and implemented in 2D ultracold settings.

Our proposal serves as a complementary platform, which
can be used in conjunction with other probes [26,57–62] to
map out various properties of semimetals. One future di-
rection will be to investigate the behavior of �int for other
semimetals which have degenerate dispersions (e.g., Luttinger
semimetals with quadratic band-touching points [58,60–62]),
or a mix of linear and non-linear dispersions depending on the
momentum axis (e.g., multi-Weyl semimetals [12,57,59]). It
will also be interesting to compute how disorder [63–66], in
the presence of interactions [11,12,67], affects the features of
�int.

ACKNOWLEDGMENTS

We thank Kush Saha for useful discussions. The work is
partially funded by the National Science Centre (Narodowe

235403-9



SAJID SEKH AND IPSITA MANDAL PHYSICAL REVIEW B 105, 235403 (2022)

Centrum Nauki), Poland, under the scheme PRELUDIUM
BIS-2 (Grant No. 2020/39/O/ST3/00973).

APPENDIX: DERIVING THE TRANSITION RATE

The Hamiltonian in Eq. (8) can be expressed as

H′±(t ) = E
h̄ ω

[
(ei ω t + e−i ω t )

∂H0

∂kμ

± eiωt − e−iωt

i

∂H0

∂kν

]
.

(A1)

If we assume that the system is initially in the nth eigenstate,
then the transition probability to the mth eigenstate at a finite
time t can be obtained using the time-dependent perturbation
theory. For the harmonic perturbation in consideration in this
paper, the transition rate to the leading order is given by

γ ±
mn(kμ, kν, ω) = 2 π

h̄

( E
h̄ ω

)2
∣∣∣∣∣
〈

m

∣∣∣∣∣∂H0

∂kμ

± 1

i

∂H0

∂kν

∣∣∣∣∣n
〉∣∣∣∣∣

2

× δt (Emn − h̄ ω),

δt (ε) = 2 h̄ sin2
(

ε t
2 h̄

)
π t ε2

, (A2)

which is Fermi’s golden rule. For sufficiently long timescales,
the δt (ε) can be approximated as δ(ε), leading to Eq. (9).
Plugging all these into Eq. (10), and using the identity

∣∣Pμ
mn ± iPν

mn

∣∣2 = ∣∣Pμ
mn

∣∣2 + ∣∣Pν
mn

∣∣2 ∓ i
(
Pμ

mn Pν
nm − Pν

mn Pμ
nm

)
,

(A3)

we obtain

�γ μν
mn (k, ω) ≡ γ +

mn(kμ, kν, ω) − γ −
mn(kμ, kν, ω)

2

= 2 π i

h̄

( E
h̄ ω

)2(
Pμ

mn Pν
nm − Pν

mn Pμ
nm

)
× δ(Emn − h̄ ω), (A4)

which leads to Eq. (11).
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