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Nonlocal thermal transport modeling using the thermal distributor
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Thermal transport in a quasiballistic regime is determined not only by the local temperature T (r) or its gradient
∇T (r) but also by the temperature distribution at neighboring points. For an accurate description of nonlocal
effects on thermal transport, we employ the thermal distributor �(r, r′), which provides the temperature response
of the system at point r to the heat input at point r′. We determine the thermal distributors from the linearized
Peierls-Boltzmann equation, both with and without the relaxation time approximation, and employ them to
describe thermal transport in quasiballistic graphene devices.

DOI: 10.1103/PhysRevB.105.235402

I. INTRODUCTION

Advances in technology and experimental studies beyond
microscale dimensions of materials require new insights into
theoretical models that were developed initially based on
continuum transport theories. The Peierls formulation of ther-
mal transport in solids (the Peierls-Boltzmann equation, PBE
[1]) is based on the quasiparticle picture of phonons. The
temperature gradient ∇T enters the PBE as a driving force.
At macroscopic scales and in steady state, the PBE leads to
Fourier’s law, �J = −κ (T0)∇T , where κ (T0) is the thermal
conductivity at the background temperature T0 and �J is the
heat current density. Small variations of the temperature gra-
dient are ignored. This is called the diffusive regime.

Early experiments on thermal transport in submicron de-
vices [2–6] showed that the temperature gradient is not
constant but varies on length scales shorter than or compa-
rable to the mean free path (MFP) of phonons. Often, the
analysis of experiment suggests a version of Fourier’s law
using an “effective thermal conductivity.” The experiments
indicate a nondiffusive regime, with a nonlocal relation be-
tween the heat current and temperature gradient. Fourier’s law
requires generalization, and Boltzmann’s theory does this well
[4,7–11]. The Boltzmann equation describes the evolution
of the phonon distribution function NQ(r, t ). When phonons
are driven away from equilibrium by local power insertion,
it is necessary to add a new term, (dNQ/dt )ext, describing
the power PQ(r, t ) added to the phonon mode Q. The local
temperature T (r, t ) = T0 + �T (r, t ) is an ultimate goal but
is not needed to find the nonequilibrium distribution. The
inserted power PQ(r, t ) is enough to determine NQ and the
corresponding heat current �J (r, t ). The local temperature de-
viation �T (r, t ) is an important measure of the behavior of
the system, but Boltzmann’s theory does not contain a defi-
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nition of �T (r, t ); it is necessary to choose a definition. The
correct definition is the one in which C�T (r, t ) = �E (r, t ),
where �E (r, t ) is the deviation of the total nonequilibrium
phonon energy of the system when it is driven away from
the equilibrium state at the background temperature T0 and
C is the specific heat. Unfortunately, when the Boltzmann
scattering operator is approximated by the relaxation time ap-
proximation (RTA), an alternate and less physical definition is
necessary to restore the energy conservation that is broken by
RTA. In this paper, we find �T (r, t ) by solving the linearized
PBE (LPBE) using the full scattering operator and the correct
definition and compare it with the RTA version.

Solving the PBE requires a matrix inversion, which is often
avoided by using the relaxation time approximation,(

∂NQ

∂t

)RTA

scatt

= −NQ(�r, t ) − nQ(T (�r, t ))
τQ

. (1)

Here Q = (�q, s) labels phonon modes: �q is the wave vector,
and s is the branch index. The Bose-Einstein distribution
nQ(T (�r, t )) is evaluated at the local temperature T (�r, t ). The
phonon relaxation rate 1/τQ is evaluated using Fermi’s golden
rule for anharmonic three- phonon scatterings. It is also the
diagonal part of the linearized scattering operator Ŝ0,(

∂NQ

∂t

)LPBE

scatt

= −
∑

Q′
S0

QQ′ (NQ′ − nQ′ ). (2)

In this version labeled with a superscript 0, 1/τQ = S0
QQ, the

correctly linearized operator Ŝ0 is non-Hermitian. For numer-
ical inversion, it is preferable instead to define [12]

NQ(�r, t ) ≡ nQ(T (�r, t )) + n0
Q(T0)

[
n0

Q(T0) + 1
]
φQ(�r, t ), (3)(

∂NQ

∂t

)LPBE

scatt

= −
∑

Q′
SQQ′φQ′ , (4)

where n0
Q(T0) is the Bose-Einstein distribution at equilibrium

temperature T0. Then the operator Ŝ is Hermitian, and the
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FIG. 1. Schematic of inhomogeneous external driving with pe-
riodic boundary conditions. The finite system has a length Ld =
2Ls + 2Lch, which is repeated periodically, where Lch is the channel
length and Ls is the source/sink heat length. Thermal energy at rate
P is added at the source and removed at the sink.

diagonal element is

SQQ = n0
Q(T0)

[
n0

Q(T0) + 1
]
/τQ. (5)

The spatially homogeneous PBE driven by a constant ∇T
has been solved by inversion of this Hermitian operator Ŝ
[13–22]. For spatially inhomogeneous situations, the LPBE
[in Fourier space (�k, η) rather than coordinate space (�r, t )]
requires much more difficult inversion of the non-Hermitian
operator SQQ′ + i(�k · �vQ − η)δQQ′ , where �vQ is the velocity
of the phonon mode Q. Difficult inversion is avoided by us-
ing the RTA SQQ′ → δQQ′nQ(nQ + 1)/τQ [23–26]. Recently,
inversions with the correct scattering operator for inhomoge-
neous transport have been done [10,27].

In [8], the authors introduced a concept called thermal
susceptibility, inspired by the definition of the electrical
susceptibility. Thermal susceptibility relates the temperature
deviation at (�r, t ) to the heat insertion at (�r ′, t ′). This study
aims to investigate the capability of the thermal distributor
function �, which is a redefined version of the thermal sus-
ceptibility function,

�(�r − �r ′, t − t ′) ≡ δT (�r, t )

δP(�r ′, t ′)
, (6)

for the analysis of nonlocal thermal transport. Thus, the tem-
perature deviation is obtained,

�T (�r, t ) = 1

V

∫
d�r ′

∫ t

−∞
dt ′�(�r − �r ′, t − t ′)P(�r ′, t ′), (7)

where V is the sample volume. In reciprocal space,
�T (�k, η) = �(�k, η)P(�k, η). We apply our analysis to
graphene, as depicted in Fig. 1.

Because graphene is a two-dimensional crystal, the vectors
�r and �k are two-dimensional. Because the heat source and
sink are parallel to the y axis, the relevant wave vector is
�k = (kx, 0). Heat current density �J2D has units of watts per
meter; the more familiar unit in three dimensions is watts
per square meter. Thermal conductivity in two dimensions
has units of watts per kelvin; in order to compare it with
three-dimensional (3D) results, it is conventional to choose
the somewhat arbitrary “thickness” for graphene to be h = 3.4
Å. This paper uses 3D units for current density J = J2D/h,
input power P = P2D/h, energy density U = U2D/h, and spe-

cific heat C = C2D/h. Then κ has the conventional units of
watts per millikelvin, and � has units of cubic kilometers per
watt.

The measured thermal conductivity of graphene (in 3D
units) is reported to lie in the range of 2600 to 5300 W/mK
at room temperature [28,29]. The theoretical thermal conduc-
tivity of pristine infinite-size graphene at room temperature
is reported in the range of 2800–4300 W/mK [13,19,30]. In
devices smaller than the mean free paths 
Q of important
phonons, the measured heat current divided by an approxi-
mate measurement of temperature gradient gives an effective
thermal conductivity κeff of smaller value. For phonons with
bulk 
Q = |vQx|τQ (�vQ is the phonon group velocity) greater
than device size L, the contribution to κeff is reduced from
CQ|vQ,x|
Q to CQ|vQx|L, where CQ is the contribution of mode
Q to the specific heat. We will describe this effect using the
thermal distributor function [23].

II. FORMALISM

Under the assumptions of well-defined quasiparticles, the
PBE in a crystalline solid is

dNQ

dt
=

(
∂NQ

∂t

)
drift

+
(

∂NQ

∂t

)
scat

+
(

∂NQ

∂t

)
ext

. (8)

The first term on the right-hand side of Eq. (8) is the change
in NQ caused by phonon drift in the distribution gradient:(

∂NQ

∂t

)
drift

= − �vQ · �∇�rNQ, (9)

where �∇�r is the spatial gradient. The second term in Eq. (8)
contains all scattering processes in the crystal. The term from
anharmonic three-phonon scatterings (Q → Q′ + Q′′, Q +
Q′ → Q′′) can be found from Fermi’s golden rule [31]:(

∂NQ

∂t

)
scat

= π h̄

16Nq

∑
Q′Q′′

|VQQ′Q′′ |2 1

2
{NQ(NQ′ + 1)(NQ′′ + 1)

− (NQ + 1)NQ′NQ′′ }δ(ωQ − ωQ′ − ωQ′′ )

+ {NQNQ′ (NQ′′ + 1) − (NQ + 1)(NQ′ + 1)NQ′′ }
× δ(ωQ + ωQ′ − ωQ′′ ), (10)

where ωQ is the phonon frequency and Nq is the number of
wave vectors in the Brillouin zone [32]. VQQ′Q′′ is the matrix
element of the three-phonon process, given by

VQQ′Q′′ =
∑

MLnml

∑
αβγ

εnα
Q ε

mβ

Q′ ε
lγ
Q′′√

M3
c ωQωQ′ωQ′′

�αβγ (0n, Mm, Ll )eiq′·RM

× eiq′′·RLδ(q + q′ + q′′, G), (11)

where �αβγ (0n, Mm, Ll ) is the third derivative of the crys-
tal potential by displacements of atoms in positions (n, m, l )
inside unit cells (0, M, L). The supercell with index 0 is the
central unit cell. εnα

Q is the αth Cartesian component of the po-
larization vector of mode Q at atom n, and Mc is the mass of a
carbon atom. The Kronecker delta ensures the conservation of
the lattice momentum, where G is a reciprocal lattice vector.
The local equilibrium phonon population nQ = nQ(T (�r, t ))
depends implicitly on the space and time through its explicit
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dependence on the temperature T (�r, t ). For small deviations
from equilibrium, we expand the phonon population NQ as in

Eq. (3) to first order in φQ. The anharmonic scattering matrix
Ŝ [Eq. (4)] then has diagonal and off-diagonal elements,

SQQ = 1/τQ = 2π h̄
∑
Q′Q′′

|VQQ′Q′′ |2
{(

n0
Q + 1

)
n0

Q′n0
Q′′

2
δ(ωQ − ωQ′ − ωQ′′ ) + n0

Qn0
Q′

(
n0

Q′′ + 1
)
δ(ωQ + ωQ′ − ωQ′′ )

}
,

SQQ′ = 2π h̄
∑
Q′′

|VQQ′Q′′ |2{n0
Qn0

Q′
(
n0

Q′′ + 1
)
δ(ωQ + ωQ′ − ωQ′′ ) − (

n0
Q + 1

)0

Q′n
0
Q′′δ(ωQ − ωQ′ − ωQ′′ )

− n0
Q

(
n0

Q′ + 1
)
n0

Q′′δ(ωQ − ωQ′ + ωQ′′ )
}
. (12)

This version of the scattering matrix is real symmetric (SQQ′ =
SQ′Q), i.e., Hermitian. Each collision conserves phonon en-
ergy, which is ensured by

SQQωQ +
∑

Q′,Q′ �=Q

SQQ′ωQ′ = 0, or Ŝ|ω〉 = 0. (13)

The mode frequency ωQ = 〈Q|ω〉 is an eigenvector, in fact,
the only “null eigenvector,” of the linearized Hermitian scat-
tering operator SQQ′ = 〈Q|Ŝ|Q′〉.

The last term in Eq. (8) models external heat sources and
sinks. The form is usually [33,34](

∂NQ

∂t

)
ext

= PQ(�r, t )

C

dnQ

dT
. (14)

The heat source/sink P, its geometry (�r, t ), and its spectral
distribution Q determine whether the heat transport is qua-
siballistic or diffusive. We use the simplest version where
PQ = P is independent of Q [8,34–36],(

∂NQ

∂t

)
ext

= P

C

dnQ

dT
, (15)

where P is the heat power added per unit volume of the
system. Each mode gets the same boost �T from P(�r, t ).
Detailed knowledge of the source and sink would cause a Q
dependence of P [23,37], but lacking this knowledge, PQ = P
is a sensible guess.

In vector-space notation, the LPBE, Eq. (8), is

∂

∂t
[|n〉 + |n0(n0 + 1)φ〉] = − �vQ �∇�r[|n〉 + |n0(n0 + 1)φ〉]

− Ŝ|φ〉 + P(�r, t )

C
| dn

dT
〉. (16)

In this notation, the kets (like |n〉) are vectors in the space
of phonon modes, with components 〈Q|n〉 = nQ. The solution
φQ(�r, t ) is found from its Fourier (�k, η) representation,

φQ(�r, t ) = 1

2π

∫ ∞

−∞
dηe−iηt

∑
�k

ei�k·�rφ(�k, η). (17)

The temperature deviation �T (�r, t ) and the power input
P(�r, t ) are also transformed to Fourier space. To simplify the
algebra, we define a vector |X 〉 and an operator Ŵ :

|X 〉 ≡ |n0(n0 + 1)h̄ω〉, (18)

Ŵ ≡ Ŝ + i(�k · �̂v − η1̂)n̂0(n̂0 + 1̂), (19)

where �̂v and n̂0 are diagonal in Q space [i.e., 〈Q|n̂0|Q′〉 =
n0

Qδ(Q, Q′) = 〈Q|n0〉δ(Q, Q′)]. The LPBE in Fourier space is

Ŵ |φ〉 = 1

kBT 2

[
− i(�k · �̂v − η1̂)�T (�k, η)

+ P(�k, η)

C
1̂
]
|X 〉.

(20)

A. Thermal distributor

By inverting the matrix Ŵ , the distribution |φ(�k, η)〉 is
found. The nonequilibrium energy density �U (�r, t ) is the to-
tal local energy density minus the energy density of the system
equilibrated at the local temperature T (�r, t ) = T0 + �T (�r, t ).
Its Fourier version is

�U (�k, η) = 1

V
〈X |φ〉

= 1

V kBT 2

[
〈X |Ŵ −1|[−i(�k · �v − η)]X 〉�T (�k, η)

+〈X |Ŵ −1|X 〉P(�k, η)

C

]
. (21)

After transients have died out, the local equilibrium part
|n(T (�r, t ))〉 of the distribution contains all the heat, and the
deviation |n0(n0 + 1)φ〉 contains no net heat. This is a result
of Boltzmann’s H theorem, which says that before a steady
state is reached, collisions increase entropy. The steady state
occurs when entropy is maximum, which happens when the
distribution evolves to a Bose function |n(T (�r, t ))〉 that con-
tains all the heat energy [8]. Therefore, �U (�k, η) = 0, and the
thermal distributor function �(�k, η), defined in Eq. (7), can be
calculated from Eq. (21) as

�(�k, η) = �T (�k, η)

P(�k, η)

= 1

C

〈X |Ŵ −1|X 〉
〈X |Ŵ −1|i(�k · �v − η)X 〉 . (22)

This is the linear relation that gives the local temperature
deviation caused by the external heat power input P.
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B. Thermal conductivity

The thermal current, using Eq. (20), is

�J (�k, η) =
∑

Q

h̄ωQ�vQn0
Q

(
n0

Q + 1
)
φQ(�k, ω)

= 1

V
〈�vX |φ〉

= 1

V kBT 2

[
〈�vX |Ŵ −1|[−i(�k · �v − η)]X 〉�T (�k, η)

+ 〈�vX |Ŵ −1|X 〉P(�k, η)

C

]
. (23)

In Fourier space, Fourier’s law reads �J (�k, η) =
−i�kκ (�k, η)�T (�k, η), and the thermal conductivity according
to Eqs. (22) and (23) is

κ (�k, η) = i�k �J (�k, η)

k2�T (�k, η)
= 1

k2V kBT 2

[
〈i�k · �vX |Ŵ −1|[−i(�k · �v − η)]X 〉 + 〈i�k · �vX |Ŵ −1|X 〉 〈X |Ŵ −1|i(�k · �v − η)X 〉

〈X |Ŵ −1|X 〉
]
. (24)

Using Eqs. (18) and (19), we can write |i(�k · �v − η)X 〉 as
(Ŵ − Ŝ)|h̄ω〉. Using time-reversal symmetry, Ŝ|h̄ω〉 = 0, and
〈X |h̄ω〉 = CV kBT 2, we can simplify Eq. (24) to

κ (�k, η) = C

k2

[ 〈i�k�vX |Ŵ −1|X 〉
〈X |Ŵ −1|X 〉

]
. (25)

By comparing Eq. (25) with Eq. (22), the relation between
the thermal distributor and thermal conductivity is [8]

κ (�k, η) = 1

k2

(
1

�(�k, η)
+ iCη

)
. (26)

Recently, it was shown [9,10] that unless PQ is inde-
pendent of mode Q, the response function κ (�k, η) is not a
full description of nonlocal thermal heat transport. The cur-
rent in Fourier space has the more general form J (�k, η) =
−κ (�k, η)∇T (�k, η) + B(�k, η), where B vanishes if P is inde-
pendent of Q. We agree and find that the thermal distributor
also needs modification. Specifically, the temperature in
Fourier space takes the form �T (�k, η) = �(�k, η)P(�k, η) +
G(�k, η), where P(�k, η) is the mode average of PQ(�k, η) and
G( �K, η) vanishes if P is independent of mode Q. We simplify
the issue by choosing P to be independent of Q.

C. One-dimensional heat transport in the dc limit

We now focus on the dc heat transport along the x direction
of graphene. Therefore, η = 0, and the wave vector �k and
velocity �vQ have only one relevant component each, kx ≡ k
and vQx ≡ vQ. The thermal distributor simplifies to

�LPBE(k) = 1

C

〈X |Ŵ −1|X 〉
〈X |Ŵ −1|ikvX 〉 . (27)

We label it LPBE because it is obtained from the linear PBE,
Eq. (20), and we want to distinguish it from the RTA version
of the PBE. The local temperature �T (�r) appearing in the
LPBE, Eq. (21), is defined by the statement that the local
equilibrium distribution nQ(T (�r)) carries all the heat, and the
deviation NQ − nQ(T (�r)) carries no heat; �U (�r) in Eq. (21)
is zero. How is �T (�r) defined in RTA? It is a peculiar fact of
the RTA that an alternative definition of �T (�r) is preferable,

namely, (
∂U

∂t

)RTA

scat

=
∑

Q

h̄ωQ

(
∂NQ

∂t

)RTA

scat

= 0 = −
∑

Q

h̄ωQ
NQ − nQ(T (�r, t ))

τQ
. (28)

This option is known to work better than the alternative of set-
ting �U to zero [8]. The RTA result for the thermal distributor
is then

�RTA(k) = 1

C

∑
Q

CQ�2
Q

�2
Q+(kvQ )2∑

Q
CQ�Q (kvxQ )2

�2
Q+(kvQ )2

, (29)

where �Q = 1/τQ.

III. RESULTS AND DISCUSSION

Quasiparticle heat transport in solids can be roughly
categorized into three regimes: ballistic, quasiballistic, and
diffusive. In the diffusive regime, where Fourier’s law applies,
the channel length of the heat conductors is much longer than
the MFPs; phonons experience multiple scattering events, so
that a local equilibrium is established, with a temperature
gradient that is constant everywhere except in the small region
close to heat sources and sinks. Thermal transport is ballistic
when the channel length is comparable to or less than phonon
MFPs. In this case, thermal energy is mainly dissipated near
the heat sources. The temperature gradient becomes thermally
inhomogeneous, and heat current has a nonlocal relation to
temperature. When the channel length is similar to the av-
eraged phonon MFP, some phonons travel ballistically, and
others travel diffusely; heat transfer is “quasiballistic.” The
wide range of phonon MFPs in graphene [38] makes it hard to
differentiate transport regimes. Moreover, the heat transport
regime in a given device is temperature dependent since the
phonon MFPs depend on temperature.

The thermal distributor �(�r), Eq. (6), simplifies the de-
scription of heat transport in different regimes. The spatial
variation of temperature is given by

T (�r) =
∑

�k
T (�k)ei�k·�r =

∑
�k

�(�k)P(�k)ei�k·�r . (30)
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FIG. 2. Anharmonic three-phonon scattering rates for graphene
at room temperature are shown in (a) on a linear scale for trans-
verse acoustic (TA), longitudinal acoustic (LA), out-of-plane optical
(ZO), transverse optical (TO), and longitudinal optical (LO) phonon
modes; (b) shows the scattering rates of flexural mode (ZA) on a log
scale. The blue circles show linear interpolation of the ZA scattering
rate for frequencies below 0.3 THz, see text.

The Fourier transform �(�k) is related to the nonlocal gener-
alization of the bulk thermal conductivity κbulk = lim�k→0κ (�k)
by Eq. (26). First, we calculate LPBE and RTA versions of
�(�k) of graphene from Eqs. (27) and (29), using the modified
Tersoff potential with the parameters given in Ref. [39], to
model the crystal potential. The scattering rates are shown in
Fig. 2 at T = 300 K.

Note that there are numerical challenges in calculating the
scattering rates of phonons using the Gaussian broadening
[40]. Following Refs. [13,31], we apply linear interpolation
of the ZA scattering rates with phonon energy, as shown
by the blue circles for phonon energies below 0.3 THz in
Fig. 2(b). This linear scaling is explained by noting that
the bending energy is given by Eb = ∫

d2rκb/(2R2), where
κb = 2.1 eV [41] is the bending stiffness and R is the radius
of curvature given by 1/R = d2z/dx2. Applying the Bloch
theorem for a discrete atomic model with a lattice constant
a, one can show that bending energy for mode q is given by
Eb = 8κbAcz2

q sin4(qa/2)/a4 ≈ Acκbz2
qq4/2, where Ac is the

area per atom. By comparing it to the harmonic oscillator
potential energy mω2

qz2
q/2, one can obtain the expected result

for flexural phonon frequency: ωq = q2√κbAc/m. The third-
order anharmonicity can be introduced by coupling the ZA
mode to an LA mode by modifying the bending stiffness
κb = κb0 − αb(xi+1 − xi−1). After applying the Bloch theo-
rem, the third-order anharmonic potential for mode q in the
small-q limit becomes H3 = ∑

q1
iαbAczqzq1 x−q−q1 q2q2

1(q +
q1)a. Using second-quantized amplitudes for the phonon dis-
placements zq and xq, one can show that Vqq1 ∼ q2q2

1(q +
q1)(ωZA

q ωZA
q1

ωLA
q+q1

)−1/2. The q-ZA phonon scattering with
the q1-ZA phonon into a (q + q1)-LA phonon has a rate of
1/τZA

q ∼ ∑
q1

|Vq,q1 |2n0,ZA
q1

n0,LA
q+q1

δ(ωZA
q + ωZA

q1
− ωLA

q+q1
). The

δ function ensures that q1 ∼ vs
√

m/(κbAc), where vs is the
sound velocity. Therefore, the interpolation function 1/τZA

q ∼
q2 ∼ ωZA

q used in Fig. 2(b) can be justified.
Figure 3 shows the calculated �(k) for graphene using the

LPBE and RTA. The width of the sample is much broader than
the MFP; this allows a one-dimensional treatment. The spatial
variation �r = (x, 0) is only along x̂, parallel to the channel,
so the spatial Fourier variable is �k = (k, 0). The spatial reso-

FIG. 3. Fourier transform of the thermal distributor as a function
of momentum k in graphene using the RTA and LPBE approaches.
The small-k limit corresponds to large distances from the input of
the heat source such that thermal transport is diffusive and �(k)
diverges.

lution of T (x) at small distances x requires values of �(k) at
correspondingly large k ∼ 2π/x [see Eq. (30)]. The range of k
in Fig. 3 corresponds to distances from a few nanometers to a
meter-long channel length. A lower limit of the length scale is
imposed by the validity of the quasiparticle picture of phonons
used in the PBE formalism [26]. Note that the thermal distrib-
utor diverges for both LPBE and RTA solutions when k → 0.
According to Eq. (26), for a finite thermal conductivity in a
diffusive regime, �(k) must diverge in the k → 0 limit as
�(k) ∼ 1

k2 . Curve fitting shows that the calculated �(k) for
both versions agrees with 1

k2 very accurately in the small-k
limit, namely,

�LPBE(k) = 2.4 × 10−4 km/W

k2
,

�RTA(k) = 1.51 × 10−3 km/W

k2
. (31)

Using Eq. (26), this corresponds to bulk thermal conductivi-
ties of 4145 and 662 W/mK for LPBE and RTA, respectively.
The large discrepancy between LPBE and RTA values of ther-
mal conductivities in graphene was noticed previously [13].

The thermal conductivities evaluated according to Eq. (25)
for LPBE and Eqs. (26) and (29) for RTA are shown in Fig. 4.

FIG. 4. Thermal conductivity using (a) the LPBE and (b) RTA
approaches.
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FIG. 5. Temperature variation �T (x) = T (x) − T0 at T0 = 300 K for three different values of the channel length: (a) Lch = 20 nm,
(b) Lch = 2 μm, and (c) Lch = 200 μm. The source/sink lengths are Ls = 10 nm, 100 nm, and 1 μm in (a), (b), and (c), respectively. Input
power P(x) = P0 = (1W/m2)/h = 2.94 × 109W/m3 is applied in all calculations. The effective thermal conductivities are given in Table I.

The sharp falloff of the thermal conductivity in Fig. 4 indicates
the ballistic-to-diffusive crossover; it happens at larger k and,
therefore, smaller characteristic lengths in the RTA treatment
than in the correct LPBE treatment.

Now we discuss thermal conduction in the geometry of
Fig. 1 using the PBE to evaluate the thermal distributor.
We can calculate the temperature profile for any pattern of
heat input and removal from this response function, pro-
vided the graphene sample has one-dimensional periodicity.
Energy conservation requires dJ/dx = −P(x). Steady state
(η = 0) requires equal external heat addition and removal.
Lch is the length of the channel between the two heat reser-
voirs, the source and sink, each of length Ls. For simplicity,
our heat input has odd symmetry [P(−x) = −P(x)] around
x = 0, so J is even in x. The period of the supercell is Ld =
2(Lch + Ls ), which determines the shortest nonzero wave vec-
tor, i.e., kmin = 2π/Ld . A large Ld value allows a fine Fourier
mesh to describe nanoscale physics, such as the ballistic-to-
diffusive crossover. Our reservoirs are ideal thermal baths,
with zero interfacial thermal resistance between the channel
and reservoirs. Note that experimental thermal conductivity
measurements are often done using periodic structures such
as periodic metallic gratings or transient thermal gratings
[42,43]. Our periodic geometry in Fig. 1 works for both pe-
riodic structures and single-channel devices. In the latter case,
it is necessary to make Ls larger than phonon MFPs.

Figure 1 shows how heat insertion and removal P(x) are
distributed uniformly (with magnitude P0) over lengths Ls

on either side of the sample (or channel) of length Lch. En-
ergy conservation dJ/dx = P then gives heat current density
J = P0Ls/2 in the channels. Figure 5 shows the resulting
�T profiles in three devices with channel lengths spanning
from ballistic to diffusive regimes. In the ballistic device
[Fig. 5(a)], both �RTA and �LPBE predict similar values for
temperature profiles in the channel and in the source/sink
reservoirs. This behavior can be understood from the two
thermal distributors being similar in magnitude in the large-k
limit, as shown in Fig. 3. The temperature profile in Fig. 5(a)
clearly shows the source regions are hotter than the channel,
which is a characteristic of nondiffusive thermal transport
[33,34,44]. The long MFP phonons (ZA phonons) dissipate

the thermal energy in the source regions while flying in the
channel ballistically. As a result, the temperature is higher
in the heat region. This observation manifests the nonlocal
effect.

For the larger channel lengths in Figs. 5(b) and 5(c),
RTA predictions for the temperature are significantly higher
than LPBE predictions, in agreement with Fig. 3, which
shows that at smaller k (corresponding to larger distances)
�RTA is greater than �LPBE(k). In the quasiballistic regime
in Fig. 5(b), there is significant nonlinearity near the heat
source/sink. Although in this regime both long and short MFP
phonons contribute to thermal transport, the share of thermal
energy carried by short MFP phonons is almost negligible.

Nonlocal heat transport is often described by an effective
thermal conductivity κeff . The definition varies depending on
the experiment. For example, experimental studies such as
those on time-domain thermoreflectance [45] measure the
transient temperature response to a heat pulse. This can be
used to extract κeff [42]. Many theoretical studies have also
applied a similar procedure.

TABLE I. Effective thermal conductivities computed from three
definitions for the cases shown in Fig. 5. The subscript mp means
current density divided by the midpoint temperature gradient; min
means the current divided by maximum �T per half supercell length,
and ch means current divided by the temperature difference at the
channel edges per channel length. The current density J0 is the
constant value in the channel.

LPBE Definition Fig. 5(a) Fig. 5(b) Fig. 5(c)

κeff,mp
J0

(dT/dx)x=0
118 2463 4035

κeff,min
J0

�Tmax/(Lch+Ls ) 87 1460 3854

κeff,ch
J0

�Tch/Lch
124 1565 3860

RTA Definition Fig. 5(a) Fig. 5(b) Fig. 5(c)
κeff,mp

J0
(dT/dx)x=0

139 633 658

κeff,min
J0

�Tmax/(Lch+Ls ) 85 617 656

κeff,ch
J0

�Tch/Lch
116 616 654
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FIG. 6. Effective midpoint thermal conductivity at 300 K versus
channel length calculated from the PBE and the geometry of Fig. 1
for different source lengths: (a) LPBE and (b) RTA solutions. For
Ls � 100 μm (Ls � 10 μm) the transition from ballistic or qua-
siballistic to diffusive can be observed in LPBE (RTA) solutions.
For Ls > 100 μm (Ls > 10 μm) the thermal transport is always in
the diffusive regime for the LPBE (RTA) solution regardless of the
source length. The solid curves are best fits to κeff,a in Eq. (32).

For our steady-state thermal transport computations, there
are three sensible definitions of κeff , shown in Table I. The
first of these defines κeff by applying Fourier’s law in the
middle of the channel where the curvature of �T (x) is
zero. This resembles Fourier’s law in thermally homogeneous
structures. We note that in the fully diffusive regime, when
both Ls and Lch are larger than the MFPs, the κeff,mp and
κeff,ch values coincide, and the temperature drop in the channel
is �Tch = J0Lch/κeff,mp. In this limit, the temperature drop
under the contact is equal to J0Ls/(4κeff,mp) because current
J (x) varies linearly with distance from the middle of the
contact. Therefore, the maximum temperature variation across
the unit cell equals �Tmax = �Tch + J0Ls/(2κeff,mp), and ef-
fective thermal conductivity κeff,min = J0(Lch + Ls )/�Tmax =
κeff,mp(Lch + Ls )/(Lch + Ls/2). As can be seen from Table I,
the device geometry in Fig. 5(c) approaches the diffusive
limit. However, one should note the fully diffusive limit re-
lationship between κeff,min and κeff,mp is not realized in the
devices we considered.

FIG. 7. Effective midpoint thermal conductivity at 300 K versus
source length calculated for different channel lengths: (a) LPBE and
(b) RTA solutions. For Lch � 100 μm (Lch � 10 μm), the transition
from ballistic or quasiballistic to diffusive can be observed in the
LPBE (RTA) solution. For Lch > 100 μm (Lch > 10 μm) the thermal
transport is always in the diffusive regime for the LPBE (RTA)
solution regardless of the source length. The solid curves are best
fits to κeff,b in Eq. (33).

The κeff,mp definition is plotted in Figs. 6 and 7 for both
LPBE and RTA versions of the thermal distributor as a func-
tion of the source length and channel length, respectively.
When the chosen length Lch in Fig. 6 (or Ls in Fig. 7) has a
value less than the diffusive length scale (∼1–3 μm for LPBE
and ∼100–200 nm for RTA), κeff,mp decreases with decreasing
periodicity due to suppression of the ballistic phonon contri-
bution to the heat transport. At large values of Lch, thermal
conductivity saturates and approaches the diffusive limit when
both Lch and Ls are large.

Similarly, Fig. 7 shows that κeff,mp saturates with increasing
Ls and reaches the diffusive limit value at large Lch. For small
Lch values, the κeff,mp dependence on Ls shows ballistic-to-
diffusive crossover as in Fig. 6. Those dependences happen
because of superposing the interaction of ballistic phonons
in the ballistic channels and recovery of diffusivelike thermal
transport. This phenomenon shows the deterministic role of
the geometry of the heat source and was already observed
experimentally [43,46].

To quantify our results in Figs. 6 and 7, we fit our κeff,mp

to the phenomenological ballistic-to-diffusive crossover equa-
tions used to describe electrical transport [47]:

κeff,a = κ0 + (κdif − κ0)
Lch

Lch + λ
, (32)

κeff,b = κ0 + (κdif − κ0)
Ls

Ls + λ
, (33)

where κdif is thermal conductivity in the diffusive regime.
From the best fits, we find a characteristic length scale λ ∼
1 μm (∼90 nm) for the LPBE (RTA) solution using fits of
κeff,a versus Lch and λ ∼ 3 μm (∼200 nm) for the LPBE
(RTA) solution using fits of κeff,b versus Ls. The value of
κ0 approaches zero only when both Ls and Lch are small,
as discussed above. Those estimates for the characteristic
crossover length scales are consistent with the k dependences
of thermal conductivity in Fig. 4. Using a characteristic value
of k0, when thermal conductivity drops by a factor of 2 in
Fig. 4, we find 2π/k0 ∼ 5 μm for LPBE and 2π/k0 ∼ 300
nm for RTA. Finally, we can estimate an average phonon
MFP using the standard expression for thermal conductivity
in two dimensions: κ = Cvλph/2, where the heat capacity is
C × h = 4.5 × 10−4 J/km2 (calculated at T = 300 K) and v

is an averaged phonon velocity. Using the velocity of the ZA
parabolic band at room temperature v ≈ 10 km/s, we obtain
λph = 625 nm for LPBE and λph = 100 nm for RTA, con-
sistent with the above estimates for the diffusive-to-ballistic
crossover length scales.

IV. CONCLUSIONS

Steady microscale addition and removal of heat energy,
together with a scattering of heat carriers, leads to carrier
distributions N centered around local equilibrium n with a
local temperature T (x). The thermal distributor �(k) con-
tains all relevant information about thermal transport in all
the regimes. By computing the thermal distributor �(k) of
graphene from the PBE with correct inversion using the full
scattering operator, we investigated thermal transport at sub-
micron length scales. At long length scales, heat transport
occurs with constant temperature gradients. Nonlocal effects
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(where ∇T varies with x) are seen at length scales of the order
of or less than the mean free paths of phonons. The details
of the geometrical structure of the device and heat sources
and sinks cause the inhomogeneous temperature profile T (x).
The long-wavelength phonons are forcefully scattered in the
source and sink regions while flying the channel without
appreciable scatterings with other phonons. This causes local
�T (x) to be higher near the source/sink. This is often as-
cribed to the suppression of heat transport by phonons with
long mean free paths. The RTA contains these effects but,

especially in graphene, overestimates the temperature inho-
mogeneity needed to drive a heat current.
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