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Spin splitting of the conduction band by exchange interaction in the valence band
through a k · p interband process in ferromagnetic semiconductors
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The momentum-dependent spin splitting in the conduction band couples orbital motion to spin and enables
electrical control of spin. Currently, this control relies on the relativistic spin-orbit interaction (SOI), which limits
useful materials to those containing heavy elements. Recently, Naka et al. [Nat. Commun. 10, 4305 (2019)] have
found a momentum-dependent spin splitting originating from the exchange interaction, which is expected to
extend spintronic materials to those without heavy elements. In this paper, we propose a mechanism of the
exchange-induced orbital-spin coupling by extending the k · p theory. As an example, we consider an n-type
ferromagnetic semiconductor (nFMS) of Td point group symmetry with the p-d exchange interaction between
an electron in the valence band and the spin of a magnetic ion and evaluate the spin splitting in the conduction
band of �6 irreducible representation from the eight-band k · p Hamiltonian. We find that the lowest-order spin
splitting in bulk is of the second order of momentum, which results in a nonzero splitting at kx = ky = 0 in a
quantum well with a nonzero quantized momentum kz. An estimation shows that the p-d exchange interaction
is the dominant origin of the conduction-band spin splitting in InFeAs nFMS. We also calculate the intrinsic
anomalous Hall conductivity of bulk InFeAs generated by the p-d exchange, which provides both the coupling
of orbital motion to spin and that of spin to nFMS magnetization. We find that the p-d exchange-induced Hall
conductivity exhibits an accelerated increase with Fe density, in contrast to that produced by the s-d exchange
and the Dresselhaus SOI. This finding suggests that the extended k · p mechanism of orbital-spin coupling is
expected to help find remarkable phenomena and useful applications in a wide variety of materials and structures.

DOI: 10.1103/PhysRevB.105.235203

I. INTRODUCTION

Spin splitting, which depends on wave vector k, of energy
bands is induced by the relativistic spin-orbit interaction (SOI)
in the absence of space inversion symmetry [1–3]. Spin split-
ting and the corresponding spin orientation are expressed by
the k-dependent effective magnetic field (EMF) B(SOI)

eff . This
SOI-induced EMF has been utilized in spintronics [4–8], for
example, to electrically generate the spin current [9], spin
polarization [10], and spin-orbit torque [7,8,11]. Extensively
studied SOI-induced EMFs are those given by the Dresselhaus
SOI [12] and the Rashba SOI [13–15] due to bulk and struc-
tural inversion asymmetries, respectively. One of theoretical
methods to evaluate SOI-induced EMFs is the k · p method
[16–19]. This method can provide an analytical perturbative
expression of the EMF in terms of band parameters such as
bandgaps when the considered spin-split band is well apart
from other bands in energy. Such an analytical formula for
the EMF and that for the impurity-induced SOI [17–21] will
be useful in creating a guideline to experimentally control
the EMF [22,23] and in designing spin-related phenomena,
such as the extrinsic spin Hall effect in double quantum wells
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(QWs) [24], spin relaxation in double [25,26] and triple [27]
QWs, and the persistent spin helix [28,29].

Recently, authors of a theoretical study in an organic an-
tiferromagnet [30] have discovered the k-dependent EMF
B(exch)

eff produced by the exchange interaction instead of the
SOI. This exchange-induced EMF has the possibility of con-
siderably extending the spintronic application to materials
consisting of light elements. However, the present theory [30],
based on a four-orbital Hubbard model, could not obtain the
analytical expression of B(exch)

eff in terms of band parame-
ters, which helps to make a guideline to control spintronic
properties.

Motivated by the exchange-induced k-dependent EMF pre-
dicted in the organic antiferromagnet [30], in this paper,
we generalize the k · p approach to describe B(exch)

eff as well
as B(SOI)

eff in terms of band parameters. The generalized k ·
p approach derives the EMF acting on an electron in the
conduction band as the combined effect of k · p interband
transitions and any spin-dependent interaction in the valence
band (Fig. 1). The EMF in this approach is created by three
processes: (1) the electron in the conduction band makes a
transition to the valence band by the k · p interband term, (2)
the electron spin rotates by the spin-dependent interaction in
the valence band such as the exchange interaction and the
atomic SOI, and (3) the electron returns to the conduction
band by the k · p term. The EMF in this mechanism, B(exch)

eff ,

2469-9950/2022/105(23)/235203(13) 235203-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7802-6054
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.235203&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1103/PhysRevB.105.235203


KENJI HAYASHIDA AND HIROSHI AKERA PHYSICAL REVIEW B 105, 235203 (2022)

FIG. 1. Mechanism to produce an effective magnetic field (EMF)
Beff through (1) and (3) k · p interband transitions [16] with (2)
a spin-dependent interaction in a two-band model (conduction and
valence bands) for simplicity. The interband transitions (1) and (3)
depend on the wave vector k, and the spin-dependent interaction in
the valence band (2) rotates the spin. The spin rotation of an electron
in the conduction band, as a consequence of processes (1)–(3), is
expressed by a k-dependent EMF Beff (k) acting on the electron in
the conduction band and leads to the spin splitting.

B(SOI)
eff , or others, has a k dependence owing to the k · p in-

terband transition as an indispensable process. It is expected
that the extended mechanism of the k-dependent EMF (Fig. 1)
should open the possibility of finding remarkable phenomena
and useful applications in a wide variety of materials and
structures.

To demonstrate a case where |B(exch)
eff | � |B(SOI)

eff |, we apply
our extended k · p approach to evaluate B(exch)

eff and B(SOI)
eff in an

n-type ferromagnetic semiconductor (nFMS) of zinc-blende
structure with Td point group symmetry [31–38]. In an FMS
the exchange interaction acts between the localized spin of
doped magnetic ions and the spin of an electron in energy
bands of the semiconductor and produces an indirect ferro-
magnetic interaction between localized spins, which has been
regarded as the origin of the ferromagnetic order in an FMS.
We consider the exchange interaction between the localized
spin (d orbital) and the electron in the valence band (p orbital)
of a semiconductor (p-d exchange interaction) and the atomic
SOI in the valence band, as a spin-dependent interaction in
process (2) of Fig. 1.

We evaluate the EMF in an nFMS produced by the p-d
exchange interaction B(p-d )

eff and that generated by the atomic
SOI in the valence band B(SOI)

eff from the spin splitting and
the spin orientation in the conduction band calculated by the
diagonalization of the eight-band k · p Hamiltonian in both a
bulk nFMS and a QW structure with an nFMS in the well
layer. In addition to this numerical calculation, we also derive
the effective Hamiltonian for an electron in the conduction
band by treating the k · p interband matrix element in the
k · p Hamiltonian as a perturbation [17,19] to obtain analytical
approximate formulas of B(p-d )

eff and B(SOI)
eff . We compare these

k · p-induced EMFs obtained numerically and analytically
with the EMF B(s-d )

eff produced by the s-d exchange interaction
between the electron in the conduction band (s orbital) and the
localized spin. Elsewhere, B(s-d )

eff , which does not depend on k,
has been used to explain the observed conduction-band spin

splitting and the observed Curie temperature of a bulk nFMS
[31,37,38].

Our numerical estimation in an InFeAs nFMS shows that
B(p-d )

eff is comparable in magnitude with B(s-d )
eff in the bulk and

is much larger than the Rashba B(SOI)
eff in a QW. The Rashba

EMF is one of the origins of electrically generated spin torque
on the localized spin. This estimation suggests that (a) the p-d
exchange interaction may determine the conduction-band spin
splitting and the Curie temperature in nFMSs of InFeAs and
others, and (b) B(p-d )

eff can be a promising source of spin torque
on the localized spin.

The EMF B(p-d )
eff originating from the p-d exchange inter-

action in an nFMS, through its k dependence, couples the
orbital motion to the spin of an electron in the conduction
band. The spin in turn is coupled to the magnetization by the
same B(p-d )

eff . Therefore, the p-d exchange interaction provides
two couplings which are indispensable for the anomalous Hall
effect. In this paper, we calculate the intrinsic anomalous Hall
conductivity in the bulk InFeAs produced by the p-d exchange
interaction. We find that it exhibits a qualitatively different
dependence on the Fe dopant concentration compared with the
intrinsic anomalous Hall conductivity produced by the Dres-
selhaus SOI and the coupling to the magnetization through the
s-d exchange interaction.

The structure of this paper is as follows. In Sec. II, we per-
form the symmetry analysis to derive the form of the effective
Hamiltonian in the bulk nFMS of Td point group symmetry
for the conduction band of �6 irreducible representation. Sec-
tion III describes the eight-band k · p Hamiltonian of an nFMS
with the zinc-blende structure based on the Zener model of
the s-d and p-d exchange interactions. In Sec. IV, we derive
the effective Hamiltonian in the conduction band of the bulk
and QW systems to obtain analytically approximate formulas
of B(p-d )

eff and B(SOI)
eff . Section V presents the spin splitting

and the spin orientation in the bulk and QW of In1−xFexAs
at x = 3.8%, which are obtained by numerically calculating
eigenvalues and eigenvectors of the k · p Hamiltonian. Here,
the analytical B(p-d )

eff of the effective Hamiltonian derived in
Sec. IV is employed to explain main features of the spin
splitting and the spin orientation numerically presented in this
section. In Sec. VI, we numerically calculate the intrinsic
anomalous Hall conductivity in the bulk induced by the p-d
exchange interaction and the k · p process and demonstrate a
feature distinctly different from that induced by the s-d ex-
change interaction and the Dresselhaus SOI. Finally, Sec. VII
presents conclusions.

II. SYMMETRY ANALYSIS OF THE CONDUCTION BAND

First, we derive the form of the effective Hamiltonian for
the conduction band in the nFMS of the zinc-blende struc-
ture based on the point group of the zinc-blende structure
Td , the irreducible representation of the conduction band �6,
and the magnetization introduced as a perturbation. Here, we
observe the coupling of the spin σ̂, the wave vector k, and
the magnetization M as symmetry-allowed terms, which we
will find as p-d exchange-induced orbital-spin coupling by a
perturbation calculation in Sec. IV A. To obtain symmetry-
adapted terms of the Hamiltonian, we utilize, for example, the
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theory of invariants [1,39–41] and retain terms invariant at the
time reversal in which σ̂, k, and M reverse the direction. Here,
we only consider terms up to the second order of k and the first
order of M, while the effective Hamiltonian obtained later in
Sec. IV A is given up to the second order of k as a nonlinear
function of |M|.

The derived form of the effective Hamiltonian for the con-
duction band is

H eff
c = (a1,1 + a1,2k2)1̂σ

+ (a4,1 + a4,2k2)
∑

i=x,y,z

Miσ̂i + a4,3

∑
i=x,y,z

k2
i Miσ̂i

+ a4,4[kx(kyMy + kzMz )σ̂x + c.p.], (1)

where ai, j (following the notation of Refs. [1,39]) is a
material-dependent parameter which we can determine by the
perturbation calculation in Sec. IV A, 1̂σ is a 2 × 2 identity
matrix in spin space, and c.p. means the cyclic permutation of
the index. The a1,1 term represents a constant energy shift, and
the a1,2 term corresponds to the kinetic energy. The a4,1 term
is the coupling of the carrier spin σ̂ and the magnetization
M and corresponds to the s-d exchange interaction in the
nFMS. The other terms express the coupling of σ̂, M, and
the wave vector k. These k-σ̂-M terms appear through the
k · p mechanism (Fig. 1) in the nFMS in which the coupling
between σ̂ and M is provided by the p-d exchange interaction
in the valence band, and the k dependence of the coupling
is introduced by the k · p transition between the conduction
and valence bands. The Dresselhaus SOI and the band non-
parabolicity appear when we consider terms of higher order
in k [1,39]. For later comparison of Eq. (1) with Eq. (14) by
the perturbation calculation in which the magnetization is in
the +z direction (Mz = |M| = M), we also present a simpler
expression in this case:

H eff
c = (a1,1 + a1,2k2)1̂σ

+ (
a4,1 + a4,2k2 + a4,3k2

z

)
Mσ̂z

+ a4,4kzM(kxσ̂x + kyσ̂y). (2)

III. EIGHT-BAND k · p HAMILTONIAN

The nFMS we consider has the zinc-blende structure,
which is shown in Fig. 2(a) for well-studied InFeAs and
InFeSb with Fe3+ ions substituted for In ions [31]. The
exchange interaction between Fe3+ spins and conduction-
electron spins induces the ferromagnetic phase. Figure 2(b)
schematically shows the energy-band structure which exhibits
the spin splitting induced by the exchange interaction in both
of the conduction and valence bands.

We employ the eight-band Kane model in the k · p ap-
proach [16,19] to describe the electronic structure of the
nFMS. The k · p approach enables us to focus on the conduc-
tion band structure, while first-principles calculations [38,42–
46] also present bands originating from Fe3+ ions near the
conduction band bottom. Table I shows basis vectors to be
used for representing the eight-band k · p Hamiltonian in the
matrix form. The s-like orbital |S〉 describes the zone-center
state in the conduction band of the host semiconductor, while
the p-like orbitals |X 〉 , |Y 〉 , and |Z〉 represent those in the

FIG. 2. (a) Crystal structure of n-type ferromagnetic semi-
conductors (nFMSs) InFeAs and InFeSb. Fe3+ spins randomly
distributed at In sites form a ferromagnetic phase through s-d and
p-d exchange interactions. (b) Schematic energy bands of an nFMS,
which exhibit the spin splitting due to s-d and p-d exchange interac-
tions in the conduction band (CB) as well as in the heavy hole (HH),
light hole (LH), and split-off (SO) bands (the spin splitting in the SO
band is not shown for brevity).

valence band. Basis vectors of the spin |↑〉 and |↓〉 are eigen-
vectors of the z component of the spin. Here, x, y, and z axes
are taken in [100], [010], and [001] directions, respectively, of
the host semiconductor.

The total k · p Hamiltonian is

H = H0 + Hex. (3)

Here, H0 is the k · p Hamiltonian of the host semiconductor
[16,19]:

H0 =
(

H0c H0cv

H†
0cv H0v

)
,

H0c = diag
(
E0

k , E0
k

)
,

H0v = −diag(E ′
k, E ′

k, E ′
k, E ′

k, Ẽk, Ẽk ),

E0
k = h̄2k2

2m0
, E ′

k = E0
k + Eg, Ẽk = E ′

k + �g,

H0cv = (√
3PT · k − 1√

3
Pσ · k

)
. (4)

Here, diag[x1, x2, · · · ] represents the diagonal matrix with
diagonal elements x1, x2, · · · ; h̄ is the Planck constant divided
by 2π ; m0 is the electron mass in vacuum; Eg and �g are the

TABLE I. Basis vectors for the representation of the k · p Hamil-
tonian [Eqs. (4) and (5)].

Band Vector

CB |S, ↑〉
CB |S, ↓〉
HH − 1√

2
(|X,↑〉 + i |Y, ↑〉)

LH − 1√
6
(|X,↓〉 + i |Y, ↓〉) +

√
2
3 |Z,↑〉

LH 1√
6
(|X,↑〉 − i |Y,↑〉) +

√
2
3 |Z, ↓〉

HH 1√
2
(|X,↓〉 − i |Y,↓〉)

SO − 1√
3
(|X,↓〉 + i |Y,↓〉) − 1√

3
|Z,↑〉

SO − 1√
3
(|X,↑〉 − i |Y, ↑〉) + 1√

3
|Z, ↓〉
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bandgap and the split-off gap at the zone center [Fig. 2(b)],
respectively; T = (Tx, Ty, Tz ) are matrices appearing in the
eight-band Kane model [1] (see Appendix B for their explicit
forms); σ = (σx, σy, σz ) are 2 × 2 Pauli matrices; and P is the
Kane matrix element. Here, we have replaced E0

k in diagonal
elements of H0v of the original eight-band Kane model with
−E0

k since the original E0
k in H0v leads to the incorrect convex-

ity of the valence bands [47]. This modification in diagonal
elements of H0v can be thought to consider, in the simplest
way, the renormalization of band parameters due to remote
bands [1]. We neglect the change in the lattice constant due to
Fe doping because no significant strains have been observed
in experiments [31–38].

Here, Hex represents the s-d and p-d exchange interactions
in the Zener model. The Zener model of the exchange interac-
tion has been employed in many theories [5,48–52] to describe
the ferromagnetic phase (see Appendix A). In deriving the
exchange-induced k-dependent EMF in this paper, we also
employ the Zener model to take advantage of its simplicity.
Then Hex is given by

Hex =
(

Hs-d Ocv

O†
cv Hp-d

)
, (5)

Hs-d = 3As-d σ̂
(s) · e,

Hp-d = 3Bp-d σ̂
(p) · e, (6)

σ̂
(s)
i = σi,

σ̂
(p)
i = 1

3

(
2Ji −6T †

i−6Ti −σi

)
,

i = x, y, z,

As-d = Js-d M

6gμB
,

Bp-d = Jp-d M

6gμB
,

M = |M| = xN0gμBS. (7)

Here, Ocv is the 2 × 6 matrix whose elements are all zero:
σ̂ (s) and σ̂ (p) are the spin matrices for conduction and valence
bands [heavy hole (HH), light hole (LH), and spin off (SO)],
respectively: Jx, Jy, and Jz are matrices of the Kane model [1]
(see Appendix B for their explicit forms); and e is a unit vector
in the direction of the magnetization e = M/|M|. In As-d and
Bp-d , M represents the magnitude of magnetization. Here, g
and μB are the g factor and Bohr magneton; x is the fraction
of Fe3+ in the cation site; N0 is the number of the cation site
per unit volume; and S is the length of the localized spin.
Note that N0Js-d and N0Jp-d have dimensions of energy and
represent coefficients of s-d and p-d exchange interactions,
respectively.

Here, we used the assumption of the saturated mag-
netization, which is valid at temperatures lower than the
ferromagnetic transition temperature.

A. Application to the QW

In applying the k · p Hamiltonian to a QW structure, we
consider the quantum confinement in the growth direction

FIG. 3. Quantum well (QW) structure. For details of parameters,
see Sec. V A and Table II.

[17,19]. We choose the growth direction (z axis) along [001]
of the host semiconductor and replace the wave number kz

in the k · p Hamiltonian [Eq. (4)] with the operator k̂z =
−i∂/∂z.

Figure 3 shows our QW structure with band offsets be-
tween different layers δ6, δ8, and δ7. In addition to the potential
step due to the band offsets, we consider the potential pro-
duced by the gate Vgate(z), that due to donors Vdonor (z), and
the Hartree potential VHartree(z) as well as the z dependence
of As-d (z) and Bp-d (z), which corresponds to the uniform
distribution of Fe3+ ions within the well layer. These can be
incorporated into the k · p Hamiltonian, H0 in Eq. (4) and Hex

in Eq. (5), by the following replacement:

As-d → As-d (z),

Bp-d → Bp-d (z),

E0
k → E0

k + VH (z) + h6(z),

−E ′
k → −E ′

k + VH (z) − h8(z),

−Ẽk → −Ẽk + VH (z) − h7(z), (8)

in which

VH (z) = Vgate(z) + Vdonor (z) + VHartree(z),

hi(z) = δihw(z), i = 6, 7, 8,

hw(z) = 0 (inside well), 1 (outside well).

IV. EFFECTIVE HAMILTONIAN IN THE
CONDUCTION BAND

We derive the effective Hamiltonian for an electron in the
conduction band of both the bulk and QW systems, by using
the folding-down method [17,19]. Here, we choose the mag-
netization direction e to be in the +z direction for simplicity
[53].

A. Effective Hamiltonian in the bulk

The reduced Hamiltonian for the conduction-band compo-
nent of the eigenvector is given by

H eff
c = Hc + H0cv (E − Hv )−1H†

0cv,

Hc = H0c + Hs-d ,

Hv = H0v + Hp-d , (9)
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in which E is the eigenenergy of the k · p Hamiltonian. To ob-
tain the effective Hamiltonian without E [17,19], we expand
H eff

c in powers of χ±3
8 , χ±

8 , and χ±
7 defined by

χ±3
8 = E + E0

k

Eg ± 3Bp-d
,

χ±
8 = E + E0

k

Eg ± Bp-d
,

χ±
7 = E + E0

k

Eg + �g ± Bp-d
,

and retain the lowest order by assuming

χ±3
8 , χ±

8 , χ±
7 	 1. (10)

The conditions [Eq. (10)] are satisfied when Eg − 3|Bp-d | �
|E + E0

k |. InFeAs at x = 3.8% has Eg = 0.418 eV,�g =
0.39 eV, and 3|Bp-d | = 0.11 eV [42]. In the vicinity of x =
14%, however, Eg − 3|Bp-d | vanishes, and one of the condi-
tions [Eq. (10)] is no longer satisfied. When we investigate
InFeAs at 0 < x < 10% in Sec. VI, we will employ the origi-
nal k · p Hamiltonian [Eq. (3)].

The second term of H eff
c in Eq. (9) is expanded as

[H0cv (E − Hv )−1H†
0cv](1,1) = P2

3
�+

1 k2
‖ + P2

3
�̃+

1 k2
z ,

[H0cv (E − Hv )−1H†
0cv](1,2) = −P2

3
�̃2kz(kxσ̂x + kyσ̂y)(1,2),

with k2
‖ = k2

x + k2
y . Here,

�+
1 = 3

2

1

Eg − 3Bp-d

[
1 − χ−3

8 + (
χ−3

8

)2 − · · · ]

+ 1

2

1

(Eg + Bp-d )d+

(
− Eg + �g + 3Bp-d

Eg + �g − Bp-d
− χ−

7

)

+ 1

(Eg + �g − Bp-d )d+

(
− Eg + 3Bp-d

Eg + Bp-d
− χ+

8

)
,

(11)

�̃+
1 = 2

(Eg − Bp-d )d−

(
− Eg + �g + 3Bp-d

Eg + �g + Bp-d
− χ+

7

)

+ 1

(Eg + �g + Bp-d )d−

(
− Eg + 3Bp-d

Eg − Bp-d
− χ−

8

)
,

(12)

�̃2 = −�g − (Eg + �g + Bp-d )χ+
7 + (Eg − Bp-d )χ−

8

(Eg − Bp-d )(Eg + �g + Bp-d )d−

+ �g − (Eg + �g − Bp-d )χ−
7 + (Eg + Bp-d )χ+

8

(Eg + Bp-d )(Eg + �g − Bp-d )d+ ,

d± = (2
√

2Bp-d )2

(Eg ± Bp-d )(Eg + �g ∓ Bp-d )

− (1 + χ±
8 + χ∓

7 + χ±
8 χ∓

7 ). (13)

We can obtain the [H0cv (E − Hv )−1H†
0cv](2,2) component

by flipping the sign in front of Bp-d in the [H0cv (E −
Hv )−1H†

0cv](1,1) component. Here, we assume the conditions
[Eq. (10)] and retain the zeroth order of χ±3

8 , χ±
8 , and χ±

7 [19].

Then we obtain the effective Hamiltonian given by

H eff
c = εk↑ + εk↓

2
1̂σ + 3As-d σ̂z + B(p-d )

eff · σ̂. (14)

Here, B(p−d )
eff is the EMF due to the p-d exchange interaction

given by

[
B(p-d )

eff

]
μ

= −1

3
P2�̃2kzkμ,

[
B(p-d )

eff

]
z = εk↑ − εk↓

2
,

μ = x, y, (15)

and εkσ (σ =↑,↓) is the spin-dependent kinetic energy ex-
pressed by

εkσ = h̄2k2
‖

2m∗
‖σ

+ h̄2k2
z

2m∗
zσ

. (16)

Then the eigenenergies E± are obtained to be

E± = Ek↑ + Ek↓
2

± �E , (17)

Ekσ = εkσ + 3As-dσ,

�E =
√(

Ek↑ − Ek↓
2

)2

+
(

P2

3
�̃2

)2

k2
‖k2

z . (18)

Spin-dependent effective masses and �̃2 are given by

m0

m∗
‖↑

= 1 + r−
2

+ R+ + EPg+
6

,

m0

m∗
z↑

= 1 + R− + 2EPg−
3

,

m0

m∗
‖↓

= 1 + r+
2

+ R− + EPg−
6

,

m0

m∗
z↓

= 1 + R+ + 2EPg+
3

, (19)

�̃2 = g− − g+, (20)

with

EP = 2m0P2

h̄2 ,

r± = EP

Eg ± 3Bp-d
,

R± = EP(3Eg ± 9Bp-d )

δ±
,

g± = �g

δ±
,

δ± = (Eg ± Bp-d )(Eg + �g ∓ Bp-d ) − 8B2
p-d . (21)

These expressions show that �̃2 and εkσ depend nonlinearly on
the magnetization M through Bp-d ∝ M [Eq. (7)]. Therefore,
B(p-d )

eff is a nonlinear function of M.
The correspondence between coefficients of the symmetry-

adapted terms in Eq. (2) and those of the effective Hamiltonian
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in Eq. (14) is

a1,1 = 0,

a1,2k2 = εk↑ + εk↓
2

,

a4,1M = 3As-d ,

a4,2M = h̄2

4

(
1

m∗
‖↑

− 1

m∗
‖↓

)
,

a4,3M = h̄2

4

(
1

m∗
z↑

− 1

m∗
z↓

)
− a4,2M,

a4,4M = −1

3
P2�̃2. (22)

Here, the right-hand side of each equation is to be considered
up to the first order of M since the symmetry-adapted terms in
Eq. (2) are derived up to this order.

The EMF B(p-d )
eff obtained in Eq. (15) is of the second order

of wave vector k. The x and y components are proportional
to kzkx and kzky, respectively, and the z component is ex-
pressed by the difference in kinetic energy between spin-up
and spin-down states. The k-quadratic B(p-d )

eff is in remarkable
contrast with the k-linear and k-cubic EMFs of the Rashba
and Dresselhaus SOIs, respectively. The SOIs in nonmag-
netic semiconductors must be of odd order of k due to the
time-reversal symmetry. On the other hand, B(p-d )

eff must be of
even order of k because B(p-d )

eff reverses the direction with the
magnetization reversal.

The z component of B(p-d )
eff , which appears in the presence

of Bp-d giving the spin dependence of effective masses m∗
‖σ

and m∗
zσ , originates from the magnetization along the z direc-

tion. The x and y components, which are proportional to �̃2,
are induced by �g, the spin-orbit splitting in the valence band,
in addition to Bp-d . The direction of these components in the
xy plane perpendicular to the magnetization is that parallel to
(kx, ky, 0) in contrast to the Rashba EMF, which is perpendic-
ular to (kx, ky, 0). Figures 4(a) and 4(b) schematically depict

FIG. 4. Effective magnetic field (schematic) due to the p-d ex-
change interaction B(p-d )

eff given in Eq. (15). (a) x and (b) z components
in the kxkz plane with O the k = 0 point in the case of Bp-d < 0 (see
Table II), which gives �̃2 < 0 and 1/m∗

‖↑ − 1/m∗
‖↓ � −2(1/m∗

z↑ −
1/m∗

z↓) < 0. The latter leads to εk↑ < εk↓ for k in the kxky plane and
εk↑ > εk↓ for k along the kz axis.

x and z components, respectively, of B(p-d )
eff in the kxkz plane

when �̃2 < 0 and 1/m∗
‖↑ − 1/m∗

‖↓ � −2(1/m∗
z↑ − 1/m∗

z↓) <

0, which are both satisfied for Bp-d < 0. The y component is
zero since ky = 0.

B. Effective Hamiltonian in the QW

By expanding H eff
c [Eq. (9)] adjusted to the QW [Eq. (8)]

in powers of

χ±3
8 = E − [ − h̄2

2m0

(
k2
‖ + k̂2

z

) + VH (z) − h8(z)
]

Eg ± 3Bp-d (z)
,

χ±
8 = E − [ − h̄2

2m0

(
k2
‖ + k̂2

z

) + VH (z) − h8(z)
]

Eg ± Bp-d (z)
,

χ±
7 = E − [ − h̄2

2m0

(
k2
‖ + k̂2

z

) + VH (z) − h7(z)
]

Eg + �g ± Bp-d (z)
,

we obtain for the second term of H eff
c in Eq. (9):

[H0cv (E − Hv )−1H†
0cv](1,1) = P2

3
�+

1 (z)k2
‖ + P2

3
k̂z�̃

+
1 (z)k̂z,

[H0cv (E − Hv )−1H†
0cv](1,2) = P2

3

d�2(z)

dz
(kyσ̂x − kxσ̂y)(1,2) − P2

3
�̃2(z)k̂z(kxσ̂x + kyσ̂y)(1,2).

�2(z) = −�g − (Eg + �g + Bp-d )χ+
7 + (Eg − Bp-d )χ−

8

(Eg − Bp-d )(Eg + �g + Bp-d )d− .

Here, the z dependence in the QW of the material param-
eters Eg,�g, and Bp-d are considered in �+

1 [Eq. (11)], �̃+
1

[Eq. (12)], �2, and �̃2 [Eq. (13)].
Then in the lowest order of χ±3

8 , χ±
8 , and χ±

7 , we obtain

the operator for the EMF B̂
QW
eff given by

(
B̂

QW
eff

)
x = −P2

3
{Âkx − [B̂ + C(z)]ky}, (23)

(
B̂

QW
eff

)
y

= −P2

3
{Âky + [B̂ + C(z)]kx}, (24)

Â = 1

2
[�̃2(z), k̂z], B̂ = i

2
[�̃2(z), k̂z],

(
B̂

QW
eff

)
z = ε̂↑ − ε̂↓

2
, ε̂σ = h̄2k2

‖
2m∗

‖σ (z)
+ h̄2

2
k̂z

1

m∗
zσ (z)

k̂z.

(25)
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TABLE II. Parameter values used in the calculation in the bulk
InFeAs (Fig. 2) and the QW AlSb/InFeAs/AlSb (Fig. 3) at the Fe3+

fraction of x = 3.8%. Units of energy and length are electronvolts
and nanometers, respectively. The doping densities are ρa = ρb =
1 × 1018 cm−3. The temperature T is 30 K, which is lower than the
Curie temperature of InFeAs [32–38], which is 40 K at x = 5%. The
boundary potentials are chosen to be Va = 0 and Vb = 0.1 eV. The
bias of 0.1 eV gives rise to ∼1 meV Rashba spin splitting.

Eg = 0.418 �g = 0.390 EP = 21.5

6As-d = 0 or 0.02 6Bp-d = −0.22 δ6 = 1.35
Ew = 1.696 �w = 0.676 L = 40
Ld = 18 w = 6 Lw = 20

where {X̂1, X̂2} = X̂1X̂2 + X̂2X̂1 and [X̂1, X̂2] = X̂1X̂2 − X̂2X̂1.
Here, terms with Â, B̂, and ε̂σ are obtained in the zeroth
order of χ±3

8 , χ±
8 , and χ±

7 , while a term with C(z) is derived
in the first order of χ±

7 and χ±
8 [19]. The term with Â gives

the B̂
QW
eff component parallel to (kx, ky, 0) which exists in the

bulk B(p-d )
eff [Eq. (15)]. On the other hand, the term with B̂,

which is proportional to d�̃2(z)/dz, introduces the B̂
QW
eff com-

ponent parallel to (−ky, kx, 0). The term with C(z) also gives
the component in the direction of (−ky, kx, 0) and represents
the Rashba-type SOI, which includes a contribution from the
p-d exchange interaction with dBp-d/dz in addition to that
from the potential with dVH/dz and dhw/dz, as shown in
Appendix C. The z component of B̂

QW
eff is induced by the

spin dependence of the effective mass as in the bulk B(p-d )
eff

[Eq. (15)]. The difference from the bulk is the z dependence
of the effective mass which comes from Bp-d (z).

V. NUMERICAL CALCULATION OF k · p
HAMILTONIAN EIGENSTATES

By performing the numerical diagonalization of the eight-
band k · p Hamiltonian [Eq. (3)], we calculate the spin
splitting and the spin orientation in the conduction band
for both the bulk and the QW. We explain features of the
calculated numerical results by employing the analytical ex-
pressions of the bulk B(p-d )

eff and the QW B̂
QW
eff derived in

the previous section. We present calculated results in the +z
direction of magnetization for the purpose of comparing with
analytical B(p-d )

eff and B̂
QW
eff for this magnetization direction.

A. Procedures for numerical calculation

To obtain the spin orientation in each eigenstate of the k · p
Hamiltonian, we use the spin matrix �̂i in the basis set of
Table I, which is given by

�̂i =
[
σ̂

(s)
i Ocv

O†
cv σ̂

(p)
i

]
, i = x, y, z. (26)

In the following calculated results, we denote this expectation
value of the spin by 〈�̂i〉 to distinguish it from the expectation
value calculated with respect to the eigenstate of the effective
Hamiltonian [Eq. (14)], which is denoted as 〈σ̂i〉eff .

We use values of bulk band parameters shown in Table II,
the fundamental energy gap Eg, the spin-orbit splitting �g,

FIG. 5. (a) Energy bands, (b) the spin-split conduction bands,
and (c) the spin splitting of the conduction bands in InFeAs at
x = 3.8% (solid lines) calculated in the k · p Hamiltonian [Eq. (3)].
k is in the [101] direction, and a is the lattice constant of InAs.
Parameter values are given in Table II. The s-d exchange interaction
is not considered (As-d = 0). Dashed lines in (b) and (c) represent
values obtained using H eff

c [Eq. (14)].

and EP [Eq. (21)] of the host semiconductor InAs [54]. For s-d
and p-d exchange interactions As-d and Bp-d , we use the values
of 6As-d = 0.02 eV and 6Bp- d = −0.22 eV, which have been
obtained in the first-principles calculation at the Fe3+ fraction
of x = 3.8% [42], and for other values of x, we assume that
As-d and Bp-d are proportional to x [Eq. (7)]. Although experi-
mental values of As-d and Bp-d are missing in InFeAs, the sign
and the magnitude of As-d and Bp-d are such that As-d > 0,
Bp-d < 0, and |As-d | 	 |Bp-d | have been confirmed experi-
mentally and theoretically in GaMnAs [50]. Since |As-d | 	
|Bp-d |, we expect that the p-d exchange interaction will play a
dominant role in spin physics and spintronics in InFeAs as
well as GaMnAs. We find in the following that this is the
case in the EMF as well as in the intrinsic anomalous Hall
effect driven by the EMF, even for electrons in the conduction
band with s symmetry at k = 0, where the EMF by the p-d
exchange interaction is induced through an additional process
of the k · p interband transition.

In calculating eigenstates in the QW, we use a structure
depicted in Fig. 3, which consists of the InFeAs well layer
with width Lw and AlSb wall layers (the width of the whole
QW structure is 2L). Table II lists values of the band offset
of the conduction band δ6 [55], boundary potentials Va and
Vb, which determine the gate bias, and the doping profile (the
density, ρa and ρb, the width w, and the position ±Ld ). The
electron sheet density is determined by the charge neutrality
to be (ρa + ρb)w. The electron distribution and the Hartree
potential are determined self-consistently [17,19]. We can ne-
glect the strain induced by the lattice mismatch between InAs
and AlSb as in Ref. [56].

In most calculations, we neglect As-d to clarify features of
the spin splitting and the spin orientation brought by Bp-d .
Later in Fig. 7, we present differences introduced by the
presence of As-d .

B. Spin splitting and spin orientation in the bulk

In Fig. 5(a), we plot the energy of the conduction and
valence bands in the vicinity of the zone center in the [101]
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FIG. 6. Spin orientation indicated by expectation values of spin
components 〈�̂x〉, 〈�̂y〉, and 〈�̂z〉 in the spin-split conduction bands
(a) CB1 and (b) CB2 in Fig. 5(b), which are calculated using the k · p
Hamiltonian. Also shown are 〈σ̂x〉eff , 〈σ̂y〉eff , and 〈σ̂z〉eff in (a′) CB1
and (b′) CB2 obtained from the effective Hamiltonian [Eq. (14)].
More explanations are given in Fig. 5.

direction, which is calculated in the k · p Hamiltonian
[Eq. (3)]. A close-up of the spin-split conduction bands is
presented in Fig. 5(b), and the spin splitting as a function
of the wave number k is shown in Fig. 5(c). Also plotted in
Figs. 5(b) and 5(c) are the conduction-band energy and spin
splitting (dashed lines) calculated in the effective Hamiltonian
[Eq. (14)]. The spin splitting [Fig. 5(c)], which originates
from the p-d exchange interaction in the present calculation
at As-d = 0, shows a quadratic increase with the wave number
k in the vicinity of k = 0 in the k · p calculation (solid line), in
agreement with the k-quadratic spin splitting obtained analyt-
ically in Eq. (18) and plotted as a dashed line, while the rate
of increase declines at a larger k in the k · p calculation. The
value of the spin splitting reaches several tens of millielectron-
volts at k/(π/a) = 0.1, with a the lattice constant of InAs.
The Fermi wave number of kF /(π/a) = 0.1 corresponds to
the electron density of 1019 cm−3, which is a typical value in
experiments.

The conduction-band energy and spin splitting in the k · p
calculation (solid line) deviates from those calculated in the
effective Hamiltonian (dashed line). This is because we have
only taken terms in the zeroth order of χ±3

8 , χ±
8 , and χ±

7 in
the effective Hamiltonian. Although retaining the higher-order
terms will improve the quantitative accuracy, they bring un-
solved eigenenergy E into the effective Hamiltonian. The
simpler lowest-order effective Hamiltonian is useful enough
to understand qualitative aspects of results in the k · p calcu-
lation. In Figs. 6(a) and 6(b), we show the spin orientation by
plotting 〈�̂i〉 , i = x, y, z, the expectation value of the 8 × 8
spin matrix �̂i [Eq. (26)] with respect to each eigenstate in
the spin-split conduction bands in Fig. 5(b). For comparison,
Figs. 6(a′) and 6(b′) plot the expectation value of the Pauli
spin matrix σ̂i by the eigenstate of the effective Hamiltonian
[Eq. (14)]. In each spin subband, 〈�̂i〉 and 〈σ̂i〉 have the
same sign in each component, and the spin is nearly parallel
or antiparallel to the magnetization. This can be understood
by the analytical EMF B(p-d )

eff given in Eq. (15): the compo-
nent of B(p-d )

eff parallel to the magnetization (along z), which
only needs Bp-d , is larger than the perpendicular components,
which require �g in addition to Bp-d . In fact, the perpendicular
component 〈�̂x〉 vanishes when �g = 0. The vanishing at

FIG. 7. (a) Spin splitting of the conduction band, and the spin
orientation in (b) the lower spin state CB1 and (c) the upper spin
state CB2 when 6As-d = 0.02 (s, p-d , blue line) compared with those
when As-d = 0 (p-d , red line). Other parameter values and k direction
are identical to Fig. 5.

ky = 0 of 〈�̂y〉 shown in Fig. 6 is also consistent with the
analytical expression of the y component of B(p-d )

eff in Eq. (15),
which is proportional to ky. The length of 〈�̂〉 is slightly
smaller from unity since the SOI in the valence band (�g)
flips the electron spin to reduce the average value [57].

Finally, we present the spin splitting and the spin orienta-
tion in the presence of the s-d exchange interaction As-d to
show that their essential features are the same as those in
its absence except near k = 0. Figure 7(a) presents the spin
splitting of the conduction band, and Figs. 7(b) and 7(c) plot
the spin orientation at 6As-d = 0.02 for the k · p Hamiltonian.
In the presence of As-d , the spin splitting almost vanishes
at k/(π/a) � 0.03, and the z component of the spin 〈�̂z〉
changes the sign there. This is explained by the direction
reversal of the z component of the total EMF which occurs
because the EMF, due to the positive As-d , is opposite in
direction to B(p-d )

eff with the negative Bp-d (Table II), and the
magnitude of k-quadratic B(p-d )

eff increases with k. When 〈�̂z〉
changes the sign, the EMF is in the x direction, and | 〈�̂x〉 |
approaches the unity. Despite such drastic changes brought
by the s-d exchange interaction in the vicinity of k = 0, the
spin splitting and the spin orientation are mostly determined
by the p-d exchange interaction at k/(π/a) = 0.1.

C. Spin splitting and spin orientation in the QW

Figure 8(a) presents the lowest spin-split subband of the
conduction band in the vicinity of kx = ky = 0 along the kx

direction for both Bp-d = 0 and Bp-d �= 0 when As-d = 0. In
the case of Bp-d = 0, the Rashba SOI gives a spin splitting
which is much smaller than the Bp-d -induced splitting and not
visible in Fig. 8(a). The Bp-d -induced spin splitting is plotted
in Fig. 8(b), which shows a quadratic increase with k as in
the bulk [Fig. 5(c)]. In contrast to the bulk, the QW spin
splitting is nonzero, even at kx = ky = 0. This zone-center
spin splitting originates from the quantum confinement giving
nonzero 〈k̂2

z 〉, which leads to a spin-dependent kinetic energy
at kx = ky = 0 when the effective mass is spin-dependent due
to the p-d exchange interaction.
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FIG. 8. (a) Lowest spin-split subband in the conduction band of
the quantum well (QW; Fig. 3) when 6Bp-d = −0.22 eV and As-d = 0
(blue solid line) with the spin splitting in (b) and the spin expectation
values 〈�̂y〉 and 〈�̂z〉 of the lower spin state in (c) (〈�̂x〉 is of the
order of 10−11 and is not plotted). The wave vector (kx, ky ) is in the
vicinity of kx = ky = 0 along the kx direction. For parameter values,
see Table II. In (a), we also present the lowest subband when Bp-d =
0 and As-d = 0 (red dashed line), which also has the spin splitting,
although it is not visible.

In Fig. 8(c), we present the spin orientation by plotting
〈�̂y〉 and 〈�̂z〉. The spin is oriented nearly in the direction
of the magnetization (the z axis) as in the bulk (Fig. 6). This
may be understood by the origin of the QW EMF B̂

QW
eff in

Eqs. (23)–(25): the component of B̂
QW
eff parallel to the magneti-

zation only needs the presence of Bp-d , while the terms with Â
and B̂ in the perpendicular components require �g in addition
to Bp-d , and the term with C(z) exists only in the presence of
the inversion asymmetry and �g.

VI. INTRINSIC ANOMALOUS HALL EFFECT
IN THE BULK nFMS

As an example of transport properties reflecting the bulk
p-d EMF B(p-d )

eff derived in Eq. (15), we present the calcu-
lated conductivity of the intrinsic anomalous Hall effect in
this section. Here, B(p-d )

eff plays two roles, both of which are
indispensable for the anomalous Hall effect [58]: one is the
coupling of the spin of a conduction electron to the magneti-
zation giving the broken time reversal symmetry, while the
other is the coupling between the spin and the momentum
of the conduction electron. Without B(p-d )

eff proposed in this
paper, we would need the SOI, the Dresselhaus SOI [12] in
the bulk case, in addition to the well-recognized s-d exchange
interaction, to produce the anomalous Hall effect. Therefore,
in this section, we also present the calculated anomalous Hall
conductivity induced by the s-d exchange interaction and the
Dresselhaus SOI to demonstrate a feature of the calculated
B(p-d )

eff -induced anomalous Hall conductivity. For this purpose,
we do not consider the extrinsic contribution to the anomalous
Hall conductivity.

A. Formula for the intrinsic anomalous Hall conductivity

The Hall conductivity of the intrinsic origin is given by [58]

σxy = −e2

h̄

∑
n

∫
d3k

(2π )3
f (Enk)Bz

nk,

Bz
nk = i

∑
m( �=n)

〈n, k| ∂H
∂kx

|m, k〉 〈m, k| ∂H
∂ky

|n, k〉
(Enk − Emk)2

+ c.c., (27)

in which Bz
nk is the z component of the Berry curvature in the

eigenstate |n, k〉 of the Hamiltonian H at momentum h̄k in the
nth band with energy Enk, e is the elementary charge, f (E )
is the Fermi-Dirac distribution function, and c.c. means the
complex conjugate of the preceding term. In calculating the
B(p-d )

eff -induced σxy, we employ the k · p Hamiltonian [Eq. (3)]
for H in Eq. (27) since the effective Hamiltonian H eff

c in
Eq. (14) is no longer applicable at x > 14% in InFeAs.

In calculating σxy induced by the s-d exchange interaction
and the Dresselhaus SOI, we use the following Hamiltonian:

H = h̄2k2

2m∗ + B(D) · σ̂ + 3As-d σ̂z,

B(D)
i = γDki

(
k2

j − k2
k

)
,

(i, j, k) = (x, y, z), (y, z, x), and (z, x, y),

where m∗ is the effective mass of the conduction band ob-
tained by substituting Bp-d = 0 into m∗

‖σ and m∗
zσ in Eq. (19),

and γD is the coefficient of the Dresselhaus SOI, for which we
use the value of γD = 0.0271 eV nm3 [1]. With this Hamilto-
nian, Eq. (27) gives

σ (D)
xy = −e2

h̄

∫
d3k

(2π )3
[ f (E+) − f (E−)]

× −γ 2
D

2(�ED)3

{
2γDkzk

2
x

(
k2

y − k2
z

)(
k2

x + 2k2
y − k2

z

)
+ 2γDkzk

2
y

(
k2

z − k2
x

)(
2k2

x + k2
y − k2

z

)
+ [

γDkz
(
k2

x − k2
y

) + 3As-d
]

× [(
k2

y − k2
z

)(
k2

z − k2
x

) + 4k2
x k2

y

]}
, (28)

E± = h̄2k2

2m∗ ± �ED,

�ED =
√[

B(D)
x

]2 + [
B(D)

y
]2 + [

B(D)
z + 3As-d

]2
. (29)

B. p-d and s-d contributions to the Hall conductivity

Figure 9(a) presents the Hall conductivity σxy at zero tem-
perature for the electron density of 1019 cm−3 (giving the
Fermi energy εF of 0.7 eV in the absence of the spin splitting)
in the following three cases: the nFMS with both Bp-d and
As-d , σ

(p+s)
xy (blue solid line), that with Bp-d only, σ

(p)
xy (black

dashed line), and that with the Dresselhaus SOI and As-d , σ (D)
xy

(red line). In all three cases, the Hall conductivity increases
with x in the small x region (x < 0.5%) because the coupling
of the conduction-electron spin with the magnetization grows
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FIG. 9. (a) Intrinsic anomalous Hall conductivity of the n-type
ferromagnetic semiconductor (nFMS) with both p-d and s-d ex-
change interactions σ (p+s)

xy (blue solid line), that with p-d exchange
interaction only σ (p)

xy (black dashed line), and that with the Dressel-
haus SOI and s-d exchange interaction σ (D)

xy (red line). (b) Energy
bands in the [101] direction of the nFMS with p-d exchange interac-
tion at x = 10%.

with x. In the larger x region, however, as Fig. 9(a) (x > 1%)
shows, σ (D)

xy decreases with x, while σ
(p)
xy and σ

(p+s)
xy continue

to increase with x.
The decrease of σ (D)

xy is due to the increase of the
conduction-band spin splitting �ED with x-linear As-d

[Eq. (29)]. In fact, Eq. (28) shows that σ (D)
xy approaches

the (As-d )−1 dependence when |B(D)| 	 3As-d 	 εF,
considering the As-d dependence of the integrand as well
as the increase with As-d in volume of the k region having
f (E+) − f (E−) ≈ 1.

On the other hand, the accelerated increase of σ
(p)
xy and

σ
(p+s)
xy can be explained by the decrease of energy differences

between conduction and valence bands. Figure 9(b) shows the
energy band structure in the vicinity of k = 0 at x = 10%,
which demonstrates that the bandgap gets narrower at such
larger Fe fractions because of larger spin splittings in valence
bands due to the exchange interaction Bp-d . Such a reduc-
tion of the energy differences leads to the enhancement of
σ

(p)
xy and σ

(p+s)
xy at large x presented in Fig. 9(a), according

to the expression of σxy in Eq. (27). This enhancement of
the Bp-d -induced Hall conductivity is consistent with the ex-
pression Eq. (15) of the p-d EMF B(p-d )

eff , which shows that
the magnitude of B(p-d )

eff , which is created with the interband
transition across the bandgap (Fig. 1), increases as the energy
denominator decreases.

VII. CONCLUSIONS

We have proposed a mechanism of the k-dependent EMF
in the conduction band induced by the exchange interaction in
the valence band, based on a generalization of the k · p theory
for the k-dependent EMF in the conduction band induced by
the SOI in the valence band. To demonstrate the importance
of the exchange-induced EMF, we have considered the nFMS
with the p-d exchange interaction in the valence band and
evaluated the EMF in the conduction band of the bulk and the
QW by numerically diagonalizing the eight-band k · p Hamil-
tonian based on the Zener model of the exchange interaction.

We have also derived the effective Hamiltonian for an electron
in the conduction band and obtained an analytical approxi-
mate EMF which we have used in understanding qualitative
features of the spin splitting and the spin orientation. The
lowest-order approximate EMF in the bulk is of the second
order of the momentum since the exchange-induced EMF
reverses the direction with the simultaneous reversal of the
momentum and the magnetization. Consequently, in the QW
with a nonzero quantized momentum perpendicular to the
QW, the p-d exchange-induced EMF acquires a nonzero value
at kx = ky = 0.

We have found that the conduction-band spin splitting cre-
ated by the p-d exchange interaction in bulk nFMS of InFeAs
reaches several tens of millielectronvolts at the Fermi mo-
mentum corresponding to the electron density of 1019 cm−3,
which exceeds the spin splitting produced by the s-d exchange
interaction. In an nFMS QW, AlSb/InFeAs/AlSb, we have
shown that the p-d exchange-induced spin splitting is much
larger than a typical value of the Rashba spin splitting. This
numerical estimation shows that the p-d exchange interaction
is the dominant origin of the conduction-band EMF in an
InFeAs nFMS. This suggests that the p-d exchange interac-
tion is a promising source of the spin torque on the nFMS
magnetization.

We have also calculated the intrinsic anomalous Hall con-
ductivity generated by the p-d exchange interaction in a bulk
InFeAs nFMS. In this anomalous Hall effect, both the cou-
pling of the orbital to the spin of a conducting electron and
that of the spin to the nFMS magnetization are provided by the
p-d exchange interaction. The Hall conductivity created by
the p-d exchange interaction exhibits an accelerated increase
with the Fe dopant density, in contrast to that produced by
the s-d exchange interaction and the Dresselhaus SOI, which
shows a decrease except in the low dopant-density region.

Such a distinct feature in the anomalous Hall effect brought
by the p-d exchange interaction in an nFMS suggests that the
extended k · p mechanism of the k-dependent EMF, presented
in Fig. 1, is expected to promote the physics and application of
the coupling between the spin and orbital degrees of freedom
in a wide variety of materials and structures.
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APPENDIX A: ZENER MODEL IN FMSs

The Zener model of s-d and p-d exchange interactions
[5,48–50,52] is a standard model for carrier-mediated fer-
romagnetism in FMSs. In this model, exchange interactions
are treated as the interaction of s and p electrons with the
magnetization produced by d electrons. This is valid when
each of the s and p electrons interacts with many of the
localized d-electron spins. Here, we demonstrate that it is
the case in In1−xFexAs at x = 3.8%. The distance between
Fe spins is 1.8 nm at this value of the Fe fraction, while the
Fermi wavelength is 20 nm at the electron sheet density of
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1012 cm−2 (Table II). In a QW with the well width of 20 nm,
103 Fe spins are present within the extent of each electron
wave, and therefore, the coupling of the electron to localized
Fe spins can be replaced by the interaction of the electron with
the magnetization.

The carrier-mediated mechanism of the ferromagnetic
phase in FMSs is supported by the observed increase of the
Curie temperature Tc with the electron density [33]. In the
Zener model of exchange interactions, Refs. [49,50] analyti-
cally show that Tc of the carrier-mediated ferromagnetic phase
is proportional to the Fe concentration in the diluted limit.
This dependence of Tc is in agreement with that in the density
functional theory calculation [43]. Such a trend has also been
confirmed in experiments: Tc = 34 K at x = 5% in a sample
with the electron density of 1.8× 1019 cm−3 [33], Tc = 42
and 65 K at x = 6 and 8%, respectively, in a sample with the
electron density of 1× 1019 cm−3 [37].

APPENDIX B: MATRICES IN THE INVARIANT
EXPANSION OF THE KANE MODEL

The matrices T and J appearing in the invariant expansion
of the k · p Hamiltonian [Eq. (3)] are given by [1]

Tx = 1

3
√

2

(−√
3 0 1 0

0 −1 0
√

3

)
,

Ty = −i

3
√

2

(√
3 0 1 0

0 1 0
√

3

)
,

Tz =
√

2

3

(
0 1 0 0
0 0 1 0

)
,

Jx = 1

2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠,

Jy = i

2

⎛
⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎠,

Jz = 1

2

⎛
⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎠.

APPENDIX C: RASHBA-TYPE SOI IN THE QW
EFFECTIVE HAMILTONIAN

The coefficient of the Rashba-type SOI in Eqs. (23) and
(24) is given by

P2

3
C(z) = ηB

dBp-d

dz
+ ηH

dVH (z)

dz
− ηw

dhw

dz
,

with

ηB = P2

3

�g(18Bp-d + �g)[
Eg(Eg + �g) − �gBp-d − 9B2

p-d

]2 ,

ηH = P2

3
(η2 − η1), ηw = P2

3
(η2δ8 − η1δ7),

η1 = (Eg − Bp-d )(Eg + �g + Bp-d )

δ−

1

Eg + �g + Bp-d

×
{

1

Eg − Bp-d
− �g

δ−

}
,

η2 = (Eg − Bp-d )(Eg + �g + Bp-d )

δ−

1

Eg − Bp-d

×
{

1

Eg + �g + Bp-d
+ �g

δ−

}
.
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