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We provide a classification of invertible topological phases of interacting fermions with symmetry in two
spatial dimensions for general fermionic symmetry groups Gf and general values of the chiral central charge c−.
Here Gf is a central extension of a bosonic symmetry group Gb by fermion parity, (−1)F , specified by a second
cohomology class [ω2] ∈ H2(Gb,Z2). Our approach proceeds by gauging fermion parity and classifying the
resulting Gb symmetry-enriched topological orders while keeping track of certain additional data and constraints.
We perform this analysis through two perspectives, using G-crossed braided tensor categories and Spin(2c−)1

Chern-Simons theory coupled to a background G gauge field. These results give a way to characterize and clas-
sify invertible fermionic topological phases in terms of a concrete set of data and consistency equations, which is
more physically transparent and computationally simpler than the more abstract methods using cobordism theory
and spectral sequences. Our results also generalize and provide a different approach to the recent classification
of fermionic symmetry-protected topological phases by Wang and Gu, which have chiral central charge c− = 0.
We show how the tenfold way classification of topological insulators and superconductors fits into our scheme,
along with general nonperturbative constraints due to certain choices of c− and Gf . Mathematically, our results
also suggest an explicit general parametrization of deformation classes of (2+1)D invertible topological quantum
field theories with Gf symmetry.
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I. INTRODUCTION

The discovery of the integer quantum Hall (IQH) effect
and, later, topological insulators and superconductors have
revolutionized our understanding of phases of matter [1,2].
These phases are now understood to be special cases of a
general class of phases of matter called invertible topolog-
ical phases. An invertible topological phase of matter with
symmetry group G is an equivalence class of gapped systems
that possess a unique G-symmetric ground state on any closed
spatial manifold [3–9].1 Two such systems are defined to
be in the same invertible phase if and only if they can be
adiabatically connected without closing the bulk energy gap.
Importantly, the concept of invertible topological phases of
matter applies to systems with arbitrarily strong interactions
among the constituent degrees of freedom, and thus is distinct
from topological band theory [1,2,10], which is a single-
particle concept. Despite nearly 40 years since the discovery
of the IQH state [11], a systematic and comprehensive under-
standing of invertible topological phases of matter for general
symmetry groups G is still lacking.

An important subset of invertible phases is that of
symmetry-protected topological (SPT) phases [3,4]. Such

1Invertible phases are sometimes also referred to as short-range
entangled phases, although not all authors use this phrase the same
way.

phases can be adiabatically connected to the “trivial” gapped
insulating phase without closing the bulk energy gap, but only
if the symmetry is broken. The difference between invert-
ible phases and SPT phases is that the former may still be
nontrivial even if all symmetries are broken; IQH states, for
example, have chiral edge modes, characterized by a chiral
central charge, that persist even when charge conservation
symmetry is broken. Invertible topological phases have the
property that a ground state corresponding to an invertible
phase possesses an inverse, such that stacking the state and
its inverse gives a state that can be adiabatically connected
to a trivial product state. Since invertible topological phases
have a unique ground state on any closed spatial manifold,
they do not possess topologically nontrivial quasiparticles and
therefore a complete classification may be within reach.2

Over the past several years, a range of techniques have
been developed to characterize and classify SPT or invertible
phases. Currently, the most comprehensive approach, which is
believed to be applicable to all symmetry types and in general

2In contrast, for noninvertible topological phases, such as those
with anyons in (2+1)D, a complete classification would require a
classification of unitary modular tensor (UMTC) categories, which is
not believed to be within reach. In this case, one must fix the UMTC
describing the fusion and braiding of anyons, and then the remaining
symmetry-enriched topological phases can be fully classified system-
atically [12,13].
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dimensions, is to assume that invertible topological phases
of matter are described by deformation classes of invertible
topological quantum field theories (TQFTs) [7], which are
TQFTs whose path integrals have unit magnitude on every
closed manifold. Invertible TQFTs, in turn, can be given an
abstract classification in terms of bordism theory, although
the mathematical results are fully proven only in cases where
there is no thermal Hall effect [5–8]. While this approach is
believed to be complete, it has two major drawbacks: first,
the computations required to carry out the classification for
any particular symmetry group G require difficult spectral
sequence computations needing significant technical exper-
tise and, as such, have been carried out only in a few cases
[6,7,14,15]. Second, this approach is far-removed from the
physical properties of the system. This obscures the physi-
cal distinction between different invertible phases, and also
removes us from the setting of topological phases of matter,
which rely on the notion of a gapped Hamiltonian acting
on a many-body Hilbert space. A more direct approach to
topological phases of matter, in terms of operator algebras,
is also under development, although the results are so far less
comprehensive than the TQFT approach [16–19].

Recently, a complete classification of interacting fermion
SPTs was proposed in Ref. [20], using a theory of fixed-point
wave functions, building on earlier work developing an ap-
proach using group supercohomology [21,22]. The properties
of these phases were summarized in a set of data (n1, n2, ν3),
which are related to decorating defects of various codimen-
sion with lower-dimensional fermionic states. This data is
subject to redundancies and consistency equations, which
have been explicitly computed. However, a complete formula-
tion of the group multiplication law associated with stacking
fermionic SPT phases has not been presented. A similar char-
acterization has not been available for more general invertible
phases with nontrivial chiral central charge, partly because it
is more difficult to write down analytically tractable micro-
scopic models for chiral topological phases. One of the main
results of this work is to obtain a set of data, redundancies,
and consistency equations, which is based on the properties
of symmetry defects in invertible phases. The data provide a
complete characterization of invertible phases of interacting
fermions in (2+1) dimensions, thus extending the results of
Ref. [20] to more general chiral central charges, and providing
an alternate perspective on the results for c− = 0.3

In this paper, we carry out our analysis using techniques
borrowed from the related field of symmetry-enriched topo-
logical phases (SETs). Every fermionic system has a Z f

2
symmetry, corresponding to the conservation of fermion par-
ity. The full fermionic symmetry group, G f , is the symmetry
group that acts nontrivially on fermionic operators, and is a

3When the symmetry of the invertible phases is a nontrivial ex-
tension of the “bosonic symmetry” Gb by the Z2 fermion parity
symmetry, the classification of the invertible phases cannot be ob-
tained from that of c− = 0 by stacking with the invertible phases with
only the fermion parity symmetry, and therefore the classification
depends nontrivially on the chiral central charge. This is discussed in
detail in Secs. IV and V.

group extension of the bosonic symmetry Gb by Z f
2 , char-

acterized by [ω2] ∈ H2(Gb,Z2). Upon gauging the fermion
parity symmetry, we obtain a bosonic topological phase with
nontrivial topological order, corresponding to a state in the
16-fold way [23], which is also Gb symmetric. Therefore
we can classify G f -symmetric fermionic invertible phases in
terms of Gb-symmetry enriched bosonic topological phases.

The above program can be carried out using two main
theoretical tools, both of which we pursue in this paper. One
of these is through the framework of G-crossed braided tensor
categories [12,24,25], which is the mathematical theory of
SET phases. The other is through Spin(2c−)1 Chern-Simons
theory coupled to a background Gb gauge field.

Our analysis contains several new results. The main result,
as we summarize in Sec. II, is that each (2+1)D invertible
phase with fermionic symmetry G f can be fully characterized
by a set of data (c−, n1, n2, ν3), subject to certain redundancies
and consistency conditions. Importantly, these consistency
conditions depend nontrivially on the value of c−. The data
(c−, n1, n2, ν3) encode the braiding and fusion properties of
symmetry defects.

A second important result is the explicit derivation of
“stacking rules” for invertible phases. Since invertible phases
obey an Abelian group structure under stacking, a complete
classification theory needs to explain how the (c−, n1, n2, ν3)
data of two invertible phases a and b are related to the cor-
responding data of the phase obtained by stacking a and b.
In previous works, such stacking rules were only proposed
in various special cases [21,26,27]. The most detailed deriva-
tions to date have been given in Refs. [28,29]; Ref. [28]
derives stacking rules for the case c− = 0, [ω2] = 0 (i.e.,
G f = Gb × Z2), and n1 = 0, while Ref. [29] derives the
stacking rule for c− = 0, [ω2] = 0 (i.e., G f = Gb × Z2), and
general n1. Here we use the framework of anyon condensa-
tion [30,31] and Chern-Simons theory to explicitly derive the
stacking rules in more generality than previous works have
considered, and we conjecture a formula for the complete
stacking rules.

Central to both these results is the question of whether
a Gb-crossed BTC (i.e., the SET phase obtained by gauging
the fermion parity) can completely and uniquely describe any
given invertible phase. In this work, we find that different
invertible phases may actually correspond to the same Gb-
crossed BTC. In other words, the Gb-crossed theory for SETs
may treat two sets of (n1, n2, ν3) data as equivalent even
though they describe distinct invertible phases. These phases
are distinguished by taking the additional step of carefully
tracking the G f fluxes in the invertible phases, and seeing
how they manifest in the Gb-crossed theories after the gauging
procedure. By adding this extra data about flux labels, our
work extends the usual G-crossed BTC framework.

Finally, this paper contains several results on specific
symmetry groups. We obtain the classification of (2+1)D
interacting invertible phases whose symmetries are given by
the tenfold way (Sec. VII E) [32,33]. Thus, for example,
we show how the integer quantum Hall states and the Z2

time-reversal invariant topological insulator in class AII are
described within the generalized Gb-crossed framework. We
also study in detail the symmetry groups G f = Z2 × Z f

2
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(Sec. VII A), reproducing the results of Ref. [34], and G f =
U(1) f (Sec. VII B), providing a complete set of topological in-
variants along with their physical interpretation and a stacking
analysis.

Interestingly, we find that the allowed choices of the sym-
metry group G f can be constrained by anomalies, depending
on the value of c−. For example, we show that a system where
local fermions carry half-integer isospins under G f = SU(2)
symmetry, while bosons carry integer isospins, must have
even c− (Sec. VII C) : there exists an H3 obstruction which
does not permit a symmetric (2+1)-dimensional invertible
phase with odd c−. While this kind of constraint may be
expected from a free fermion band theory perspective, our
results give an analysis applicable in the strongly interacting
case. This type of anomaly, which can also be understood
as a nontrivial manifestation of 2-group symmetry (see, e.g.,
Ref. [35]), has been discussed previously in Refs. [36,37]. It
arises here because although a certain type of symmetry frac-
tionalization [e.g., the spin-1/2 property when Gb = SO(3)]
is well-defined for fermions, there may be an obstruction
to extending the symmetry fractionalization to the fermion
parity fluxes in the Gb-crossed theory. We also show that
this anomaly is absent in certain situations, if the symmetry
permutes the fermion parity fluxes in a suitable manner, which
may happen for instance if SO(3) is broken down to a discrete
group Z2 × Z2 (Sec. VII D).

An interesting mathematical application of this paper is
that it suggests an explicit solution to the group of deformation
classes of invertible TQFTs in (2+1)D with the appropri-
ate tangential structures, in terms of the data (c−, n1, n2, ν3)
and its stacking rules. This extends the result proven math-
ematically in Ref. [29], which applies to the case of spin
cobordisms that is applicable for G f = Gb × Z f

2 and c− = 0,
to the most general possible symmetry group G f and chiral
central charges.

A. Organization of paper

The paper is organized as follows. Section II contains
an abbreviated summary of our results. Section III contains
a derivation of the data and equations describing Gb SETs
obtained from gauging fermion parity using the framework
of Gb-crossed BTCs. Section IV discusses how the usual Gb-
crossed theory fails to accurately count invertible phases, and
provides a resolution involving the specification of Gb flux
labels. In Sec. V, we show how to obtain the same results
through the Chern-Simons framework. Section VI applies
both the Gb-crossed theory and the Chern-Simons formal-
ism to compute the classification of invertible phases, by
deriving explicit stacking rules. Section VII discusses various
examples demonstrating the use of our theory to classify and
characterize invertible phases. Finally, Sec. VIII concludes
and discusses future directions.

The more abstract or computationally involved details have
been presented in the appendices. In Appendix A, we pro-
vide a brief review of G-crossed braided tensor categories
as applicable to this work. In Appendix B, we summarize
some mathematical background for the higher cup product
formalism used in this paper. In Appendix C, we compute the
’t Hooft anomaly for fermionic invertible phases and use it

to derive certain stacking rules. In Appendix E, we discuss a
nonanomalous Gb symmetry enriched theory which can serve
as a nonanomalous reference state and is useful in obtaining
the ’t Hooft anomaly in other Gb symmetry-enriched theories.
In Appendix F, we show that the anomaly for the symmetry
that does not permute the anyons can be obtained from the
anomaly of the one-form symmetry.

II. SUMMARY OF RESULTS

A. Preliminaries

First we establish some notation. The fermionic symmetry
group G f of an invertible phase always has a Z f

2 subgroup cor-
responding to the conservation of fermion parity. In general,
G f is a central extension of a symmetry group Gb by Z f

2 . The
group law in G f is specified by a 2-cocycle ω2 ∈ Z2(Gb,Z2)
(this notation is explained in Appendix B), as follows. Denote
a general element in G f as a pair (g, a), where g ∈ Gb and
a ∈ Z f

2 . Then, the group law in G f is

(g1, a1)(g2, a2) = (g1g2, a1 + a2 + ω2(g1, g2)). (1)

A nontrivial [ω2] class implies that the local fermion trans-
forms as a projective representation of Gb, which is still a
linear representation of G f . The fermion carries fractional Gb

quantum numbers as specified by the projective representa-
tion. We also define the homomorphism s1 : Gb → Z2. If g is
unitary, s1(g) = 0; if g is antiunitary, s1(g) = 1. For instance,
if the symmetry is the time-reversal symmetry T2 = (−1)F

with the local fermion transforming as a Kramer’s doublet,
then the bosonic symmetry T2 = 1 is extended by Z f

2 with
nontrivial extension class [ω2] characterized by the nontrivial
component ω2(T, T) = 1.

We will make repeated use of the cup product of cochains
below: these are also reviewed in Appendix B. Let fp and
gq be p (respectively, q) variable functions from Gb to some
Abelian group [generally Z2 or U(1)]. fp and gq are called
p- and q-cochains, respectively. Then, we define their cup
product fp ∪ gq as follows:

( fp ∪ gq)(g1, . . . , gp+q ) = fp(g1, . . . , gp)gq(gp+1, . . . , gp+q ).
(2)

Similarly we can define objects called higher cup products
(see Appendix B), which are useful in organizing our formu-
las.

B. Defining equations

Each invertible phase is described by a set of data
(c−, n1, n2, ν3), where 2c− ∈ Z sets the chiral central charge,
and

(n1, n2, ν3) ∈ C1(Gb,Z2) × C2(Gb,Z2) × C3(Gb, U(1)T ),
(3)

where Ck denotes k-cochains. For a given value of c− the
equations are summarized in Table I. Three of them con-
strain n1, n2 and ν3. The rest are equivalence relations on
n2 and ν3. To write the equivalence relations, we define
b1 ∈ C1(Gb,Z2), b2 ∈ C2(Gb,Z2), and χ ∈ Z1(Gb,Z2). The
full set of equivalence relations is obtained by choosing all
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TABLE I. Data and equivalences for invertible fermion phases for different values of the chiral central charge c− with symmetry Gf ,
which is a central extension of Gb by Z f

2 with the 2-cocycle ω2 ∈ H2(Gb,Z2). The parameter k is an integer. In the formulas for O4, ζ =
n1 ∪ [(n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2] is the Cartan coboundary [40], and ω′

2 = ω2 + s1 ∪ n1. Here P (X ) = X ∪ X − X ∪1 dX is the Pontryagin
square of the 2-cochain X [41]. The data ω2, s1 are constrained by c−: when c− is a half-integer, ω2 = 0, while when c− �= 0, we assume
that s1 = 0. (One can in principle also consider s1 �= 0 for c− = 4 mod 8, which could potentially be interpreted as describing an anomalous
invertible state, although we do not consider this here.) Our stacking rules for n2 and ν3 are derived from Chern-Simons theory in the case
where s1 = 0 and ω2 = 0, and also in the case Gf = U(1) f . For ω2 or s1 nonzero, the general stacking rule for n2 is conjectured (an updated
version of Ref. [42] has proven the n2 stacking rules in the case s1 = 0); the general stacking rule for ν3 has an additional undetermined
3-cocycle which we have conjectured to vanish. The transformations of ν3 in the equivalence relations of Eq. (8) in principle may include
certain 3-cocycles if the ν3 stacking conjecture is incorrect (see Sec. VI B for a detailed discussion).

Data for invertible fermion phases: (c−, n1, n2, ν3) ∈ 1
2Z × C1(Gb,Z2) × C2(Gb,Z2) × C3(Gb, U(1)T )

General equations
dn1 = 0 (mod 2), (5)
dn2 = n1 ∪ (ω2 + s1 ∪ n1) + c−ω2 ∪1 ω2 (mod 2), (6)
dν3 = O4[c−, n1, n2], (7)
(n2, ν3) � (n2, ν3 × db2) � (n2 + db1, ν3 × (−1)b1∪ω2+db1∪1n2+db1∪b1 )

� (n2 + ω2, ν3 × (−1)ω2∪1n2 ), (8)
∀b1 ∈ C1(Gb,Z2), ∀b2 ∈ C2(Gb, U(1)T ).

Formulas for O4

O4[c−, n1 = 0, n2, s1 = 0] = (−1)n2∪(n2+ω2 )eiπ
c−
4 P (ω2 ), (9)

O4[c− = k + 1/2, n1, n2, s1 = 0] = (−1)n2∪n2 , (10)

O4[c− = k, n1, n2, s1 = 0] = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )in1∪n1∪ω2 e
iπc−

4 P (ω2 )(−1)c− (n1∪ω2 )∪2(ω2∪1ω2 ), (11)
O4[c− = 0, n1, n2; s1 �= 0] = (−1)P (n2 )+n2∪ω′

2+ζ (n1,ω′
2 )in1∪n1∪ω′

2 (−1)s1∪n1∪n2 . (12)

Stacking rules (Group multiplication law for invertible phases)(
ctot
− , ntot

1 , ntot
2 , ν tot

3

) = (
ca
−, na

1, na
2, ν

a
3

) × (
cb
−, nb

1, nb
2, ν

b
3

)
ctot
− = ca

− + cb
−, (13)

ntot
1 = na

1 + nb
1, (14)

for s1 = 0 :

⎧⎨
⎩

ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1,

ν tot
3 = νa

3ν
b
3 (−1)(na

1∪nb
1 )∪1(na

2+nb
2 )+na

2∪1nb
2+dna

2∪2nb
2+na

1∪(na
1∪1nb

1 )∪nb
1+ca (ω2∪1ω2 )∪3(nb

1∪ω2 )

·i(na
1∪1nb

1 )∪ω2+na
1∪nb

1∪nb
1 ,

(15)

for s1 �= 0 : ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1 + na

1 ∪ (s1 ∪1 nb
1) + nb

1 ∪ (s1 ∪1 na
1 ) + (na

1 ∪1 nb
1) ∪ s1. (16)

possible b1, b2, χ . Throughout this paper, we also define

θ = e2π ic−/8, (4)

which equals the topological twist of the fermion parity
fluxes in the 16-fold way UMTC for each c−. The data dis-
cussed above appeared in special cases in previous works.
For c− = 0, s1 = 0, and [ω2] = 0, these data also appeared
in Refs. [26,28,29,38]. For c− = 0 and general s1, [ω2], these
data appeared in Ref. [20].

For a fixed c−, the data (n1, n2, ν3) form a torsor over a
group extension of the group H3(Gb, U(1)T ) and (sub)groups
of H1(Gb,Z2), H2(Gb,Z2). That is, starting with a given
choice of (c−, n1, n2, ν3), other possible invertible phases
with the same central charge c− can be obtained by cer-
tain actions characterized by some [α1] ∈ H1(Gb,Z2), [β2] ∈
H2(Gb,Z2), and [γ3] ∈ H3(Gb, U(1)T ), where α1, β2, γ3 are
cocycle representatives. The detailed actions will be discussed
in Sec. II C.

Invertible topological phases form an Abelian group, under
an operation called stacking. Physically, stacking two phases
can be thought of as taking a double layer system, with
each layer consisting of one of the two phases, and viewing
the combined system as a single invertible topological phase
where the G f symmetry acts on both layers simultaneously.
The general group multiplication law, which we also refer to

as the stacking rule, is also summarized in Table I. For trivial
ω2, the stacking rule we derive is exact, and reproduces the
result in Ref. [29]. For nontrivial ω2, the stacking rules for
n2 and ν3 in Table I are conjectures that are compatible with
our expressions for the ’t Hooft anomaly O4. For nontrivial
s1, we know the stacking rule for c− and n1 exactly, and our
stacking rule for n2 is again a conjecture; we do not propose a
conjecture for the ν3 stacking in this case.

Note that in the previous literature, the stacking rule for
ν3 is known only in the case G f = Gb × Z f

2 , i.e., ω2 = 0.
These stacking rules have previously been derived in the
special cases c− = 0, n1 = 0, and [ω2] = 0 in Ref. [28], and
for c− = 0, [ω2] = 0 (with general n1) in Ref. [29]. They
were also guessed but not fully derived for c− = 0, n1 = 0,
[ω2] = 0 in Ref. [26].

One interesting consequence of our results is that if an in-
vertible fermionic phase corresponding to a particular choice
of (c−, n1, n2, ν3) has a nontrivial [O4], the system can-
not exist in (2+1)D. However, the corresponding invertible
fermionic phase can exist at the surface of a (3+1)D bosonic
SPT characterized by [O4] ∈ H4(G, U(1)). This gives an in-
triguing situation where the surface of a nontrivial (3+1)D
bosonic SPT can be symmetry-preserving, gapped, and yet not
topologically ordered, at the expense of introducing fermions
to the surface. (If fermions are introduced in both the (3+1)D
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TABLE II. Properties of the UMTC C(c−) described in the “16-fold way.” These are obtained by gauging the fermion parity of an invertible
phase with chiral central charge c−, where k are integers. A fermion parity flux always has the topological twist θ = eiπc−/4. da denotes the
quantum dimension of the anyon a. The complete fusion and braiding properties of the anyons are listed in Table IV.

c− Anyons {da} Fusion rules

2k I, ψ, e, m dψ = de = dm = 1 e2 = m2 = ψ2 = I, e × m = m × e = ψ

2k + 1 I, ψ, v, v̄ dψ = dv = dv̄ = 1 v2 = ψ, v3 = v̄, v4 = I
k + 1/2 I, ψ, σ dψ = 1, dσ = √

2 ψ × σ = σ × ψ = σ, σ × σ = I + ψ

bulk and the (2+1)D surface, we expect that the bosonic SPT
becomes a trivial fermionic SPT, and that the (2+1)D system
is an example of an anomalous fermionic SPT as described in
Ref. [39]).

As we will describe below and in Sec. IV, there are two
equivalent ways of parametrizing the data that classifies in-
vertible phases. The description presented above in terms
of (c−, n1, n2, ν3) follows the notation given in Ref. [20]
for c− = 0 i.e., for fSPT phases. There is a second de-
scription which is more natural to the Gb-crossed braided
tensor category approach, which consists of a set of data
(c−, ñ1, ñ2, ν3, {Lg}), and which will be summarized below.

We note that our consistency equations as summarized in
Table I are mostly equivalent to those of Ref. [20] when c− =
0, with some differences in the equivalence relations, which
are summarized in Sec. II D.

C. Derivation from Gb-crossed BTCs

Here we will briefly sketch how the classification summa-
rized above arises from the perspective of Gb-crossed BTCs.
We note that Ref. [26] gave a classification for the case c− = 0
and ω2 = 0 using the framework of G-crossed BTCs as well.
However, there is a crucial conceptual difference between
this paper and the approach of Ref. [26], which character-
ized fSPTs as a G f -crossed extension of the super-modular
category {1, ψ}. In our approach, we are characterizing in-
vertible phases using a Gb-crossed extension of the bosonic
phase (referred to as the bosonic shadow), described by a
UMTC C, obtained by gauging fermion parity. This change
in perspective is useful to properly account for a nontrivial
[ω2] and to compute the O4 obstructions; however, the price
to pay is that we will need to keep track of certain additional
data and equivalences beyond the Gb-crossed extension.

For simplicity let us assume here that the symmetry is
unitary, so s1 = 0. We will include s1 �= 0 in the main text.

First, starting with the invertible fermionic phase with G f

symmetry, we gauge fermion parity. This gives a bosonic
topologically ordered phase with Gb symmetry. The intrinsic
topological order is characterized by a unitary modular tensor
category C(c−). There are 16 distinct possibilities for C(c−),
which are referred to as the 16-fold way, depending on the
value of 2c− mod 16 [23]. Mathematically these are the 16
distinct minimal modular extensions of the supermodular cat-
egory {I, ψ} and are summarized in Table II. If c− is even, the
anyons are written as {I, e, m, ψ}; if c− is odd, they are written
as {I, v, ψ, v̄}; if c− is half-integer, then they are written as
{I, σ, ψ}. m, v, v̄ = ψ × v, e = m × ψ , and σ all have the
physical interpretation of being a fermion parity flux, as a full
braid with the fermion ψ gives a sign. By convention, if c−

is unspecified, we will denote a fermion parity flux as m and
its counterpart as m × ψ . We note the following constraint be-
tween the symmetry G f and the possible chiral central charge
c−. If c− = k + 1/2, where k is an integer, then we must have
[ω2] = 0, i.e. G f = Gb × Z f

2 . [ω2] �= 0 means that ψ carries
fractional Gb quantum numbers, which is inconsistent with
the possibility of a fermion parity vortex σ that can absorb a
fermion: σ × ψ = σ . Therefore in the equations that follow,
if c− = k + 1/2, we will implicitly assume that ω2 = 0.

In order to classify fermionic invertible topological phases
in terms of Gb SETs, we first must specify how the Gb sym-
metries permute the anyons. However, importantly, there is
a constraint, which is that the permutation should keep the
fermion ψ invariant. Physically, a symmetry in an invertible
fermionic phase cannot permute a fermion into a fermion
parity flux. Consequently, we see that not all possible Gb SETs
correspond to valid invertible fermionic phases. The permuta-
tion action is therefore specified by a group homomorphism

ñ1 : Gb → Autψ (C(c−)), (17)

where Autψ (C(c−)) ⊂ Aut(C(c−)) is the subgroup of braided
autoequivalences (also referred to as topological symmetries
[12]) which keep ψ invariant. Note that Autψ (C(c−)) = Z2 if
c− is integer and is trivial otherwise.

The choice of ñ1 determines, up to certain gauge transfor-
mations, a set of U(1) phases {Ug(a, b; c)}, which determine
how each g ∈ Gb acts on the fusion and splitting spaces of the
anyon theory.

Next, SETs are specified by a set of symmetry fraction-
alization data [12]. For the cases of relevance here, this is
specified by a set of U(1) phases {ηa(g, h)}, for g, h ∈ Gb

which determine the fractional Gb quantum numbers carried
by the anyons. They are subject to certain consistency equa-
tions and gauge transformations. We can always fix Ug by
fixing a gauge, and fixing a canonical reference state which
sets a reference value {ηref

a (g, h)}. All other symmetry frac-
tionalization classes can then be related to the reference as

ηa(g, h) = ηref
a (g, h)Ma,t(g,h), (18)

where t ∈ Z2(Gb,A) and where A is an Abelian group deter-
mined by fusion of the Abelian anyons in C(c−). Ma,x is the
phase obtained by a double braid between a and an Abelian
anyon x. We define t as

t =
⎧⎨
⎩

mω2 × ψ ñ2 for c− = 2k
vω2 × ψ ñ2 for c− = 2k + 1
ψ ñ2 for c− = k + 1/2

, (19)
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where k is an integer and ñ2 ∈ C2(Gb,Z2), which we take
to be valued in ñ2(g, h) ∈ {0, 1}. We choose our reference η

symbols as follows:

ηref
a =

{
Ma,ψ ñ1∪ñ1 for c− = 4k + 3
1 otherwise . (20)

These particular reference states are chosen to simplify the
formulas for the ’t Hooft anomaly O4 (see Sec. IIIC3). We
can show using Chern-Simons theory that these reference
states are all nonanomalous (note Gb is unitary in the present
discussion).

The equations above ensure that

ηψ (g, h) = (−1)ω2(g,h), (21)

which corresponds to the statement that the fermion ψ car-
ries fractional Gb quantum numbers, as specified by ω2 ∈
Z2(Gb,Z2).

The requirement that t be a 2-cocycle leads to the equation

dñ2 = ñ1 ∪ ω2 + c−ω2 ∪1 ω2. (22)

Since both m and e = m × ψ are fermion parity fluxes and
both e and m are physically on equal footing, we are free to
interchange m and e in the above equation; the same holds true
for v and v̄ = v × ψ . This leads to the redundancy

ñ2 � ñ2 + ω2. (23)

The Gb-crossed BTC C×
Gb

(c−) is a Gb-graded fusion
category:

C×
Gb

(c−) =
⊕
g∈Gb

Cg, (24)

where C0 = C(c−), and the objects of Cg are the topologically
distinct g defects, ag ∈ Cg. If we write the fusion rules of the
defects in the canonical reference state as

ag × bh =
∑

cgh∈Cgh

N
cgh

ag,bh
cgh, (25)

then the state in our symmetry fractionalization class of inter-
est has the defect fusion rules

ag × bh = t(g, h)
∑

cgh∈Cgh

N
cgh

ag,bh
cgh. (26)

Thus we can see the physical meaning of ñ2. Changing
ñ2(g, h) corresponds to changing the fusion outcome of g and
h defects by ψ .

The next important ingredient is that the Gb-crossed BTC
by design keeps track of topologically distinct g defects ag, for
g ∈ Gb. However in the invertible fermionic phase, we phys-
ically have G f defects, which we can label as (g, 0), (g, 1) ∈
G f , for g ∈ Gb. When we gauge fermion parity, (g, 0) gets
mapped to some element in Cg and (g, 1) gets mapped to
another element in Cg. Therefore, to fully resolve the G f

fluxes, we need additional data corresponding to a preferred
element Lg ∈ Cg that specifies which g defect corresponds to
a (g, 0) defect. These preferred fluxes satisfy the fusion rules

Lg × Lh =
{

mω2(g,h)Lgh

mω2(g,h)(Lgh + ψ × Lgh),
(27)

depending on whether Lg or Lh are Abelian or both non-
Abelian. Here m is any fermion parity flux. The factor mω2(g,h)

ensures that Lgh corresponds to a (gh, 0) defect if Lg and Lh
correspond to a (g, 0) and an (h, 0) defect respectively. Here
we have another redundancy,

Lg � Lg × ψ, (28)

because fusing with the fermion does not physically change
the choice (g, 0).

The choice of ñ1 and symmetry fractionalization class,
specified by ω2 and ñ2, then specifies the ’t Hooft anomaly
of the Gb SET. In particular, this specifies an element [O4] ∈
H4(Gb, U(1)), which must vanish for the SET to be a well-
defined (2+1)D system. General methods to compute the ’t
Hooft anomaly were presented in Refs. [24,25]. In particular,
Ref. [24] provided simple formulas for the relative anomaly
between two SETs whose symmetry fractionalization class
differ by an element [t] ∈ H2(Gb,A). Therefore, assuming
we choose reference states that are nonanomalous, the relative
anomaly formulas can be used to give explicit expressions for
O4 [see Eq. (9)–(12)]. We can show that such a nonanoma-
lous reference state always exists for unitary symmetry; see
Appendix E for an explicit construction.

When the anomaly vanishes, O4 is cohomologically trivial:

O4 = dν3, (29)

for some ν3 ∈ C3(Gb, U(1)). The data ν3(g, h, k) can be re-
lated to certain additional data required to fully specify the
Gb-crossed BTC. More specifically, if we start with some
reference theory with F symbols denoted by F̂ , and change
the symmetry fractionalization class by [t], then the defect F
symbols of the new theory are given by

F
ag,bh,ck

t(g,h)t(gh,k)dghk
= F̃

ag,bh,ck

t(g,h)t(gh,k)dghk
(ν3)−1(g, h, k), (30)

where F̃
ag,bh,ck

t(g,h)t(gh,k)dghk
is obtained by multiplying the F̂ symbol

in the reference theory with additional F and R symbols of the
Abelian anyons [24]. ν3 can be thought of as a kind of local
counterterm that corrects F̃ , so that F obeys the pentagon
equation exactly, and not just up to a 4-coboundary. Applying
the pentagon equation gives the constraint

dν3 = O4 (31)

for some 4-cocycle O4 that can be obtained in purely terms of
anyon data.

Note that ñ2, ν3 are thus both defined relative to the ref-
erence states discussed previously, while c−, ñ1 are defined
absolutely.

ñ2 and ν3 are subject to three kinds of equivalences. The
first equivalence has the form

ν3 � ν3 × db2, (32)

where b2 ∈ C2(Gb, U(1)), and describes the change in the
defect F symbols under (vertex-basis) gauge transformations
of the Gb-crossed BTC.

The second equivalence is of the form

(ñ2, ν3) � (ñ2 + db1, ν3 × (−1)b1∪ω2+db1∪1n2+db1∪b1 × α′
3),
(33)
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where b1 ∈ C1(Gb,Z2). In the Gb-crossed BTC, this equiv-
alence is obtained by relabeling the defects as ag → ag ×
ψb1(g). α′

3 is an undetermined 3-cocycle, see below.
When b1 = χ is a 1-cocycle, the above transformation

reduces to

ν3 � ν3 × (−1)χ∪ω2 . (34)

Finally, shifting ñ2 → ñ2 + ω2 also changes ν3; therefore the
full equivalence is

(ñ2, ν3) � (ñ2 + ω2, ν3 × (−1)ω2∪1ñ2 × α′′
3 ). (35)

The 3-cocycles α′
3, α

′′
3 can be fixed exactly knowing the full

stacking rule for ν3 (see Sec. VI B); if our conjectured stacking
rule is exact, we will have α′

3 = α′′
3 = 0.

We now comment on how to obtain the classification of
invertible phases from the above data. We show that the
data (n1, n2, ν3) for a fixed c− form a torsor over a group
extension involving subgroups of H1(Gb,Z2), H2(Gb,Z2),
H3(Gb, U(1)T ). First, we notice that ν3 satisfies dν3 =
O4 and therefore if ν3 is a solution, ν3γ3 for any [γ3] ∈
H3(Gb, U(1)T ) is also a solution. We define the H3-action by
[γ3] ∈ H3(Gb, U(1)T ) on the basic data as follows:

ν3 → ν3γ3, (36)

where γ3 is a cocycle representative. Due to the equiva-
lence relation ν3 � ν3(−1)χ∪ω2 for χ ∈ H1(Gb,Z2), the ν3

data thus forms a torsor over H3(Gb, U(1)T )/�3, where
�3 ⊆ H3(Gb, U(1)T ) is generated by cocycles of the form
(−1)χ∪ω2 .

Next, given some [β2] ∈ H2(Gb,Z2) and ν ′
3 satisfying

dν ′
3 = (−1)β∪(β+ω2 ), (37)

we can define an invertible phase with data (c′
− = 0, n′

1 =
0, n′

2 = β, ν ′
3). Accordingly, the basic data transforms under

the following action of H2(Gb,Z2):

(c−, n1, n2, ν3) → (0, 0, β, ν ′
3) × (c−, n1, n2, ν3)

= (c−, 0, n2 + β, ν3ν
′
3 × (−1)β∪1n2 ). (38)

[Since some choices of β are trivial, the above action is really
by a subgroup of H2(Gb,Z2).] ν ′

3 is not uniquely chosen,
and can be modified by the H3-action above. Moreover, if
the quantity β ∪ β + β ∪ ω2 is cohomologically trivial for
β = B2, B′

2, it is also trivial for β = B2 + B′
2. Hence, this

H2-action on the data is well-defined and compatible with the
H3-action.

Lastly, from dn1 = 0, the allowed choices of n1 lie
in H1(Gb,Z2). Given [α′

1] ∈ H1(Gb,Z2) and a consis-
tent solution (c′

− = 0, n′
1 = α′

1, n′
2, ν

′
3),4 we can define an

H1(Gb,Z2)-action on the data (c−, n1, n2, ν3) by

(c−, n1, n2, ν3) → (0, α′
1, n′

2, ν
′
3) × (c−, n1, n2, ν3)

= (
c−, n1 + α′

1, ntot
2 , ν tot

3

)
, (39)

4For ω2 = 0, we can always choose n′
2 = 0 and ν ′

3 = 1 for any n′
1 ∈

H1(Gb,Z2). However, for nontrivial ω2, some n′
1 may not be allowed

and for allowed n′
1, there is no canonical solution for n′

2, ν
′
3.

where ntot
2 and ν tot

3 are defined through the stacking rules
given in Table I. The choices of n′

2 and ν ′
3 are not unique

since there may be multiple solutions related by the H2 and
H3 actions discussed above. The data (n1, n2, n3) for a fixed
c− ultimately form a torsor over some group formed by a
sequence of group extensions: H1(Gb,Z2) extended by a
subgroup of H2(Gb,Z2), in turn extended by a subgroup of
H3(Gb, U(1)T ).

The equivalence between the data (ñ1, ñ2, ν3, Lg) that
arises in the Gb-crossed BTC description and the data
(n1, n2, ν3) depends on the value of c− and is discussed in
detail in Sec. IV. Finally, the generalization to the case where
s1 �= 0 is explained in Sec. III.

A complementary way of understanding the above results
is in terms of the Chern-Simons theory description for the
bosonic shadow theory. The Gb symmetry enriched bosonic
shadow theory can be described using the intrinsic symme-
tries of the Chern-Simons theory [35]. We will discuss this
approach in detail in Sec. V, where some of the advantages
and shortcomings will also be seen.

D. Relation to Wang-Gu fSPT classification

Here we compare our results to those of Ref. [20], as-
suming c− = 0. We note that our consistency equations as
summarized in Table I are mostly equivalent to those of
Ref. [20] when c− = 0, with some differences, which are sum-
marized below. Importantly, in Appendix D, we show that the
obstruction O4 in Eq. (136) of Ref. [20] is equal to Eq. (136)
with c− = 0 and s1 = 0, up to a coboundary (see Eq. (C32)
in Appendix C for our derivation). The key observation is
that the two formulas happen to choose opposite conventions
for branching structures; after reversing our convention, the
formulas defining n1, n2 and ν3 all agree. An advantage of our
expression is that we can analytically show that O4[c−, n1, n2]
is closed. There is one key difference in our formulas with
respect to those of Ref. [20]. Certain equivalence relations
were given therein, which change n2 but keep the topological
phase invariant. Here we show that these equivalences also
come with a change in ν3, as summarized in Table I.

E. Applications

With our general classification in hand, we then proceed to
apply the theory to a number of physically relevant situations.
One of our main applications (Sec. VII E) is to consider the
symmetry groups appropriate to the tenfold way, using our
approach to derive an interacting tenfold way classification of
fermionic topological insulators and superconductors. This is
summarized in Table III. As has been noted previously (see,
e.g., Ref. [43]), all the free fermion phases in this classification
survive in the presence of interactions. Moreover, in classes
AIII and C, the interacting classification acquires an extra
factor of Z, which comes from the classification of bosonic
SPT phases with Gb = U(1) and Gb = SO(3), respectively.
Some entries within the periodic table are discussed in sepa-
rate examples, as we summarize below.

In Sec. VII A, we study the classification and associated
invariants for invertible phases with G f = Z2 × Z f

2 . We also
give an explicit mapping between the free and interacting clas-
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TABLE III. Classification of invertible (2+1)D fermion phases
for the symmetry classes of the “tenfold way,” with free and interact-
ing fermions.

The interacting tenfold way

Cartan Gb Gf Free Interacting

A U(1) U(1) f Z Z2

AI U(1) � ZT
2 U(1) f

� ZT
2 Z1 Z1

AII U(1) � ZT
2 U(1) f

� ZT f
4 /Z2 Z2 Z2

AIII U(1) × ZT
2 U(1) f × ZT

2 Z1 Z1

D Z1 Z f
2 Z Z

DIII ZT
2 ZT f

4 Z2 Z2

BDI ZT
2 ZT

2 × Z f
2 Z1 Z1

C SO(3) SU(2) f 2Z 2Z × 2Z

CI SO(3) × ZT
2 SU(2) f × ZT f

4 /Z2 Z1 Z1

CII SO(3) × ZT
2 SU(2) f × ZT

2 Z1 Z1

sifications for this symmetry group. We consider Gb = U(1) f

in Sec. VII B; here we derive the Hall conductivity using
the Gb-crossed theory, and give an alternative discussion on
gauging fermion parity using U(1) Chern-Simons theory.

We also discuss the classification of invertible phases with
G f = SU(2) f symmetry in a separate example, Sec. VII C,
as it realizes an H3 obstruction associated with the fail-
ure to satisfy the dn2 equation. For free fermions, this
obstruction is simply the statement that we cannot place
isospin-1/2 fermions in a band with odd Chern number. In
the interacting case, it follows from the fact that if we gauge
fermion parity in a system with odd c− and with the fermion
carrying projective representation of half-integer isospin un-
der Gb = SO(3), the fermion parity flux v would would have
to carry isospin “1/4” or “3/4,” which is ill-defined and ruled
out by the H3 obstruction mentioned above.

Motivated by this example, in Sec. VII D we consider a
c− = 1 theory with Gb = Z2 × Z2 that has nontrivial n1 and
ω2, so that G f = D8. Unlike SU(2) f , this theory admits a
solution for n2 as well as ν3. We believe it is the simplest

example of an invertible phase in which n1, ω2 are both non-
trivial; it is known [20] that such examples do not exist when
c− = 0 and Gb is a finite Abelian group.

III. Gb-CROSSED EXTENSIONS OF THE 16-FOLD WAY

In this section, we discuss the Gb symmetry en-
riched bosonic “shadow” theories obtained by gauging the
fermion parity symmetry in the fermionic invertible phases,
summarized in Sec. II. The discussion uses the formalism of
Gb-crossed braided tensor category reviewed in Appendix A.
In Sec. IV, we will use the bosonic shadow theories to classify
the fermionic invertible phases.

The Gb symmetry-enriched bosonic theories are described
by F, R, U, and η symbols that specify the rules between
defects and the anyons [12]. They are summarized in Table IV.
The theories can suffer from obstructions that prevent their
realization in purely (2+1)D; we compute the obstructions
using the relative anomaly formula in Ref. [24] by choosing
a nonanomalous reference state given by ñ2 = 0 [notation
defined in Eq. (53)] and ω2 = 0.

A. Topological order

There are 16 different topological orders obtained by
gauging the fermion parity symmetry in invertible fermionic
phases with Z f

2 symmetry [23]. The anyon fusion rules were
discussed in Sec. II and summarized in Table II. The F and
R symbols of the anyons are given in Table IV. Besides the
identity particle and the fermion ψ , the topological order has
either one or two fermion parity fluxes, whose topological
twist equals θ = eiπc−/4.

We will label the anyons for integer c− as follows.
For even c−, the anyons obey Z2 × Z2 fusion algebra,
and we will label them by (ae, am) with ae, am = 0, 1. we
will sometimes use the vector representation I = (0, 0), ψ =
(1, 1), e = (1, 0), m = (0, 1) for the Z2 × Z2 anyons. For odd
c−, the anyons obey Z4 fusion algebra, and we will label
the anyons by a = 0, 1, 2, 3. We will also label them by
I = [0], v = [1], ψ = [2], v̄ = [3].

When c− is a half-integer, the Z2 Abelian anyons are I, ψ ,
and there is also one fermion parity flux σ of quantum dimen-
sion

√
2. If c− is not specified, we will use the symbol m to

TABLE IV. G-crossed data for the anyons in the SETs obtained by gauging the fermion parity in an invertible fermion phase with symmetry
group Gf . We define θ = ei2πc−/8, and [a]m = a mod m; the integer k is a parameter. When c− is not a multiple of 4, we assume that the
symmetry group Gb has no antiunitary operations, i.e., s1 = 0. We have not written the F and R symbols involving σ when c− = k + 1/2 as
they are not required to determine ñ2 or ν3. For a fixed ñ1, the reference states correspond to ñ2 = 0, ω2 = 0 in the above equations.

F, R, U, and η symbols of anyons in the 16-fold way

c− F abc Rab Ug(a, b) ηa(g, h)

4k 1 (−1)aebm+ c−
4 (aebe+ambm ) ( iaeam+bebm

i[ae+be]2[am+bm ]2
(−1)ambe )ñ1(g) (−1)(ae+am )ñ2+aeω2+ae (1+am )s1∪ñ1

4k + 2 (−1)aebece+ambmcm θ aebe+ambm 1 (−1)(ae+am )ñ2+amω2

4k + 1 θ [a]4 ([b]4+[c]4−[b+c]4 ) θ [a]4[b]4

{
(−1)añ1(g) b �= 0
1 b = 0

eiπ [a]4
c−
2 [ω2]2 × (−1)[a]4 ñ2

4k + 3 θ [a]4 ([b]4+[c]4−[b+c]4 ) θ [a]4[b]4

{
(−1)añ1(g) b �= 0
1 b = 0

eiπ [a]4
c−
2 [ω2]2 × (−1)[a]4 (ñ2+ñ1∪ñ1 )

k + 1/2 Fψψψ = 1 Rψψ = −1 1 ηψ = 1, ησ = (−1)ñ2
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refer to a generic fermion parity flux. In that case, the other
fermion parity flux (if c− is an integer) will be referred to as
ψ × m.

B. Symmetry action and structure of defects

1. Integer c−

In the usual G-crossed theory, we consider all anyon per-
mutations in the group Aut(C). However, when describing the
bosonic shadow of invertible phases, we restrict our analysis
to autoequivalences that preserve ψ . This is because ψ is a
local fermion in the invertible phase, and a global symme-
try cannot permute the local fermion and the fermion parity
flux. For integer c−, these autoequivalences form a group Z2.
Therefore we define ñ1 : Gb → Z2 such that the symmetry
Gb permutes the fermion parity fluxes if ñ1(g) = 1 and does
not if ñ1(g) = 0. Since the symmetry operations g, h applied
separately should permute each anyon in the same way as the
operation gh, we have

ñ1(g) + ñ1(h) = ñ1(gh) mod 2 (40)

⇒ dñ1 = 0 mod 2. (41)

The choice of ñ1 determines the number of g-defects as well as
their quantum dimension, for each g [26]. First we note that
the total quantum dimension of Cg equals that of C0, which
is 2. Now if ñ1(g) = 0, all 4 anyons are g-invariant, so from
Eq. (A23) we obtain |Cg| = 4. The only possibility is that all
4 g-defects are Abelian. Denoting one of them as Ig, we can
in fact write the others as ag := a × Ig, where a ∈ C (this is
proven in Sec. X of Ref. [12]). The fusion of an anyon b with
a defect ag is specified by

ag × b = b × ag = (ab)g. (42)

If ñ1(g) = 1, only 2 anyons (I, ψ) are g-invariant, so from
Eq. (A23), we obtain |Cg| = 2. In this case, we can show that
the two g-defects must have the same quantum dimension

√
2,

i.e., they correspond to Majorana zero modes. Labelling them
as σ+

g , σ−
g , we can further show that

ψ × σ±
g = σ±

g × ψ = σ±
g , (43)

m × σ±
g = σ±

g × m = σ∓
g , (44)

where m is a fermion parity flux.

2. Half-integer c−

In this case, there are no anyon permutations. As a result,
Cg is in bijection with C0 (see Sec. X of Ref. [12] for a proof).
The g-defects can therefore be written as Ig, ψg and σg. The
fusion of ψ with σg is ψ × σg = σg × ψ = σg.

Note that there is no analog of ñ1 in this case. This is
the first hint that the usual G-crossed theory is missing some
information about the invertible phase. We will introduce an
analog of ñ1 in this case through additional flux labels in
Sec. IV.

C. Symmetry fractionalization

In this section, we will obtain conditions on the symmetry
fractionalization classes by solving Eqs. (A15), (A18), (A20),

and (A21). This will give us two main results: (i) an explicit
form for the η and U symbols for the anyons, as summarized
in Table IV, and (ii) relatedly, a definition of the data ñ2 as well
as a constraint on ñ2, for each value of c−. We will also see that
the cocycle ω2 determines the fractional quantum numbers of
the fermion ψ .

1. c− = 4k

We will separately deal with the case where c− is a multiple
of 4, because the symmetry Gb is then allowed to be antiuni-
tary. For all other values of c−, we will find that Eq. (A15) only
admits unitary symmetries. Note, however, that for c− = 4
mod 8 the antiunitary case is anomalous, even though there
is no obstruction to solving for the U and η symbols of the
anyons [44]. Therefore our discussion of antiunitary sym-
metries will only be physically relevant for purely (2+1)D
systems when c− = 0.

For c− = 4k, we can choose the anyon F symbols to be
trivial, while the R symbols are

Rab = (−1)aebm+ c−
4 (aebe+ambm ). (45)

Equation (A15) gives the following constraint on U :

Ug(a, b)

Ug(b, a)
= (−1)ñ1(g)(aebm+ambe ). (46)

We can satisfy this constraint by choosing

Ug(a, b) = γa(g)γb(g)

γa×b(g)
(−1)ambeñ1(g) (47)

for arbitrary functions γa(g). It will be useful to define
γa(g) = iα(g)aeam , where α can be an arbitrary homomorphism
from Gb → Z2. Let us take α = ñ1. This is now used to fix
the η symbols. Substituting into Eq. (A18), we see that

κg,h(a, b) = (−1)(s1∪ñ1 )(g,h)(aebm+ambe ). (48)

Here we have defined the cup product s1 ∪ ñ1(g, h) =
s1(g)ñ1(h) (see Appendix B for the general definition of cup
products). Substituting this into Eq. (A20) with a = e, b = m
gives

ηe(g, h)ηm(g, h)

ηψ (g, h)
= (−1)(s1∪ñ1 )(g,h). (49)

We also have η2
a = 1 for a = e, m, ψ . A general parametriza-

tion of the solutions is given by

ηa(g, h) = (−1)aeams1(g)ñ1(h)Ma,t(g,h). (50)

where t is an anyon.5 Applying Eq. (A21) now imposes the
following condition on t:

t(g, h) × t(gh, k) = gt(h, k) × t(g, hk). (51)

At this point, we make specific choices for the η symbols
guided by physical considerations. When [ω2] is nontrivial,

5This can be seen as follows. A particular solution can be obtained
by taking t to be trivial above. Any other solution must differ by
some η′ symbols satisfying η′

aη
′
b = η′

a×b. These can be parameterized
in general as η′

a = Ma,t, as proven in Sec. II B of Ref. [12]).

235143-9



BARKESHLI, CHEN, HSIN, AND MANJUNATH PHYSICAL REVIEW B 105, 235143 (2022)

the ψ particle carries fractional quantum numbers under Gb,
as specified by the cocycle ω2. This means that we should set

ηψ (g, h) = (−1)ω2(g,h). (52)

Since Mψ,ψ = 1, this can be done by defining

t := mω2+s1∪ñ1 × ψ ñ2 , (53)

for some ñ2 ∈ C2(Gb,Z2). Using the condition on t we
recover the constraint derived in Ref. [20] (up to a 2-
coboundary):

dñ2 = ñ1 ∪ (ω2 + s1 ∪ ñ1) mod 2. (54)

The explicit expressions for ηm and ηe are

ηm = (−1)ñ2 ,

ηe = (−1)(ñ2+ω2+s1∪ñ1 ). (55)

Note that we made a particular choice of U symbols in the
above calculation. Thus there are multiple possible equa-
tions for dñ2 which are physically equivalent, depending on
our choice of γa(g).

The η symbols can be used to find a simple reference
theory and its relation to an arbitrary theory (this will be useful
in computing anomalies.) Specifically, by setting t trivial, we
obtain a reference system with

ηref
e = ηref

m = 1; ηref
ψ = (−1)s1∪ñ1 (56)

⇒ ηref
a = (−1)aeams1∪ñ1 . (57)

By our definition of ω2 and ñ2, such a system has

ωref
2 := s1 ∪ ñ1, ñref

2 = 0. (58)

Note that when Gb is unitary, we can canonically set
ηref

a = 1, so we simply have ηa(g, h) = Ma,t(g,h). We can ex-
plicitly check that the c− = 0 reference is nonanomalous by
computing the defect F symbols. For c− = 4k and s1 = 0,
Appendix E shows that there is a state with trivial symmetry
fractionalization class (i.e., all η = 1) which is nonanomalous.

Finally, we are unable to prove that the reference is
nonanomalous when both s1 �= 0 and ñ1 �= 0. However, since
the reference still has ηe = ηm = 1, we conjecture that this is
the case.

In the Gb-crossed theory, the symmetry fractionalization
classes form a torsor over [t] ∈ H2

ñ1
(Gb,Z2 × Z2). For future

reference, we note that our definition of the η symbols can be
expressed in a general form as

ηa(g, h) = (−1)(aeω2+(ae+am )ñ2+ae(1+am )s1∪ñ1 )(g,h). (59)

2. c− = 4k + 2

In this case, we have

F abc = (−1)aebece+ambmcm , (60)

Rab = θaebe+ambm , (61)

with θ = eiπc−/4. First we show that s1 must be trivial. The
physical reason is that the statistics θ = ±i of the e and m par-
ticles will not remain invariant under an antiunitary symmetry

operation. Formally, we can obtain the following condition on
U from Eq. (A15):

Ug(b, a)

Ug(a, b)
= (−1)s1(g)(aebe+ambm ). (62)

Taking a = b = m gives 1 = (−1)s1(g) for each g, there-
fore s1 = 0. We can now satisfy Eq. (A15) by choosing all
U = 1. This implies that ηaηb = ηa×b. As in the case c− = 0,
we define

ηψ (g, h) = (−1)ω2(g,h). (63)

Applying Eq. (A21) to ηψ enforces that ω2 is a cocycle.
Applying Eq. (A21) to ηm gives

ηm(g, h)ηm(gh, k)

= ηm(g, hk)ηm(h, k)

(
ηe(h, k)

ηm(h, k)

)ñ1(g)

⇒ (−1)dñ2(g,h,k) = (−1)(ñ1∪ω2 )(g,h,k). (64)

This implies the constraint

dñ2 = ñ1 ∪ ω2 mod 2. (65)

For each ñ1, we take the reference to satisfy all ηref
a = 1.

This reference state is nonamonalous, as can be seen from the
computations in Appendix E.

Then, the symmetry fractionalization classes are specified
by ηa(g, h) = ηref

a (g, h)Ma,t(g,h), where we define

t(g, h) = mω2(g,h) × ψ ñ2(g,h). (66)

We note that Mψ,t = (−1)ω2 , consistent with our definition of
ηψ . This also means that

ηm(g, h) = (−1)(ñ2+ω2 )(g,h), (67)

ηe(g, h) = (−1)ñ2(g,h). (68)

3. c− = 2k + 1

F abc = θ [a]4([b]4+[c]4−[b+c]4 ), (69)

Rab = θ [a]4[b]4 , (70)

where [·]4 denotes reduction mod 4. The R symbols impose
the following constraint on U :

Ug(b, a)

Ug(a, b)
= Ks1(g)RabKs1(g)

Rgagb
= θ (1−2s1(g))[a]4[b]4

θ [4−a]4[4−b]4
. (71)

Setting a = b = v = [1], we see that 1 = θ−1−9 = −1 if
s1(g) = 1. To avoid this contradiction we will assume s1 = 0
in the rest of this subsection. We can solve Eq. (A15) with

Ug(a, b) =
{

(−1)añ1(g) b �= 0
1 b = 0

, (72)

Eq. (A18) then gives

κg,h(a, b) = 1. (73)

In turn, Eq. (A20) gives ηaηb = ηa×b. Now we consider two
separate cases. When c− is of the form 4k + 1, we use a ref-
erence solution with ηref ≡ 1. From Appendix E, we can see
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that this reference state is nonanomalous. A general symmetry
fractionalization class can now be described by ηa(g, h) =
Ma,t(g,h) for some anyon t(g, h). Since on physical grounds
we should have ηψ = (−1)ω2 , the most general choice of t

involves v and ψ , in the following manner:

t(g, h) = vω2(g,h) × ψ ñ2(g,h) = v[([ω2]2+2ñ2 )(g,h)]4 (74)

for some ñ2 ∈ C2(Gb,Z2). Here we define [x]k := a mod k;
the last equality was obtained using ψ = v2. In general for
c− = 4k + 1, we have

ηa(g, h) = θ2[a]4[([ω2]2+2ñ2 )(g,h)]4

= eiπ[a]4
c−
2 [ω2(g,h)]2 × (−1)[a]4ñ2(g,h). (75)

When c− is of the form 4k + 3, we define ηref as follows:

ηref
a = Ma,ψ ñ1∪ñ1 . (76)

Indeed, using the stacking rules from Sec. VI, we can show
that this reference state corresponds to a stack of c− copies
of the reference state for c− = 1. This relationship is useful
in simplifying our eventual expressions for the anomaly O4.
Moreover, Appendix E shows that for c− = 4k + 3, there
is a nonanomalous state with all η = 1. Using the relative
anomaly formula, Eq. (A30), we can show that our chosen
reference has trivial relative anomaly with this state; therefore
our reference is also nonanomalous.

Now a general η symbol is of the form ηa = ηref
a Ma,t, where

t is defined in the same way as for c− = 4k + 1. In this case,
we have

ηa(g, h) = eiπ[a]4
c−
2 [ω2(g,h)]2 × (−1)[a]4(ñ2+ñ1∪ñ1 )(g,h). (77)

Finally we constrain ñ2. Applying Eq. (A21) to ηψ enforces
that ω2 is a cocycle. Applying Eq. (A21) to ηv gives

ηv (g, h)ηv (gh, k) = ηv (g, hk)ηv (h, k)

(
ηv̄ (h, k)

ηv (h, k)

)ñ1(g)

(78)

⇒ (−1)(ñ1∪ω2 )(g,h,k)

= eiπ c−
2 ([ω2(g,h)]2+[ω2(gh,k)]2−[ω2(h,k)]2−[ω2(g,hk)]2 )

× (−1)dñ2(g,h,k). (79)

The first term on the rhs can be simplified. Note that

eiπ c−
2 ([ω2(g,h)]2+[ω2(gh,k)]2−[ω2(g,h)+ω2(gh,k)]2 )

= eiπ c−
2 ([ω2(h,k)]2+[ω2(g,hk)]2−[ω2(h,k)+ω2(g,hk)]2 )

· (−1)ω2(g,h)ω2(gh,k)

= (−1)ω2(h,k)ω2(g,hk). (80)

Upon dividing these equations and using the cocycle condition
on ω2, we see that the term of interest is equal to

(−1)ω2(g,h)ω2(gh,k)+ω2(h,k)ω2(g,hk) = (−1)(ω2∪1ω2 )(g,h,k).

Here we used the definition of the cup-1 product of two 2-
cochains, which was developed in Ref. [45]. Putting this back
in the constraint equation, we obtain

dñ2 = ω2 ∪1 ω2 + ñ1 ∪ ω2 mod 2. (81)

Although our definition of η was different for c− = 4k + 1
and c− = 4k + 3, the resulting equations for dñ2 are the same.
For a more abstract derivation of the same constraint, see
Appendix B3.

4. c− = k + 1/2

A system with c− = k + 1/2, where k is an integer, must
have trivial [ω2] and s1. Physically speaking, s1 should be triv-
ial because an antiunitary operation will convert a left-moving
edge state into a right-moving edge state, so that c− → −c−
under such an operation. Furthermore, [ω2] should be trivial,
because if ψ transforms projectively under Gb, that would
mean that inserting Gb flux into the system induces a fermion
parity flux. However, for SETs with c− = k + 1/2, this flux
is a non-Abelian anyon, and therefore cannot be induced
through symmetry fractionalization. The same conclusion can
be arrived at through different arguments using Chern-Simons
theory; this is done in Sec. V D.

Formally, we argue as follows. Assume that g ∈ Gb is
antiunitary, so that s1(g) = 1. Then the U symbols are con-
strained by the R symbols as follows [Eq. (A15)]:

Ug(σ, σ ; 1)

Ug(σ, σ ; 1)
=

(
Rσσ

1

)∗
Rσσ

1

. (82)

The left-hand side (lhs0 of this equation is 1. However,
Rσσ

1 = (−i)ν , where ν = 2c−. Therefore the right-hand side
(rhs) equals (−1)ν = −1, because ν is odd. This contradiction
implies that there is no consistent solution for U when s1 is
nontrivial.

We can set all U = 1. With this we obtain κg,h = 1, imply-
ing ηaηb = ηa×b. Since ψ × σ = σ , we find that ηψ = 1, i.e.,
ψ must transform as a linear representation of Gb. This forces
[ω2] = 0. There is still freedom in choosing ησ = (−1)ñ2 for
some ñ2 ∈ C2(Gb,Z2). Applying Eq. (A21) using this ansatz
shows that dñ2 = 0.

D. Defect obstruction (’t Hooft anomaly)

Let us compute the obstruction O4, which is the anomaly
of the Gb symmetry. It is an obstruction to a well-defined
Gb-crossed braided tensor category [12,46]. In the case with
trivial permutations, the absolute anomaly can be directly
computed from Eq. (A31); in Appendix F, we show how this
formula can be conveniently represented in terms of Pontrya-
gin squares.

When the symmetry permutes the anyons, we will first find
a nonanomalous reference bosonic theory C×

G,ref that has the
same Gb symmetry and the same anyon permutation (specified
by ñ1). Then we use a relative anomaly formula presented in
Ref. [24] to compute the anomaly O(0)

4 of the given theory
relative to C×

G,ref. Finally we simplify O(0)
4 to the final result

O4 = O(0)
4 × dX −1, by subtracting a suitable 4-coboundary

dX . Since the reference theory chosen is nonanomalous, this
procedure gives the absolute anomaly [O4] ∈ H4(Gb, U(1)).

Let us discuss the reference theory in more detail. The
discussion can be separated into ñ1 = 0 and ñ1 �= 0; in the
latter case the Gb symmetry permutes the anyons (for inte-
ger c−). When ñ1 = 0, there is a reference theory where the
symmetry acts trivially, U = 1 and also ηref ≡ 1, and thus
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the reference theory has trivial anomaly. When ñ1 �= 0, we
will focus on the case of unitary symmetry, s1 = 0.6 For
half-integer c−, the symmetry in our reference theory does not
permute the anyons, and we can choose a reference where the
symmetry acts trivially, with U = 1 and η = 1, so this theory
is nonanomalous. For each integer c−, a nonanomalous theory
is given in Appendix E, which has ω2 = 0 and corresponds
to setting all η = 1 in the Gb-crossed language. As stated in
the previous section, when c− = 3 mod 4 we use a different
reference with ηref

a = Ma,ψ ñ1∪ñ1 . We can show that this the-
ory has trivial relative anomaly with the one constructed in
Appendix E.

Upon fixing a nonanomalous reference, we can com-
pute the relative anomaly between C×

G,ref and C×
G by using

Eq. (A30). In the next section, we reparameterize the data ñ1

and ñ2 (along with additional data tracking Gb flux labels) in
terms of new data n1 and n2. Combining the results for differ-
ent c− then leads to the expressions summarized previously
in Sec. II. The details of the computations can be found in
Appendix C.

We remark that the results in Table I for the anomaly O4

use a nonanomalous reference theory where the Gb symme-
try has nontrivial fractionalization Eq. (20) for c− = 3 mod
4 to simplify the formula, instead of the reference theory
with trivial symmetry fractionalization. If we instead use the
latter reference theory ηa = 1 for all values of c−, the ex-
pressions of O4 will have extra term (−1)n1∪n1∪ω2 for c− = 3
mod 4. This extra term in O4 can also be generated by the
redefinition n2 → n2 + n1 ∪ n1 in the formula of O4. As a
consistency check, one can perform the time-reversal transfor-
mation, which changes c− → −c− and complex conjugates
O4. Due to the term in1∪n1∪ω2 in O4, we find that the anomaly
for the theories with chiral central charges c−,−c− differ by
(−1)n1∪n1∪ω2 if the anomaly is evaluated with respect to ηa =
1. We remark that one can show both reference theories are
nonanomalous, since they have vanishing relative anomaly,
and the reference theory with trivial symmetry fractionaliza-
tion ηa = 1 has vanishing anomaly as shown in Appendix E.

IV. CHARACTERIZING INVERTIBLE FERMIONIC
PHASES USING THE Gb-CROSSED THEORY

Up to this point, we have studied the Gb-crossed theories
as if we were only interested in the SET phases themselves.
As we will now see, in order to obtain an accurate counting
of invertible fermionic phases, we need to introduce some
additional data.

A. The need for flux labels

First we discuss why the data ñ1, ñ2, and ν3 in the usual
Gb-crossed BTC theory do not give a complete description
of invertible fermion phases. In Sec. VII A, we discuss a
detailed example which studies the counting and classification

6When ñ1 �= 0 and s1 �= 0, we expect the reference theory where
the fermion parity fluxes do not carry fractional quantum numbers,
i.e., ηe = ηm = 1, is also nonanomalous, but do not have a proof.

of invertible phases with G f = Z2 × Z f
2 . The example will

concretely illustrate the general points made in this section.
Topological invariants for invertible phases are often in-

terpreted as the symmetry charges associated to Gb flux
insertion. For example, in the integer quantum Hall states,
the Hall conductivity measures the integer U(1) charge trans-
ported upon inserting a quantum of U(1) flux, while in the Z2

quantum spin Hall insulator, inserting a 2π flux of the bosonic
U(1) symmetry changes the fermion parity (charge under Z f

2 )
in the ground state. Now, a complete theory of defects in a
“G f -crossed” theory of topological phases, where the only
anyons are the identity and the fermion, has not been fully
developed (see Ref. [26] for a partial theory in the fSPT case).
The basic difficulty is that in this case, the anyon category C
is not modular. Nevertheless, we can make several statements
about symmetry defects in such theories. In particular, we can
define a set of “pure” Gb fluxes, represented as a(g,0) [recall
that a general element of G f is given by (g, a), where g ∈ Gb

and a ∈ Z f
2 ], while the product of a pure Gb flux and a fermion

parity flux is given by some a′
(g,1).

In computing topological invariants, we would like to
measure the symmetry charge of a(g,0). However, the usual Gb-
crossed theory does not distinguish between a(g,0) and a′

(g,1).

Upon gauging Z f
2 , the (g, 0) and (g, 1) defects form a single

g-defect sector. Hence there is an ambiguity in determining
topological invariants in this case: the Gb-crossed theory does
not specify which defect to consider. This specification must
be included as additional data. For each g ∈ Gb, we thus define
Lg as an g-defect that corresponds to a (g, 0) flux in the
original G f -crossed theory. This lets us physically distinguish
between Lg and Lg × m, where m is a fermion parity flux.

B. Assigning Lg

We now explain how to assign the label Lg. For integer
c−, the assignment proceeds as follows. Suppose Lg, Lh corre-
spond to (g, 0) and (h, 0) defects in the invertible phase. Then
we know that the fusion product of Lg × Lh is a (gh, ω2(g, h))
defect (if Lg and Lh are both non-Abelian, there will be two
fusion products). Therefore the fusion product of Lg × Lh ×
mω2(g,h) must be (gh, 0) defect, and we can define Lgh through
the equation

Lg × Lh × mω2(g,h)

=
{

Lgh, Lg or Lh is Abelian
Lgh × (1 + ψ ), Lg and Lh are non-Abelian . (83)

This defines Lgh up to multiplication by ψ . The ambiguity
is due to the fact that defects can always be relabelled by
fermions without changing the Gb-crossed theory.

We thus assign Lg arbitrarily on a complete set of genera-
tors of Gb; then Lg is fully determined by the above equation.
Different assignments of Lg on the generators in general lead
to descriptions of physically distinct invertible phases.

Next we consider the case c− = k + 1/2. Here the assign-
ment is simple: for each generator of g, we define Lg as either
the Abelian defect Ig, or as the non-Abelian defect σg. This as-
signment will in fact define a homomorphism n1 : Gb → Z2,
as we will see below. Here Lgh is simply one of the fusion
products of Lg × Lh.
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C. Relation between the representations (n1, n2, ν3)
and (ñ1, ñ2, ν3, {Lg})

From previous sections, we see that an invertible phase
is described completely by the data (ñ1, ñ2, ν3, {Lg}). We
can relabel the defects so that Lg gets redefined into some
“canonical” form L0

g . Then the same information can actually
be encoded within a new set of data (n1, n2, ν

′
3, L0

g ). Since
L0

g is canonical, we can drop it and simply use the data
(n1, n2, ν

′
3) as introduced in Sec. II. There are multiple reasons

for redefining the data in this way: (i) we can more easily
compare our results to those of Ref. [20] when c− = 0; and
(ii) our equations and stacking formulas for different c− can
be expressed in a more compact form.

The explicit correspondence is as follows. First let c− be an
integer. We define a ‘canonical’ flux labeling L0

g , say L0
g = Ig

or σ+
g depending on whether ñ1(g) = 0 or 1. L0

g is related to
Lg by

L0
g :=

{
Lg × ml1(g) × ψb1(g), c− = 2k
Lg × v[l1(g)]2 × ψb1(g), c− = 2k + 1

. (84)

Here we define l1, b1 ∈ C1(Gb,Z2); we also use the notation
[a]2 = a mod 2. Then, by relabelling the defects such that
Lg → L0

g , we find that

n1 = ñ1; (85)

n2 =
{

ñ2 + n1 ∪ l1, c− = 2k
ñ2 + n1 ∪ l1 + l1 ∪ l1, c− = 2k + 1 . (86)

Thus n2 is defined as a specific instance of ñ2, for which the
flux labels are canonically defined. From this n1 and n2, we
determine ν3 in the usual manner.

We can prove this as follows. Before the relabelling we
have the fusion rule

ag × bh = t(g, h) ×
∑

c

cgh. (87)

For c− even, if we relabel ag → ag × ml1(g) × ψb1(g), we find
that

t → t × mdl1 × ψdb1+n1∪l1 . (88)

Up to coboundaries, we see that ñ2 → ñ2 + n1 ∪ l1. We can
repeat this calculation for the case with odd c−; here ñ2 is
additionally shifted by a term l1 ∪ l1. This leads to the result
quoted above. We note that specifying Lg above is equivalent
to specifying the relabelling 1-cochain l1.

Now consider c− = k + 1/2. Here we define L0
g = Ig for

each g. The relation between Lg and L0
g now defines n1:

Lg := L0
g × σ n1(g). (89)

We can check that n1(gh) = n1(g) + n1(h) mod 2. This is
equivalent to saying that (i) Lgh is Abelian if Lg and Lh are
both Abelian or non-Abelian and (ii)Lgh is non-Abelian if
exactly one of Lg and Lh is non-Abelian. This proves that n1

is a homomorphism, in agreement with the definition when
c− = k. We then define

n2 := ñ2 (90)

and determine ν3 as before in terms of n2.

This redefinition has the following interesting conse-
quence. In the bosonic shadow theory, the pair (ω2, ñ2) is
classified by a torsor over H2

ñ1
(Gb,A) where A is the group of

Abelian anyons in the bosonic shadow; the coboundary equiv-
alences that define H2

ñ1
(Gb,A) arise because in the bosonic

shadow, relabeling symmetry defects by fusing them with
Abelian anyons are considered trivial operations. However,
once we choose our data so that the flux labels are canonical,
we no longer allow relabelings of defects that shift them by
a fermion parity flux, because such shifts would change the
flux labels away from the canonical choices. Therefore the
equivalence on n2 is reduced to arise from only those rela-
belings of symmetry defects corresponding to fusion with the
fermion ψ . As such, the different choices of n2 form a torsor
over H2(Gb,Z2).

D. Summary and a general counting procedure

We now summarize the details given in previous sec-
tions by stating a general procedure to count the number of
invertible phases with arbitrary symmetry group G f . The steps
are as follows, and lead to the results in Table I.

(1) For each choice of c−, pick an n1 ∈ H1(Gb,Z2). Then
compute H2

n1
(Gb,Z2). Find the allowed choices of n2 in this

case: the distinct classes of [n2] will form a H2(Gb,Z2) torsor,
if unobstructed.

(2) In this representation, we do not need to assign flux
labels. If c− is an integer, the use of n1 and n2 implies that the
flux labels are canonically chosen. If c− is a half-integer, Lg is
fixed by the choice of n1.

(3) Using the above choice of n2, obtain a solution for ν3.
The remaining solutions can be obtained by shifting ν3 by
cocycle representatives of H3(Gb, U(1)T ).

(4) The final step is to count redundancies in n1, n2, ν3.
The various redundancies are discussed below in Sec. IV E.
To summarize that section, first we show that there is always a
redundancy n2 � n2 + ω2 for integer c−, which arises from
relabelling the fermion parity fluxes. There are also redun-
dancies in ν3 corresponding to a fixed n2. These take the
form ν3 � ν3 × (−1)χ∪ω2 , where χ ∈ H1(Gb,Z2). They arise
due to the freedom in relabelling defects by fermions. After
incorporating these redundancies, we obtain the final count of
invertible phases.

E. Equivalences

In this section, we will discuss various redundancies in the
counting of invertible phases. The redundancies in n2 and ν3

were discussed for (2+1)D fSPT phases in Ref. [20]. We will
see that similar redundancies hold for all integer values of c−
(but not for half-integer c−).

The redundancies in n2 can be understood in terms of
a relabelling of anyons or symmetry defects by ψ ; this is
considered an equivalence because in the invertible theory,
ψ is a local fermion that should not change the topological
character of the simple objects. The redundancies in n2 also
transform ν3.
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1. Equivalence from relabelling fermion parity fluxes

In the analysis below, we can use either the representa-
tion (ñ1, ñ2, ν3, {Lg}) or the representation (n1, n2, ν3). Let c−
be an integer. The first result, proven below, is that under
a relabelling of the fermion parity fluxes we should take
ñ2 → ñ2 + ω2 together with a change in ν3. This result holds
for both unitary and antiunitary symmetries. If we switch to
the variables (n1, n2, ν3) the same equivalence takes n2 →
n2 + ω2.

The relabelling equivalence can be proven in a two-step
process. We start with some G-crossed theory with known
F, R, U, and η symbols. In the first step, the fermion par-
ity fluxes are relabelled, thus giving a new theory with data
F̃ , R̃, Ũ , and η̃. To prove the equivalence between these
descriptions, we perform gauge transformations that send
F̃ , R̃, Ũ back to the original F, R, U . In order to send η̃

back to η, we will need to redefine ñ2 as ñ2 + ω2.
First we consider c− = 0. Here we have the following

anyon data for a general Gb-crossed theory (Table IV):

F abc = 1,

Rab = (−1)aebm ,

Ug(a, b; c) = ((−1)ambe iaeam+bebm−cecm )ñ1(g)

ηa = (−1)ae(n2+ω2+s1∪ñ1 )+amñ2+aeams1∪ñ1 . (91)

Step 1: Upon relabelling e ↔ m, we get

F̃ abc = 1,

R̃ab = (−1)ambe ,

Ũg(a, b; c) = ((−1)aebm iaeam+bebm−cecm )ñ1(g)

η̃a = (−1)am (ñ2+ω2+s1∪ñ1 )+aeñ2+aeams1∪ñ1 . (92)

Step 2: We perform a vertex basis gauge transformation [see
Eq. (A32)] given by �ab

a×b = iambe−aebm . This takes

F̃ abc
d → �ab

e �ec
d

�
a f
d �bc

f

F̃ abc = 1 = F abc,

R̃ab → R̃ab �ba

�ab
= (−1)aebm = Rab,

Ũg(a, b) → �
gagb

(�ab)1−2s1(g)
Ũg(a, b)

= (−1)(ambe+aebm )(ñ1+s1 )(g)Ũg(a, b)

= (−1)(ambe+aebm )s1(g)Ug(a, b),

η̃ → η̃.

These vertex basis gauge transformations do not completely
correct Ũ if s1 �= 0. The only other gauge transformation that
can do so is called a symmetry action gauge transformation; it
takes

Ũg(a, b) → γaγb

γa×b
(g)Ũg(a, b). (93)

If we choose γm = γψ = 1, γe = (−1)s1 , we can check that
the U symbols are fully corrected; moreover, the η symbols

change as follows [Eq. (A33)]:

η̃a → (−1)(ae+am )s1∪ñ1 η̃a. (94)

The original relabelling shifted ñ2 by ω2 + s1ñ1. The above
gauge transformation γ only shifts it back by ñ1s1, which is
coboundary equivalent to s1ñ1. This is not sufficient to fully
restore the η symbols. The only way to do so is to additionally
redefine ñ2 → ñ2 + ω2 by hand. We can see that this corrects
the η symbols fully. Since we then obtain the same data as in
the original theory, we conclude that a relabelling of e and m
particles is equivalent to a shift of ñ2 → ñ2 + ω2, along with
suitable gauge transformations.

We have verified in Appendix G that when s1 = 0, ad-
ditional gauge transformations cannot produce any further
equivalences on n2. However, when s1 �= 0, we do formally
obtain another equivalence, namely ñ2 → ñ2 + ω2 + s1ñ1.
The gauge transformations associated to this equivalence all
require a particular choice �ψψ = −1. On the other hand,
in the transformation ñ2 → ñ2 + ω2 above, we used a gauge
transformation with �ψψ = +1. Reference [47] noted that
allowing �ψψ = −1 leads to several inconsistencies in the
classification of fermionic SET phases. Following Ref. [47],
we thus impose �ψψ = +1 on our allowed gauge transforma-
tions; as noted there, it is still an open question to find a more
physically motivated argument for this condition.

Next we consider c− �= 0. As before, we find that a rela-
belling of the fermion parity fluxes changes the Gb-crossed
data; moreover the η symbols cannot be restored to their
original values by gauge transformations. Now the η symbols
can equivalently be expressed in terms of the cocycle t:

t(g, h) = mω2(g,h) × ψ ñ2(g,h). (95)

(We denote a fermion parity flux as m or ψ × m whenever c−
is unspecified.) When we shift ñ2 → ñ2 + ω2, the cocycle is
correspondingly modified as

t(g, h) → (ψm)ω2(g,h) × ψ ñ2(g,h) (96)

= mω2(g,h) × ψ (ñ2+ω2 )(g,h). (97)

Therefore when c− is an integer, shifting ñ2 → ñ2 + ω2 is
equivalent to relabelling the fermion parity fluxes. We can
check that the F, R, and U symbols for the anyons remain
invariant up to gauge transformations when such a relabelling
is performed. Note that this equivalence does not arise when
c− is a half-integer, because ω2 must be trivial in that case.

We note that for any change in ñ2, the expression for O4

changes, and as a result ν3 must also change. For the above
equivalence on ñ2, the change in O4 can be computed directly;
integrating this gives an expression for the change in ν3, up to
a 3-cocycle α′′:

(ñ2, ν3) � (ñ2 + ω2, ν3 × (−1)ω2∪1ñ2 × α′′). (98)

If our conjectured stacking rules are correct, we will have
α′′ = 0 (see the argument in Sec. VI B).

2. Equivalences from relabelling symmetry defects

We can obtain additional equivalences as follows: we rela-
bel the symmetry defects with fermions, compute the change
in the defect F, R, U, and η symbols, and then apply gauge
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transformations which shift the data back to their original
form, up to some redefinition of ν3. In this section, we use a
result from Ref. [48], which considers general relabellings of
defects in a G-crossed BTC by anyons. Consider a Gb-crossed
BTC with some ñ1, ñ2, and ν3. Let us relabel each defect
as ag → ag × ψχ (g), where χ ∈ Z1(Gb,Z2). Then, the results
of Ref. [48], specialized to our case, imply that the defect F
symbols transform by a 3-cocycle ξ ∈ Z3(Gb, U(1)), defined
as follows:

ξ (g, h, k) := ηψχ (k) (g, h)Ug(ψχ (h), ψχ (k) ) (99)

= (−1)χ (g)ω2(h,k) × 1 = (−1)(χ∪ω2 )(g,h,k). (100)

This result is true for all integer values of c−, and agrees with
the result derived for c− = 0 in Ref. [20] through a different
construction. We note that this idea of relabelling defects
using elements of H1(G,A), where A is a group of Abelian
anyons, has also been studied in other recent works (see, e.g.,
Appendix G of Ref. [13]).

More generally, consider a relabelling of the form

ag → ag × ψb1(g). (101)

For a general 1-cochain b1, this changes the fusion rules. In
particular, the symmetry fractionalization cocycle transforms
as follows:

t(g, h) → t(g, h) × ψdb1(g,h). (102)

We can absorb the extra piece into the definition of ñ2 by
redefining it as follows:

ñ2 → ñ2 + db1. (103)

The relabelling also changes ν3: the shift in ν3 can be com-
puted from the formula for O4. We have

Onew
4

Oold
4

= (−1)db1∪ω2+db1∪ñ2+ñ2∪db1+db1∪db1 , (104)

and therefore we must have

ν3 → ν3 × (−1)b1∪ω2+db1∪1ñ2+b1∪db1 × α′
3, (105)

where α′
3 is an undetermined 3-cocycle.

In Sec. VI, we discuss the stacking rules for invertible
fermionic phases. The stacking rule for ν3 also has an unde-
termined 3-cocycle which we call α3. In Sec. VI B, we show
that α′

3 can be written exactly in terms of α3: in particular, if
α3 = 0 then α′

3 = 0 as well. We conjecture that α3, α
′
3 indeed

vanish.
To summarize, the most general defect relabeling by

fermions induces the following transformation on the data
(assuming the conjecture α′

3 = 0):

ñ2 → ñ2 + db1,

ν3 → ν3 × (−1)b1∪ω2+db1∪1ñ2+b1∪db1 . (106)

The same equivalences apply to the data (n1, n2, ν3) without
tildes, as written in Table I. This is because the above argu-
ments go through without any changes if we assume that the
flux labels are canonically defined.

What do these redundancies physically mean? As pointed
out in Ref. [31], the cocycle ν3 = (−1)ω2∪χ describes a

symmetry enriched toric code in which there is no symme-
try fractionalization, but the m particles transform as linear
representations of Gb, and have nontrivial integer quantum
numbers. Using this, we can heuristically understand the re-
labelling equivalence as follows. The action of g on an m
particle in the original system consists of braiding m around
a “bare” g-defect Ig. If we redefine Ig as Ig × ψχ (g), then the
symmetry action on an m particle in the redefined system con-
sists of braiding the m particle around the bound state of Ig and
the anyon ψχ (g). The extra braiding phase Mm,ψχ (g) = (−1)χ (g)

indicates that the m particle now carries an additional linear
representation under Gb, as specified by χ , relative to the
original system. This shifts ν3 by an SPT 3-cocycle, for the
following reason. When we insert Gb flux in the relabelled
system through the operations g, h, we induce the anyon
mω2(g,h) (up to a possible fermion). This anyon transforms as a
linear representation under a third symmetry operation given
by k. Therefore a Gb flux inserted through g, h has integer Gb

charge, which is measured by the 3-cocycle

Mt(g,h)ψχ (k) = (−1)ω2(g,h)χ (k). (107)

Since relabelling defects by fermions is considered a trivial
modification, such cocycles should also be modded out of
the classification. However, as we have argued previously,
relabelling defects in the Gb-crossed theory by fermion parity
fluxes has no physical analog in the fSPT picture, and should
not be considered as an equivalence between fSPT phases.

V. Spin(2c−)1 CHERN-SIMONS THEORY APPROACH

In this section, we will recover the results of the Gb-crossed
approach using Chern-Simons theory. As in Secs. III and
IV, we will primarily be interested in constructing “bosonic
shadow” theories for Gb SET phases. We can also directly
construct actions for invertible phases, which are useful in
studying the stacking rules: we discuss this in Sec. VI. Fur-
thermore, there are potential applications of realizing these
phases using Chern-Simons theory coupled to matter fields,
but we will not discuss them here.

Let us begin with the invertible fermionic phases with only
the fermion parity symmetry. The phases are classified by the
chiral central charge c−, and they can be described by the
Chern-Simons theory SO(L)1 with L = 2c−, which depends
on the spin structure.7 The local fermion particle is described
by the Wilson line in the vector representation. The theory is
invertible [49], with effective action given by the gravitational
Chern-Simons term −2c−CSgrav, with

CSgrav = 1

192π
Tr

(
ωdω + 2

3
ω3

)
, (109)

where ω is the spin connection of the space-time manifold
(not to be confused with the SO(L) gauge field). This effective

7When L = 1, we define the theory by the duality SO(1)1 ↔
SO(17)1 × (E8)−1, where (E8)1 is the invertible bosonic TQFT that
will not participate in the discussion. Similarly, when L = 0 we
define the theory by the duality

SO(0)1 ↔ SO(16)1 × (E8)−1. (108)
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action generates a Z classification of the fermionic invertible
phases. The fermion parity symmetry can be identified with
the magnetic 0-form symmetry of the Chern-Simons theory
[50], generated by (−1)

∮
wSO

2 where wSO
2 is the second Stiefel-

Whitney class of the SO(L) bundle.8

The fermionic invertible phase with symmetry Gb × Z f
2 or

an extension of Gb by Z f
2 corresponds to coupling the SO(L)1

Chern-Simons theory to background Gb gauge field and the
spin structure.

A. Relation between chiral central charge
and symmetry extension

When the symmetry is Gb × Z f
2 , the gravitational Chern-

Simons term is well-defined for any integer coefficient and
gives a well-defined fermionic invertible phase (where G acts
trivially). Thus we can focus on classifying the phases with
c− = 0: the phases with nonzero c− are obtained by stacking
with additional fermionic invertible phase with only fermion
parity symmetry (e.g., a p + ip superconductor).

On the other hand, when the symmetry is a nontrivial
extension of Gb by Z f

2 specified by [ω2] ∈ H2(Gb,Z2), the
fermionic invertible phases with only fermion parity symme-
try is no longer well-defined: there are G f transformations that
are not in Z f

2 but can compose into the nontrivial element of
Z f

2 . For example, if the fermion has spin 1/2, a spatial rotation
by the angle 2π is equivalent to multiplication by (−1)F and
not 1. In such cases, it is not consistent for a system to only
transform under Z f

2 but not other elements of G f . In particular,
the p + ip topological superconductor does not admit such a
symmetry extension.

In fact, we will show later in the section that fermionic in-
vertible phases with [ω2] �= 0 must have integer chiral central
charge, and can never have half-integer chiral central charge.
The same result is obtained in the Gb-crossed approach by
studying the constraints on symmetry fractionalization when
c− is a half-integer.

These results can be understood more formally. When the
symmetry is a nontrivial extension, the total symmetry group
is no longer SpinLorentz × Gb but9

SpinLorentz × G f

Z2
. (110)

Now the spin structure is replaced by a “spin-G f structure,”
given by a Z2 one-cochain ρ satisfying

dρ = w2(T M ) + (A)∗ω2. (111)

Here A is the background gauge field for Gb symmetry,
w2(T M ) is the second Stiefel-Whitney class of the tangent
bundle, and ω2 ∈ H2(Gb,Z2) specifies the extension G f .
When ω2 = 0, ρ is independent of the details of Gb. Since the

8Physically, it can be understood as the total GNO charge [51]
mod 2.

9Here we assume the symmetry Gb is unitary for simplicity. For
antiunitary symmetry, the Spin Lorentz symmetry is replaced by
Pin± and there is additional Z2 quotient to identify the time-reversal
element in Pin±, Gb.

allowed gravitational CS terms depend only on the definition
of ρ, they can also be defined independent of the details of
Gb for each value of c−. On the other hand, when [ω2] �= 0,
ρ depends on ω2, and in turn the gravitational Chern-Simons
term is only well defined for specific values of c−: see the
examples below. We remark that since the phases do not
depend on the usual spin structure, they are classified by the
cobordism group with spin-G f structure instead of the spin
cobordism group [7,8,52].

For example, when Gb = U(1) and G f is its double cov-
ering, such a symmetry is present in systems that satisfy the
spin/charge relation with respect to the global U(1) symme-
try: local particles with odd charge are fermion, and with
even charge are bosons. The systems require a spinc structure,
where Spinc(d ) = (Spin(d )Lorentz × U(1))/Z2. The effective
actions for the invertible phases with spinc structure A are
fully given by integer linear combinations of the terms (see,
e.g., Ref. [53,54])

I[A] = 1

4π
AdA + 2CSgrav,

16CSgrav. (112)

The latter is the effective action for the bosonic (E8)1 invert-
ible topological order. The above two effective actions have
chiral central charge c− = −1 and c− = −8, respectively, and
thus the invertible phases they generate always have integer
chiral central charge. For this symmetry, the fermionic invert-
ible phases do not allow half-integer chiral central charges.

Another example is the free fermion invertible phase.
Consider free massive Majorana fermions transformed un-
der some representation r of flavor symmetry G f , where the
center Z f

2 ⊂ G f flips the sign of all fermions. Massive free
fermions describe invertible phases [55]. If we turn on back-
ground A for G f symmetry, the fermion has action

L = iψ̄ /DAψ − mψ̄ψ, (113)

where DA ≡ ∂ − iA − i
2ω is the covariant derivative. Inte-

grating out the fermions generates different gravitational
Chern-Simons terms for positive and negative mass. The
difference is equal to (dim r)CSgrav, where dim r is the di-
mension of the representation (it is also equal to the number of
Majorana fermions in the multiplet).10 Thus the chiral central
charge of the fermionic invertible phase of G f symmetry is
given by

c− = − 1
2 dim r. (114)

If the group G f is a nontrivial extension of Gb by Z2, i.e., G f

is a nontrivial double covering of Gb, then the dimension of
the representation that transforms under the Z2 center must
be even, dim r ∈ 2Z, and therefore the chiral central charge
of the fermionic invertible phase is an integer instead of a

10The fermion partition function is given by the eta invariant
coupled to background A for the Gf symmetry [56], and by
Atiyah-Patodi-Singer index theorem [57], it can be expressed as
a combination of gravitational Chern-Simons term and a part that
depends on the A background gauge field.
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half-integer. Such a relation between integer c− and nontriv-
ial symmetry extension [ω2] holds in general for fermionic
invertible phases.

B. Classifying invertible phases using “bosonic shadow”
Spin(2c−)1 Chern-Simons theory

To obtain the full classification of fermionic invertible
phases, and in particular when the symmetry is a nontrivial
extension of Gb by Z f

2 , it is easier to work with the bosonic
theory obtained by gauging the fermion parity symmetry11

in the symmetry-enriched SO(2c−)1 Chern-Simons theory.
This theory is called the “bosonic shadow” for the fermionic
invertible phase [28]. Since the fermion parity symmetry is the
magnetic 0-form symmetry in the SO(2c−)1 Chern-Simons
theory, gauging this symmetry produces the double-covering
Spin(2c−)1 Chern-Simons theory. The latter theory is en-
riched by the dual Z2 one-form symmetry corresponding to
the fermion ψ .

The existence of an additional one-form symmetry means
that we couple the Chern-Simons theory to the background
gauge field not just for the Gb 0-form symmetry, but also a
two-form gauge field B2 for this one-form symmetry. If we
gauge this one-form symmetry, i.e. sum over the background
gauge field B2, we recover the original fermionic theory. The
gauging produces a fermionic theory from a bosonic theory
because the one-form symmetry is generated by ψ and hence
has a particular anomaly [38]. In the rest of this section, we
will discuss the classification of fermionic invertible phases
using the bosonic shadow theories.

To relate this to the classification using Gb-crossed BTCs
discussed in previous sections, we note that turning on the
background for the 0-form symmetry Gb is equivalent to in-
serting Gb symmetry defects. The properties of the anyons
and symmetry defects partially specify the invertible phase,
but we need to add some extra information in the form of flux
labels (see Sec. IV). Now shifting the definition of flux labels
in the Gb-crossed theory is related to a shift in spin structure
in the fermionic invertible phase. We note that the bosonic
theory has a “dynamical spin structure” ρ which is summed
over in the path integral, whose Wilson line is the fermion line
that generates the dual Z2 one-form symmetry. The one-form
symmetry has background B2 that couples as

π

∫
B2 ∪ ρ. (115)

Thus shifting the spin structure by A∗
bn1 for n1 ∈ H1(Gb,Z2),

ρ → ρ + A∗
bn1, induces the effective action

π

∫
3d

B2 ∪ A∗
bn1, n1 ∈ H1(Gb,Z2), (116)

which describes a symmetry protected topological phase with
Z2 one-form symmetry and Gb 0-form symmetry.

Thus the Gb-crossed data for anyons and defects, together
with flux labels, can be equivalently encoded by coupling

11More precisely, summing over spin structures. The difference is
explained in Ref. [58].

the Spin(2c−)1 theory to background gauge field for 0-form
symmetry Gb and Z2 one-form symmetry.

We remark that the classification for the fermionic SPT
phases with c− = 0 using this approach [where Spin(0)1 is
equivalent to the untwisted Z2 gauge theory of the toric code]
is discussed in Refs. [28,59].12

C. Summary of the intrinsic symmetry in Spin(2c−)1

Chern-Simons theory

Here we summarize some properties of the Spin(2c−)1

Chern-Simons theory. See, e.g., Appendix C of Ref. [53], and
Refs. [35,50,60] for a more detailed discussion of the global
symmetry and anomaly of the theory. The theory has chiral
central charge c−, which can be an integer or half-integer.
These results are also summarized in Tables I and II.

For every c−, the theory has a fermion denoted by ψ that
generates Z2 one-form symmetry. Gauging the one-form sym-
metry changes the theory into SO(2c−)1, which is a fermionic
invertible phase with (−1)F symmetry dual to 2c− copies
of the p+ip topological superconductor. We will construct
Spin(2c−)1 theories enriched with Gb symmetry such that
gauging the one-form symmetry produces the fermionic the-
ory with G f symmetry.

1. For c− a half-integer

For c a half-integer, the theory has three anyons, denoted by
I, ψ, σ of spin 0, 1

2 ,
2c−
16 mod 1. They obey Ising fusion rules

(see Table II) and are Wilson lines in the trivial, vector and
spinor representation of Spin(2c−). The theory has Z2 one-
form symmetry generated by ψ , with the anomaly described
by an SPT phase in one dimension higher [61,62]:

π

∫
4d
P (B2) = π

∫
4d

Sq2(B2), (117)

where B2 is the background two-form gauge field for the
Z2 one-form symmetry, and it satisfies dB2 = 0. P (B2) =
B2 ∪ B2 − B2 ∪1 dB2 is the Pontryagin square of B2 [41],13

and for dB2 = 0 mod 2, we have π
∫
P (B2) = π

∫
Sq2(B2) =

π
∫

B2 ∪ B2. The background modifies the gauge bundle into
SO(2c−) bundle with second Stiefel-Whitney class equal to
B2. That is, the transitions for triple overlapped coordinate
patches do not close, up to a sign fixed by B2. The Wilson
line in the spinor representation (corresponding to σ ), that
transforms under the one-form symmetry, is attached with a
“Wilson surface”

∫
B2 to be gauge invariant under one-form

gauge transformation14: this is the generalization of a Wilson
line for a 2-form gauge field. The Wilson lines for I, ψ are not
attached with a Wilson surface; they are in representations of
SO(2c−). 15

12Note the duality Spin(16)1 × (E8)−1 ↔ (Z2)0 where the right-
hand side is the untwisted Z2 gauge theory [50].

13For a review of Pontryagin square, see Appendixes B and C of
Ref. [35].

14Note ψ generates the one-form symmetry, but it does not trans-
form under the one-form symmetry.

15In gauge theory with gauge group K and center C, coupling the
theory to background gauge field B2 for the center one-form symme-
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We note that there are no anyon-permuting symmetries that
act on Spin(2c−)1 for half-integer c−.

2. For c− an even integer

For c− an even integer, the theory has Z2 × Z2 anyons,
I, e, m, em = ψ of spins 0,

2c−
16 ,

2c−
16 , 1

2 , where e, m are per-
muted by a Z2 0-form symmetry. They are Wilson lines
in the trivial, spinor, cospinor and vector representation of
Spin(2c−). The Z2 0-form symmetry is the electric-magnetic
duality symmetry of Spin(2c−); it is also referred to as a
charge conjugation symmetry.16 The Chern-Simons theory
has Z2 × Z2 one-form symmetry generated by (say) the ψ, m
lines, with the anomaly described by the topological spins
of the symmetry lines [61–63]. Explicitly, the anomaly is
described by the SPT phase in 3+1d with effective action

π

∫
4d
P
(
B(1)

2

) + π

∫
4d

B(1)
2 ∪ B(2)

2 + 2π
2c−
16

∫
4d
P
(
B(2)

2

)
,

(118)
where B(1)

2 and B(2)
2 are the background two-form gauge fields

for the Z2 × Z2 one-form symmetry. We take B(1)
2 to be the

background for the one-form symmetry generated by ψ ; it
evaluates to the cochain n2, while B(2)

2 is generated by m and
evaluates to ω2. P (B(2)

2 ) = B(2)
2 ∪ B(2)

2 − B(2)
2 ∪1 dB(2)

2 is the
Pontryagin square of B(2)

2 and it is a well-defined Z4 class. The
background turns the gauge bundle into a Spin(2c−)/(Z2 ×
Z2) bundle with second Stiefel-Whitney class (valued in Z2 ×
Z2) equaling the Z2-valued two-forms B(1)

2 , B(2)
2 .

Charge conjugation 0-form symmetry. If we also turn on a
background B1 for the Z2 charge conjugation 0-form symme-
try, where dB1 = 0, the bundle has first Stiefel-Whitney class
given by B1, and the Z4 gauge field B2 can be expressed as
Z2 × Z2 gauge fields B(1)

2 , B(2)
2 that satisfies [60,64]

dB(1)
2 = B1 ∪ B(2)

2 , dB(2)
2 = 0. (119)

The gauge fields B1, B(1)
2 , B(2)

2 evaluate to n1, n2, ω2 respec-
tively on 2-simplices. The backgrounds (B(1)

2 , B(2)
2 ) describe

a twisted Z2 × Z2 two-cocycle under the action of the Z2

0-form symmetry with background B1. Moreover, the gauge
transformations of this twisted theory encode the various
equivalences among the data noted in the Gb-crossed formal-
ism. For instance, under the 0-form symmetry transformation
B1 → B1 + dλ by 0-form λ = 0, 1, B(1)

2 → B(1)
2 + B(2)

2 ∪ λ,
and for the global transformation λ = 1 this produces the shift
B(1)

2 → B(1)
2 + B(2)

2 . In the Gb-crossed language, this gauge

try C inserts a one-form symmetry defect at the Poincaré dual of B2,
such that the Wilson line transforms under the one-form symmetry
braids with the defect. This implies that the transition function of the
K field is no longer closed on the triple overlap of the coordinate
patches, and only closed up to an element in C as specified by B2,
and thus the bundle around the one-form symmetry defect becomes
a K/C bundle.

16When c− = 4 mod 8, the theory is the three fermion theory, and
it has enlarged S3 symmetry that permutes the fermions e, m, em.
Since the S3 symmetry does not leave the fermion line invariant, it is
sufficient to focus on Z2 e − m duality 0-form symmetry.

transformation implements an e − m relabelling which gives
the equivalence n2 � n2 + ω2.

The charge conjugation symmetry does not have anomaly
by itself, and it does not have intrinsic mixed anomaly with
the one-form symmetry.17 The anomaly of the full symmetry
(i.e., the O4 obstruction) is given by the Pontryagin square for
the twisted cocycle. When the anomaly is expressed in terms
of (B(1)

2 , B(2)
2 , B1), the expression Eq. (118) has the following

correction from “Cartan coboundaries.”18

π

∫
4d
P
(
B(1)

2

) + π

∫
4d

B(1)
2 ∪ B(2)

2 + 2π
2c−
16

∫
4d
P
(
B(2)

2

)
+ π

∫
ζ
(
B1, B(2)

2

) + c−π

∫ (
B1 ∪ B(2)

2

) ∪2 Sq1B(2)
2

+ π

2

∫
B̃1 ∪ B̃1 ∪ B̃(2)

2 , (120)

where B̃1, B̃(2)
2 are the canonical lift of B1, B(2)

2 to Z4

cochains that take value in 0, 1 (we note π
2

∫
B1 ∪ B1 ∪ B̃(2)

2 =
π
2

∫
(B̃1 ∪ dB̃(1)

2 ). In the second line of the above expression,
the second term is absent for even c−, and the first term
ζ (B1, B(2)

2 ) satisfies ζ (0, B(2)
2 ) = 0 = ζ (B1, 0) is the Cartan

coboundary in the following Cartan formula for Steenrod
squares:

dζ
(
B1, B(2)

2

) = Sq2(B1 ∪ B(2)
2

) − (
B1 ∪ Sq2(B(2)

2

)
+ Sq1(B1) ∪ Sq1

(
B(2)

2

))
mod 2. (121)

For an explicit expression, see, e.g., Ref. [40] or Appendix C.
A similar Cartan coboundary (for a different Cartan formula)
is discussed in Appendix F of Ref. [59]. The correction from
the last three terms in Eq. (120) ensures the action is closed.
We note that the equation for ζ can have two solutions, but
they differ only by a coboundary B2

1 ∪ B(2)
2 = d (B1 ∪ B(1)

2 ),
where we used dB(1)

2 = B1 ∪ B(2)
2 . Since the coboundary does

not change the anomaly, the solution for ζ is unique. In
Appendix C, we also derive the above anomaly using the
relative anomaly formula in Ref. [24].

3. For c− an odd integer

For c− an odd integer, the theory Spin(2c−)1 has Z4 anyons
I, v, v2, v3 = v−1 with spin 0,

2c−
16 , 1

2 ,
2c−
16 mod 1. They are

Wilson lines in the trivial, spinor, vector, and cospinor rep-
resentation of Spin(2c−). The anyons v, v−1 are permuted
by a Z2 0-form symmetry [the charge conjugation symmetry

17The intrinsic mixed anomaly between one-form symmetry and
permutation symmetry is described by projective representation of
the permutation symmetry. Gauging the one-form symmetry of B(1)

2

gives an SO(2c−) gauge theory which also has charge conjugation
symmetry, and the possible mixed anomaly with B(2)

2 is a coboundary
B2

1 ∪ B(2)
2 = d (B(1)

2 ∪ B1).
18The modified cocycle condition dB(1)

2 = B1 ∪ B(2)
2 for even c−

implies that P (B(1)
2 ) is no longer well-defined: dP (B(1)

2 ) = dB(1)
2 ∪1

dB(1)
2 = (B1 ∪ B(2)

2 ) ∪1 (B1 ∪ B(2)
2 ) = Sq2(B1 ∪ B(2)

2 ) mod 2. Simi-
larly, B(1)

2 ∪ B(2)
2 is not well-defined, d (B(1)

2 ∪ B(2)
2 ) = B1 ∪ B(2)

2 ∪
B(2)

2 . The two problems compensate each other using the Cartan
formula (121).
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of Spin(2c−)]. Thus the theory has a Z4 one-form symmetry
generated by (say) the v line, with the anomaly described by
the SPT phase

2π
2c−
16

∫
4d
P (Y2), (122)

where Y2 is the background two-form gauge field for the
Z4 one-form symmetry. (Evaluating Y2 on 2-simplices gives
the cochain ω2 + 2n2 mod 4.) The background turns the
gauge bundle into a Spin(2c−)/Z4 bundle with second Stiefel-
Whitney class equal to Y2. P (Y2) = Y2 ∪ Y2 − Y2 ∪1 dY2 is the
(generalized) Pontryagin square of Y2, and for Z4 valued Y2 it
is a well-defined Z8 class.

We can also rewrite the anomaly by expressing the Z4

valued background two-from as a pair of Z2 valued two-form
B(1)

2 , B(2)
2 [which evaluate to (n2, ω2)] satisfying

dB(1)
2 = B(2)

2 ∪1 B(2)
2 , dB(2)

2 = 0. (123)

The right-hand side of the first equation equals dB̃(2)
2 /2 mod 2,

where here and in the following discussion in this section we
use tilde to denote the lift from Z2 to {0, 1} in Z4. It is the
image of the Bockstein homomorphism for the short exact se-
quence 1 → Z2 → Z4 → Z2 → 1. The pair (B(1)

2 , B(2)
2 ) gives

a Z4 cocycle Y2 = 2B̃(1)
2 + B(2)

2 that satisfies dY2 = 0 mod 4.
In this representation, the anomaly in Eq. (122) equals

π

∫
4d
P
(
B(1)

2

) + π

∫
4d

B(1)
2 ∪ B(2)

2 + 2π
2c−
16

∫
4d
P
(
B(2)

2

)
.

(124)
Charge conjugation 0-form symmetry. If we also turn on

background B1 for the Z2 charge conjugation 0-form sym-
metry, where dB1 = 0, the bundle has first Stiefel-Whitney
class given by B1. The Z4 gauge field Y2 is now a twisted
cocycle due to the action of charge conjugation symmetry. It
can be expressed as Z2 × Z2 gauge fields B(1)

2 , B(2)
2 that satisfy

[60,64]

dB(1)
2 = B1 ∪ B(2)

2 + B(2)
2 ∪1 B(2)

2 , dB(2)
2 = 0. (125)

The backgrounds (B(1)
2 , B(2)

2 ) describe a twisted Z4 two-
cocycle under the action of the Z2 0-form symmetry with
background B1. The anomaly can be expressed as a Pon-
tryagin square for this twisted cocycle Eq. (124). When the
anomaly is expressed in terms of (B(1)

2 , B(2)
2 , B1), the expres-

sion Eq. (124) has additional corrections as in Eq. (120).19

π

∫
4d
P
(
B(1)

2

) + π

∫
4d

B(1)
2 ∪ B(2)

2 + 2π
2c−
16

∫
4d
P
(
B(2)

2

)
+ π

∫
ζ (B1, B(2)

2 ) + c−π

∫
(B1B(2)

2 ) ∪2 Sq1B(2)
2

+ π

2

∫
B̃1 ∪ B̃1 ∪ B̃(2)

2 . (126)

19We note that when c− is odd, the solution of ζ is not unique,
since ζ can change by a nontrivial cocycle B1 ∪ B1 ∪ B(2)

2 and satisfy
the same equation, where dB(1)

2 = B1 ∪ B(2)
2 + Sq1B(2)

2 for odd c−,
and thus B1 ∪ B1 ∪ B(2)

2 is no longer exact. We will fix this ambiguity
using the relative anomaly formula [24] in Appendix C 4, which uses
the G-crossed BTC approach.

One can verify that the bulk action is closed.20

By combining the results from the preceding subsections,
it is straightforward to obtain the results in Table I. The rest of
this section will show the explicit calculations involved.

D. Fermionic invertible phases with half-integer c−
1. Bosonic shadow

The theory Spin(2c−)1 can be enriched by Gb symmetry,
giving Chern-Simons theory

Spin(2c−)1 × (G̃)ν
Z2

. (127)

Denote the Gb background gauge field by Ab. It couples to the
Spin(2c−)1 bundle by modifying it into an SO(2c−) bundle,
characterized by the second Stiefel-Whitney class

wSO
2 = A∗

bn2, n2 ∈ H2(Gb,Z2). (128)

n2 also determines the extension

1 → Z2 → G̃ → Gb = G̃/Z2 → 1. (129)

The Wilson line in the spinor representation of Spin(2c−)
carries projective representation of Gb symmetry as specified
by (−1)n2 [35].

For instance, we can construct the bosonic shadow as a
Spin(2c−)1 Chern-Simons matter theory with massive scalars
σ , which do not condense and transform in the spinor rep-
resentation of Spin(2c−), and in the projective representation
of Gb with projective factor (−1)n2 . The Chern-Simons term
at level 1 for SO(2c−) bundles is not well-defined and is
anomalous (see Eq. (117)). This anomaly can be characterized
by the bulk term

π

∫
4d
P
(
wSO

2

) = π

∫
4d

A∗
bP (n2). (130)

Thus, for the theory to be well-defined, the anomaly can be
compensated by demanding the Gb gauge field Chern-Simons
term ν3 ∈ C3(BGb, U(1)) to satisfy

dν3 = (−1)P (n2 ) = (−1)Sq2(n2 ). (131)

In addition, we can turn on a background B2 for the Z2

one-form symmetry generated by ψ . This is done by shifting
wSO

2 = B2 + A∗
bn2 and adding the following SPT phase effec-

tive action to the bosonic shadow:

π

∫
3d

B2 ∪ A∗
bn1, n1 ∈ H1(BGb,Z2). (132)

20Explicitly, acting with coboundary on the bulk action gives

πdB(1)
2 ∪1 dB(1)

2 + πdB(1)
2 ∪ B(2)

2 + πdζ
(
B1, B(2)

2

)
+ πc−

((
B1B(2)

2

) ∪1 Sq1B(2)
2 + Sq1B(2)

2 ∪1

(
B1B(2)

2

))
+ πB1 ∪ B1 ∪ dB(2)

2

2
+ πc−

(
dB(2)

2

2
∪ B(2)

2 − dB(2)
2

2
∪1

dB(2)
2

2

)
.

Using the relation dB(1)
2 = B1B(2)

2 + Sq1B(2)
2 and

dB(2)
2

2 = Sq1B(2)
2 , we

can show the above expression vanishes mod 2π .
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2. Fermionic invertible phase

Suppose we gauge the one-form symmetry by replacing
wSO

2 with wSO
2 + B2 for dynamical Z2 two-form gauge field

B2 that satisfies dB2 = 0. Then the theory has an anomaly

π

∫
4d

B2 ∪ B2 = π

∫
4d

B2 ∪ w2(T M ), (133)

where w2(T M ) is the second Stiefel-Whitney class of the tan-
gent bundle. Here we used the Wu formula [65]. The anomaly
is canceled by choosing a spin structure ρ1, which couples as
π
∫

3d B2 ∪ ρ1, and obeys

dρ1 = w2(T M ). (134)

In this case, ρ is independent of Gb. Thus gauging the one-
form symmetry gives a fermionic invertible phase with direct
product Gb × Z f

2 symmetry: the “bosonic” symmetry is not
extended by Z f

2 .
We remark that the mixed one-form/0-form symmetry SPT

phase in the bosonic shadow [Eq. (132)] has the following
consequence for the fermionic invertible phase. After gauging
the one-form symmetry, we find the spin structure is given
by ρ1 + A∗

bn1 instead of just ρ1. For instance, when Gb = Z2,
we have a Z8 classification for fermionic SPT phases. The
effective action for the root phase of this classification can be
obtained from SO(2c−)1 with half-integer c− by shifting the
spin structure as above, and stacking another SO(2c−)−1 (see,
e.g., Ref. [50]).

For comparison, in the Gb-crossed theory, n1 determines
whether the Gb fluxes in the invertible phase are Abelian or
non-Abelian. Thus a shift in the spin structure determines
whether a given Gb flux is associated to a Majorana zero mode
or not.

3. Absence of symmetry extension by fermion parity

In Sec. V A, we had stated that when c− is a half-integer,
we must have [ω2] trivial. The proof is straightforward: ω2

enters the theory through the one-form symmetry with back-
ground B(2)

2 . Since B(2)
2 is absent in the bosonic shadow

Spin(2c−)1 for half-integer c−, there is no nontrivial ω2 for the
corresponding fermionic invertible phases. In other words, the

symmetry in the fermionic invertible phase must be a direct
product Z f

2 × Gb.

E. Fermionic invertible phases with even integer c− and n1 = 0

1. Bosonic shadow

For even c− there are two cases: Gb symmetry either
permutes or does not permute the two anyons e, m in the
spinor representation. The permutation is encoded by n1 ∈
H1(BGb,Z2). Let us begin with the case that the symmetry
does not permute the anyons.

The Gb enriched theory is described by the Chern-Simons
theory

Spin(2c−)1 × (G̃)ν
Z2 × Z2

. (135)

The Gb gauge field Ab couples to the theory by modifying the
Spin(2c−) bundle into a Spin(2c−)/(Z2 × Z2) bundle, with
Stiefel-Whitney classes w

(1)
2 ,w

(2)
2 specified by Ab as follows:

w
(1)
2 = A∗

bn2, w
(2)
2 = A∗

bω2, (136)

with n2, ω2 ∈ H2(BGb,Z2). The Wilson lines that transforms
under the Z2 × Z2 one-form symmetry carry projective rep-
resentation of Gb symmetry specified by n2, ω2 [35]. For
instance, the Wilson lines in the spinor representation of
Spin(2c−) (corresponding to the e and m anyons) carry a pro-
jective representation of Gb symmetry as specified by (−1)n2 .

We can construct the bosonic shadow as Spin(2c−)1

Chern-Simons matter theory with two types of massive
scalars, say m and em = ψ (that do not condense). The
scalar m transforms in the spinor (cospinor) representation of
Spin(2c−) for c− = 0 mod 4 (c− = 2 mod 4), and the projec-
tive representation of Gb with projective factor (−1)n2 . The
scalar ψ transforms in the vector representation of Spin(2c−),
and the projective representation of Gb with projective factor
ω2.

The Chern-Simons term at level one for Spin(2c−)/(Z2 ×
Z2) gauge field is anomalous, due to Eq. (118). The anomaly
is characterized by the bulk term

π

∫
4d
P
(
w

(1)
2

) + π

∫
4d

w
(1)
2 ∪ w

(2)
2 + 2π (2c)

16

∫
4d
P
(
w

(2)
2

) = π

∫
4d

A∗
bP (n2) + π

∫
4d

A∗
bn2 ∪ ω2 + 2π (2c−)

16

∫
4d

A∗
bP (ω2),

(137)

where P (x) = x ∪ x − x ∪1 dx is the Pontryagin square of the
two-cocycle x. The anomaly can be compensated by demand-
ing ν3 ∈ C3(BGb, U(1)) to satisfy

dν3 = (−1)P (n2 )+n2∪ω2 i(c/2)P (ω2 ). (138)

The above equation agrees with that obtained from the Gb-
crossed theory, as computed in Appendix C.

We could consider an additional mixed 1-form/0-form
SPT phase with effective action

π

∫
3d

B(1)
2 ∪ A∗

bn′
1, n′

1 ∈ H1(BG,Z2). (139)

However, such an SPT phase is redundant, and it can be
removed by a global one-form transformation of B(2)

2 due to
the mixed anomaly involving both B(1)

2 and B(2)
2 . Thus n′

1 does
not contribute to additional data in the classification and we
will ignore it in the following.

2. Fermionic invertible phase

Let us gauge the Z2 one-form symmetry generated by ψ ,
by replacing w

(1)
2 with w

(1)
2 + B2 for the dynamical Z2 two-
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form gauge field B2. The theory now has anomaly

π

∫
4d

B2 ∪ B2 + π

∫
4d

B2 ∪ w
(2)
2

= π

∫
4d

B2 ∪ w2(T M ) + π

∫
4d

B2 ∪ A∗
bω2. (140)

The anomaly described by the above bulk term can be can-
celed by choosing a spin structure ρ1 that couples to B2 as
π
∫

3d B2 ∪ ρ1, with

dρ1 = w2(T M ) + A∗
bω2. (141)

The resulting fermionic invertible phase has G f symmetry,
where G f is the extension of Gb by (−1)F specified by ω2 ∈
H2(BGb,Z2),

1 → Z2 = Z f
2 → G f → Gb → 1. (142)

To see this, we note that Eq. (141) describes the gauge field
for the extension of SOLorentz × Gb by Z2 (whose background
is ρ1), given by

1 → Z2 → SpinLorentz × G f

Z2
→ SOLorentz × Gb → 1.

(143)
Here the Z2 quotient identifies (−1)F ⊂ SpinLorentz with Z2 ⊂
G f , and thus the symmetry in the fermionic invertible phase
can be interpreted as Gb 0-form symmetry extended by (−1)F .

F. Fermionic invertible phases with odd integer c− and n1 = 0

1. Bosonic shadow

Here the Gb enriched theory is described by the Chern-
Simons theory

Spin(2c−)1 × (G̃)ν
Z4

. (144)

The Gb gauge field Ab couples to the theory by modifying the
Spin(2c−) bundle into a Spin(2c−)/Z4 bundle, with Stiefel-
Whitney classes wPSO

2 specified by Ab as

wPSO
2 = A∗

bη2, η2 ∈ H2(BGb,Z4). (145)

We can describe η2 ∈ H2(BGb,Z4) by a pair n2, ω2 with ω2 ∈
H2(BGb,Z2) and

dn2 = ω2 ∪1 ω2. (146)

Explicitly, η2 = 2ñ2 − ω̃2 mod 4, where tilde denotes a lift
from Z2 to Z4. This corresponds to

B(1)
2 = A∗

bn2, B(2)
2 = A∗

bω2. (147)

We can construct the bosonic shadow as Spin(2c−)1

Chern-Simons matter theory with massive scalars v, v̄ (that
do not condense) transforming in the spinor representation
of Spin(2c−) and in the projective representation of Gb with
projective factor (−1)η2 .

The Chern-Simons term at level one for Spin(2c−)/Z4

gauge field is anomalous, see Eq. (122), as characterized by
the bulk term

2π (2c−)

16

∫
4d
P
(
wPSO

2

) = 2π (2c−)

16

∫
4d

A∗
bP (η2). (148)

The anomaly described by the above bulk term can be
compensated by modifying the Gb Chern-Simons term ν3 ∈
C3(BGb, U(1)) to satisfy

dν3 = e(π ic/4)P (η2 ). (149)

The above equation agrees with that obtained from the Gb-
crossed theory, as computed in Appendix C.

We could consider stacking an additional mixed 1-form/0-
form SPT phase with effective action

π

∫
3d

Y2 ∪ A∗
bn′

1, n′
1 ∈ H1(BG,Z2). (150)

However, such SPT phase is redundant, and it can be re-
moved by a global one-form transformation of B(2)

2 due to the
mixed anomaly involving both B(1)

2 and B(2)
2 . Thus n′

1 does not
contribute to additional data in the classification and we will
ignore it in the following.

2. Fermionic invertible phase

Let us gauge the Z2 one-form symmetry corresponding
to ψ , by replacing wPSO

2 with wPSO
2 + 2B(1)

2 . Here 2B(1)
2 is

the image of B(1)
2 under the inclusion map Z2 → Z4, for

the dynamical Z2 two-form gauge field B(1)
2 . The theory has

anomaly described by the bulk term

2π (2c−)

16

∫
4d
P
(
2B(1)

2 + A∗
bη2

) − 2π (2c)

16

∫
4d
P (A∗

bη2)

= π

∫
4d
P
(
B(1)

2

) + π

∫
4d

B(1)
2 ∪ A∗

bη2

= π

∫
4d

B(1)
2 ∪ w2(T M ) + π

∫
4d

B(1)
2 ∪ A∗

bη2. (151)

The anomaly described by the above bulk term can be can-
celed by choosing spin structure ρ1 that couples to B(1)

2 as
π
∫

3d B(1)
2 ∪ ρ1, with

dρ1 = w2(T M ) + A∗
bη2 mod 2. (152)

As in the case with c− even, we conclude that gauging
the one-form symmetry produces a fermionic invertible phase
with G f symmetry, where G f is the extension of Gb by (−1)F

specified by ω2.

G. Fermionic invertible phases with even c− and general n1

1. Bosonic shadow

If the symmetry permutes the anyons, then the Gb enriched
theory can be described by the Chern-Simons theory

Pin±(2c)1 × (G̃)ω
Z2 × Z2 × Z2

. (153)

Let us explain the quotient. One Z2 quotient denotes gauging
a Z2 quantum one-form symmetry that identifies the first
Stiefel-Whitney class w1 of the Pin± bundle with A∗

bn1 for
Gb gauge field Ab. The other Z2 × Z2 quotient modifies the
Pin± gauge field into Pin±/(Z2 × Z2), with Stiefel-Whitney
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class w
(1)
2 ,w

(2)
2 , which satisfies Eq. (119), [60,64]:

dw
(1)
2 = w1 ∪ w

(2)
2 , w

(1)
2 = A∗

bn2, w
(2)
2 = A∗

bω2, w1 = A∗
bn1; n2 ∈ C2(BG,Z2), ω2 ∈ H2(BG,Z2), n1 ∈ H1(BG,Z2),

dn2 = n1 ∪ ω2 (154)

for Pin+/(Z2 × Z2), and similar for Pin−/(Z2 × Z2) with w
(1)
2 replaced by w

(1)
2 + w2

1. Without loss of generality we can focus
on Pin+.

We can construct the bosonic shadow as Spin(2c−)1 Chern-Simons matter theory with massive scalars e, m (that do not
condense). They transform in the spinor (cospinor) representation of Spin(2c−) for c = 0 mod 4 (c = 2 mod 4). The theory also
has a fermion ψ in the vector representation of Spin(2c−). (e, m) together also transform in the representation of G̃ which is the
twisted projective representation of Gb specified by (n2, ω2).

The Chern-Simons term for the Pin+/(Z2 × Z2) bundle at level one is not well-defined and has an anomaly, characterized
by the bulk term Eq. (120):

π

∫
4d
P
(
w

(1)
2

) + π

∫
4d

w
(1)
2 ∪ w

(2)
2 +

∫
ζ
(
w̃Pin

1 , w̃
(2)
2

) + c−π

∫ (
wPin

1 w
(2)
2

) ∪2 Sq1w
(2)
2

+ π

2

∫ (
wPin

1

)2 ∪ w
(2)
2 + 2π

2c−
16

∫
4d
P
(
w

(2)
2

)
= π

∫
4d

A∗
b(P (n2)) + π

∫
4d

A∗
bn2 ∪ ω2 + π

∫
A∗

bζ (n1, ω2) + c−π

∫
A∗

b(n1ω2) ∪2 Sq1ω2

+ π

2

∫
A∗

b(ñ1)2 ∪ ω̃2 + 2π
2c−
16

∫
4d

A∗
bP (ω2). (155)

Note that (n1)2 ∪ ω2 = n1dn2 mod 2.
The anomaly can be compensated by demanding ν3 ∈

C3(BGb, U(1)) to satisfy

dν3 = (−1)P (n2 )+n2∪ω2 (−1)ζ (n1,ω2 )+c−(n1ω2 )∪2Sq1(ω2 )

× iñ2
1∪ω̃2 i

c−
2 P (ω2 ). (156)

The above equation agrees with that obtained from the Gb-
crossed theory, as computed in Appendix C.

2. Fermionic invertible phase

Let us gauge the Z2 one-form symmetry of ψ by replacing
w

(1)
2 with w

(1)
2 + B2 for some dynamical Z2 two-form gauge

field B2 that satisfies dB2 = 0. The theory now has an anomaly
described by the bulk term

π

∫
4d

B2 ∪ B2 + π

∫
4d

B2 ∪ A∗
bω2

= π

∫
4d

B2 ∪ w2(T M ) + π

∫
4d

B2 ∪ A∗
bω2, (157)

which can be compensated by choosing a spin structure ρ1

that couples to B2 as π
∫

3d B2 ∪ ρ1, with

dρ1 = w2(T M ) + A∗
bω2. (158)

Thus the resulting theory after gauging the one-form symme-
try becomes a fermionic invertible phase with G f symmetry
given by the extension of Gb by (−1)F as specified by ω2 ∈
H2(BGb,Z2).

H. Fermionic invertible phases with odd c− and general n1

1. Bosonic shadow

If the symmetry permutes the anyons, then the Gb symme-
try enriched theory can be described by

Pin±(2c)1 × (G̃)ν
Z2 × Z4

. (159)

Let us explain the quotient. One Z2 quotient denotes gauging
a Z2 quantum one-form symmetry that identifies the first
Stiefel-Whitney class w1 of the Pin± bundle with A∗

bn1 for
G gauge field Ab. The other Z4 quotient modifies the Pin±
bundle into Pin±/Z4 bundle, with the quotient described by
two Z2 Stiefel-Whitney class w

(1)
2 ,w

(2)
2 that satisfy [60,64]

dw
(1)
2 = w1 ∪ w

(2)
2 + w

(2)
2 ∪1 w

(1)
2 , w

(1)
2 = A∗

bn2, w
(2)
2 = A∗

bω2,

w1 = A∗
bn1; n2 ∈ C2(BG,Z2), ω2 ∈ H2(BG,Z2), n1 ∈ H1(BG,Z2)

dn2 = n1 ∪ ω2 + ω2 ∪1 ω2 (160)

for Pin+/Z4, and similarly for Pin−/Z4 with w
(1)
2 replaced by w

(1)
2 + w2

1. Without loss of generality we can focus on Pin+. In
the above, we used w

(2)
2 ∪1 w

(2)
2 = Bock(w(2)

2 ), the Bockstein homomorphism for 1 → Z2 → Z4 → Z2 → 1.
The resulting bosonic shadow is a Spin(2c−)1 Chern-Simons matter theory with massive scalars (I, v, ψ = v2, v̄) (that do not

condense) transforming in the spinor (cospinor) representation of Spin(2c−) for v, v̄, and vector representation of Spin(2c−)
for ψ . v, v̄ also transform under the twisted projective representation of Gb specified by (n2, ω2).
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The Chern-Simons term for the Pin+/Z4 bundle at level one is not well-defined and has an anomaly, characterized by the
bulk term Eq. (124):

π

∫
4d
P
(
w

(1)
2

) + π

∫
4d

w
(1)
2 ∪ w

(2)
2 + +π

∫
ζ
(
wPin

1 ,w
(2)
2

) + c−π

∫ (
wPin

1 w
(2)
2

) ∪2 Sq1w
(2)
2

+ π

2

∫ (
w̃Pin

1

)2 ∪ w̃
(2)
2 + 2π

2c−
16

∫
4d
P
(
w

(2)
2

)
= π

∫
4d

A∗
b(P (n2)) + π

∫
4d

A∗
bn2 ∪ ω2 + π

∫
A∗

bζ (n1, ω2) + c−π

∫
A∗

b(n1ω2) ∪2 Sq1ω2

+ π

2

∫
Ab ∗ (ñ1)2 ∪ ω̃2 + 2π

2c−
16

∫
4d

A∗
bP (ω2). (161)

It can be compensated by demanding ν3 ∈ C3(BGb, U(1))
to satisfy

dν3 = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )+c−(n1ω2 )∪2Sq1(ω2 )

× iñ2
1∪ω̃2 e(π ic/4)P (ω2 ). (162)

The above equation agrees with that obtained from the Gb-
crossed theory, as computed in Appendix C.

2. Fermionic invertible phase

We can gauge the Z2 one-form symmetry of ψ by replac-
ing w

(1)
2 with w

(1)
2 + B2 for some dynamical Z2 two-form

gauge field B2 that satisfies dB2 = 0. The theory now has an
anomaly

π

∫
4d

B2 ∪ B2 + π

∫
4d

B2 ∪ A∗
bω2

= π

∫
4d

B2 ∪ w2(T M ) + π

∫
4d

B2 ∪ A∗
bω2, (163)

which can be compensated by choosing a spin structure ρ1

that couples to B2 as π
∫

3d B2 ∪ ρ1, with

dρ1 = w2(T M ) + A∗
bω2. (164)

Thus resulting theory after gauging the one-form symme-
try becomes a fermionic invertible phase with G f symmetry
given by the extension of Gb by (−1)F as specified by ω2 ∈
H2(BGb,Z2),

1 → Z f
2 → G f → Gb → 1. (165)

I. Equivalence relation from gauge transformation

The equivalence relation discussed in Sec. IV E can be
derived using the gauge transformation of the background
fields for the intrinsic symmetries. Let us illustrate this using
the theories with integer c−.

Gauge transformation of B(1)
2 . Consider the background

gauge transformation B(1)
2 → B(1)

2 + dλ, for B(1)
2 = A∗

bn2 this
is

n2 → n2 + dχ1 (166)

for Z2 one-cochain χ1, where λ1 = A∗
bχ1. Due to the anomaly

between the one-form symmetry for background B(1)
2 and Gb

symmetry, one finds ν3 changes as

ν3 → ν3(−1)χ1∪ω2 (−1)dχ1∪1n2+dχ1∪χ1 . (167)

If we take χ1 which is closed, dχ1 = 0, n2 does not transform,
and thus we find the equivalence relation

ν3 ∼ ν3(−1)χ1∪ω2 , dχ1 = 0 mod 2. (168)

Gauge transformation of B(2)
2 . Consider the gauge trans-

formation B(2)
2 → B(2)

2 + dλ′
1, for B(2)

2 = A∗
bω2 this is

ω2 → ω2 + dξ1 (169)

for Z2 one-cochain ξ1, where λ′
1 = A∗

bξ1. Then due to the
equation

dB(1)
2 = B1 ∪ B(2)

2 + c−Sq1B(2)
2 , (170)

one finds B(1)
2 also transforms, and B(1)

2 = A∗
bn2 changes as

n2 → n2 + n1 ∪ ξ1 + c−(ξ1 ∪ ξ1 + ξ1 ∪1 dξ1 + ω2 ∪2 dξ1).
(171)

For dξ = 0, we find

n2 ∼ n2 + n1 ∪ ξ1 + c−ξ1 ∪ ξ1. (172)

On the other hand, this does not lead to an equivalence
relation in the fermionic theory after gauging the one-form
symmetry by promoting B(1)

2 to be dynamical. The theory has
dual Z f

2 symmetry with background ρ that couples as

π

∫
B(1)

2 ∪ ρ. (173)

Thus shifting B(1)
2 due to the background gauge transformation

actually changes the effective action by

π

∫
A∗

b(n2 + n1 ∪ ξ1 + c−ξ1 ∪ ξ1) ∪ ρ. (174)

Thus Eq. (172) is not an equivalence relation in the fermionic
theory; it reproduces the relabelling in Eq. (86). On the
other hand, the background gauge transformation of B(1)

2 only
changes it by an exact cocycle and it gives an equivalence
relation in the fermionic theory.

J. Interpretation of the obstructions to the constraint equations

The data that describe the bosonic shadow theory enriched
by Gb symmetry needs to obey the constraints

dn2 = n1 ∪ ω2 + c−Sq1ω2 + n1 ∪ s1 ∪ n1 (for integer c−),

dν3 = O4(n1, n2, ω2). (175)
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When the first equation cannot be satisfied for integer c−, we
cannot simply fix the backgrounds for the intrinsic symmetries
to be B(1)

2 = A∗
bn2, B(2)

2 = A∗
bω2, and B1 = A∗

bn1 for integer
c−, where Ab is the Gb background gauge field. Instead, we
need to turn on general B(1)

2 such that

dB(1)
2 = A∗

b�3, �3 = n1 ∪ ω2 + c−Sq1ω2 + n1 ∪ s1 ∪ n1,

(176)
where we cannot express B(1)

2 as A∗
bn2 for some n2. Thus the

theory is enriched by the two-group symmetry that extends
the Gb symmetry by Z2 one-form symmetry generated by
the fermion line, where the two-group is specified by the
Postnikov class � given in the above equation [35,66,67]. If
we gauge the Z2 one-form symmetry in the bosonic shadow
theory by summing over the background B(1)

2 , this produces
an “anomalous SPT phase” with G f symmetry, which is an
almost trivial theory with effective action that depends on
the extension of the G f background gauge field to the bulk
[60,68]. After gauging the one-form symmetry in the bosonic
shadow theory, the theory has dual Z f

2 symmetry, whose back-
ground ρ couples as π

∫
B(1)

2 ∪ ρ. Then Eq. (176) contributes
the bulk dependence

Sn2 = π

∫
4d

dB(1)
2 ∪ ρ

= π

∫
4d

(A∗
b�) ∪ ρ

= π

∫
4d

A∗
b(n1 ∪ ω2 + c−Sq1ω2 + n1 ∪ s1 ∪ n1) ∪ ρ.

(177)

This contribution to the anomaly is only present for in-
teger c−, and is absent for half-integer c−, where the
constraint equation is instead dn2 = 0 and it can always be
satisfied.

Similarly, if the constraint equation for ν3 cannot be sat-
isfied for any ν3, then the theory after gauging the one-form
symmetry generated by the fermion line has additional bulk
dependence: Stotal = Sn2 + Sν3 with

Sν3 =
∫

A∗
bφ4, O4 ≡ eiφ4 . (178)

Since the bosonic shadow theory becomes an invertible
theory with G f symmetry after gauging the one-form symme-
try generated by the fermion line, the total anomaly Stot for the
G f symmetry must belong to the trivial class, i.e. it can be ex-
pressed as

∫
4d dα3 where α3 is a classical action that depends

on the G f background gauge field. For instance, when ω2 = 0,
the symmetry is G f = Gb × Z f

2 , and the anomaly O4 = eiφ4

can be expressed as a boundary term for the G f = Gb × Z f
2

background gauge fields (Ab, ρ):∫
4d

A∗
bφ4 = π

∫
4d

A∗
bn2 ∪ A∗

bn2

= π

∫
4d

A∗
bn2 ∪ w2(T M )

= π

∫
4d

d (A∗
bn2 ∪ ρ)] = 0 mod 2π, (179)

where we used the Wu formula, ρ is the spin structure (i.e.,
the background gauge field for Z f

2 symmetry) that satisfies
dρ = w2(T M ), and we used dn2 = 0. Another case is when
n1 = 0 while ω2 �= 0, where the background for the G f sym-
metry satisfies dρ = A∗

bω2 + w2(T M ) being the trivial class.
The anomaly belongs to the trivial class on the bulk manifolds:∫

4d
A∗

bφ4

= π

∫
4d

A∗
bP (n2) + π

∫
4d

A∗
bn2 ∪ ω2 + πc−

4

∫
P (A∗

bω2)

= π

∫
4d

A∗
bn2 ∪ w2(T M ) + π

∫
4d

A∗
bn2 ∪ w2(T M )

+ πc−
4

∫
4d

dA′

2π

dA′

2π
, (180)

where in the first line we used the Wu formula, and we used
the property that w2(T M ) admits an integral lift dA′/2π on
orientable four-manifolds. Thus the anomaly can be canceled
by a Chern-Simons term on the boundary and belongs to the
trivial class on bulk manifolds.

We remark that usually anomaly is defined up to adding
local counterterms for the background gauge field. Here, when
the obstructions are nontrivial, the anomaly in the theory
after gauging the one-form symmetry is nontrivial only in the
sense that we cannot cancel the bulk dependence by a local
counterterm A∗

bν3 on the boundary that only depends on the
Gb background gauge field, but the anomaly can be canceled
by a local counterterm α3 on the boundary that depends on
G f background gauge field. Such a boundary theory is an
example of an “anomalous” SPT phase with G f symmetry
[39].

VI. STACKING RULES AND OVERALL CLASSIFICATION

The computations in previous sections have given a set
of defining equations for invertible fermion phases, as well
as a set of equivalence relations among the data. From this
we now wish to obtain a general stacking rule for invertible
fermion phases. Specifically, given two invertible phases a
and b defined by the data (ci

−, ñi
1, ñi

2, ν
i
3, {Li

g}) for i = a, b,
suppose we stack a and b to obtain a phase whose data we
will indicate using the symbol “tot.” In a Hamiltonian for-
mulation, the stacking operation is defined by imposing the
following relation on the Hilbert spaces Ha, Hb, Htot and the
Hamiltonians Ha, Hb, Htot of a, b and “tot”:

Htot = Ha ⊗ Hb, (181)

Htot = Ha ⊗ 1b + 1a ⊗ Hb. (182)

The goal of this section is to express the data
(ctot

− , ñtot
1 , ñtot

2 , ν tot
3 , {Ltot

g }) in terms of the corresponding
data of a and b. The results, referred to as “stacking rules,” are
summarized in Table I. When Gb is unitary, the stacking rules
for c− and ñ1 can be obtained straightforwardly from either
the Gb-crossed theory or from Chern-Simons theory. Using
the latter, the complete stacking rules can be derived exactly
when G f = Gb × Z f

2 and G f = U(1) f . For a general unitary
Gb, we make conjectures for the n2 and ν3 stacking rules
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which are compatible with our formulas for O4. To obtain
the stacking rule for ν3 we follow the algebraic approach
described in Refs. [21,26]: we consider the quantity Otot

4

Oa
4Ob

4
, and

show that it is equal to a coboundary db3. Therefore, up to a
possible 3-cocycle, we can write

ν tot
3 = νa

3νb
3 × b3. (183)

Although we cannot prove an exact stacking rule for n2, this
process gives us an answer that reproduces exact results when
ω2 = 0. Deriving the exact stacking rules for n2 and ν3 within
the Gb-crossed theory requires a more complete theory of
anyon condensation in G-crossed BTCs, which we do not
develop here.

When s1 �= 0, we can obtain the stacking rule for n2 up to a
possible 2-cocycle, by integrating the equation for dn2. Since
we do not have an exact stacking rule for n2, we do not attempt
to calculate the stacking rule for ν3 in this case.

A. Stacking rules from Gb-crossed theory

In this section, we will present stacking rules for c−, n1,
and ω2 within the Gb-crossed theory. We will assume the
symmetry is unitary, s1 = 0. The corresponding rules for
n2, ν3 are not derived exactly, since this requires a complete
theory of anyon condensation in G-crossed BTCs, which we
do not develop here. Note that in this section we will use the
representation n1, n2, ν3, assuming that the flux labels are
canonically chosen and denoted as L0

g .
We first define the notion of stacking two MTCs

Ca, Cb. The anyons in Ca, Cb are {Ia, ψa, ma, (ψama)} and
{Ib, ψb, mb, (ψbmb)}, respectively. (If c− is a half-integer,
m and ψm are identified.) We consider the Deligne product
Ca � Cb, which is defined so that anyons in Ca are assumed
to braid trivially with those in Cb, and vice versa. Then we
condense the bound state ψaψb. Upon confining all anyons
that braid nontrivially with ψaψb, we obtain the “stacked”
topological order C tot. The stacking of two Gb-crossed theories
C×,a

Gb
, C×,b

Gb
is defined similarly: we write

C×,tot
Gb

:= C×,a
Gb

� C×,b
Gb

ψaψb ∼ 1
. (184)

1. Stacking rule for c−

The chiral central charge follows the rule ctot
− = ca

− + cb
−

mod 8. This can be seen by computing the topological spin
of a fermion parity flux in C tot. If ma and mb denote fermion
parity fluxes in Ca and Cb, then mamb is a fermion parity flux
in Ca � Cb. It is deconfined, since ψaψb braids trivially with
it: Mmamb,ψaψb = Mma,ψa Mmb,ψb = (−1)2 = 1. Its topological
twist moreover remains unchanged after condensing ψaψb.
Thus we have

eiπctot
− /4 := θmtot = θmamb = θmaθmbMmamb = eiπ (ca

−+cb
− )/4.

(185)

2. Stacking rule for n1

We next prove the result ntot
1 = na

1 + nb
1. Recall that the

definition of n1 implies two things: (1) if n1(g) = 1, then L0
g is

non-Abelian; and (2) given a fermion parity flux m, the action
of g takes m → m × ψn1(g). This is shown diagrammatically

FIG. 1. A fermion parity flux m is permuted by g action.

in Fig. 1, where the symmetry action corresponds to moving
m under L0

g . Note that these two statements hold for any value
of c−.

Upon stacking a and b, we have the situation shown in
Fig. 2. Prior to the condensation, the defect L0,tot

g can be
expressed as a pair (L0,a

g , L0,b
g ), while the anyon mtot can be

expressed as mamb. The process of passing mtot under L0,tot
g

can be broken up into independent processes occurring in a
and b. As a result, we see that

mamb → (ma × (ψa)na
1 (g) )(mb × (ψb)nb

1(g) )

= (mamb) × ((ψa)na
1 (g)(ψb)nb

1(g) ). (186)

After condensation, we have the identity ψa ∼ ψb ∼ ψ tot and
mamb → mtot. The above equation then becomes

mtot → mtot × (ψ tot )(na
1+nb

1 )(g). (187)

FIG. 2. Stacking rule for n1. Upon condensing, we identify
ψ tot ∼ ψa ∼ ψb.
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FIG. 3. Computation of ηψ by performing a full braid of ψ

around an L0
g, L0

h, L0
gh trijunction.

3. Stacking rule for ω2

Below we show that if the stacking of Gb-crossed theories
is to be meaningfully related to the stacking of invertible
fermionic phases, then we must have ωa

2 = ωb
2 = ω2. Al-

though this is intuitively obvious if we consider stacking
the original G f -crossed theories, it is not so obvious in the
Gb-crossed theory, where the complete set of symmetry frac-
tionalization classes contains different choices of [ω2]. We
argue as follows. First we have the definitions ηψa (g, h) =
ηψb (g, h) = (−1)ω2(g,h). Diagrammatically, these η symbols
are calculated by braiding ψa (respectively, ψb) around a
junction formed by the fusion of a g and an h defect into
a gh defect (see Fig. 3). The red line can be removed from
the junction at the cost of a phase factor ηψ (g, h). When the
symmetry is unitary, ηψ (g, h) can be set equal to the braiding
phase Mψ,t(g,h) between ψ and an anyon t(g, h), defined as

t(g, h) = mω2(g,h) × ψn2(g,h). (188)

Since Mψ,ψ = 1, there will be no contribution to ηψ from n2.
To interpret this stacking of Gb-crossed theories as a stack-

ing procedure for invertible phases, we need to be able to
condense ψaψb without breaking symmetry. For this we must
have ηψaψb = 1, i.e., ψaψb should not have any fractional Gb

quantum numbers [30]. The symbol ηψaψb can be measured by
braiding ψaψb around a double junction obtained by stacking
a and b. Since we are working prior to the ψaψb condensation,
the only braiding factors come from the crossing of ψa with
(ma)ω

a
2 and of ψb with (mb)ω

b
2 . These braiding phases are given

by ηψa and ηψb respectively. As a result, we can write

ηψaψb = ηψaηψb = (−1)ω
a
2+ωb

2 . (189)

For the lhs to be 1, we must have ωa
2 = ωb

2 = ω2.
Now let us show that ω2

tot = ω2 for the stacking of in-
vertible phases. We have ψ tot ∼ ψa ∼ ψb. The value of ηψ tot

is measured by braiding ψ tot around a stacked junction, as
depicted in Fig. 4. Here ψ tot crosses the anyon ttot. The
statement ω2

tot = ω2 is equivalent to saying that ttot(g, h) is
a fermion parity flux if and only if ta(g, h) and ta(g, h) are
fermion parity fluxes. The “if” part is clear: if ta(g, h) and
ta(g, h) are fermion parity fluxes, their bound state is also a
fermion parity flux, and determines ttot(g, h) up to a fermion.
For the other direction, we argue that if ttot is a fermion parity
flux, then both ta(g, h) and ta(g, h) are fermion parity fluxes.
Indeed, the only deconfined bound states in the stacked phase

FIG. 4. The computation of ηψ in the stacked phase splits into
independent braiding processes within a and b. This is because there
are no additional crossings generated by the interaction of a and b
lines.

are mamb, (maψa)mb, and ψa (up to equivalences). The only
bound state which gives a fermion parity flux is mamb.

4. Conjectured stacking rule for n2

In the Gb-crossed theory, the basic data are given by
ñ1, ñ2, ν3 and the flux labels Lg. For integer c− one passes
to n2 by relabelling the defects such that Lg → L0

g , and then
computing the change in ñ2. Thus in order to obtain the
stacking rule for n2 from the Gb-crossed theory, we must
first obtain the stacking rules for symmetry defects Lg and
for the symmetry fractionalization parameter ñ2. The former
step requires a more complete theory of anyon condensation
in G-crossed BTCs than is currently available, and so we do
not pursue this here.

An exact stacking rule for n2 can be independently ob-
tained from Chern-Simons theory when s1 = 0 and G f =
Gb × Z f

2 (Sec. VI D): it has the form

ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1. (190)

We conjecture that this rule should also hold when ω2 �=
0. In support of this conjecture when ω2 �= 0, we find that

O4[ntot
1 ,ntot

2 ]
O4[na

1,n
a
2]O4[na

1,n
a
2] is a coboundary even when [ω2] is nontrivial.

Thus Eq. (190) gives a meaningful guess for the stacking rule
for ν3, as we will discuss below.

B. Stacking rule for ν3 from the O4 anomaly

Here we obtain an explicit expression for the stacking rule
for ν3, by integrating the equation for dν3. We will assume
s1 = 0, and also take the n2 stacking rule to be given by
Eq. (190). This approach determines ν tot

3 up to a 3-cocycle;
we conjecture that this 3-cocycle should be trivial, which we
verify in the case ω2 = 0 in Sec. VI D using the CS formu-
lation. However we do not have a general direct proof when
ω2 �= 0.

Note that for half-integer c− the symmetry is Gb × Z f
2 ,

which is covered by the analysis of Sec. VI D. Therefore here
we will focus on the case with integer c−. The condition
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satisfied by ν3 is

dν3 = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )+c−(n1∪ω2 )∪2(ω2∪1ω2 )

× (−1)
c−
4 P (ω2 )in1∪n1∪ω2 , (191)

with the Pontryagin square P (X2) ≡ X2 ∪ X2 − X2 ∪1 dX2

and the Cartan coboundary ζ (n1, ω2) = n1 ∪ [(n1 ∪
ω2) ∪2 ω2 + n1 ∪ ω2]. We can first verify that the
obstruction is closed by expanding out the various
terms. To compute the stacking rule for ν3, we use
the property that O4(ntot

1 , ntot
2 , ωtot

2 , ctot
− ) differs from

O4(na
1, na

2, ω
a
2, ca

−)O4(nb
1, nb

2, ω
b
2, cb

−) by a coboundary. The
details of the computation are in Appendix C 6. The answer,
up to a possible 3-cocycle, is21

ν tot
3 = νa

3νb
3 i

1
2 na

1∪nb
1∪nb

1+na
1∪(na

1∪1nb
1 )∪nb

1 i(na
1∪1nb

1 )∪ω2

× (−1)(na
1∪nb

1 )∪1(na
2+nb

2 )+na
2∪1nb

2+dna
2∪2nb

2

× (−1)ca
−(ω2∪1ω2 )∪3(nb

1∪ω2 ). (192)

In the special case ωa
2 = ωb

2 = ωtot
2 = 0, the stacking rule

for ν3 becomes

ν tot
3 = νa

3νb
3 ina

1∪nb
1∪nb

1+na
1∪(na

1∪1nb
1 )∪nb

1

× (−1)(na
1∪nb

1 )∪1(na
2+nb

2 )+na
2∪1nb

2 . (193)

This reproduces the stacking rule of the fermionic invertible
phases with Gb × Z f

2 symmetry in Ref. [29], which is exact,
and is derived using the Chern-Simons theory in Sec. VI D.

1. Application: equivalences on the data

For general ω2, the above stacking rule is undetermined up
to a possible 3-cocycle α3(ω2, Da, Db), where the data Di =
(ci, ni

1, ni
2, ν

i
3) for i = a, b defines the invertible phase i. We

conjecture that α3 = 0.
If α3 �= 0, the equivalences on (n2, ν3) stated in Eq. (8)

of Table I will also need to be modified. First consider the
equivalence [see Eq. (104)]

(n2, ν3) � (n2 + db1, ν3 × (−1)b1∪ω2+db1∪1n2+db1∪b1 × α′
3),

(194)
where α′

3 is an undetermined 3-cocycle. This equivalence can
be thought of as coming from stacking a trivial phase with
the data D′

1 = (0, 0, db1, (−1)db1∪b1+b1∪ω2 ) onto an invertible
phase with data D′

2 = (c−, n1, n2, ν3). In this case, the ν3 data
of the stacked phase equal

ν tot
3 = ν3 × (−1)b1∪ω2+db1∪1n2+db1∪b1 × α3(ω2, D′

1, D′
2)
(195)

and therefore we can express α′
3 in terms of α3:

α′
3 ≡ α3(ω2, D′

1, D′
2). (196)

We can similarly analyze the equivalence [from Eq. (98)]

(n2, ν3) � (n2 + ω2, ν3 × (−1)ω2∪1n2 × α′′
3 ) (197)

21We thank David Aasen for pointing out a term involving ∪3 which
was inadvertently dropped in an earlier version of this paper.

and determine α′′
3 in terms of α3. Here we can interpret the

equivalence in terms of stacking two phases with data D′′
1 =

(0, 0, ω2, 1) and D′′
2 = (c−, n1, n2, ν3). Then we find that

α′′
3 ≡ α3(ω2, D′′

1, D′′
2 ). (198)

In particular, if α3 = 0 as we conjecture, then we must have
α′

3 = α′′
3 = 0.

C. Stacking rules when s1 �= 0

We will discuss the stacking rule of n2 for s1 �= 0 and
general n1 using the constraint equations for dn2, dν3. For
simplicity, we will focus on the stacking rule of n2, while
leaving the stacking rule of ν3 to future work. The constraint
equation for dn2 is

dn2 = n1 ∪ ω2 + n1 ∪ s1 ∪ n1. (199)

This implies that

dntot
2 = dna

2 + dnb
2 + na

1 ∪ s1 ∪ nb
1 + nb

1 ∪ s1 ∪ na
1. (200)

Thus we find

ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1 + (

na
1 ∪1 s1

) ∪ nb
1

+ (
nb

1 ∪1 s1
) ∪ na

1 + s1 ∪ (
na

1 ∪1 nb
1

) + x, (201)

where x is a Z2 two-cocycle that vanishes for s1 = 0. We
propose the minimal stacking rule with x = 0:

ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1 + (

na
1 ∪1 s1

) ∪ nb
1

+ (
nb

1 ∪1 s1
) ∪ na

1 + s1 ∪ (
na

1 ∪1 nb
1

)
. (202)

D. Stacking rules from Chern-Simons theory when
Gf = Gb × Z f

2

While the bosonic shadow theories are useful for re-
lating the Chern-Simons approach to the Gb-crossed BTC,
we can directly study the invertible fermion phase using
Chern-Simons theory. In this section, we assume the sym-
metry is Gb × Z f

2 . We can couple the Chern-Simons theory
to background Gb gauge field Ab via the magnetic Z2 0-
form symmetry: we turn on background for the magnetic
0-form symmetry given by the Z2 one-form A∗

bn1, where n1 ∈
H1(Gb,Z2). Equivalently, we shift the spin structure by A∗

bn1.
We can also add a local action

∫
3d A∗

bφ3 for the background Gb

gauge field, which depends on the bulk extension by∫
4d

A∗
bdφ3, φ3 ∈ C3(BG,R/2πZ). (203)

In bosonic theory, we require the dependence to be trivial to
have a well-defined local action; on spin manifolds, w2(T M )
is trivial, and it can instead satisfies

A∗
bdφ3 = πw2(T M ) ∪ A∗

bn2

= πA∗
bSq2(n2), n2 ∈ H2(BG,Z2), (204)

where we used the Wu formula Sq2(n2) = n2 ∪ w2 mod 2
on orientable four-manifolds [65]. For instance, when the
symmetry of the fermionic phase is Z2n × Z f

2 , φ3 is given by
(possibly spin) Chern-Simons terms of the Z2n background
gauge field, and as demonstrated in Ref. [50], this reproduces
the Z4n × Z2 classification for even n and Z8n classification
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for odd n [69]. The cochain φ3 can be exponentiated to ν3 =
eiφ3 .

More explicitly, the effective action for the fermionic in-
vertible phase can be expressed as follows. We would like
to understand the effective action for the fermionic invert-
ible phase that is not expressed as φ3. Following Ref. [50],
we denote the effective action produced by shifting the spin
structure with A∗

bn1 in SO(2c−)1 equals 2c− f (A∗
bn1), where f

is defined by

eiL f (B1 ) = ZSO(L)1 [0]

ZSO(L)1 [B1]
, (205)

where ZSO(L)1 [B1] is the partition function of SO(L)1 Chern-
Simons theory coupled to background B1 = A∗

bn1 by the Z2

magnetic 0-form symmetry. Equivalently, since the magnetic
0-form symmetry in SO(L)1 is identified with the fermion
parity [50], eiL f [B1] is the change of the partition function
for SO(L)1 ↔ −LCSgrav under shifting the spin structure by
B1 = A∗

bn1, and the exponent is proportional to L. The effec-
tive action f (B1) is the effective action for the fermionic SPT
phase with Z2 × Z f

2 unitary symmetry that belongs to the unit
class of Z8 classification. We note that A∗

bφ3 in general cannot
be expressed using f , since the later is at most Z8 valued.
We remark that although f (A∗

bn1) cannot be expressed as a
special case of A∗

bφ3, on the other hand, 2 f (A∗
bn1) is equivalent

to a special case A∗
bφ3 [50]. This is because for c− = 1, the

gravitational Chern-Simons term can be expressed as products
of U(1)1 Chern-Simons theory, and shifting the spin structure
by Z2 gauge field B1 = πA∗

bn1 (we normalize n1 = 0, 1) in
U(1)1 produces a Chern-Simons term for the background Z2

gauge field A∗
bn1:

1

4π
ada+ 1

2π
adB1 ↔ 1

4π
a′da′− 1

4π
B1dB1, a′ = a+ B1,

(206)
where the Chern-Simons term of B1 = πA∗

bn1 can be ex-
pressed as integral of an auxiliary term in the bulk of the form
Sq2(n2) with n2 = dn1/2 = Sq1(n1):

1

4π

∫
3d

dB1dB1 = π

∫
4d

dB1

2π

dB1

2π

= π

∫
Sq2

(
dB1

2π

)
= π

∫
A∗

bSq2(dn1/2).

(207)

Thus it is sufficient to parametrize the effective action of
the fermionic invertible phase with Gb × Z f

2 symmetry by
(n1, n2, φ3) as

S(n1, n2, φ3; Ab) =
∫

A∗
bφ3 + f (A∗

bn1) − 2c−CSgrav,

dφ3 = πSq2(n2), (208)

where Ab is the background Gb gauge field. This agrees with
the classification in Ref. [28], since f is the effective action
of the “root” fermionic SPT phase with unitary Z2 × Z f

2
symmetry.

Let us consider the stacking of two fermionic invert-
ible phases with Gb × Z f

2 symmetry [29], i.e. how the data

(n1, n2, φ3) composes under addition of the effective action:

S
(
na

1, na
2, φ

a
3 ; Ab

) + S
(
nb

1, nb
2, φ

b
3; Ab

)
= S

(
ntot

1 , ntot
2 , φtot

3 ; Ab
)
. (209)

From the gravitational Chern-Simons term −2c−CSgrav, we
find ctot

− = ca
− + cb

−. We note that22

f
(
A∗

bna
1

) + f
(
A∗

bnb
1

) = f
(
A∗

b

(
na

1 + nb
1

)) + A∗
bξ
(
ña

1, ñb
1

)
,

dξ = π
(
na

1

)2 ∪ (
nb

1

)2

= Sq2
(
na

1 ∪ nb
1

)
+ d

(
na

1 ∪ (
na

1 ∪1 η1
b

) ∪ nb
1), (210)

where ña
1, ñb

1 are the canonical integral one-cochain lifts of
na

1, nb
1 that takes value in 0, 1. Explicitly, ξ = (π/2)ña

1 ∪
(ñb

1)1. We used the identity (na
1 ∪ nb

1 + nb
1 ∪ na

1) = d (na
1 ∪1

nb
1). In Eq. (210), the term f (A∗

b(na
1 + nb

1) = f (A∗
bntot

1 ) gives
the stacking rule ntot

1 = na
1 + nb

1. In the last line of Eq. (210),
the first term Sq2(na

1 ∪ nb
1) together with Sq2(na

2) + Sq2(nb
2)

contribute to Sq2(ntot
2 ). Thus by comparing with Eq. (208), we

find the stacking rule

ntot
1 = na

1 + nb
1, ntot

2 = na
2 + nb

2 + na
1 ∪ nb

1. (211)

The stacking rule of φ3 is derived by writing the bulk terms
other than Sq2(ntot

2 ) as a boundary cochain.23 In the end, we
find φtot

3 is related to φa
3 , φb

3 by

φtot
3 = φa

3 + φb
3 + π

(
na

2 ∪1 nb
2 + (

na
2 + nb

2

) ∪1
(
na

1 ∪ nb
1

)
+ na

1 ∪ (
na

1 ∪1 nb
1

) ∪ nb
1) + π

2
ña

1 ∪ (
ñb

1

)2
. (213)

Thus we reproduce the stacking rules for Gb × Z f
2 symmetry

fermionic invertible phases in Ref. [29].

E. Stacking rules for Gf = U(1) f using CS theory
with background Spinc = (U(1) × Z f

2 )/Z2 structures

Let us use an example to illustrate the stacking rule when
the symmetry of the fermionic invertible phase is an extension
of Gb by Z f

2 (strictly speaking such phases are not fermionic,
in the sense that they do not have neutral fermionic particles
that are singlet under Gb). We consider the symmetry to be
Spinc = (U(1) × Z f

2 )Z2. If we turn on the background gauge
field A, the fermionic invertible phase has effective action

k1

(
1

4π
AdA + 2CSgrav

)
+ 16k2CSgrav (214)

for background Spinc connection A, where (k1, k2) ∈ Z × Z
gives the stacking rule. In particular, although the gravitational

22We use the property that f (B1 + B′
1) − f (B1) − f (B′

1) gives “half
of the mixed Chern-Simons term of B1, B′

1” [50].
23Explicitly,

Sq2
(
na

2 + nb
2 + na

1 ∪ nb
1

) − Sq2
(
na

2

)
− Sq2

(
nb

2

) − Sq2
(
na

1 ∪ nb
1

)
= d

(
na

1 ∪1 nb
2 + (

na
1 + nb

2

) ∪1

(
na

1 ∪ nb
1

))
. (212)
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part is not well-defined by itself for general k1, the stacking
rule for the part that depends on A and the gravitational part
can be treated separately: when adding the effective action
for different classes (k1, k2), (k′

1, k′
2), we add the gravitational

part and the “nongravitational” part that depends only on A
separately. This behavior of the stacking rule is similar to the
case when the symmetry is a direct product Gb × Z f

2 . As we
will argue in the following, this separation of the gravitational
and nongravitational stacking rule continues to hold when the
symmetry is a general extension of any Gb by Z f

2 .
We remark that the separation of the stacking rule for

gravitational and nongravitational parts is also related to the
absence of topological thermoelectric coupling in unitary the-
ories: there is no topological term that mixes the background
gauge field and background gravity. For a recent discussion of
absence of topological thermoelectric transport, see Ref. [70].

VII. EXAMPLES

We now illustrate our classification approach with several
examples. To conveniently account for the various equiva-
lences involved, we use the following strategy: (i) find the
allowed choices of n1 ∈ H1(Gb,Z2). (ii) For each n1, find
a representative set of allowed choices of n2. These form
a torsor over H2(Gb,Z2) modulo the possible equivalence
n2 � n2 + ω2. (iii) With the representative n2 fixed, find all
possible ν3, accounting for all equivalences that preserve n2.

A. Gf = Z2 × Z f
2

In this example, we will use the Gb-crossed theory to clas-
sify invertible phases with G f = Z2 × Z f

2 . It is well-known
from previous work that the classification of fSPTs with this
symmetry should be Z8 [34,71,72]. From cobordism theory,
we also expect that the full classification of invertible phases
is Z × Z8, with 8 phases for each c− [6]. Although a naive
count of Gb-crossed theories does not agree with these results,
we recover this classification by keeping track of flux labels.
Finally, we show how the free and interacting classifications
can be explicitly related in this case. We use this correspon-
dence to illuminate the stacking rules.

1. Classification when c− = 0

Let h be the generator of the unitary Z2 symmetry. We be-
gin by naively counting the number of Gb-crossed extensions
of the toric code UMTC. This is done by counting all pos-
sible inequivalent triples (ñ1, ñ2, ν3). First consider the case
where ñ1(h) = 1. After setting ω2 = 0, we have [(ω2, ñ2)] ∈
H2

ñ1
(Z2,Z2 × Z2) = Z1. Although there are 2 choices for

the function ñ2, given by ñ2(h, h) = 0 or 1, these choices
are coboundary-equivalent. [In particular, these two choices
correspond to the symmetry fractionalization cocycles with
t(h, h) = I or ψ ; they are related by the coboundary db,
where b(h) = m.] Therefore we will fix ñ2 = 0. We also have
two defect classes, which are inequivalent under relabellings;
these correspond to ν3(h, h, h) = ±1. In total, there are two
Gb-crossed theories with ñ1 �= 0.

Next, we look at theories with ñ1 = 0. In this case, there are
two symmetry fractionalization classes, with ñ2(h, h) = 0, 1;
they are classified by the subgroup of H2(Gb,Z2 × Z2) with

TABLE V. Comparison of data for c− = 0 phases with Gf =
Z2 × Z f

2 in terms of (1) a free fermion construction, (2) the
(n1, n2, ν3) representation used in Ref. [20], (3) the (ñ1, ñ2, ν3, Lg )
representation coming from the Gb-crossed theory, and 4) the theory
obtained by fully gauging Gf . Here “t.c.” means “toric code” while
“D.S.(±i)” means “double semion theory with semion statistics ±i”.
All arguments of n1, n2, ñ1, ñ2, and ν3 are set equal to h.

Free Interacting Gb-crossed
fermion fermion data with flux Fully
parameter parameter labels gauged
(ν↑, −ν↓) (n1, n2, ν3) (ñ1, ñ2, ν3, Lh ) theory

(0,0) (0,0,1) (0, 0, 1, Ih ) Z2t.c.↑ × Z2t.c.↓

(1, −1) (1,0,1) (1, 0, 1, σ+
h ) Ising↑ × Ising

↓

(2, −2) (0, 1, −i) (0, 1, −i, Ih ) U(1)↑4 × U(1)↓−4

(3, −3) (1, 1, −i) (1, 0, −1, σ−
h ) Ising(3),↑ × Ising(−3),↓

(4, −4) (0, 0, −1) (0, 0, −1, Ih ) D.S. (+i)↑ × D.S.(−i)↓

(5, −5) (1, 0, −1) (1, 0, −1, σ+
h ) Ising(5),↑ × Ising(−5),↓

(6, −6) (0, 1, i) (0, 1, −i, mh ) U(1)↑−4 × U(1)↓4
(7, −7) (1, 1, i) (1, 0, 1, σ−

h ) Ising(7),↑ × Ising(−7),↓

ω2 = 0, and are inequivalent. For each symmetry fractional-
ization class, we have two defect classes (i.e., 2 choices of
ν3). However, the two defect classes associated to ñ2(h, h) =
1 (i.e., the ones with ν3(h, h, h) = ±i) are equivalent un-
der a relabelling of defects (this was shown previously in
Refs. [12,73]). Therefore we only have 3 SET phases in this
case, giving a total of 5 Gb-crossed theories with c− = 0.
Indeed, by examining the third column of Table V, we can
verify that there are only 5 distinct triples (ñ1, ñ2, ν3).

Below we show that these 5 theories in fact contain a total
of 8 topological invariants which take the values e2π ik/8, for
k = 0, 1, . . . , 7. Thus the same Gb-crossed BTC might corre-
spond to two different fSPT phases. In order to fully specify
the fSPT, we need to define a flux label Lh, corresponding to
the (h, 0) defect in the ungauged G f -crossed theory.

Consider the fSPT phases with ñ1 �= 0. Here we can define

ñ2(h, h) = 0, (215)

ν3(h, h, h) = (−1)q, (216)

where q ∈ Z2. In this case, the Gb-crossed theory has two h-
defects σ+

h and σ−
h . For each q, the Gb-crossed theory has two

invariants, denoted as I (σ+
h ) and I (σ−

h ). The explicit form of
the invariants is

I (σ±
h ) := θ2

σ±
h
ησ±

h
(h, h). (217)

We can solve for the G-crossed data in a gauge with all
η = 1, and with θσ±

h
= i±[q]2 e±i π

8 , where q ∈ Z2 (see Sec. X.I
of Ref. [12]). This implies that

I (σ±
h ) = (−1)qe±i 2π

8 . (218)

By taking q = 0, 1 and Lh = σ+
h , σ−

h , we see that the invari-
ants can take 4 values eiπ/4, ei3π/4, ei5π/4, ei7π/4. If we fix ñ2

and ν3, we cannot interchange these invariants by relabelling
defects with fermions. This means that the 4 invariants really
describe distinct phases.
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When ñ1 = 0, we have 4 Abelian h-defects Ih, eh, mh, ψh.
The symmetry fractionalization is specified by ñ2(h, h) ∈
{0, 1}. When ñ2 = 0, we find that

ν3(h, h, h) = (−1)q, (219)

I (ah) = (−1)q, ∀ah. (220)

We thus have two fSPT invariants taking values ±1. When
ñ2(h, h) = 1, we find that

ν3(h, h, h) = i(−1)q, (221)

I (ah) = (−i)(−1)q+ae+am . (222)

Once again, there are only two invariants, which take the
values ±i. The theory with ν3 = ±i, Lh = Ih is the same Gb-
crossed theory as the one with ν3 = ∓i, Lh = mh. Thus if we
were just counting SET phases, we would need to treat the
two defect classes with ñ2(h, h) = 1 as equivalent. However,
relabelling defects by fermion parity fluxes is not a trivial
operation in the Gb-crossed theory, and therefore the two
invariants taking the values ±i correspond to distinct fSPT
phases.

Note that we always have I (Lh) = I (ψ × Lh). This re-
flects the fact that it is physically equivalent to choose Ih or
ψh as the Z2 flux, since defects can always be relabelled by
attaching fermions.

To summarize, we count the number of different values of
I (Lh) by varying over the distinct choices of (n1, ñ2, ν3, Lh).
When n1 = 0, there are 4 values, ±1 and ±i. Considering
the cases n1 = 0 and n1 �= 0 together, we obtain 8 different
invariants given by e2π ik/8 for k = 0, 1, . . . , 7. Even without
considering formal stacking rules, this suggests that the group
corresponding to the fSPT classification should be Z8.

2. Relating the Gb-crossed data to the (n1, n2, ν3) parameterization

We summarize the result of the classification of fSPTs
using the (n1, n2, ν3) parametrization [20] for this example
in the second column of Table V. We have |H1(Gb,Z2)| =
|H2(Gb,Z2)| = |H3(Gb, U(1))| = 2. The final classification
has 8 fSPTs, obtained by considering all possible values of
n1, n2 and ν3 which satisfy the defining equations. In this case
there are no obstructions, so we indeed have 8 phases where
each choice of n1 gives 4 fSPTs.

We can straightworwardly relate the Gb-crossed data
(ñ1, ñ2, ν3, Lg ) to the (n1, n2, ν3) parametrization. For c− = 0
we have n1 := ñ1. Next, we fix a canonical definintion L0

h
of the flux labels, as follows: if n1(h) = 0, L0

h = Ih, while if
n1(h) = 1, L0

h = σ+
h . Then we use the result from Sec. IV that

if Lh = L0
h × ml1(h), then

n2(h, h) = ñ2(h, h) + l1(h)n1(h). (223)

The resulting formula for ν3 in terms of n2 is

ν3(h, h, h) = (−1)qi[n2(h,h)]2 . (224)

This gives us the desired relations. A similar redefinition is
possible for each integer c−, although we will not demonstrate
it explicitly.

3. Classification when c− �= 0

When c− is an arbitrary integer, the analysis is almost
identical to the c− = 0 case. We present only the results. The
data of the usual Gb-crossed theory are given by

n1(h) ∈ {0, 1}, (225)

ñ2(h, h) ∈ {0, 1}, (226)

ν3(h, h, h) = (−1)qi[n2(h,h)]2 . (227)

For each integer c−, we can compute 8 invariants which take
the values e2π ik/8, where k ∈ Z8. We can go through the steps
discussed previously and form a table similar to Table V for
each c−.

The case c− = k + 1/2 with integer k is slightly different.
Here we have 3 h-defects Ih, ψh, and σh, where σh is non-
Abelian. For each choice of [ñ2] and [ν3], we can evaluate
I (Lh). We get

I (Ih) = I (ψh) = (−1)qi−[ñ2(h,h)], (228)

I (σh) = (−1)qi[ñ2(h,h)]ei2π/8. (229)

Therefore we have 8 invariants of the form ei2πk/8, where
k = 0, 1, . . . , 7. The 4 invariants with k even are obtained by
assigning Lh = Ih or ψh, while the 4 invariants with k odd are
obtained by assigning Lh = σh. In this case we define n1 as
trivial or nontrivial according as Lh is Abelian or non-Abelian.
We then set n2 = ñ2 and evaluate ν3 in the usual manner.

4. Relation to free fermion constructions

In this section we describe a free fermion construction of
the Z × Z8 classification. Our purpose is twofold: (i) to derive
an explicit correspondence between the free and interacting
classifications and (ii) to obtain the stacking rules for the
interacting case using the free fermion picture, in which the
stacking is particularly simple.

The Z8 classification of fSPT phases was obtained in
Ref. [34] by gauging the full Z2 × Z f

2 symmetry in a model
of free fermions. We now review this argument. Consider
spin-up and spin-down fermions which transform under the
unitary Z2 symmetry as follows:

Uhc†
↑U †

h = −c†
↑, (230)

Uhc†
↓U †

h = +c†
↓. (231)

Both types of fermions transform by a minus sign under the
Z f

2 symmetry operator, denoted as P f :

P f c†
↑(↓)(P

f )† = −c†
↑(↓). (232)

Now consider placing the ↑ fermions in a p + ip super-
conductor state with Chern number ν↑, and the ↓ fermions in
a p + ip superconductor state with Chern number ν↓ = −ν↑.
The resulting stack, denoted as (ν↑, ν↓), has zero net chirality,
and is a realization of a free fermion SPT phase with Z2 × Z f

2
symmetry (see Fig. 5).

Reference [34] showed that the quantity ν↑ mod 8 re-
mains a topological invariant of the fSPT in the presence
of interactions. Following their argument, we first note that
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−ν, ↓

ν, ↑

FIG. 5. Stacking p + ip superconductors with spin-up and spin-
down fermions to obtain an fSPT with Gf = Z2 × Z f

2 .

the Z2 subgroup of G f generated by h acts only on the ↑
fermions, while the Z2 subgroup generated by h(−1)F acts
only on the ↓ fermions. Therefore the full symmetry can be
gauged by gauging these subgroups separately in each layer.
For example, gauging the (0,0) state results in two copies of
the Z2 toric code, while gauging the (1,−1) state gives the
topological order Ising × Ising. The gauged theories for each
ν↑ are listed in the third column of Table V. (In this context,
the Gb-crossed BTC is an intermediate object obtained by
gauging just the Z f

2 symmetry in both layers.)
The states (ν↑,−ν↑) and (ν↑ + 8,−(ν↑ + 8)) result in

the same gauged theory: this can be seen by constructing
an explicit isomorphism. On the other hand, the gauged
theories corresponding to (ν↑ + k,−ν↑ − k) are all differ-
ent for k = 0, 1, . . . , 7. However, this statement needs some
clarification. Upon gauging the (1,−1) state as indicated,
we obtain Ising × Ising. On the other hand, upon gauging
the state (−1, 1) ≡ (7,−7), we obtain Ising × Ising, which is
the same topological order. Indeed, if we only gauge Z f

2 , the
Gb-crossed theories for the (1,−1) and (−1, 1) states are the
same: they are both described by the data ñ1 �= 0, [ñ2] = 0,
and ν3 = 1.

To distinguish between the (1,−1) and (−1, 1) states we
must keep track of which layer transforms nontrivially under
the unitary Z2 symmetry. Thus the more accurate descrip-
tion of the topological order obtained by gauging the (1,−1)

state is Ising↑ × Ising
↓
. This is different from Ising

↑ × Ising↓,
which is obtained by gauging the (−1, 1) state, because the
non-Abelian anyon corresponding to the ↑ layer is different
in the two cases. Thus there are indeed 8 different fSPTs with
this symmetry group. In a similar way, we can check that the
free fermion construction gives 8 different invertible phases
associated to each c−. The need to keep track of ↑ and ↓
fermions is closely related to the requirement of specifying
flux labels in the Gb-crossed theory.

The Gb-crossed invariants allow us to easily relate the free
fermion data (ν↑,−ν↓) to the corresponding Gb-crossed data
(ñ1, ñ2, ν3, Lh). From the Gb-crossed theory, we find that

I (Lh) = ei2π( [n1 (h)]2
8 − [n2 (h,h)]2

4 + q
2 ). (233)

Now the Z8 topological invariant of the (ν↑,−ν↓) state should
measure the Z2 charge of the h flux in the ↑ layer, which
transforms nontrivially under h. This is given by e2π iν↑/8. By
setting I (Lh) = e2π iν/8, we can straightforwardly obtain the

desired relations:

c− = ν↑ + ν↓

2
, (234)

n1(h) = ν↑ mod 2, (235)

n2(h, h) = ν↑(ν↑ − 1)

2
mod 2, (236)

ν3(h, h, h) = (−i)�
ν↑
2 � mod 4. (237)

5. Stacking rules

The above results allow us to explicitly verify the stacking
rules that were discussed in Sec. VI. In the free fermion
picture, we have a state a with parameters (ν↑,a, ν↓,a) and
(ν↑,b, ν↓,b). Stacking them gives a state with

(ν↑,tot, ν↓,tot ) = (ν↑,a + ν↑,b, ν↓,a + ν↓,b). (238)

We can easily verify that the stacking rule for n1 is addi-
tive, because ntot

1 (h) = ν↑,tot. Moreover, the definition of n2

in terms of free fermion parameters implies that

ntot
2 (h, h) = (νa + νb)(νa + νb − 1)

2
(239)

= νa(νa − 1)

2
+ νb(νb − 1)

2
+ νaνb. (240)

This is consistent with the following stacking rule:

ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1 mod 2. (241)

We can also check the stacking rule for ν3, but will not
perform the calculation here as it is not very illuminating.

B. Invertible fermion phases with Gf = U(1) f

In this example, we study Gb = U(1). Formally we have
two possibilities for G f : either G f = U(1) × Z f

2 or G f =
U(1) f . The latter case is more physically relevant as it defines
the symmetry of the integer quantum Hall states and many
other fermionic systems. We will study this example as it
provides insight into the difference between “Gb quantum
numbers” and “G f quantum numbers.” After working out
the mathematical classification using G-crossed BTCs data,
we will perform the same calculation using K-matrix Chern-
Simons theory, and explicitly show how to gauge the fermion
parity.

1. Analysis using G-crossed theory

In this case, G f = U(1) f is a central extension of Gb =
U(1) by Z f

2 . We represent the group U(1) as R/Z. A repre-
sentative cocycle ω2 is

ω2(g, h) =
{

1, g + h � 1
0, g + h < 1 . (242)

Since H1(U (1),Z2) = Z1, we must have n1 = 0 for each
c−. Since ω2 is nontrivial, only integer values of c− are al-
lowed. The defining equation for n2 becomes

dn2 = c−ω2 ∪1 ω2 mod 2. (243)
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We can show that ω2 ∪1 ω2 is in fact the zero function. We
have

ω2 ∪1 ω2(g, h, k) = ω2(g, h)ω2(gh, k) + ω2(g, hk)ω2(h, k).
(244)

The first term is nonzero if and only if

g + h � 1 (245)

and [g + h] + k � 1 (246)

⇒ g + h + k � 2. (247)

This implies the following relations:

g + [h + k] � 2 − 1 = 1 (248)

and h + k � 2 − g > 1. (249)

Therefore when the first term in the expression for ω2 ∪1 ω2

is 1, the second term is also 1 (and vice versa). We conclude
that ω2 ∪1 ω2 ≡ 0, and therefore dn2 = 0 for each c.

Since H2(Gb,Z2) ∼= Z2, there are two choices for n2: we
can choose n2 = 0 or n2 = ω2. These two choices are equiva-
lent. Therefore we fix n2 = 0 and obtain

t(g, h) = mω2(g,h), (250)

where m is a fermion parity flux.
Under the above assumptions, the obstruction equa-

tion reads

O4(g, h, k, l) = Rt(g,h)t(k,l) = e2π i c−
8 [ω2]2∪[ω2]2(g,h,k,l). (251)

[One also needs to evaluate the F symbols in the anomaly ex-
pression, Eq. (A31), but that contribution is trivial because its
exponent is of the form ω2 ∪1 (ω2 ∪1 ω2).] This equation can
be solved by setting

ν3(g, h, k) = e2π i( c−
8 +n)g(h+k−[h+k]), (252)

where n ∈ Z parametrizes the H3(U(1), U(1)) freedom in
choosing ν3.

If we consider bosonic integer quantum Hall states, we
have a similar equation with c− = 0. In that case, setting
n = 1 corresponds to σH = 2 [13]. Therefore naively it would
seem that the fermionic c− = 1 IQH states are described by
σH = 2n + 1/4. However, this is incorrect, for the following
reason.

The fermion has unit charge under G f . Now a π flux of G f

corresponds to a 2π flux of Gb. Also the charge of the fermion
under Gb is measured by braiding it around a 2π flux of Gb,
which is the same as a π flux of G f . Therefore the fermion
has charge 1/2 under Gb.

The Hall conductivity σH is defined as the G f charge of a
2π flux of G f . ν3 is however measuring a different quantity
σ b

H , namely the Gb charge of a 2π flux of Gb. We have σ b
H =

1
4σH , because

σH = G f charge of a 2π flux of G f

= 2 × G f charge of a 2π flux of Gb

= 4 × Gb charge of a 2π flux of Gb

= 4σ b
H . (253)

Therefore we really have σ b
H = 2n + c−/4, which implies

σ
f

H = c− + 8n.

2. Invariants

We now formally compute σH from the Gb-crossed theory,
and address certain mathematical subtleties that arise in the
case of U(1) f symmetry. In Ref. [13], invariants for bosonic
SET phases with U(1) symmetry were obtained as follows.
Fix a defect ag, where gk = 0 for some integer k. Then evalu-
ate

Ik (ag) := θ k
ag

k−1∏
j=1

ηag (g, g j ). (254)

This quantity is invariant under gauge transformations, for
each k and each ag. It is however not clear what values of
k and ag to choose.

One resolution is as follows. If we choose a gauge in which
Ig braids trivially with each anyon for each g, then we find

that Ik (Ig) = e
2π i

k ( c−
8 +n) = e2π i

σb
H
k . This invariant does give

the value of σ b
H mod k. Thus one solution is to simply choose

the gauge in which the chosen g-defect braids trivially with all
the anyons, and then evaluate the invariant for diferent values
of k. Once k > σ b

H , the values of σ b
H mod k will stabilize, so

this can be taken as the Hall conductivity.
Now we consider what happens if this particular gauge

choice is not made. Since there are no anyon permutations,
we always have four Abelian defects, namely ag = a × Ig
for each anyon a. In Ref. [13], it was also shown that when
ak = I , we have

Ik (ag)

Ik (Ig)
= Ma,mθ k

a . (255)

If we pick a = ψ , we must take k even. The rhs then
becomes Mψ,mθ2

ψ = −1. Thus, in a gauge where we de-

fine Ik (Ig) = ei2πσ b
H /k , we would have Ik (ψg) = −ei2πσ b

H /k =
ei2π

σb
H +k/2

k . This invariant gives σ b
H + k/2 mod k and not

σ b
H mod k. Which of the two corresponds to the true Hall

conductivity?
We argue that the second case is a pathology and should

not be used to define the Hall conductivity. Suppose k > σ b
H .

Then, in the usual gauge, the value of Ik (Ig) will remain fixed
at σ b

H mod k, as k is increased. However, the value of Ik (ψg)
will continuously increase with m; it is physically impossible
for the Hall conductivity to behave in this manner. For the
same reason, we do not consider the invariants Ik (mg), which
are also gauge invariant quantities within the G-crossed BTC,
but do not give a fixed value of σ b

H as k is increased.
In general, the requirement that each Ig should braid triv-

ially with each anyon a appears to be more restrictive than is
needed for our purpose. Since we are interested in what hap-
pens at large values of k (or small values of g), it is sufficient to
demand that the braiding data of Ig be continuously connected
to the identity as g → 0 [13]. This will also ensure that the
pathological cases mentioned above are ruled out.
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3. Analysis using K-matrix Chern-Simons theory

Here we will use U(1) Chern-Simons theory to corroborate
the results from the previous section. To make things clearer,
let us consider Gb = Zn with n even, which implies that G f =
Z f

2n. The calculations are identical for G f = U(1) f , but it is
easier to see the main idea by taking a discrete group instead.
By taking n → ∞, we can recover the result for U(1) f .

If we couple an fSPT to a G f
∼= Z2n gauge field A (which

takes values in 2π
2n Z), we have the following general CS action

for the invertible state:

L = − 1

4π
aI ∧ KIJdaJ + tI

2π
aI ∧ dA. (256)

Any element w ∈ Z2n can be written as a pair (w1,w2), where
w1 ∈ Z2 and 0 � w < n. Specifically, we can write w1 = �w

n �
and w2 = w mod n. In the same way, we can split the Z2n

gauge field A into a gauge field for its Z f
2 subgroup, given by

�2A�
2 , and the Zn coset component {2A}

2 . Here �x� is the greatest
integer less than or equal to the real number x, and {x} = x −
�x�. The Z f

2 gauge field �2A�
2 takes values in {0, π}, while {2A}

2
takes values in {0, π/n, 2π/n, . . . , (n − 1)π/n}, and is not an
independent Zn gauge field. However, {2A} is a well-defined
Zn gauge field.

For fSPT phases, we have K = (1 0
0 −1). The above

Lagrangian can then be reexpressed as

L = − 1

4π
(a1 ∧ da1 − a2 ∧ da2)

+ 1

2π
(t1a1 + t2a2) ∧ d

(�2A�
2

+ {2A}
2

)
. (257)

The Z f
2 subgroup is gauged by introducing the additional

term

L1 = − 1

π

(�2A�
2

)
∧ dB. (258)

Integrating out �2A�
2 leads to the constraint t1a1 + t2a2 = 2B.

Since we want the flux of each ai to have unit charge under
U(1) f , we set t1 = t2 = 1. The constraint is solved by setting
a1 = B + C, a2 = B − C. Substituting this into the expression
for L′ = L + L1 gives

L′ = − 1

2π
(B ∧ dC + C ∧ dB) + 1

2π
B ∧ {2A}, (259)

which corresponds to an SET coupled to a Zn gauge field
{2A}, with

K ′ =
(

0 2
2 0

)
, t ′ =

(
1
0

)
. (260)

Crucially, the gauged theory couples the topological order to
the well-defined Zn gauge field {2A}, which is valued in 2π

n Z.
The given value of t ′ corresponds to the symmetry fraction-
alization class in which 2π flux insertion induces the anyon
e = (1, 0). Note that the fermion has a half charge under {2A}:
we have e2π iQ{2A}

ψ = Me,ψ = −1, thus Q{2A}
ψ = 1/2. The Hall

conductivity σ b
H is constrained to be an even integer, since in

such a system eiπσ b
H = θe = 1.

By relabelling B and C, we can show that the SET with
symmetry fractionalization anyon m is identical to the SET

with symmetry fractionalization anyon e. Furthermore, we
cannot obtain t ′ = ψ by starting from Eq. (257). Therefore
there is only one SET phase obtained by gauging the fSPT
with a nontrivial [ω2] class. These classification results hold
when we replace Gb = Zn by Gb = U(1), for example by
taking the limit n → ∞.

Now we generalize this argument to nonzero integers
c− = k. We again consider Gb = Zn, with ω2 nontrivial. We
can repeat the above steps starting with K = 1k×k and t =
(1, 1, . . . , 1)T . Upon gauging the fermion parity we obtain the
Lagrangian

L′ =
∑

I

(
− 1

4π
aI daI + 1

2π
aI d

{2A}
2

)
, (261)

together with the constraint

a1 + a2 + · · · + ak = 2B. (262)

Upon eliminating a1 and expressing the result in terms of the
vector (B, a2, . . . , ak ), we get

K ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −2 . . . −2 −2
−2 2 1 . . . 1 1
−2 1 2 . . . . . . 1
... . . . .

...
... . . . . . 2 1

−2 1 1 1 . . . 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, t ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠.

(263)
First consider the case with c− odd. Here we can show that
the anyon associated to t ′ is of order 4, thus t ′ = v. This
means that (i) the fermion has 1/2 charge under {2A}, and
(ii) the Hall conductivity is obtained through the relation
eiπσ b

H = θv = eiπc−/4. Thus we obtain σ b
H = c−/4.

Next, consider the case with c− even. Now we have t ′ = m.
This means that (i) the fermion has 1/2 charge under {2A},
and (ii) the Hall conductivity is obtained through the relation
eiπσ b

H = θm = eiπc−/4. Thus we once again obtain σ b
H = c−/4

mod 2.

C. Obstruction to “halving” a fermion for odd c−

In this section, we will give examples of a specific H3

obstruction that can be realized in systems with odd c−. This
obstruction arises entirely from the definition of ω2, i.e., it
prohibits the fermion from having certain fractional Gb quan-
tum numbers. This example, with Gb = SO(3), demonstrates
that isospin-1/2 fermions cannot form a symmetric invertible
phase with odd c−. In Sec. VII D, we consider Gb = Z2 × Z2

with nontrivial [ω2] and show how this anomaly may some-
times be canceled by a suitable definition of n1.

1. Gb = SO(3)

Let us now consider isospin-1/2 fermions with the symme-
try Gb = SO(3), for which we have two possible extensions
G f , classified by H2(SO(3),Z2) ∼= Z2. The nontrivial exten-
sion where G f = SU(2) f corresponds to the fermion having
isospin 1/2. When c− is odd, this would imply that a v particle
in such a system should have “isospin 1/4” upon gauging
the fermion parity. As we now argue, this is mathematically
prohibited even for strongly interacting fermions.
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For an isospin-1/2 fermion, the single-particle SO(3) ro-
tation operators by an angle θ ∈ [0, 2π ) about the axis n̂ are
given by

U (θ ; n̂) = ei θ
2 n̂·�σ . (264)

Let the group element corresponding to a π rotation about the
x axis be denoted X̃ ; similarly, define Ỹ and Z̃ . The group
elements 1, X̃ , Ỹ , Z̃ form a Z2 × Z2 subgroup of SO(3);
for our purposes, we can work entirely in this subgroup. A
spin-1/2 projective representation of these rotations is given
by

U (X̃ ) = iX,U (Ỹ ) = iY,U (Z̃ ) = iZ, (265)

where X, Y, Z are the 2 × 2 Pauli matrices. For this represen-
tation, we compute ω2(X̃ , Ỹ ) through the relation

U (X̃ )U (Ỹ ) = (−1)ω2(X̃ ,Ỹ )U (X̃Ỹ ) (266)

⇒ (iX )(iY ) = (−1)ω2(X̃ ,Ỹ )(iZ ) (267)

⇒ ω2(X̃ , Ỹ ) = 1. (268)

We can similarly show that

ω2(X̃ , X̃ ) = ω2(Ỹ , Ỹ ) = ω2(Z̃, Z̃ ) = 1,

ω2(X̃ , Ỹ ) = ω2(Ỹ , Z̃ ) = ω2(Z̃, X̃ ) = 1,

ω2(Z̃, Ỹ ) = ω2(X̃ , Z̃ ) = ω2(Ỹ , X̃ ) = 0. (269)

The Z2 invariant in {0, 1} which characterizes the cohomol-
ogy class of a 2-cocycle f2 ∈ Z2(SO(3),Z2) is given by

I2[ f2] = f2(X̃ , X̃ ) + f2(Ỹ , Ỹ ) + f2(Z̃, Z̃ ) mod 2. (270)

Taking f2 = ω2, we obtain I2[ω2] = 1. This confirms that ω2

is a nontrivial cocycle.
Now we also have the result H3(SO(3),Z2) ∼= Z2. Given a

cocycle f3 ∈ Z3(SO(3),Z2), the invariant which characterizes
[ f3] is given by

I3[ f3] = f3(X̃ , Ỹ , Ỹ ) + f3(Ỹ , X̃ , Ỹ ) + f3(Ỹ , Ỹ , X̃ ). (271)

(One can replace X̃ , Ỹ in this formula by any two distinct
elements in the set {X̃ , Ỹ , Z̃}). Now we have

(ω2 ∪1 ω2)(g, h, k)

= ω2(g, h)ω2(gh, k) + ω2(h, k)ω2(g, hk). (272)

Using this, we can verify that

I3[ω2 ∪1 ω2] = (ω2 ∪1 ω2)(X̃ , Ỹ , Ỹ )

+ (ω2 ∪1 ω2)(Ỹ , X̃ , Ỹ )

+ (ω2 ∪1 ω2)(Ỹ , Ỹ , X̃ )

= 0 + 1 + 0 = 1 mod 2. (273)

Therefore ω2 ∪1 ω2 belongs to the nontrivial class of
H3(SO(3),Z2). If c− is odd, this means that the equation for
n2, which is dn2 = ω2 ∪1 ω2, has no solution, because the lhs
must be cohomologically trivial by definition, while we just
showed that the rhs is not. Physically, this obstruction points
to the impossibility of putting the v particle in an “isospin
1/4” representation of SU(2) f .

Let us provide another explanation using the effective
action of the invertible phase. The effective action is ex-
pressed in terms of an SU(2)-spin background gauge field
for a (SU(2) × Lorentz)/Z2 bundle. The quotient implies that
fermion particles carry half-integer spin under SU(2) sym-
metry, while boson particles carry integer spin. This is an
analog of the spin/charge relation. The background gauge
field can be expressed as an SO(3) = SU(2)/Z2 background
gauge field with fixed Z2 = π1(SO(3)) magnetic flux given
by the cocycle representing the second Stiefel Whitney class
w2. The “root” effective action is generated by the level one
Chern-Simons term for the SU(2) background gauge field
subject to the Z2 quotient, with an additional correction from
a gravitational Chern-Simons term. The Z2 quotient on the
SU(2)1 Chern-Simons term leads to an anomaly described by
the bulk effective action

2π
1

4

∫
P (w2), (274)

which can be obtained from the fractional instanton number
of SU(2)/Z2 bundle in the bulk, or the property that the gen-
erator of the Z2 one-form symmetry in SU(2)1 Chern-Simons
theory has spin 1/4 [62]. Using the mathematical identities on
orientable manifolds [65,74]

P (w2) = p1 + 2w4 mod 4, w4 + w2
2 = 0 mod 2, (275)

we find P (w2) = −p1 mod 4, and thus the bulk term Eq. (274)
can be written as

− 1

48π

∫
Tr R ∧ R, (276)

which can be canceled by a boundary gravitational Chern-
Simons term that contributes c− = −2. Thus the chiral central
charge of such invertible phases must be even.

D. Cancellation of the “halving” anomaly with Gb = Z2 × Z2

Above we saw that there is an H3 obstruction due only to
ω2 with G f = SU(2) f . Here we ask if such an obstruction can
be canceled in a separate system that admits n1 �= 0. Indeed,
we find that when G f = D f

8 and c− is odd, the data with n1 =
0 are obstructed as above. However, for a particular choice
of n1 �= 0, the remaining data n2 and ν3 can both be defined
consistently.

We will denote the elements of Gb = Z2 × Z2 by
gi = (xi, yi ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Let the genera-
tors of Gb be given by x = (1, 0), y = (0, 1). Define λx, λy ∈
H1(Gb,Z2) so that λx(gi ) = xi, λy(gi ) = yi. We take ω2 =
λx ∪ λy,

ω2(g1, g2) := x1y2 mod 2. (277)

Physically, this means that the symmetry operators Ua and Ub
do not commute when acting on the fermionic Hilbert space:

UxUy = UyUx(−1)F . (278)

The symmetry G f is isomorphic to the dihedral group of
order 8, D8. This group is non-Abelian, with Z f

2 center that
corresponds to an order two rotation.

First assume n1 = 0, so that n2 must satisfy

dn2 = ω2 ∪1 ω2. (279)
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With the above choice of ω2, we obtain

(ω2 ∪1 ω2)(g1, g2, g3)

= x1y2(x1 + x2)y3 + x2y3x1(y2 + y3)

= x1(x2 + y2)y3. (280)

Note that H3(Z2 × Z2,Z2) ∼= Z4
2. The cohomology invari-

ants for a general 3-cocycle f (g1, g2, g3) ∈ Z3(Z2 × Z2,Z2)
are given by

I1[ f ] = f (x, x, x),

I2[ f ] = f (y, y, y),
(281)

I3[ f ] = f (x, x, y) + f (x, y, x) + f (y, x, x),

I4[ f ] = f (x, y, y) + f (y, x, y) + f (y, y, x),

where x = (1, 0), y = (0, 1). Applying these formulas with
f = ω2 ∪1 ω2, we see that I1 = I2 = 0, I3 = I4 = 1. There-
fore ω2 ∪1 ω2 is a nontrivial 3-cocycle, and no solution for n2

exists.
On the other hand, by choosing a suitable n1, this anomaly

can be canceled. Define n1 = λx + λy. Then we have

dn2 = n1 ∪ ω2 + ω2 ∪1 ω2 (282)

⇒ dn2(g1, g2, g3) = (x1 + y1)x2y3 + x1(x2 + y2)y3

= (y1x2 + x1y2)y3. (283)

We can check that the invariants associated to dn2 are I1 =
I2 = I3 = I4 = 0. Indeed, this equation can be solved by
setting n2(g1, g2) = x1y1y2, which can also be expressed as
n2 = (λx ∪1 λy) ∪ λy. The other solutions differ from it by
two-cocycles λ2

x, λ
2
y and λ2

x + λ2
y ; moreover, adding the term

ω2 = λx ∪ λy to n2 does not change it in any physical way
due to the equivalence relation. Therefore we obtain an H3

obstruction that prohibits a certain choice of [ω2] with n1 = 0,
but this obstruction no longer exists with n1 = λx + λy. Such
a situation was not possible with the continuous SO(3) sym-
metry in the previous example, because in that case n1 was
forced to be the zero function.

1. Cancellation of the O4 anomaly for Gb = Z2 × Z2

We continue on this example of Gb = Z2 × Z2. Given
n1 = λx + λy, ω2 = λx ∪ λy, and n2 = (λx ∪1 λy) ∪ λy or
n2 = (λx ∪1 λy) ∪ λy + λx ∪ λx + λy ∪ λy, we study whether
the following cocycle �4 ∈ H4(Z2 × Z2,R/Z) is trivial
(O4 ≡ e2π i�):

�4 = 1
2 (P (n2) + n2 ∪ ω2 + ζ (n1, ω2))

+ 1
2 (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2)

+ 1
4 n1 ∪ n1 ∪ ω2 + c−

8 P (ω2), (284)

for c− = 1, 3, 5, 7 (mod 8). �4 has a complicated closed
form, so we compute the topological invariants for this �4 ∈
H4(Z2 × Z2,R/Z) to identify the cohomology class, which
completely distinguish cocycles in this cohomology group
[75–77]. Explicitly, the invariants of the cohomology group

TABLE VI. The invariants for the �4 ∈ H4(Z2 × Z2,R/Z). For
all values of odd c−, there always exists a choice of n2 such that the
O4 anomaly is trivial.

c− n2 = (λx ∪1 λy ) ∪ λy n2 = (λx ∪1 λy ) ∪ λy + λ2
x + λ2

y

1 I1 = 1
2 , I2 = 1

2 I1 = 0, I2 = 0

3 I1 = 0, I2 = 0 I1 = 1
2 , I2 = 1

2

5 I1 = 1
2 , I2 = 1

2 I1 = 0, I2 = 0

7 I1 = 0, I2 = 0 I1 = 1
2 , I2 = 1

2

H4(Z2 × Z2,R/Z) ∼= Z2
2 are given by

I1 =
1∑

k=0

i(1,0)�4((0, 1), (0, k), (0, 1)),

I2 =
1∑

k=0

i(0,1)�4((1, 0), (k, 0), (1, 0)).

where ig�4 is the slant product of g and �4 and is defined as

ig�4(x, y, z) = �4(g, x, y, z) − �4(x, g, y, z)

+ �4(x, y, g, z) − �4(x, y, z, g). (285)

The quantities I1 and I2 above are fixed under adding any
coboundary to �4. We use Mathematica to compute the in-
variants numerically and obtain Table VI. We find that for all
odd c−, a solution always exists. This is the smallest group
we know of for which all data (c−, n1, n2, ω2, ν3) are all
nonvanishing.

We remark that for the case with c− = 1, i.e. U(1)4 with
Z2 × Z2 symmetry, the anomaly is also studied in Ref. [25]
for different symmetry fractionalization classes, by construct-
ing a state sum model for the bulk SPT phase that describes
the anomaly. The generators of the Z2 × Z2 symmetry are
denoted in Ref. [25] by X = Ux, Z = UxUy; X permutes the
anyons, while Z does not. The absence of anomaly found here
is consistent with Ref. [25], where our example corresponds to
the symmetry fractionalization class described by (1,−1, 1)
in Table II of Ref. [25].

E. Periodic table of topological insulators and superconductors

The classification of topological insulators and topologi-
cal superconductors of free fermions with different choices
of onsite symmetry classes (known as the “tenfold way”)
was a milestone result in the study of invertible topological
phases of matter [10,32,33] (see Ref. [78] for a review). Here
we use the results stated in Sec. II to find the analogous
classification for interacting fermion phases. The results are
given in Table III [79]. We verify the previously known result
(see, e.g., Ref. [43]) that every free fermion invertible phase
in (2+1) dimensions survives when interactions are added.
Moreover, in classes A and C, the interacting classification
gets an additional factor isomorphic to Z. As we will show in
the following, the symmetry classes AI, AIII, BDI, CI, and CII
have trivial classification in our approach, while the classes A,
AII, D, DIII, and C can have nontrivial classification.
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1. Symmetry classes with trivial classification

There are 5 symmetry classes (AI, AIII, BDI, CI, and CII)
for which the interacting classification is trivial. We briefly
discuss how to obtain this result below. Note that each of
these systems has an antiunitary time-reversal symmetry, with
s1(T) = 1. If the system is to be nonanomalous, we must
set c− = 0 mod 8. Additionally, we must set n1 = 0. For
these 5 classes, we have H1(Gb,Z2) ∼= Z2. The nontrivial
choice of n1 has n1(T) = 1. In each of these cases, we obtain
dn2(T, T, T) = n1(T)s1(T)n1(T) = 1. This equation has no
solution, implying that n2 is obstructed. Therefore we will
assume n1 = 0 and dn2 = 0 for the rest of this section.

Class AI. We have Gb = U(1) � ZT
2 . Denote a general

group element as gi = (zi, Ti) where zi ∈ R/Z, Ti ∈ ZT
2 .

Then the group law is

(z1, T1)(z2, T2) = (z1 + (−1)T1 z2, T1T2). (286)

The U(1) subgroup extends Z f
2 nontrivially: we can write

ω2(g1, g2) = z1 + (−1)T1 z2 − [z1 + (−1)T1 z2]. (287)

We also have H1(Gb,Z2) ∼= Z2,H2(Gb,Z2) ∼=
Z2

2,H3(Gb, U(1)T ) ∼= Z2. A general 2-cocycle f2 is defined
as follows:

f2(g1, g2) = a(z1 + (−1)T1 z2 − [z1 + (−1)T1 z2]) + bT1T2,

(288)
where gi = (zi, Ti) and a, b ∈ Z2.

Taking n1 = 0, there are two inequivalent choices for [n2]:
either n2 = 0 or

n2(g1, g2) = T1T2. (289)

In the latter case, the obstruction class [O4] is nontrivial,
so there is no solution for ν3. In the former case, there are
two solutions for ν3 given by [ν3] ∈ H3(Gb, U(1)T ) ∼= Z2.
However, the nontrivial cocycle can be written as

ν3(g1, g2, g3) = (−1)(z1+(−1)T1 z2−[z1+(−1)T1 z2])T3 . (290)

This cocycle has the form ν3 = (−1)ω2∪n1 , and therefore it can
be trivialized by relabelling defects. We conclude that there is
no nontrivial interacting TI in class AI.

Class AIII. We have Gb = U(1) × ZT
2 . The U(1) sub-

group extends Z f
2 nontrivially. We also have H2(Gb,Z2) ∼=

Z2
2,H3(Gb, U(1)T ) ∼= Z1.
Let gi = (zi, Ti) where zi ∈ U(1), Ti ∈ ZT

2 . Taking n1 = 0,
there are two inequivalent choices for [n2]: either n2 = 0 or

n2(g1, g2) = T1T2. (291)

In the latter case, the obstruction class [O4] is nontrivial, so
there is no solution for ν3. In the former case, we have one
allowed solution (the trivial insulator) which can be summa-
rized by the data n1 = 0, n2 = 0, and ν3 = 1.

Class BDI. We have G f = Z f
2 × ZT

2 . This example was
studied previously in Ref. [20]. We have H1(Gb,Z2) ∼=
Z2,H2(Gb,Z2) ∼= Z2,H3(Gb, U(1)T ) ∼= Z1. The nontrivial
choices of n1 and n2 are both obstructed, while there are no
nontrivial H3 elements.

Class CI and CII. In both cases, we have Gb = ZT
2 ×

SO(3), and a general element can be denoted as gi = (ri, Ti)
where ri ∈ SO(3), Ti ∈ ZT

2 . We also have H1(Gb,Z2) ∼=

Z2,H2(Gb,Z2) ∼= Z2
2,H3(Gb, U(1)T ) ∼= Z2. The nontrivial

H1 element is associated to the time-reversal symmetry. The
nontrivial H2 elements are independently associated to the ZT

2
and SO(3) symmetries. The difference in the two classes co
mes from the definition of ω2. In class CI, both the ZT

2 and
SO(3) subgroups nontrivially extend Z f

2 . In class CII, it is
only the SO(3) subgroup that nontrivially extends Z f

2 .
The nontrivial choice of n1 is obstructed for the reason

discussed previously. After accounting for the equivalence
n2 � n2 + ω2, we have one nontrivial choice of n2, corre-
sponding to n2(g1, g2) = T1T2. However, ν3 is obstructed in
this case. Thus n2 must be trivial. Finally, it turns out that the
two distinct H3 classes defining ν3 are physically equivalent:
in either case, the nontrivial choice of ν3 can be put the
form ν3 = (−1)ω2∪n1 . Thus, in either case, we obtain a trivial
classification.

2. Symmetry classes with nontrivial classification

Class A. Class A systems have Gb = U(1). Here a non-
trivial chiral central charge is allowed, but we must have
c− ∈ Z. This is because ω2 is nontrivial: a 2π rotation of Gb

equals (−1)F . As we showed in Sec. VII B, each integer value
of c− is allowed. We have H1(Gb,Z2) ∼= Z1,H2(Gb,Z2) ∼=
Z2,H3(Gb, U(1)) ∼= Z. The two choices for n2 are equiva-
lent, and so for a given c−, we obtain a Z classification of
IQH states having σH = c− + 8n [σH being measured with
respect to U(1) f ]. The overall classification is parametrized
by two integers (c−, n = σH −c−

8 ) which we can independently
choose, thus the full classification is Z2. Note the difference
between the free and interacting classifications: in the former
case, the only invariant is c− ∈ Z. Although IQH states of
free fermions have a quantized Hall conductivity due to the
U(1) f symmetry, we have σH ∝ c−, so the two numbers are
not independent. Moreover, when this symmetry is broken,
σH becomes undefined, however the state remains nontrivial
because c− is still well defined.

Class AII. We next consider Class AII, which predicts the
Z2 quantum spin Hall state for free fermions. The bosonic
symmetry of the QSH insulator is Gb = U(1)b � ZT

2 . The full
symmetry is specified by the conditions U b

2π = (−1)F [i.e., a
2π rotation by the U(1)b symmetry gives a sign change on
the single-particle state] and T2 = (−1)F . These conditions
are incorporated into the definition of ω2, as follows. We find
that H2(Gb,Z2) ∼= Z2 × Z2. For a general cocycle f2 we can
define the invariants f2(π, π ) ∈ {0, 1} (here π refers to a π

rotation by U(1)b) and f2(T, T) ∈ {0, 1}. With these defini-
tions, we see that ω2 is defined by the invariants ω2(π, π ) =
ω2(T, T) = 1.

Since the system has an antiunitary symmetry, we set c− =
0. In the corresponding symmetry-enriched toric code, having
ω2(π, π ) = 1 means that a 2π flux of U(1)b induces a fermion
parity flux, so that the fermion has a half charge under U(1)b.
Having ω2(T, T) = 1 means that a fermion carries a local
Kramers degeneracy [24].

Next we discuss the classification data. We have
H1(Gb,Z2) ∼= Z2,H2(Gb,Z2) ∼= Z2

2,H3(Gb, U(1)T ) ∼= Z2.
The nontrivial choice of n1 (corresponding to n1(T) = 1) is
obstructed on account of the n1 ∪ s1 ∪ n1 term. Thus we set
n1 = 0.
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Just as for ω2, the possible choices of n2 are specified by the
invariant quantities n2(π, π ) ∈ {0, 1} and n2(T, T) ∈ {0, 1}.
Having n2(π, π ) = 1 implies that inserting 2π flux of U(1)b

(or equivalently, π flux of U(1) f ) changes the fermion parity
of the ground state by 1. In the bosonic shadow, this means
that an m particle has a half charge under U(1)b. Having
n2(T, T) implies that inserting a double crosscap (a pair of
time-reversal symmetry defects) changes the fermion parity
of the ground state by 1. In the bosonic shadow, this means
that an m particle carries a local Kramers degeneracy.

After accounting for the equivalence n2 � n2 + ω2, we
obtain two nontrivial choices for n2, namely, n2(π, π ) =
n2(T, T) = 0 and n2(π, π ) = 0, n2(T, T) = 1. We now argue
that the second choice corresponds to the QSH insulator.
Since the U(1)b symmetry nontrivially extends fermion par-
ity, a π flux of the U(1) f symmetry induces an m particle.
This particle also carries a local Kramers degeneracy, because
n2(T, T) = 1. This property is the signature of the bosonic
shadow of the QSH insulator. There is an equivalent choice
n2(π, π ) = 1, n2(T, T) = 0. This also has a direct interpre-
tation within the QSH insulator: inserting a π flux of U(1) f

changes the fermion parity of the ground state.
Finally, we consider H3(Gb, U(1)T ) ∼= Z2. This factor is

trivialized, because a cocycle in the nontrivial H3 class can be
written in the form (−1)ω2∪n1 . Therefore the final classifica-
tion is Z2, the same as for free fermions.

Class D. The systems in class D correspond to chiral
p + ip superconductors characterized by an integer number ν

of chiral Majorana edge states (or equivalently, by their chiral
central charge c− = ν/2). There is no external symmetry,
so the full classification is given by Z, and the interacting
classification is identical to the free classification.

Class DIII. Next we look at systems in class DIII, for which
G f = ZT f

4 . The free fermion classification predicts a nontriv-
ial state corresponding to “time-reversal invariant topological
superconductors” with T2 = (−1)F . This system is character-
ized by a Kramers doublet of Majorana bound states at its
edge [80,81]. The T operation applied in the neighbourhood
an MBS changes its fermion parity. This system was studied in
detail previously in Ref. [20], and we present the results here
for completeness. Although n1, s1 and ω2 are all nontrivial,
the combination ω2 + s1 ∪ n1 is coboundary equivalent to the
zero function. Therefore n2 is unobstructed, and we can set
dn2 = 0. Now we have H2(Gb,Z2) ∼= Z2, but the two choices
of n2 are equivalent under n2 � n2 + ω2. Finally, we have
H3(Gb, U(1)T ) ∼= Z1. Therefore the final classification is Z2,
and is set by the choice of n1. The fact that the nontrivial
insulator has n1(T) = 1, so that T-defects are non-Abelian, is
consistent with our physical expectation, namely that the edge
of the system hosts Majorana zero modes that also transform
as a Kramers pair.

Class C. As shown in Sec. VII C 1, spin-1/2 fermionic
systems with SO(3) symmetry must have even chiral central
charge. We must also set n1 = 0, while the only choices for
n2 are n2 = 0 and n2 = ω2 � 0. The different choices of ν3

are parametrized by even integers. This is because the spin
Hall conductance σS , which is the defining response property
of bosonic SPTs with SO(3) symmetry, is quantized to even
integer multiples of the elementary unit of spin Hall con-
ductance [82]. The full classification of spin-1/2 fSPTs with

Gb = SO(3) is therefore given by (c−, σS ) ∈ 2Z × 2Z, where
both numbers are even integers. In the free fermion case, there
is only one 2Z factor coming from c−. Therefore the free and
interacting classifications are different.

VIII. DISCUSSION

In our work, we first gauged the fermion parity, and then
studied the resulting Gb-crossed theory. It is reasonable to
consider directly studying the G f -crossed theory for the in-
vertible phase without gauging the fermion parity. We briefly
sketch that analysis below. Recall that each element of G f is
given by a pair (g, a) where g ∈ Gb, a ∈ Z f

2 . The group law
for G f is

(g1, a1)(g2, a2) = (g1g2, a1 + a2 + ω2(g1, g2)). (292)

The anyons [i.e., the (0, 0) defects] consist of the identity
particle and the fermion ψ . The nature of the (0, 1) defects
depends on the value of c−. If c− is an integer, there are two
Abelian defects I(0,1), ψ(0,1). If c− is a half-integer, there is
only one non-Abelian defect, given by σ(0,1). These defects
are the same as the fermion parity fluxes in the Gb-crossed
theory.

Note that there is no anyon permutation in this formulation.
The function n1 instead appears as a choice on whether the
(g, 0) defect is Abelian or not. In fact, the label Lg in the Gb-
crossed theory is given to the descendant of the (g, 0) defect
in the G f -crossed theory.

The symmetry fractionalization can be expressed in terms
of the defect fusion rules as follows:

b(g1,a1 ) × c(g2,a2 ) = ψn2(g1,g2 )
∑

e

Ne
abe(g1g2,ω2(g1,g2 )) (293)

= ψn2(g1,g2 ) × (I(0,1))
ω2(g1,g2 )

∑
e

Ne
abe(g1g2,0).

(294)

This fusion rule appears very similar to what was obtained in
the Gb-crossed theory: we simply identify I(0,1) with a fermion
parity flux. Note that ω2 is no longer a variable symmetry
fractionalization parameter: the only such parameter is n2.

Since in this approach we directly study the invertible
phase, we can in principle obtain an accurate counting of
phases without needing to add any extra information. How-
ever, in order to compute the H4 anomaly, we need to
gauge fermion parity and study the anomalies of the resulting
bosonic theory, which is ultimately the approach of this paper.

There are several open issues that have arisen from our
work which deserve further study. When Gb is unitary, and
[ω2] �= [0], our stacking rule for n2 and ν3 are determined only
up to possible 2- and 3-cocycles, which we have conjectured
to vanish. When Gb is antiunitary, the stacking rule for n2 is
also only known up to a 2-cocycle which we have conjectured
to vanish; and we do not compute the stacking rule for ν3. To
fully derive the stacking rules, it would be useful to understand
how to obtain the full G-crossed data of a theory after anyon
condensation, which we leave for future work.

Furthermore, we used a relative anomaly formula to com-
pare the desired anomaly of our system to that of some
reference state. We have not explicitly proven that the
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reference is nonanomalous when c− = 0, n1, s1 �= 0, although
we have verified this in some nontrivial examples and believe
this to be the case generally.

If we consider antiunitary symmetries, s1 �= 0, relabelling
the e and m particles leads to an equivalence n2 � n2 + ω2

(with an associated equivalence on ν3). Formally, it is also
possible to obtain an equivalence n2 � n2 + ω2 + s1 ∪ n1. For
purely bosonic Gb-enriched SET phases, both equivalences
hold. However, in order to obtain the second equivalence in
the Gb-crossed theory, one needs to perform a certain gauge
transformation �ψψ = −1 on the data that is forbidden (see
Appendix G). On the other hand, the first equivalence can be
obtained without requiring such gauge transformations, there-
fore we expect it to hold equally for fermionic phases. The
argument that �ψψ = −1 is forbidden is based on observing
several inconsistencies when it is allowed; however it would
be illuminating to find a more physically motivated argument
that this is a forbidden transformation.

Finally, we have explicitly shown the existence of a c− = 1
state which has nontrivial n1 and ω2, and is also nonanoma-
lous. Naively, we might expect that Majorana zero modes
localized at symmetry defects and fermions with fractional
Gb quantum numbers should not coexist. This is because
a Majorana zero mode can absorb the fermion, leading to
the nonconservation of the Gb quantum number. However,
the above example appears to evade this naive reasoning.
The resolution is that the Gb quantum number is simply not
well defined for the symmetry defects in this case, just as
the fermion parity is not well defined for the vortices of a
p + ip superconductor. More precisely, the fractional quan-
tum number of ψ is in this case defined by the property that
the generators x, y of Gb anticommute on fermions, due to
the relation ω2(x, y) − ω2(y, x) = 1. However, since x, y both
permute the symmetry defects, it is not meaningful to define
such an (anti)commutator for the defects in a gauge-invariant
manner using the Gb-crossed data.

Note added. Recently, we also became aware of parallel
independent work that overlaps with our results [42], which
was posted to the arxiv simultaneously with v1 of this paper.
A second paper, Ref. [83], also was posted to the arxiv shortly
after our paper which overlaps with some of our results. Also,
we learned that the stacking rules for fermionic SPTs (c− = 0)
were also independently derived using the fixed point wave
function method [84] and agree with our Table I.
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APPENDIX A: BRIEF REVIEW OF G-CROSSED BTCs

In this section, we review some results from the G-crossed
BTC theory developed in Ref. [12,24]. We will only discuss
those results that are relevant for this work. In particular, we
will not require a full theory of the fusion and braiding of
symmetry defects. Strictly speaking, the theory in this sec-
tion applies to bosonic SET phases. The modifications that are
required to describe invertible fermion phases are discussed in
Sec. IV.

1. Overview

The G-crossed BTC is a mathematical object that takes as
input two pieces of data: (i) the data of a topological order
C whose objects are anyons, and which is represented as a
unitary modular tensor category (UMTC); and (ii) a global
symmetry G. The UMTC is specifed by a consistent set of
F and R symbols for the anyons. The action of the sym-
metry on the anyons is specified by certain additional data,
including a set of U symbols and a set of η symbols for each
anyon (to be defined below). Thus the full symmetry action
on the anyons is specified by a consistent set of {F, R,U, η}
symbols.

Apart from anyons, the G-crossed BTC also contains a set
of objects called symmetry defects, which are also associated
to a consistent set of {F, R,U, η} symbols. All the proper-
ties of the symmetry-enriched topological phase, including
the classification and a full set of topological invariants, can
in principle be deduced from the above data. If there is no
consistent specification of {F, R,U, η}, we say that there is an
obstruction to extending the topological order by the global
symmetry, i.e., we cannot consistently define an SET phase
in 2+1 dimensions. There are different types of obstructions
(also referred to as anomalies), as we will see below.

In this work, define three data elements that specify the
bosonic shadow of an invertible fermion phase, referred to as
ñ1, ñ2, and ν3. This notation is adapted from [20]. It will be
useful to keep in mind how these data arise in the Gb-crossed
BTC: ñ1 specifies how the symmetry permutes the anyons,
ñ2 specifies the symmetry fractionalization on the anyons,
and ν3 specifies the {F, R,U, η} symbols of the symmetry
defects.

2. UMTC notation

Here we briefly review the notation that we use to describe
UMTCs. For a more comprehensive review of the notation,
see, e.g., Ref. [12]. The topologically nontrivial quasiparticles
of a (2+1)D topologically ordered state are equivalently re-
ferred to as anyons, topological charges, and quasiparticles.
In the category theory terminology, they correspond to iso-
morphism classes of simple objects of the UMTC.

A UMTC C contains splitting spaces V ab
c , and their dual

fusion spaces, V c
ab, where a, b, c ∈ C are the anyons. These

spaces have dimension dim V ab
c = dim V c

ab = Nc
ab, where Nc

ab
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are referred to as the fusion rules. They are depicted graphi-
cally as

(dc/dadb)
1/4

c

ba

μ = a, b; c, μ| ∈ V c
ab , (A1)

(dc/dadb)
1/4

c

ba

μ = |a, b; c, μ V ab
c , (A2)

where μ = 1, . . . , Nc
ab, di is the quantum dimension of anyon

i (i = a, b, c), and the factors ( dc
dadb

)1/4 are a normalization
convention for the diagrams.

We denote ā as the topological charge conjugate of a, for
which N1

aā = 1, i.e.,

a × ā = 1 + · · · . (A3)

Here 1 refers to the identity particle, i.e., the vacuum topolog-
ical sector, which physically describes all local, topologically
trivial excitations.

The F symbols are defined as the following basis transfor-
mation between the splitting spaces of 4 anyons:

a b c

e

d

α

β
=

f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

a b c

f

d

μ

ν
.

(A4)
To describe topological phases, these are required to be uni-
tary transformations, i.e.,[(

F abc
d

)−1
]

( f ,μ,ν )(e,α,β )
=
[(

F abc
d

)†
]

( f ,μ,ν )(e,α,β )

= [
F abc

d

]∗
(e,α,β )( f ,μ,ν ). (A5)

The R symbols define the braiding properties of the anyons,
and are defined via the following diagram:

c

ba

μ =
ν

Rab
c μν

c

ba

ν . (A6)

Under a basis transformation, �ab
c : V ab

c → V ab
c , the F and

R symbols change:

F abc
d → F̃ abc

d = �ab
e �ec

d F abc
d

[
�bc

f

]†[
�

a f
d

]†
,

Rab
c → R̃ab

c = �ba
c Rab

c

[
�ab

c

]†
. (A7)

These basis transformations are referred to as vertex ba-
sis gauge transformations. Physical quantities correspond to
gauge-invariant combinations of the data.

The topological twist θa = e2π iha , with ha the topological
spin, is defined via the diagram

θa = θā =
c,μ

dc

da
[Raa

c ]μμ =
1
da a

. (A8)

A quantity that we make extensive use of is the double
braid, which is a phase if either a or b is an Abelian anyon:

a b

= Mab

ba

. (A9)

When a or b is Abelian, we have Mab = RabRba.

3. Topological symmetry

An important property of a UMTC C is the group of
“topological symmetries,” which are related to “braided
autoequivalences” in the mathematical literature. They are as-
sociated with the symmetries of the emergent TQFT described
by C, irrespective of any microscopic global symmetries of
a quantum system in which the TQFT emerges as the long
wavelength description.

The topological symmetries consist of the invertible maps

ϕ : C → C. (A10)

The different ϕ, modulo equivalences known as natural iso-
morphisms, form a group, which we denote as Aut(C).

For example, consider the Z2 toric code, which has 4
anyons 1, e, m, ψ forming a group Z2 × Z2 under fusion.
This topological order has a Z2 topological symmetry which
permutes e and m (this is an example of a nontrivial ϕ).

4. Global symmetry action on anyons

Let us now suppose that we are interested in a system with
a global symmetry group G. For example, we may be inter-
ested in a given microscopic Hamiltonian that has a global
symmetry group G, whose ground state preserves G, and
whose anyonic excitations are algebraically described by C.

To allow for antiunitary symmetries, we associate the grad-
ing s1(g) by defining s1(g) = 1 when g is antiunitary, and
s1(g) = 0 otherwise.

The global symmetry acts on the topological quasiparticles
and the topological state space through the action of a group
homomorphism

[ρ] : G → Aut(C). (A11)

We use the notation [ρg] ∈ Aut(C) for a specific element
g ∈ G. The square brackets indicate the equivalence class of
symmetry maps related by natural isomorphisms, which we
define below. ρg is thus a representative symmetry map of the
equivalence class [ρg]. We use the notation

ga ≡ ρg(a). (A12)

In the example of the Z2 toric code, [ρ] specifies how the
e − m permutation is realized by the elements of G. If ρ(g) =
1 for some g ∈ G, we have ge = m, gm = e, and gψ = ψ .
In the context of invertible phases with integer chiral central
charge, we denote ρ = ñ1.

5. η and U symbols for the anyons

To fully specify how the symmetry acts on the anyons, we
further need to define (i) a representation of the symmetry
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action on the fusion/splitting spaces, and (ii) the projective phases associated with the symmetry action on a local region
surrounding an anyon. These properties are encoded in the U and η symbols.

The permutation ρg has an action on the fusion/splitting spaces:

ρg : V c
ab → V

gc
ga gb. (A13)

This map is unitary if s1(g) = 0 and antiunitary if s1(g) = 1. We write this as

ρg|a, b; c, μ〉 =
∑

ν

[Ug( ga, gb; gc)]μνKs1(g)| ga, gb; gc, ν〉, (A14)

where Ug( ga, gb; gc) is a Nc
ab × Nc

ab matrix, and K denotes complex conjugation.
Under the map ρg, the F and R symbols transform as well:

ρg
[
F abc

de f

] = Ug( ga, gb; ge)Ug( ge, gc; gd )F
ga gb gc

gd ge g f U −1
g ( gb, gc; g f )U −1

g ( ga, g f ; gd ) = Ks1(g)F abc
de f Ks1(g),

(A15)
ρg
[
Rab

c

] = Ug( gb, ga; gc)R
ga gb
gc Ug( ga, gb; gc)−1 = Ks1(g)Rab

c Ks1(g),

where we have suppressed the additional indices that appear
when Nc

ab > 1. We remark that if the F and R symbols are
invariant under an overall permutation of their arguments by
arbitrary g, it is often possible to set all U = 1. This gives a
substantial simplification to the consistency equations.

Importantly, we have

κg,h ◦ ρg ◦ ρh = ρgh, (A16)

where the action of κg,h on the fusion / splitting spaces is
defined as

κg,h(|a, b; c, μ〉) =
∑

ν

[κg,h(a, b; c)]μν |a, b; c, ν〉. (A17)

The above definitions imply that

κg,h(a, b; c)

= Ug(a, b; c)−1Ks1(g)Uh( ḡa, ḡb; ḡc)−1Ks1(g)Ugh(a, b; c),
(A18)

where ḡ ≡ g−1. Additionally, κg,h is a natural isomorphism,
which means that by definition,

[κg,h(a, b; c)]μν = δμν

βa(g, h)βb(g, h)

βc(g, h)
, (A19)

where βa(g, h) are U dependent phases.
The data ηa(g, h) characterize the difference in phase ob-

tained when acting “locally” on an anyon a by g and h
separately, as compared with gh. In other words, ηa specifies
the projective representation of G associated to a. There are
two important consistency conditions for U and η, which we
will use repeatedly. The first one is

ηa(g, h)ηb(g, h)

ηc(g, h)
= κg,h(a, b; c), (A20)

with κ defined in terms of U as in Eq. (A18). (η and β have a
slightly different interpretation, see Sec. IV B of Ref. [12] for
a discussion; but they are related to κg,h in the same way.) The
other one is

ηa(g, h)ηa(gh, k) = ηa(g, hk)ηs1(g)
ρ−1

g (a)
(h, k). (A21)

6. Symmetry localization and fractionalization

In order to fully specify the symmetry action on the anyons,
we must obtain a consistent solution to the U and η symbols
using Eqs. (A15), (A18), (A20), and (A21). If there is no
consistent solution to Eq. (A15), we say there is a symmetry
localization obstruction characterized by an element [O] ∈
H3

[ρ](G,A), where A is the group of Abelian anyons under
fusion. In that case, we cannot define the η symbols at all,
i.e., there is no consistent way to “localize” the symmetry
action on each anyon. The H3 obstruction can alternatively
be viewed as a manifestation of 2-group symmetry [35].

Even if we can solve for Eq. (A15), there may be further
obstructions to consistently defining η. Physically these arise
from the fact that if we have a given symmetry fractionaliza-
tion on ψ , it may not be possible to extend this to the entirety
of C [37]. In our context, these obstructions define constraints
on the data n2. In fact, n2 is directly defined in terms of
the η symbols (see Table IV). Assuming there are no such
obstructions, the distinct choices of η define the symmetry
fractionalization classes of the SET phase. Mathematically,
it is found [12] that they are classified by a torsor over the
group H2

[ρ](G,A). This means that if we can find a reference
solution ηref, there exist |H2

[ρ](G,A)| distinct solutions, given
by ηa(g, h) = Ma,t(g,h)η

ref
a (g, h), where t(g, h) is an anyon

and [t] ∈ H2
[ρ](G,A).

7. Symmetry defects

Another way to understand the classification of symmetry
fractionalization is in terms of the properties of symmetry
defects. A symmetry defect consists of a defect line in space,
labeled by a group element g ∈ G, which we sometimes refer
to as a branch cut, and which can terminate at a point. In the
(2+1)D space-time, the symmetry defect is thus associated
with a two-dimensional branch sheet. A given branch cut
line associated with g can have topologically distinct end-
points, which thus give rise to topologically distinct types of
g defects; a particular topological class of g defect is thus
labeled as ag. An anyon x crossing the g defect branch cut
is transformed into its permuted counterpart, gx.

235143-40



CLASSIFICATION OF (2+1)D INVERTIBLE FERMIONIC … PHYSICAL REVIEW B 105, 235143 (2022)

First, we note that the defects can be organized into a G-
graded fusion category,

CG =
⊕
g∈G

Cg, (A22)

where the simple objects of Cg are the topologically distinct
set of g defects. This means that we have a notion of fusion
for defects, just as for anyons.

To determine the quantum dimensions of the defects, we
use the following important formula. By considering states on
a torus with a g defect wrapping one of the cycles, one can
show that

|Cg| = ∣∣Cg
0

∣∣, (A23)

where |Cg| is the number of topologically distinct g defects,
and |Cg

0 | is the number of g invariant anyons.
Now the symmetry fractionalization classes discussed in

the previous section can also be defined in terms of the dif-
ferent classes of fusion rules of the defects. Fusion of the
defects respects the group multiplication law associated with
their branch cuts, so that an allowed fusion rule takes the
form

ag × bh =
∑
cgh

Nc
abcgh. (A24)

(If there is an H3 obstruction, such a fusion rule will not exist.)
Given this, we can consider the modified rule

ag × bh = t(g, h)
∑

c

Nc
abcgh. (A25)

This new rule must respect associativity:

(ag × bh) × ck = ag × (bh × ck ). (A26)

For the new fusion rules Eq. (A25) to be associative, we are
thus led to the constraint

t(g, h)t(gh, k) = gt(h, k)t(g, hk). (A27)

From this 2-cocycle condition, we infer that the distinct
choices of [t] are classified by H2

[ρ](G,A).

8. The H4 anomaly and its computation

A complete description of symmetry defects involves the
specification of {F, R,U, η} for all defects, subject to several
consistency conditions. We will not describe this here; a com-
prehensive treatment is given in Ref. [12]. We only note that
the defect F symbols need to satisfy an internal consistency
condition known as the pentagon equation, which takes the
abbreviated form FF = ∑

FFF . Even if the symmetry frac-
tionalization class is well defined, we find that instead of the
pentagon equation, we have

FFO4(g, h, k, l) =
∑

FFF, (A28)

where O4(g, h, k, l) is a cocycle representative of the group
H4(G, U(1)T ). O4 is called the defect obstruction. If it
is a nontrivial cocycle, it signifies that the SET with the
given symmetry fractionalization class cannot be realized in
(2+1)D; instead, it must exist on the surface of an SPT state
in (3+1) dimensions with cohomology class [O4].

The function ν3 arising in the study of invertible phases is
closely related to the defect F symbols in the corresponding
Gb-crossed BTC. ν3 fixes a subset of the F symbols, and the
remaining ones are in turn fixed by the pentagon equation.
We can in fact write the pentagon equation as a condition
on ν3:

dν3 = O4. (A29)

Computing the ’t Hooft anomaly is often the most difficult
technical task in studying a topological phase. We will use an
idea developed in Ref. [24]: rather than compute the anomaly
from first principles, we break the problem down into two
steps. First, we find an SET C×

G,ref in a symmetry fractionaliza-
tion class for which the anomaly is easily computable. Then
we find the relative anomaly Or (g, h, k, l) between C×

G,ref and
the desired SET C×

G , whose symmetry fractionalization class
is related to that of C×

G,ref by the anyon t(g, h). A formula for
Or was derived in Ref. [24] (see below). When Gb is unitary,
we can always find a reference C×

G,ref which is nonanomalous.
Thus, in this case, the relative anomaly between the two
phases is equal to the absolute anomaly of C×

G .
In terms of the data {F, R,U, ηref} of C×

G,ref, the relative
anomaly is given by the formula

Or (g, h, k, l) = R
ght(k,l)t(g,h)ηght(k,l)(g, h)

Ug(gt(h, kl), ght(k.l))
Ug(gt(hk, l), gt(h, k))

× F t(ghk,l)t(gh,k)t(g,h)

F t(ghk,l)t(g,hk)gt(h,k)

F t(g,hkl)gt(hk,l)gt(h,k)

F t(g,hkl)gt(h,kl)ght(k,l)

F t(gh,kl)t(g,h)ght(k,l)

F t(gh,kl)ght(k,l)t(g,h)
. (A30)

We will sometimes abbreviate this as “Or = RηU
U

FFF
FFF ”. When the symmetry is nonpermuting (i.e., [ρ] is trivial), Ref. [12] gives

a formula for the absolute anomaly of C×
G in terms of the F and R symbols of C×

G :

O4(g, h, k, l) = F t(h,k)t(g,hk)t(ghk,l)

F t(g,h)t(gh,k)t(ghk,l)

F t(k,l)t(h,kl)t(g,hkl)

F t(h,k)t(hk,l)t(g,hkl)

F t(g,h)t(k,l)t(gh,kl)

F t(k,l)t(g,h)t(gh,kl)
Rt(g,h)t(k,l). (A31)

For convenience, we will sometimes abbreviate this as “O4 = R FFF
FFF

′′
. The relative anomaly formula reduces to the absolute

anomaly formula in the nonpermuting case, because we can always set U = 1 for the anyons and also find a reference state with
η = 1.

Assuming the anomaly is trivial, the distinct choices of ν3 for a given [t] are related by elements of H3(G, U(1)T ).
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9. Gauge transformations

The full G-crossed BTC has a consistent set of
F, R, U, and η symbols for anyons as well as symmetry
defects. The data are subject to two kinds of gauge transforma-
tions, referred to as vertex basis and symmetry action gauge
transformations. Let ag, bh, ck, dghk, egh, fhk be topological
charges (the group labels are suppressed below). We assume
that Ne

ab � 1, i.e., there are no fusion multiplicities. The vertex
basis transformations generalize those defined for UMTCs,
and are defined as follows [here s1(g) = 1 is understood to
act by complex conjugation]:

[F abc
d ]e, f → �ab

e �ec
f

�
a f
d �bc

f

[
F abc

d

]
e, f ,

Rab
e → �bh̄a

e

�ab
e

Rab
e ,

Uk(a, b; e) → �
k̄ak̄b
k̄e

(�ab
e )s1(k)

Uk(a, b; e),

2pt]ηc(g, h) → ηc(g, h). (A32)

The symmetry action gauge transformations act as follows:[
F abc

d

]
e, f → [

F abc
d

]
e, f ,

Rab
e → γa(h)Rab

e ,

2pt]Ug(a, b; c) → γa(g)γb(g)

γc(g)
Ug(a, b; c),

2pt]ηc(g, h) → γc(gh)

(γ gc(g))s1(g)γc(h)
ηc(g, h). (A33)

We have �a0
a = �0b

b = 1 and γ0(h) = γa(0) = 1. Imoprtantly,
for fermionic systems we additionally impose the constraints
[47]

γψ (g) = 1, (A34)

�ψψ = 1. (A35)

Our main application of these gauge transformations will be
in proving equivalences between two different sets of data
describing the bosonic shadows of invertible phases (Sec. IV).

10. Equivalences

Above we saw that the G-crossed BTC is specified by the
three properties [ρ], [t], [ν3]. However, two different sets of
data might describe the same SET phase. This is because, in
addition to the gauge transformations in the theory, two sets of
data might also become equivalent under a relabelling of the

anyons and defects. As a result, for a given [ρ] the true count
of SET phases is generally less than the naive estimate of
|H2

ρ (G,A) × H3(G, U(1)T )|, even without considering any
obstructions. Two systems are treated as physically equiva-
lent if their data can be related by relabelling a subset of
the anyons and defects with fermions, and then performing
suitable gauge transformations. We will describe in detail how
these equivalences affect the counting of invertible phases in
Sec. IV.

APPENDIX B: HIGHER CUP PRODUCTS AND THEIR
PROPERTIES

1. Definition of ordinary and higher cup product

In this section, we will assume some background on the
definition of group cochains and cohomology groups; this is
reviewed, for example, in Ref. [3]. Here we only give a very
brief overview. An m-cochain fm ∈ Cm(G, A) is an m-variable
function from a group G to an Abelian group A (which
we will often take to be U(1),Z2 or Z). We can define a
map d : Cm(G, A) → Cm+1(G, A) satisfying d ◦ d = 0; such
a map is called a differential. The cochain fm is an m-cocycle
if dfm = 0; the set of all m-cocycles is denoted Zm(G, A).
fm is an m-coboundary if it can be written as fm = dbm−1

for some bm−1 ∈ Cm−1(G, A). The set of all m-coboundaries
is denoted Bm(G, A). Then, the mth cohomology group of
G with coefficients in A, denoted Hm(G, A), is defined
as

Hm(G, A) := Zm(G, A)

Bm(G, A)
. (B1)

We now discuss cup products. Let G be a group, and A
be a coefficient module. (In this work we often use A =
Z2, U(1).) Let fm ∈ Cm(G, A), gn ∈ Cn(G, A) be m- and n-
cochains taking values in A. Then, the cup product ∪ :
Cm(G, A) × Cn(G, A) → Cm+n(G, A) (sometimes referred to
as the cup-0 or ∪0 product) of fm and gn is defined as follows:

( fm ∪ fn)(g1, g2, . . . , gm+n)

:= fm(g1, . . . , gm)gn(gm+1, . . . , gm+n). (B2)

We can also consider the cochains on simplices, where we
label a p-simplex by its vertices (v0, v1, · · · vp). It is related
to the previous notation by assigning to the edge connect-
ing the vertices vm, vm+1 the group element gm+1. We will
use the two notation interchangeably, i.e., O4(g, h, k, l) =
O4(01234) where group elements g, h, k, l live on edges 〈01〉,
〈12〉, 〈23〉, 〈34〉.

The cup-1 product is a binary operation ∪1 : Cm(G, A) ×
Cn(G, A) → Cm+n−1(G, A) on cochains, and is defined as fol-
lows [45]:

( fm ∪1 gn)(g1, . . . , gm+n−1) :=
m−1∑
j=0

(−1)(m− j)(n+1) fm(g1, . . . , g j, g j+n, gm+n−1)gn(g j, . . . , g j+n−1). (B3)
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Let us look at a few examples explicitly, taking A = Z2:

m = n = 1: ( f1 ∪1 g1)(g1) = f1(g1)g1(g1), (B4)

m = n = 2: ( f2 ∪1 g2)(g1, g2, g3) = f2(g1g2, g3)g2(g1, g2) + f2(g1, g2g3)g2(g2, g3), (B5)

m = 2, n = 3: ( f2 ∪1 g3)(g1, g2, g3, g4) = f2(g1g2g3, g4)g3(g1, g2, g3) + f2(g1, g2g3g4)g3(g2, g3, g4), (B6)

m = 3, n = 2: ( f3 ∪1 g2)(g1, g2, g3, g4) = f3(g1g2, g3, g4)g2(g1, g2) + f3(g1, g2g3, g4)g2(g2, g3) + f3(g1, g2, g3g4)g2(g3, g4).

(B7)

For i � 0, the cup-i or ∪i product is a binary operation on
cochains, ∪i : Cm(G, A) × Cn(G, A) → Cm+n−i(G, A). This
operation gives zero if m < i or n < i. Note that while the
∪0 product is associative, the higher cup products are not.
The expressions for higher cup products are more involved
(see, e.g., Ref. [85]), and usually only arise indirectly through
the identities discussed below. One useful special case is that
for n-cochains fn, gn, fn ∪n gn is also an n-cochain with the
simple form

( fn ∪n gn)(g1, . . . , gn) = fn(g1, . . . , gn)gn(g1, . . . , gn). (B8)

2. Cup product identities

(1) Leibnitz rule:

d ( fm ∪ fn) = dfm ∪ fn + (−1)m fm ∪ dfn. (B9)

A consequence of this property is that the cup product is a
cohomology operation: given that fm, fn are cocycles, fm ∪ fn

is also a cocycle.
The higher cup products satisfy the following Leibnitz rule:

d ( fm ∪i fn) = dfm ∪i fn + (−1)m fm ∪i dfn

+ (−1)m+n−i fm ∪i−1 fn

+ (−1)mn+m+n fn ∪i−1 fm. (B10)

As a result, the ∪i product is not a cohomology operation for
i � 1.

(2) The Hirsch identity [86]: for cochains a, b, c of degree
p, q, r, respectively, we have

(ap ∪ bq) ∪1 cr

= (−1)pap ∪ (bq ∪1 cr ) + (−1)qr (ap ∪1 cr ) ∪ bq. (B11)

While working in Z2 coefficients we can neglect the minus
signs in the above expressions.

For Z2 cocycles x, y, z and working in Z2 coefficient, we
also have

x ∪1 (y ∪ z) = (y ∪ z) ∪1 x + d (x ∪2 (y ∪ z))

= (y ∪1 x) ∪ z + y ∪ (z ∪1 x)

+ d (x ∪2 (y ∪ z)) mod 2. (B12)

(3) A useful identity is

X2 ∪1 X2 + X2 ∪2 dX2 = 1
2 (d[X2]2 − [dX2]2), (B13)

where [Y ]2 denotes the mod 2 reduction for Y , and X2 is a Z2

2-cochain. To prove it, we note that

d[X2]2 − [dX2]2 = d (X2 ∪2 X2) − dX2 ∪3 dX2

= 2X2 ∪1 X2 + dX2 ∪2 X2 + X2 ∪2 dX2

− dX2 ∪3 dX2

= 2(X2 ∪1 X2 + X2 ∪2 dX2). (B14)

In particular, when X2 is closed dX2 = 0 mod 2, we have

X2 ∪1 X2 = Sq1X2 = d[X2]/2. (B15)

(4) Another identity is B2 ∪2 (B2 ∪1 B2) = 0 mod 2 for Z2

two-cocycle B2:

B2 ∪2 (B2 ∪1 B2)(1234)

= [B2(123) + B2(134)][B2(124)B2(234)

+ B2(134)B2(123)]

= [B2(123) + B2(134)]B2(134)B2(123)

+ [B2(124) + B2(234)]B2(124)B2(234)

= 0 mod 2. (B16)

3. Steenrod squares

Take A = Z2. While the ∪i product on general cochains
is not a cohomology operation, the ith Steenrod square, de-
noted as Sqi, is indeed such an operation. Sqi : Hm(G,Z2) →
Hm+i(G,Z2) is defined as an additive homomorphism with
the following properties:

(1) (Naturality) For any f : G → G′, we have
f ∗(Sqi(x)) = Sqi( f ∗(x)).

(2) Sq0 is the identity homomorphism.
(3) Sqn( fn) = fn ∪ fn, where fn is a cocycle.
(4) Sqi( fn) = 0 for i > n.
(5) (Cartan formula) Sqi( fm ∪ gn) =∑
u+v=iSqu( fm)Sqv (gn).
We also note two useful properties of Sq1: (i) for a 2-

cocycle f2, Sq1( f2) = f2 ∪1 f2; and (ii) Sq1 is the Bockstein
homomorphism associated to the short exact sequence

1 → Z2 → Z4 → Z2 → 1. (B17)

These properties can be used to understand a particular in-
stance of the ’H3 anomaly’. In the main text we derived
through direct calculation that when c− is odd, and n1 = 0,
the equation for n2 reads

dn2 = ω2 ∪1 ω2. (B18)

This equation can be understood more abstractly in terms of
Sq1. The group A = Z4 can be expressed via the short exact
sequence

1 → Zψ

2
×2−→ Z4

mod 2−−−−→ Zv
2 → 1, (B19)

where ψ generates the normal subgroup, denoted as Zψ

2 , and
v generates the second Zm

2 factor. This short exact sequence
induces the following long exact sequence:

· · · →
n′

2︷ ︸︸ ︷
H2(Gb,Z

ψ

2 )
×2−→

[ω2]2+2n′
2︷ ︸︸ ︷

H2(Gb,Z4)
mod 2−−−−→

ω2︷ ︸︸ ︷
H2(Gb,Z

v
2 )

d−→ H3(Gb,Z
ψ

2 )
×2−→ H3(Gb,Z4) → . . . (B20)
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The overbrace above each cohomology group gives the mean-
ing of the cocycle representatives within that group. The
homomorphism d which connects H2(Gb,Z

ψ

2 ) to H3(Gb,Zv
2 )

is the Bockstein homomorphism for the above short ex-
act sequence. It is equal to the first Steenrod square Sq1 :
H2(Gb,Z2) → H3(Gb,Z2), which for the 2-cocycle ω2 is the
same as the cup-1 product:

Sq1(ω2) = ω2 ∪1 ω2. (B21)

Hence, ω2 is mapped to Sq1(ω2) by d , and then to an element
of H3(Gb,Z4) by the subsequent ×2 map. Physically, this

defines a “symmetry localization anomaly” O = 2Sq1(ω2)
valued in Z3(Gb,Z4). If [O] is nontrivial in H3(Gb,Z2), there
is an obstruction to symmetry fractionalization.

If on the other hand Sq1(ω2) is trivial, this differential can
be canceled by suitably defining n2: we set

dn2 = ω2 ∪1 ω2, (B22)

as we derived earlier through a more elementary argument.
In this case, the physically distinct choices of n2 differ by
cocycles n′

2 ∈ H2(Gb,Z
ψ

2 ).

APPENDIX C: ANOMALY COMPUTATIONS

In this section, we perform the H4 anomaly calculations required to complete Sec. III D and Table I. We will work in the
representation (n1, n2, ν3). For each choice of c−, we will consider the cases n1 = 0 and n1 �= 0 separately. In the former case,
we will directly compute the absolute anomaly from Eq. (A31), which is reproduced here:

O4(g, h, k, l) = F t(h,k)t(g,hk)t(ghk,l)

F t(g,h)t(gh,k)t(ghk,l)

F t(k,l)t(h,kl)t(g,hkl)

F t(h,k)t(hk,l)t(g,hkl)

F t(g,h)t(k,l)t(gh,kl)

F t(k,l)t(g,h)t(gh,kl)
Rt(g,h)t(k,l). (C1)

In the latter case, we will use Eq. (A30), also written below, to compute the relative anomaly Or between the desired SET C×
G

and a reference SET C×
G,ref which has trivial symmetry fractionalization, and is nonanomalous. In terms of the data of C×

G,ref, the
relative anomaly formula is

Or (g, h, k, l) = R
ght(k,l)t(g,h)ηght(k,l)(g, h)

Ug(gt(h, kl), ght(k.l))
Ug(gt(hk, l), gt(h, k))

× F t(ghk,l)t(gh,k)t(g,h)

F t(ghk,l)t(g,hk)gt(h,k)

F t(g,hkl)gt(hk,l)gt(h,k)

F t(g,hkl)gt(h,kl)ght(k,l)

F t(gh,kl)t(g,h)ght(k,l)

F t(gh,kl)ght(k,l)t(g,h)
. (C2)

In the context of invertible fermion phases, we refer to the expression obtained by directly plugging in the anyon data into
the relative anomaly formula as O(0)

4 . We will refer to each part in the anomaly O(0)
4 as the R part, the η part, the U/U part,

and the FFF/FFF part. The computation consists of plugging in the relevant data from Table IV to obtain O(0)
4 and then

obtaining a simpler expression O4 := O(0)
4 × dX −1 by adding suitable 4-coboundaries. Note that we need to plug in the data

of the nonanomalous reference, which is obtained from Table IV by setting n2 = ω2 = 0. The F, R, and U symbols for the
reference can be read off directly from Table IV. We remark that it is not necessary to track the 4-coboundary dX in many
standard applications. However it is useful to know X in order to obtain an explicit parametrization of the defect F symbols.

We will discuss the following cases separately: c− = 4k (unitary), c− = 0 (antiunitary), c− = 4k + 2, c− = 2k + 1 and c− =
k + 1/2. For each case, we will first consider n1 = 0 and then n1 �= 0.

In the following discussion, it is convenient to define 4-cochain valued functions f , g:

f (a1, b2, c3) ≡ (a1 ∪ c3) ∪2 b2 + a1 ∪ (c3 ∪2 b2), f (a1, b2, c3)(01234) = a(01)b(014)c(1234) mod 2,

g(a2, b2, c2) ≡ (a2 ∪ c2) ∪2 b2 + a2 ∪ (c2 ∪2 b2), g(a2, b2, c2)(01234) = a2(012)[b(014) + b(124)]c2(234) mod 2, (C3)

where the arguments of f , g are cochains with degree given by the subscripts. The 4-cochain valued function f satisfies the
following properties: for a1 = n1, b2 = ω2 that are closed and c3 = dX for integer two-cochain X ,

f (n1, ω2, dX ) = (n1 ∪ dX ) ∪2 ω2 + n1 ∪ (dX ∪2 ω2)

= [dn1 ∪ X − d (n1 ∪ X )] ∪2 ω2 + n1 ∪ [d (X ∪2 ω2) − X ∪2 dω2 − X ∪1 ω2 − ω2 ∪1 X ]

∼ (dn1 ∪ X ) ∪2 ω2 − (n1 ∪ X ) ∪2 dω2 − (n1 ∪ X ) ∪1 ω2 − ω2 ∪1 (n1 ∪ X )

+ dn1 ∪ (X ∪2 ω2) − n1 ∪ (X ∪2 dω2) − n1 ∪ (X ∪1 ω2) − n1 ∪ (ω2 ∪1 X )

= (n1 ∪1 ω2) ∪ X + ω2 ∪1 (n1 ∪ X ) + n1 ∪ (ω2 ∪1 X ) mod 2, (C4)

where ∼ means equal up to a coboundary. We also denote θ ≡ eiπc−/4 as before.

1. c− = 4k

In this case, we have, in vector notation, the following relations:

t(g, h) = (n2(g, h), (n2 + ω2)(g, h)), (C5)

gt(h, k) = (n2(h, k) + n1(g)ω2(h, k), (n2 + ω2)(h, k) + n1(g)ω2(h, k)). (C6)
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a. n1 = 0

Since the F symbols can be set to 1, we simply have O4 = R [Eq. (A31)]:

O4(g, h, k, l)[c− = 4k, n1 = 0, n2] = Rt(g,h)t(k,l) (C7)

= (−1)t(g,h)et(k,l)m+ c−
4 (t(g,h)et(k,l)e+t(g,h)mt(k,l)m ) (C8)

= (−1)n2∪(n2+ω2 )+ c−
4 (n2∪n2+(n2+ω2 )∪(n2+ω2 )) (C9)

= (−1)n2∪(n2+ω2 )+ c−
4 (n2∪ω2+ω2∪n2+ω2∪ω2 ) (C10)

= (−1)n2∪(n2+ω2 )+ c−
4 ω2∪ω2 . (C11)

When dn2 = 0, two of the terms proportional to c− are coboundary terms and hence are dropped in the last line. The c− = 0
result agrees with Ref. [20].

b. n1 �= 0

Here we will assume that s1 = 0, i.e., the symmetry is unitary. (The antiunitary case cannot be handled using the relative
anomaly formula, because there is no obvious choice of nonanomalous reference theory.) Then we can use the relation dn2 =
n1 ∪ ω2 to simplify Eq. (C6). The F and η symbols in the expression for the relative anomaly O4 are trivial, so the anomaly O4

only contains the R part and the “U/U” part.
The R part is given by

R
ght(k,l)t(g,h) = (−1)[ght(k,l)]e[t(g,h)]m+ c−

4 ([ght(k,l)]e[t(g,h)]e+[ght(k,l)]m[t(g,h)]m ) (C12)

= (−1)(n2∪n2+ω2∪n2 )(g,h,k,l)+dn2 (gh,k,l)(n2+ω2 )(g,h)(−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2 (g,h)dn2(gh,k,l)). (C13)

Next we compute the U/U part. We have Ug(a, b) = ((−1)ambe γaγb

γa×b
)n1(g) with γa = iaeam . The (−1)amben1(g) term contributes

(−1)n1(g){n2(h,kl)((n2+ω2 )(k,l)+dn2(h,k,l))−n2(hk,l)(n2+ω2 )(h,k)}. (C14)

The γ factors together give ( γaγb

γcγd
)n1(g), with a = gt(h, kl), b = ght(k, l), c = gt(hk, l), d = gt(h, k). The factor γab/γcd cancels

out, since ab = cd . Furthermore, we observe that γa = γga, therefore we can ignore the group action in the definition of
a, b, c, d . Using the definition γt(g,h) = in2(g,h)[1+ω2(g,h)]2 := i f (g,h), we see that the γ factors now contribute

in1(g)( f (h,kl)+ f (k,l)− f (hk,l)− f (h,k)) ∼ (−1)n1(g)n1(h)n2(k,l)(1+ω2(k,l)), (C15)

where ∼ in the last line means equal up to a coboundary, which can be absorbed into a redefinition of ν3. Explicitly, the
coboundary is db, where b = in1∪ f . Combining terms, we obtain

Ug(gt(h, kl), ght(k, l))
Ug(gt(hk, l), gt(h, k))

= (−1)n1(g){n2(h,kl)((n2+ω2 )(k,l)+dn2(h,k,l))−n2 (hk,l)(n2+ω2 )(h,k)}(−1)n1(g)n1(h)n2(k,l)(1+ω2(k,l)). (C16)

The full expression for O(0)
4 is

O(0)
4 (g, h, k, l) = (−1)(n2∪n2+ω2∪n2 )(g,h,k,l)+dn2 (gh,k,l)(n2+ω2 )(g,h) × (−1)n1(g)n1(h)n2(k,l)(n2+ω2 )(k,l)

× (−1)n1(g){n2(h,kl)((n2+ω2 )(k,l)+dn2(h,k,l))−n2(hk,l)(n2+ω2 )(h,k)}

× (−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2(g,h)dn2(gh,k,l)). (C17)

Now, we can use the equivalence relation n2 ∼ n2 + ω2 (recall this follows from a gauge transformation n1 → n1 + dφ0,
n2 → n2 + φ0 ∪ ω2 due to dn2 = n1 ∪ ω2; equivalently, it follows from relabeling the e and m fluxes). This gives

O(0)
4 (g, h, k, l) ∼ (−1)(n2∪(n2+ω2 ))(g,h,k,l)+dn2 (gh,k,l)n2(g,h) × (−1)n1(g)n1(h)n2(k,l)(n2+ω2 )(k,l)

× (−1)n1(g){(n2+ω2 )(h,kl)(n2(k,l)+dn2(h,k,l))−(n2+ω2 )(hk,l)n2(h,k)}

× (−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2 (g,h)dn2(gh,k,l)) (C18)

= (−1)(n2∪(n2+ω2 ))(g,h,k,l)+n1(g)(n2∪1n2 )(h,k,l)+dn2(gh,k,l)n2(g,h)+dn2(g,hk,l)n2(h,k)+dn2(g,h,kl)n2(k,l)

× (−1)n1(g)(n2+ω2 )(h,kl)dn2(h,k,l)+n1(g)n1(h)n2(k,l)(n2+ω2 )(k,l)

× (−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2 (g,h)dn2(gh,k,l)) (C19)

= (−1)(n2∪(n2+ω2 )+dn2∪1n2 )(g,h,k,l)+dn2 (g,h,kl)dn2(h,k,l)

× (−1)n1(g)((n2∪1n2 )(h,k,l)+n2 (h,kl)dn2(h,k,l))+n1(g)n1(h)n2(k,l)+n1(g)dn2(h,k,l)n2(k,l)

× (−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2 (g,h)dn2(gh,k,l)), (C20)

235143-45



BARKESHLI, CHEN, HSIN, AND MANJUNATH PHYSICAL REVIEW B 105, 235143 (2022)

where we repeatedly used dn2 = n1 ∪ ω2. To simplify the expression for O4, we used the definition

(dn2 ∪1 n2)(g, h, k, l) = dn2(gh, k, l)n2(g, h) + dn2(g, hk, l)n2(h, k) + dn2(g, h, kl)n2(k, l), (C21)

and we add a coboundary du to O4 by redefining ν3 → ν3u, where u(g, h, k) = i[n1(g)n2(h,k)]2 . It satisfies

du(g, h, k, l) = i([n1(g)]2+[n1(h)]2−[n1(gh)]2 )[n2(k,l)]2+[n1(g)]2([n2(h,k)]2+[n2(hk,l)]2−[n2(h,kl)]2−[n2(k,l)]2 ) (C22)

= (−1)n1(g)n1(h)n2(k,l)+(n1∪(n2∪1n2 ))(g,h,k,l) × i[n1(g)]2([n2(h,k)+n2(hk,l)]2−[n2(h,kl)+n2(k,l)]2 ) (C23)

= (−1)n1(g)n1(h)n2(k,l)+(n1∪(n2∪1n2 ))(g,h,k,l) × (−1)n1(g)dn2(h,k,l)(n2(h,kl)+n2(k,l)) × i[n1(g)dn2(h,k,l)]2 . (C24)

Replacing O4 by O4du gives

O4[c− = 4k, n1, n2](g, h, k, l) ∼ (−1)(n2∪(n2+ω2 )+dn2∪1n2 )(g,h,k,l)+dn2 (g,h,kl)dn2(h,k,l) × i[n1(g)dn2(h,k,l)]2

× (−1)
c−
4 ((n2∪ω2+ω2∪n2+ω2∪ω2 )(g,h,k,l)+ω2 (g,h)dn2(gh,k,l)). (C25)

We can further simplify the expression by introducing the Cartan coboundary ζ , defined as [40]

Sq2(x1 ∪ x2) = Sq1(x1) ∪ Sq1(x2) + x1 ∪ Sq2(x2) + dζ , (C26)

where x1 and x2 are arbitrary 1-cocycle and 2-cocycle (x1 ∈ H1(G,Z2) and x2 ∈ H2(G,Z2)) and the solution of ζ is given
by ζ (g, h, k, l) = x1(g)x1(h)x2(h, kl)x2(k, l), which is equivalent to ζ = x1 ∪ [(x1 ∪ x2) ∪2 x2 + x1 ∪ x2]. When evaluated on
4-simplex (01234), it is ζ (01234) = x1(01)x1(12)x2(124)x2(234,. For even c− this is the unique solution for ζ , since the other
solution can be obtained by changing ζ with a coboundary ζ → ζ + n1 ∪ ω2 = ζ + dn2. Choosing x1 = n1 and x2 = ω2, and
using dn2 = n1 ∪ ω2, ζ becomes

ζ (g, h, k, l) = n1(g)ω2(h, kl)n1(h)ω2(k, l) = dn2(g, h, kl)dn2(h, k, l). (C27)

The c− terms in Eq. (C25) can be simplified as

Ac− ≡ c−
4

(n2 ∪ ω2 + ω2 ∪ n2 + ω2 ∪ ω2 + (n1 ∪1 ω2) ∪ ω2), (C28)

where we have used dn2 = n1 ∪ ω2 and (n1 ∪1 ω2)(g, h) = n1(gh)ω2(g, h). We can verify that Ac− is closed. Ac− can be
expressed in another form:

Ac− = c−
4

((n1 ∪ ω2) ∪1 ω2 + ω2 ∪ ω2 + (n1 ∪1 ω2) ∪ ω2 + d (n2 ∪1 ω2)),

= c−
4

(n1 ∪ (ω2 ∪1 ω2) + ω2 ∪ ω2 + d (n2 ∪1 ω2)), (C29)

which follows from the Hirsch identity. Notice that n1 ∪ (ω2 ∪1 ω2) is also a coboundary:

n1 ∪ (ω2 ∪1 ω2) = n1 ∪ Sq1ω2 = (Sq1n1) ∪ ω2 + db′, b′ = 1
2 (n1 ∪ ω2) = db′′, b′′ = b′ + n1 ∪ n2, (C30)

where in the last line we used Sq1n1 = n1 ∪ n1 and dn2 = n1 ∪ ω2. Therefore the term with c− in the obstruction is simply

(−1)
c−
4 (ω2∪ω2 ). (C31)

To summarize, the anomaly O4 for c− = 4k can be expressed as

O4[c− = 4k, n1, n2] = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )+ 1
2 n1∪n1∪ω2 i

c−
2 P (ω2 ). (C32)

Notice that O4 changes by a coboundary when we replace n2 by n2 + ω2, which is consistent with the equivalence n2 ∼ n2 + ω2

we used in the derivation.

2. c− = 0 and s1 �= 0

In this subsection we consider the H4 anomaly computation with antiunitary symmetries. We fix c− = 0. When the symmetry
is nonpermuting, i.e., when n1 = 0, the absolute anomaly can be obtained as usual, and the resulting expression coincides with
Eq. (C11) with c− = 0.

When n1 �= 0, the main problem is to pick a suitable reference state which is nonanomalous. The reference must satisfy

dnref
2 = n1 ∪ (

ω2
ref + s1 ∪ n1

)
. (C33)

Notice that there exists a solution with

ω2
ref = s1 ∪ n1; nref

2 = 0. (C34)

Such a reference has ηref
a (g, h) = (−1)aeams1(g)n1(h). Since it has a simple form with ηe = ηm = 1, we believe that it should be

nonanomalous, although we cannot prove this. The rest of the calculation will proceed by assuming that this reference is indeed
nonanomalous.
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The reference is related to the state with the desired (ω2, n2) by the following 2-cocycle in Z2
n1

(Gb,Z2 × Z2):

t = mω2+s1∪n1 × ψn2 . (C35)

This is indeed a cocycle, by virtue of dn2 = n1 ∪ (ω2 + s1 ∪ n1). We now use the relative anomaly formula with this choice of
reference state and t cocycle. We set ω′

2 := ω2 + s1 ∪ n1. Proceeding as in the previous section, we obtain

R = (−1)((n2+ω′
2 )∪n2 )(g,h,k,l)+dn2 (gh,k,l)(n2+ω′

2 )(g,h), ηref = (−1)s1∪n1∪ f , (C36)

“
U

U
” = (−1)n1(g)[(n2∪1(n2+ω′

2 ))(h,k,l)+n2 (h,kl)dn2(h,k,l)] × in1(g)[ f (h,k)+ f (hk,l)− f (h,kl)− f (k,l)], (C37)

“
FFF

FFF
” = 1, f (h, k) := n2(h, k)(1 + ω′

2(h, k)) mod 2. (C38)

For b = in1∪ f , we find that

db(g, h, k, l) = (−1)(n1∪n1∪ f +s1∪n1∪ f )(g,h,k,l)in1(g)[ f (h,k)+ f (hk,l)− f (h,kl)− f (k,l)]. (C39)

The term proportional to s1 arises because we are using twisted coboundaries in B4(Gb, U(1)T ). Upon multiplying the above
terms with db, and simplifying, we get

O4(g, h, k, l) ∼ (−1)((n2+ω′
2 )∪n2 )(g,h,k,l)+dn2 (gh,k,l)(n2+ω′

2 )(g,h) × (−1)n1∪n1∪ f (−1)n1(g)[(n2∪1(n2+ω′
2 ))(h,k,l)+n2(h,kl)dn2(h,k,l)]. (C40)

This expression is identical to Eq. (C17) with ω2 replaced by ω′
2. By defining a new variable n′

2 ≡ n2 + ω′
2 and following a

similar calculation in the previous section, we get

O4(g, h, k, l) ∼ (−1)(n′
2∪(n′

2+ω′
2 )+dn′

2∪1n′
2+ζ )(g,h,k,l)(−1)(n1∪n1∪n′

2+n1∪(n′
2∪1n′

2 ))(g,h,k,l)+(n′
2 (h,kl)+n′

2(k,l))dn′
2(h,k,l). (C41)

Here ζ is the same Cartan coboundary Eq. (C27) defined in the previous section. The second line can be written as db′ ×
in1∪dn′

2 × (−1)s1∪n1∪n′
2 , with b′ = in1∪n′

2 . Once again, the term with s1 arises because we are working with twisted cochains.
Finally we obtain

O4 ∼ (−1)n′
2∪(n′

2+ω′
2 )+dn′

2∪1n′
2+ζ (n1,ω

′
2 ) × (−1)s1∪n1∪n′

2 × in1∪n1∪ω′
2 . (C42)

Finally, we substitute n′
2 = n2 + ω′

2 back and obtain the O4 in terms of n2 (up to a coboundary):

O4 ∼ (−1)n2∪(n2+ω′
2 )+dn2∪1n2+ζ (n1,ω

′
2 ) × (−1)s1∪n1∪n2 × in1∪n1∪ω′

2 , (C43)

where we have used n1 ∪ ω′
2 = dn2 and therefore s1 ∪ n1 ∪ ω′

2 is a coboundary. Let us check that O4 is closed. When we
compute dO4, the terms that appear when s1 = 0 also appear in this case; they all cancel out. The new contributions which
explicitly depend on s1 come from taking coboundaries of the last two terms. The definition of the coboundary operator of the
antiunitary case is

dO4(g, h, k, l, m) = Ks1(g)O4(h, k, l, m)K−s1(g)O4(g, hk, l, m)O4(g, h, k, lm)

O4(gh, k, l, m)O4(g, h, kl, m)O4(g, h, k, l)
, (C44)

where K is the complex conjugation, with K0 = 1. In Eq. (C43), the cobundary of the penultimate term and the last terms are

d (−1)s1∪n1∪n2 = (−1)s1∪n1∪dn2 (C45)

and

d (in1∪n1∪ω2
′
) = d0(in1∪n1∪ω2

′
) × (−1)s1∪n1∪n1∪ω2

′
, (C46)

where d0 is the untwisted coboundary operator, and the first piece d0(in1∪n1∪ω2
′
) already exists in the previous calculation for

s1 = 0, while (−1)s1∪n1∪n1∪ω2
′ = (−1)s1∪n1∪dn2 is additional. We can see that additional terms in Eqs. (C45) and (C46) cancel

out. This means that dO4 = 0.

3. c− = 4k + 2

In this case, we have, in vector notation, the following relations:

t(g, h) = (n2(g, h), (n2 + ω2)(g, h)), (C47)

gt(h, k) = (n2(h, k) + n1(g)ω2(h, k), (n2 + ω2)(h, k) + n1(g)ω2(h, k)). (C48)
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a. n1 = 0

In this case, the anomaly O4 only contains the R part and the “FFF/FFF” part. Let us compute the R part, Rt(g,h)t(k,l). Its
value depends on the 4 arguments n2(g, h), n2(k, l), ω2(g, h), ω2(k, l). Depending on whether these quantities take the values 0
or 1, there are a total of 16 different input arguments for a fixed c−. By examining the values attained by R as a function of these
arguments, we find that

Rt(g,h)t(k,l) = e2π i( 1
2 n2∪n2+ c−

8 ([ω2]2∪[ω2]2+[n2]2∪[ω2]2+[ω2]2∪[n2]2 ))(g,h,k,l). (C49)

Next we evaluate the F symbols. The computation is as follows. First we consider the two F symbols with argument t(ghk, l).
The contribution from these F symbols is

F t(h,k)t(g,hk)t(ghk,l)

F t(g,h)t(gh,k)t(ghk,l)
= (−1)n2(ghk,l)(n2(g,h)n2(gh,k)+n2(h,k)n2(g,hk))+(n2↔n2+ω2 ) (C50)

= (−1)n2(ghk,l)((n2∪1n2 )(g,h,k))+(n2+ω2 )(ghk,l)((n2+ω2 )∪1(n2+ω2 ))(g,h,k). (C51)

The symbol (n2 ↔ n2 + ω2) in the first line means that the entire preceding expression is repeated after replacing n2 by n2 + ω2.
Next, we consider the two F symbols with argument t(g, hkl). The contribution from these F symbols is

F t(k,l)t(h,kl)t(g,hkl)

F t(h,k)t(hk,l)t(g,hkl)
= (−1)n2(g,hkl)((n2∪1n2 )(h,k,l))+(n2+ω2 )(g,hkl)((n2+ω2 )∪1(n2+ω2 ))(h,k,l). (C52)

The final pair of F symbols vanishes by symmetry. To combine the above expressions we use the fact that the cup-1 product of
a 2-cochain n2 with a 3-cochain f3 is

(n2 ∪1 f3)(g, h, k, l) = n2(ghk, l) f3(g, h, k) + n2(g, hkl) f3(h, k, l). (C53)

Using this, we obtain the following result for the “FFF/FFF” part of the anomaly O4,

“
FFF

FFF
” = (−1)n2∪1(n2∪1n2 )+(n2+ω2 )∪1((n2+ω2 )∪1(n2+ω2 )). (C54)

This implies that

O4 = e2π i( 1
2 n2∪n2+ c−

8 ([ω2]2∪[ω2]2+[n2]2∪[ω2]2+[ω2]2∪[n2]2 )) × (−1)n2∪1(n2∪1n2 )+(n2+ω2 )∪1((n2+ω2 )∪1(n2+ω2 )). (C55)

It can be simplified as:

O4 = exp
[
2π i

(c−
8

n2 ∪ n2 + c−
8

(n2 + ω2) ∪ (n2 + ω2)
)]

× exp

[
2π i

(
−1

4
n2 ∪1 dn2 − 1

4
(n2 + ω2) ∪1 d (n2 + ω2)

)]
,

(C56)

where we have used the identify dB2
2 = B2 ∪1 B2 for any 2-cocycle B2 [see Eq. (B13)]. Using the definition of the Pontryagin

square

P (a) ≡ a ∪ a − a ∪1 da, (C57)

we can express the anomaly O4 as

O4 = exp
[
2π i

(c−
8

(P (n2) + P (n2 + ω2))
)]

. (C58)

We can further simplify it using

P (B2 + B′
2) − P (B2) − P (B′

2) = 2B2 ∪ B′
2 + dz + 2w + dB2 ∪2 dB′

2, (C59)

where w = −B2 ∪1 dB′
2 and z = B2 ∪1 B′

2 + dB2 ∪2 B′
2.

P (n2) + P (n2 + ω2) = P (2n2 + ω2) − 2n2 ∪ (n2 + ω2) + coboundary mod 4

= 2n2 ∪ (n2 + ω2) + P (ω2) + coboundary mod 4. (C60)

The expression of O4 finally becomes

O4[c− = 4k + 2, n1 = 0, n2] = (−1)(n2+ω2 )∪n2 i
c−
2 P (ω2 ). (C61)
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b. n1 �= 0

Each part in the anomaly O(0)
4 is given by

R = θ [n2(g,h)]2[n2(k,l)+dn2(gh,k,l)]2+[(n2+ω2 )(g,h)]2[(n2+ω2 )(k,l)+dn2(gh,k,l)]2 , η = 1, “
U

U
” = 1,

“
FFF

FFF
” = (−1)n2(ghk,l)[n2(g,hk)(n2(h,k)+n1(g)ω2(h,k))+n2(gh,k)n2(g,h)]

× (−1)n2(g,hkl)[(n2(h,kl)+n1(g)ω2(h,kl))(n2(k,l)+n1(gh)ω2(k,l))+(n2(hk,l)+n1(g)ω2(hk,l))(n2(h,k)+n1(g)ω2(h,k))]

× (n2 ↔ n2 + ω2), (C62)

where θ = eiπc−/4, and (n2 ↔ n2 + ω2) represents the same terms above with replacement of n2 by n2 + ω2. Multiplying these
together gives O(0)

4 . To simplify the formula, we first use the following identities

[n2(234) + (n1 ∪ ω2)(0234)]2 = n2(234) + (n1 ∪ ω2)(0234) − 2n2(234)(n1 ∪ ω2)(0234)

[n2(012) + ω2(012)]2 = n2(012) + ω2(012) − 2n2(012)ω2(012)

[(n2 + ω2)(234) + (n1 ∪ ω2)(0234)]2 = n2(234) + ω2(234) − 2n2(234)ω2(234) + (n1 ∪ ω2)(0234)

− 2(n2(234) + ω2(234) − 2n2(234)ω2(234))(n1 ∪ ω2)(0234). (C63)

Let us first consider the part involving R:

c−
4

[n2 ∪ n2 − (n1 ∪1 n2) ∪ ω2 + (n2 + ω2 − 2n2 ∪2 ω2) ∪ (n2 + ω2 − 2n2 ∪2 ω2) − (n1 ∪1 (n2 + ω2 − 2n2 ∪2 ω2)) ∪ ω2

+ 2(n1 ∪1 n2) ∪ (n2 ∪2 ω2) + 2[n1 ∪1 (n2 + ω2 − 2n2 ∪2 ω2)] ∪ [(n2 + ω2 − 2n2 ∪2 ω2) ∪2 ω2]]

= c−
4

[n2 ∪ n2 − (n1 ∪1 n2) ∪ ω2 + (n2 + ω2) ∪ (n2 + ω2) − (n1 ∪1 (n2 + ω2)) ∪ ω2]

+ (n2 ∪2 ω2) ∪ (n2 + ω2) + (n2 + ω2) ∪ (n2 ∪2 ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ (n1 ∪1 n2) ∪ (n2 ∪2 ω2) + [n1 ∪1 (n2 + ω2)] ∪ [(n2 + ω2) ∪2 ω2]

= c−
4

[n2 ∪ n2 − (n1 ∪1 n2) ∪ ω2 + (n2 + ω2) ∪ (n2 + ω2) − (n1 ∪1 (n2 + ω2)) ∪ ω2]

+ (n2 ∪2 ω2) ∪ (n2 + ω2) + (n2 + ω2) ∪ (n2 ∪2 ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + (n1 ∪1 (ω2 + n2)) ∪ ω2

= c−
4

[n2 ∪ n2 − (n1 ∪1 n2) ∪ ω2 + (n2 + ω2) ∪ (n2 + ω2) − (n1 ∪1 (n2 + ω2)) ∪ ω2]

+ (n2 + ω2) ∪1 d (n2 ∪2 ω2) + dn2 ∪1 (n2 ∪2 ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + (n1 ∪1 (ω2 + n2)) ∪ ω2. (C64)

The first line in the last expression equals

c−
4

(n2 ∪ n2 − (n1 ∪1 n2) ∪ ω2 + (n2 + ω2) ∪ (n2 + ω2) − (n1 ∪1 (n2 + ω2)) ∪ ω2)

= c−
4

(2n2 ∪ n2 + 2(n1 ∪1 n2) ∪ ω2 + ω2 ∪ ω2 + n2 ∪ ω2 + ω2 ∪ n2 − (n1 ∪1 ω2) ∪ ω2)

∼ c−
4

(2n2 ∪ (n2 + ω2) + 2(n1 ∪1 n2) ∪ ω2 + ω2 ∪ ω2 − dn2 ∪1 ω2 − n2 ∪1 dω2 − (n1 ∪1 ω2) ∪ ω2)

= n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + c−
4

(ω2 ∪ ω2 − dn2 ∪1 ω2 − (n1 ∪1 ω2) ∪ ω2)

= n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + dn2 ∪1 ω2

+ c−
4

(ω2 ∪ ω2 + (dn2 − n1 ∪ ω2) ∪1 ω2 − n1 ∪ (ω2 ∪1 ω2))

= n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2

+ dn2 ∪1 ω2 + c−
4

(ω2 ∪ ω2 + n1 ∪ (ω2 ∪1 ω2)), (C65)

where ∼ denotes equals up to a coboundary that can be absorbed into redefinition of ν3, and we have used the Hirsch identity
[86]:

(a ∪ b) ∪1 c = (−1)deg aa ∪ (b ∪1 c) + (−1)deg b deg c(a ∪1 c) ∪ b. (C66)
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Since (−1)n1∪n1∪ω2 = d ((−1)n1∪n2 ) is a coboundary (due to dn2 = n1 ∪ ω2 mod 2), and n1 ∪ (ω2 ∪1 ω2) equals n1 ∪ n1 ∪ ω2 up
to a coboundary, Eq. (C65) for c− = 4k + 2 equals up a coboundary to

n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + 1

2
n1 ∪ n1 ∪ ω2

+ (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2 + dn2 ∪1 ω2 + c−
4

(ω2 ∪ ω2). (C67)

The total R part is

n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + 1

2
n1 ∪ n1 ∪ ω2 + c−

4
(ω2 ∪ ω2)

+ (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2 + dn2 ∪1 ω2

+ (n2 + ω2) ∪1 d (n2 ∪2 ω2) + dn2 ∪1 (n2 ∪2 ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + (n1 ∪1 (ω2 + n2)) ∪ ω2. (C68)

For the remaining parts in O4, the η and U/U part equals 1 up to a coboundary. The “FFF/FFF” part without the (n2 →
n2 + ω2) piece equals

[n2(123) + dn2(0123)]n2(013)n2(034) + n2(012)n2(023)n2(034)

+ [n2(234) + dn2(0234)][n2(124) + dn2(0124)]n2(014) + [n2(123) + dn2(0123)][n2(134) + dn2(0134)]n2(014)

= n2 ∪1 (n2 ∪1 n2) + n2(034)n1(01)n2(013)ω2(123)

+ n2(014)[n2(234)n1(01)ω2(124) + n2(124)(n1(01) + n1(12))ω2(234) + n1(01)n1(02)ω2(234)ω2(124)

+ n2(123)n1(01)ω2(134) + n2(134)n1(01)ω2(123) + n1(01)ω2(123)ω2(134)]

= n2 ∪1 (n2 ∪1 n2) + n2 ∪1 [(n1 ∪ ω2) ∪2 n2 + n1 ∪ (ω2 ∪2 n2)]

+ n1(01)n2(014)[ω2(124)ω2(234) + n2(124)ω2(234) + ω2(124)ω2(234) + n1(12)ω2(124)ω2(234)

+ ω2(134)n2(123) + n2(134)ω2(123) + ω2(134)ω2(123)], (C69)

where we have used [(n1 ∪ ω2) ∪2 n2 + n1 ∪ (ω2 ∪2 n2)](1234) = n1(12)n2(124)ω2(234). The last two lines can be written
using the 4-cochain valued function f in (C3), f (a1, b2, c3) = a1(01)b2(014)c3(1234):

f (n1, n2, n2 ∪1 ω2 + ω2 ∪1 n2 + ω2 ∪1 ω2 + (n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2) = f (n1, n2, d (n2 ∪2 ω2) + ω2 ∪1 ω2 + dn2). (C70)

The last entry of f does not depend on n2 → n2 + ω2, and since f is linear in each entry, the sum of the n2 part and the n2 + ω2

part is simply:

f (n1, ω2, d (n2 ∪2 ω2) + ω2 ∪1 ω2 + n1 ∪ ω2). (C71)

The total “FFF/FFF” part is

n2 ∪1 (n2 ∪1 n2) + (n2 + ω2) ∪1 ((n2 + ω2) ∪1 (n2 + ω2))

+ n2 ∪1 [(n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2] + ω2 ∪1 [(n1 ∪ ω2) ∪2 n2 + n1 ∪ (ω2 ∪2 n2)]

+ ω2 ∪1 [(n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2] + f (n1, ω2, d (n2 ∪2 ω2) + ω2 ∪1 ω2 + n1 ∪ ω2). (C72)

The 4-cochain valued function f has the following properties:

f (n1, ω2, d (n2 ∪2 ω2)) = (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + ω2 ∪1 (n1 ∪ (n2 ∪2 ω2)) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)),

f (n1, ω2, n1 ∪ ω2) = g(n1 ∪ n1, ω2, ω2) + ζ (n1, ω2)

= (n2
1 ∪ ω2) ∪2 ω2 + n2

1 ∪ ω2 + ζ (n1, ω2)

∼ (
n2

1 ∪ ω2
) ∪2 ω2 + ζ (n1, ω2),

f (n1, ω2, ω2 ∪1 ω2) = [n1 ∪ (ω2 ∪1 ω2)] ∪2 ω2 + n1 ∪ [(ω2 ∪1 ω2) ∪2 ω2]

= 1
2 [n1 ∪ dω2] ∪2 ω2

= 1
2 (dn1 ∪ ω2) ∪2 ω2 − 1

2 d (n1 ∪ ω2) ∪2 ω2

∼ (
n2

1 ∪ ω2
) ∪2 ω2 + 1

2 d[dn2 − n1 ∪ ω2] ∪2 ω2

= (
n2

1 ∪ ω2
) ∪2 ω2 + d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2, (C73)
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where ∼ means equal up to a coboundary, and the first line follows from substituting X = n2 ∪2 ω2 in Eq. (C4). Using the above
properties, the “FFF/FFF” part can be expressed as

n2 ∪1 (n2 ∪1 n2) + (n2 + ω2) ∪1 ((n2 + ω2) ∪1 (n2 + ω2)) + n2 ∪1 [(n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2]

+ ω2 ∪1 [(n1 ∪ ω2) ∪2 n2] + ω2 ∪1 [(n1 ∪ ω2) ∪2 ω2 + n1 ∪ ω2]

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)) + d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2 + ζ (n1, ω2)

= n2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + dn2) + ω2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + dn2 + n2 ∪1 n2 + dn2 ∪2 n2)

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)) + d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2 + ζ (n1, ω2)

= n2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + dn2) + ω2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + n2 ∪1 n2 + n2 ∪2 dn2)

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)) + d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2 + ζ (n1, ω2). (C74)

The total anomaly is O4 = eiπφ4 with

φ4 = n2 ∪ (n2 + ω2) + (n1 ∪1 n2) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2) + 1

2
n1 ∪ n1 ∪ ω2 + c−

4
(ω2 ∪ ω2)

+ (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2 + dn2 ∪1 ω2

+ (n2 + ω2) ∪1 d (n2 ∪2 ω2) + dn2 ∪1 (n2 ∪2 ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + (n1 ∪1 (ω2 + n2)) ∪ ω2 + n2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + dn2)

+ ω2 ∪1 (ω2 ∪1 ω2 + d (n2 ∪2 ω2) + n2 ∪1 n2 + n2 ∪2 dn2)

+ (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)) + dn2 ∪1 ω2 + ζ (n1, ω2)

= n2 ∪ (n2 + ω2) + n2 ∪1 dn2 + ζ (n1, ω2) + 1

2
n1 ∪ n1 ∪ ω2 + c−

4
(ω2 ∪ ω2 − ω2 ∪1 dω2)

+ (n1 ∪1 n2) ∪ ω2 + (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2 + ω2 ∪1 (n2 ∪1 n2 + n2 ∪2 dn2)

+ d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2 + (n1 ∪ ω2) ∪1 (n2 ∪ ω2) + [n1 ∪1 (n2 ∪2 ω2)] ∪ ω2

+ dn2 ∪1 ω2 + (n1 ∪1 (ω2 + n2)) ∪ ω2 + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)). (C75)

To simplify the expression for the anomaly, we note that the following expression is a coboundary:

d ((n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2) = (n2 ∪1 n2 + n2 ∪2 dn2) ∪1 ω2 + ω2 ∪1 (n2 ∪1 n2 + n2 ∪2 dn2)

+ d (n2 ∪1 n2 + n2 ∪2 dn2) ∪2 ω2 ∼ 0, (C76)

where ∼0 means it equals to zero up to a coboundary. We also use the identity

(n1 ∪1 ω2) ∪ ω2 = n1 ∪ (ω2 ∪1 ω2) + (n1 ∪ ω2) ∪1 ω2 ∼ dn2 ∪1 ω2, (C77)

which cancels out the first term in the last line of Eq. (C75). Thus the anomaly simplifies into O4 ∼ eiπφ4 with

φ4 = n2 ∪ (n2 + ω2) + n2 ∪1 dn2 + ζ (n1, ω2) + 1

2
n1 ∪ n1 ∪ ω2 + c−

4
(ω2 ∪ ω2 − ω2 ∪1 dω2). (C78)

4. c− = 2k + 1

In this case we have, in mod 4 notation, the following relations:

t(g, h) = ([ω2]2 + 2n2)(g, h) mod 4, (C79)

gt(h, k) = ([ω2]2 + 2n2)(h, k) + 2n1(g)ω2(h, k) mod 4. (C80)

We will write ω2, n2 as [ω2]2, [n2]2 unless it is clear that the overall expression is invariant under a shift of ω2, n2 by even
integers.

a. n1 = 0

Here the anomaly has the form “O4 = R FFF
FFF ”. It is perhaps simplest to leave the expression in terms of the cocycle t ∈

Z2(Gb,Z4): we obtain

R = θ [t]4∪[t]4 , (C81)

“
FFF

FFF
” = θ [t]4∪1d[t]4 (C82)

⇒ O4[c− = 2k + 1, n1 = 0, n2] = θ [t]4∪[t]4+[t]4∪1d[t]4 = eiπ c−
4 P (t), (C83)
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where we used the property that θ [t]4∪1d[t]4 = θ−[t]4∪1d[t]4 , since dt = 0 mod 4, and thus eπ ic−[t]4∪1
d[t]4

4 = ±1 = e−π ic−[t]4∪1
d[t]4

4 .
Thus the anomaly is completely described in terms of the Pontryagin square of t. We can also express the obstruction O4 using
n1, n2, ω2 instead of t. Substituting Eq. (C80) into O4 = eiπφ4 :

φ4 = c−
4

(4n2 ∪ n2 + 2n2 ∪ ω2 + 2ω2 ∪ n2 + ω2 ∪ ω2 − 4n2 ∪1 dn2 − 2n2 ∪1 dω2 − 2ω2 ∪1 dn2 − ω2 ∪1 dω2)

= n2 ∪ n2 − n2 ∪1 dn2 + c−
2

(n2 ∪ ω2 + ω2 ∪ n2 − n2 ∪1 dω2 − ω2 ∪1 dn2) + c−
4

(ω2 ∪ ω2 − ω2 ∪1 dω2)

∼ n2 ∪ n2 − n2 ∪1 dn2 + n2 ∪ ω2 + c−
2

(−dn2 ∪1 ω2 − ω2 ∪1 dn2) + c−
4

(ω2 ∪ ω2 − ω2 ∪1 dω2)

∼ P (n2) + n2 ∪ ω2 + c−
2

(dn2 ∪2 dω2) + c−
4
P (ω2)

= P (n2) + n2 ∪ ω2 + c−

(
dω2

2

)
∪2

(
dω2

2

)
+ c−

4
P (ω2)

∼ P (n2) + n2 ∪ ω2 + c−
4
P (ω2), (C84)

where ∼ means equal up to a coboundary, which can be absorbed into a redefinition of ν3.

b. n1 �= 0

In the general case, we have the relative anomaly expression that takes the form O(0)
4 = “ RηU

U
FFF
FFF ”. Each part in the anomaly

O4 is given by

R = θ [([ω2]2+2n2 )(g,h)]4[([ω2]2+2n2 )(k,l)+2n1(gh)ω2(k,l)]4 , η =
{

(−1)n1∪n1∪ω2 , if c− = 3 (mod 4)
1, if c− = 1 (mod 4) ,

“
U

U
” = (−1)n1(g)(ω2(hk,l)ω2(h,k)n2(h,k)+ω2(h,kl)ω2(k,l)n2(k,l))(−1)n1∪(ω2∪1(n2+ω2 )),

“
FFF

FFF
” = θω2(ghk,l)([([ω2]2+2n2 )(gh,k)]4+[([ω2]2+2n2 )(g,h)]4−[([ω2]2+2n2 )(g,hk)]4−[([ω2]2+2n2 )(h,k)+2n1(g)ω2(h,k)]4 )

× θω2(g,hkl)([([ω2]2+2n2 )(hk,l)+2n1(g)ω2(hk,l)]4+[([ω2]2+2n2 )(h,k)+2n1(g)ω2(h,k)]4 )

× θ−ω2(g,hkl)([([ω2]2+2n2 )(h,kl)+2n1(g)ω2(h,kl)]4+[([ω2]2+2n2 )(k,l)+2n1(gh)ω2(k,l)]4 ), (C85)

where θ = eiπc−/4, and [·]4 denotes mod 4. Let us simplify the expression of each part in the anomaly O(0)
4 . The “U/U” part can

be shown to equal

n1 ∪ (ω2 ∪1 (ω2 ∪2 n2)) + n1 ∪ (ω2 ∪1 (n2 + ω2)). (C86)

To simplify the R part, we use the identity [(ω2 + 2n2)(g, h)]4 = (ω2 + 2n2)(g, h) and [(ω2 + 2n2)(k, l ) + 2n1(gh)ω2(k, l )]4 =
(ω2 + 2n2)(k, l ) + 2n1(gh)ω2(k, l ) − 4n1(gh)n2(k, l )ω2(k, l ). We find the R part equals

θ (ω2+2n2 )∪(ω2+2n2 )−2((n1∪1(ω2+2n2 ))∪ω2 )−4(n1∪1ω2 )∪(ω2∪2n2 )

= (−1)n2∪n2+(n1∪1n2 )∪ω2+(n1∪1ω2 )∪(ω2∪2n2 )+ c−
2 (n2∪ω2+ω2∪n2−(n1∪1ω2 )∪ω2 )+ c−

4 (ω2∪ω2 ). (C87)

To simplify the “FFF/FFF” part, we use the identity [(ω2 + 2n2)(h, k) + 2n1(g)ω2(h, k)]4 = (ω2 + 2n2)(h, k) +
2n1(g)ω2(h, k) − 4n1(g)n2(h, k)ω2(h, k), which simplifies the first line of the exponent in the “FFF/FFF” part into

ω2(034)(−d (ω2 + 2n2)[0123] − 2n1(01)ω2(123) + 4n1(01)ω2(123)n2(123)). (C88)

The second and the third lines of the exponent in the “FFF/FFF” part equal to [when evaluated on the simplex (01234)]

ω2(014)(−d (ω2 + 2n2)[1234] + 2n1(01)ω2(134)[1 − 2n2(134)] + 2n1(01)ω2(123)(1 − 2n2(123))

− 2n1(01)ω2(124)[1 − 2n2(124)] − 2n1(02)ω2(234)[1 − 2n2(234)]).

Combining all terms, we find the exponent of the “FFF/FFF” part on 4-simplex (01234) equals

− ω2 ∪1 (d (ω2 + 2n2))(01234) + 4 f (n1, ω2, d (n2 ∪2 ω2))(01234) + 4 f

(
n1, ω2,

dω2

2

)
(01234)

+ 2ω2(014)dn1(012)ω2(234) + 4ω2 ∪1 [n1 ∪ (n2 ∪2 ω2)](01234) − 2ω2 ∪1 (n1 ∪ ω2)(01234)

=
(

−ω2 ∪1 (d (ω2 + 2n2)) + 4 f (n1, ω2, d (n2 ∪2 ω2)) + 4 f

(
n1, ω2,

dω2

2

))
(01234)
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+ 4n1(01)ω2(014)[n1(12)ω2(234)] + (4ω2 ∪1 [n1 ∪ (n2 ∪2 ω2)] − 2ω2 ∪1 (n1 ∪ ω2))(01234)

=
(

− ω2 ∪1 (d (ω2 + 2n2)) + 4 f (n1, ω2, d (n2 ∪2 ω2)) + 4 f

(
n1, ω2,

dω2

2

)

+ 4 f (n1, ω2, n1 ∪ ω2) + 4ω2 ∪1 [n1 ∪ (n2 ∪2 ω2)] − 2ω2 ∪1 (n1 ∪ ω2)

)
(01234), (C89)

which can be simplified into

−ω2 ∪1 (d (ω2 + 2n2)) + 4 f (n1, ω2, d (n2 + n2 ∪2 ω2)) + 4ω2 ∪1 [n1 ∪ (n2 ∪2 ω2)] − 2ω2 ∪1 (n1 ∪ ω2). (C90)

We will use the property of the 4-cochain valued function f in Eq. (C3) to simplify the above expression. Take X = n2 ∪2 ω2 in
Eq. (C4),

f (n1, ω2, d (n2 ∪2 ω2)) = (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + ω2 ∪1 (n1 ∪ (n2 ∪2 ω2)) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)). (C91)

We find the exponent of the “FFF/FFF” part simplifies into

− ω2 ∪1 (d (ω2 + 2n2)) − 2ω2 ∪1 (n1 ∪ ω2) + 4 f (n1, ω2, dn2) + 4(n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + 4n1 ∪ (ω2 ∪1 (n2 ∪2 ω2)).

Now, we add up all terms except the η part:

n1 ∪ (ω2 ∪1 (ω2 ∪2 n2)) + n1 ∪ (ω2 ∪1 (n2 + ω2)) + n2 ∪ n2 + (n1 ∪1 n2) ∪ ω2 + (n1 ∪1 ω2) ∪ (ω2 ∪2 n2)

+ c−
2

(n2 ∪ ω2 + ω2 ∪ n2 − (n1 ∪1 ω2) ∪ ω2) + c−
4

(ω2 ∪ ω2) − c−
4

ω2 ∪1 (d (ω2 + 2n2)) − c−
2

ω2 ∪1 (n1 ∪ ω2)

+ f (n1, ω2, dn2) + (n1 ∪1 ω2) ∪ (n2 ∪2 ω2) + n1 ∪ (ω2 ∪1 (n2 ∪2 ω2))

= n1 ∪ (ω2 ∪1 (n2 + ω2)) + n2 ∪ n2 + (n1 ∪1 n2) ∪ ω2 + f (n1, ω2, dn2)

+ c−
2

(n2 ∪ ω2 + ω2 ∪ n2 − (n1 ∪1 ω2) ∪ ω2) + c−
4

(ω2 ∪ ω2) − c−
4

ω2 ∪1 (d (ω2 + 2n2)) − c−
2

ω2 ∪1 (n1 ∪ ω2).

(C92)

The first term in the last line equals
c−
2

(n2 ∪ ω2 + ω2 ∪ n2 − (n1 ∪1 ω2) ∪ ω2)

∼n2 ∪ ω2 + c−
2

(−(n1 ∪1 ω2) ∪ ω2 − dn2 ∪1 ω2 − n2 ∪1 dω2)

∼ n2 ∪ ω2 + c−
2

(−(n1 ∪1 ω2) ∪ ω2 + dn2 ∪2 dω2 + ω2 ∪1 dn2 − n2 ∪1 dω2)

∼ n2 ∪ ω2 + c−(n1 ∪ ω2) ∪ (ω2 ∪1 ω2) + c−
2

(−(n1 ∪1 ω2) ∪ ω2 + ω2 ∪1 dn2 − n2 ∪1 dω2), (C93)

where ∼ means equal up to a coboundary, and we have used dn2 ∪2 (ω2 ∪1 ω2) = (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2) since Sq1(Sq1ω2) =
0. Eq. (C92) becomes

n2 ∪ n2 + n2 ∪ ω2 + c−(n1 ∪ ω2) ∪2 (ω2 ∪1 ω2) + c−
4

(ω2 ∪ ω2 − ω2 ∪1 dω2)

+ c−
2

(−(n1 ∪1 ω2) ∪ ω2 − n2 ∪1 dω2) − c−
2

ω2 ∪1 (n1 ∪ ω2)

+ (n1 ∪1 n2) ∪ ω2 + n1 ∪ (ω2 ∪1 (n2 + ω2)) + f (n1, ω2, dn2). (C94)

To simplify the expression, we use the following identities:

f (n1, ω2, dn2) = f (n1, ω2, n1 ∪ ω2) + f (n1, ω2, ω2 ∪1 ω2)

= g(n1 ∪ n1, ω2, ω2) + ζ (n1, ω2) + f (n1, ω2, ω2 ∪1 ω2),

f (n1, ω2, ω2 ∪1 ω2) = −c− f

(
n1, ω2,

dω2

2

)
(for odd c−)

∼ −c−
2

[−(n1 ∪ ω2) ∪1 ω2 − ω2 ∪1 (n1 ∪ ω2) − 2n1 ∪ (ω2 ∪1 ω2)]

+ (n1 ∪ n1 ∪ ω2) ∪2 ω2 − (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2) + n1 ∪ n1 ∪ ω2 − n1 ∪ (ω2 ∪2 (ω2 ∪1 ω2))

235143-53



BARKESHLI, CHEN, HSIN, AND MANJUNATH PHYSICAL REVIEW B 105, 235143 (2022)

∼ −c−
2

[−(n1 ∪1 ω2) ∪ ω2 − ω2 ∪1 (n1 ∪ ω2)] + (n1 ∪ n1 ∪ ω2) ∪2 ω2 + (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2)

− c−
2

n1 ∪ (ω2 ∪1 ω2) mod 2, (C95)

where the first identity can be proven by evaluating f (n1, ω2, dn2)(01234) on 4-simplex (01234),24 and we used ω2 ∪2 (ω2 ∪1

ω2) = 0 (mod 2). The Hirsch identity (n1 ∪1 ω2) ∪ ω2 = (n1 ∪ ω2) ∪1 ω2 + n1 ∪ (ω2 ∪1 ω2) is also used.
The last term of Eq. (C95) is − c−

2 n1 ∪ (ω2 ∪1 ω2), which is cohomologous to c−
2 n1 ∪ n1 ∪ ω2 (using dω2

2 = −ω2 ∪1 ω2 and
dn1

2 = n1 ∪ n1). Now we include the η part, which modifies this term into 1
2 n1 ∪ n1 ∪ ω2. The anomaly O4 = eiπφ4 is equal to

φ4 = n2 ∪ n2 + n2 ∪ ω2 + c−(n1 ∪ ω2) ∪2 (ω2 ∪1 ω2)

+ c−
4

(ω2 ∪ ω2 − ω2 ∪1 dω2) + ζ (n1, ω2) + 1

2
n1 ∪ n1 ∪ ω2

+ n2 ∪1 (ω2 ∪1 ω2) + (n1 ∪1 n2) ∪ ω2 + n1 ∪ (ω2 ∪1 (n2 + ω2)) + g(n1 ∪ n1, ω2, ω2)

+ (n1 ∪ n1 ∪ ω2) ∪2 ω2 + (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2)

= n2 ∪ n2 + n2 ∪1 dn2 + n2 ∪ ω2 + c−(n1 ∪ ω2) ∪2 (ω2 ∪1 ω2)

+ c−
4

(ω2 ∪ ω2 − ω2 ∪1 dω2) + ζ (n1, ω2) + 1

2
n1 ∪ n1 ∪ ω2

+ n2 ∪1 (n1 ∪ ω2) + (n1 ∪1 n2) ∪ ω2 + n1 ∪ (ω2 ∪1 (n2 + ω2)) + g(n1 ∪ n1, ω2, ω2)

+ (n1 ∪ n1 ∪ ω2) ∪2 ω2 + (n1 ∪ ω2) ∪2 (ω2 ∪1 ω2). (C96)

We use (n1 ∪1 n2) ∪ ω2 = (n1 ∪ ω2) ∪1 n2 + n1 ∪ (ω2 ∪1 n2). The penultimate line is

n2 ∪1 (n1 ∪ ω2) + (n1 ∪ ω2) ∪1 n2 + n1 ∪ (ω2 ∪1 ω2) + g(n1 ∪ n1, ω2, ω2)

∼ (n1 ∪ ω2) ∪2 dn2 + n1 ∪ (ω2 ∪1 ω2) + (n2
1 ∪ ω2) ∪2 ω2 + n2

1 ∪ ω2

∼ (n1 ∪ ω2) ∪2 dn2 + (n2
1 ∪ ω2) ∪2 ω2. (C97)

We note that (n1 ∪ ω2) ∪2 (n1 ∪ ω2) = Sq1(n1 ∪ ω2) = d
2 (n1 ∪ ω2) ∼ 0 is a coboundary. The final expression for the anomaly

O4 is

O4 = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )+c−(n1ω2 )∪2Sq1(ω2 )+ 1
2 n2

1∪ω2+ c−
4 P (ω2 ). (C98)

5. c− = k + 1/2

In this case, there are no permutations. Also we have t(g, h) = ψn2(g,h). Since Fψψψ = 1, and Rψψ = −1, we obtain the
simple result

O4[c− = k + 1/2, n1, n2](g, h, k, l) = Rt(g,h)t(k,l) = (−1)n2(g,h)n2(k,l). (C99)

This is the Gu-Wen supercohomology equation [21,38].

6. Computation of stacking rule for ν3 with integer c−
a. s1 = 0

Here we will complete the derivation of the stacking rules for the invertible phases characterized by the data (na
1, na

2, ω
a
2, ν

a
3 )

and (nb
1, nb

2, ω
b
2, ν

b
3 ). We will first consider the case when Gb is a unitary symmetry, i.e. s1 = 0. As discussed in Sec. VI, the

stacking laws for n1, n2, ω2, c− are

ω2
tot = ω2

a = ω2
b, ntot

1 = na
1 + nb

1, ntot
2 = na

2 + nb
2 + na

1 ∪ nb
1, ctot

− = ca
− + cb

−. (C100)

(While the stacking rule for n2 is a conjecture, it is comparible with our expressions for O4, as we will see be-
low.) The stacking rule for ν3 is computed as follows. We use the property that O4(ntot

1 , ntot
2 , ωtot

2 , ctot
− ) differs from

O4(na
1, na

2, ω
a
2, ca

−)O4(nb
1, nb

2, ω
b
2, cb

−) by a coboundary. Let us discuss each term in O4.

24Explicitly,

f (n1, ω2, n1 ∪ ω2)(01234) = n1(01)ω2(014)n1(12)ω2(234)

= n1(01)[ω2(014) + ω2(124)]n1(12)ω2(234) + n1(01)ω2(124)n1(12)ω2(234)

= [g(n1 ∪ n1, ω2, ω2) + ζ (n1, ω2)](01234).
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(1) P (n2):

P
(
na

2 + nb
2 + na

1 ∪ nb
1

) − P
(
na

2

) − P
(
nb

2

) = dna
2 ∪2 dnb

2 + P
(
na

1 ∪ nb
1

) + d
[(

na
1 ∪ nb

1

) ∪1
(
na

2 + nb
2

) + na
2 ∪1 nb

2 + dna
2 ∪2 nb

2

]
,

(C101)

where we have used Eq. (C59) to compute the difference of Pontryagin squares. Notice that P (na
1 ∪ nb

1) = d[ 1
2 na

1 ∪ nb
1 ∪ nb

1 +
na

1 ∪ (na
1 ∪1 nb

1) ∪ nb
1].

(2) n2 ∪ ω2: (
na

2 + nb
2 + na

1 ∪ nb
1

) ∪ ω2 − na
2 ∪ ω2 − nb

2 ∪ ω2 = na
1 ∪ nb

1 ∪ ω2. (C102)

(3) ζ (n1, ω2)[01234] = n1(01)n1(12)ω2(124)ω2(234):(
ζ
(
na

1 + nb
1, ω2

) − ζ
(
na

1, ω2
) − ζ

(
nb

1, ω2
))

(01234) = nb
1(01)na

1(12)ω2(124)ω2(234) + na
1(01)nb

1(12)ω2(124)ω2(234)

= nb
1 ∪ [

(na
1 ∪ ω2) ∪2 ω2 + na

1 ∪ ω2
] + na

1 ∪ [
(nb

1 ∪ ω2) ∪2 ω2 + nb
1 ∪ ω2].

(C103)

(4) 1
2 [n1]2 ∪ [n1]2 ∪ ω2:

1

2

[(
na

1 + nb
1 − 2na

1 ∪1 nb
1

)2 ∪ ω2 − (
na

1

)2 ∪ ω2 − (
nb

1

)2 ∪ ω2
]

= 1

2

(
na

1 ∪ nb
1 + nb

1 ∪ na
1

) ∪ ω2 + [(
na

1 + nb
1

) ∪ (
na

1 ∪1 nb
1

) + (
na

1 ∪1 nb
1

) ∪ (
na

1 + nb
1

)] ∪ ω2(mod 2)

= 1

2
d
(
na

1 ∪1 na
1

) ∪ ω2 + [
na

1 ∪1
dnb

1

2
+ dna

1

2
∪1 nb

1

] ∪ ω2 + [(
na

1 + nb
1) ∪1 d

(
na

1 ∪1 nb
1

)] ∪ ω2

= 1

2
d
[(

na
1 ∪1 nb

1) ∪ ω2
] + (

(
na

1 ∪1 nb
1

) ∪ dω2

2
+ [

na
1 ∪1

(
nb

1 ∪ nb
1) + (

na
1 ∪ na

1

) ∪1 nb
1

] ∪ ω2

+ [(
na

1 + nb
1) ∪1

(
na

1 ∪ nb
1 + nb

1 ∪ na
1

)] ∪ ω2

= 1

2
d
[(

na
1 ∪1 nb

1) ∪ ω2
] + ((

na
1 ∪1 nb

1

) ∪ dω2

2
. (C104)

(5) c−(n1 ∪ ω2) ∪2 (ω2 ∪1 ω2):

ca
−(nb

1 ∪ ω2) ∪2 (ω2 ∪1 ω2) + cb
−(na

1 ∪ ω2) ∪2 (ω2 ∪1 ω2). (C105)

The total contribution of (C101)–(C105) gives a coboundary:

d

[
1

2
na

1 ∪ nb
1 ∪ nb

1 + na
1 ∪ (na

1 ∪1 nb
1) ∪ nb

1

]
+ d

[
ca(ω2 ∪1 ω2) ∪3

(
nb

1 ∪ ω2
)]

+ d
[(

na
1 ∪ nb

1

) ∪1
(
na

2 + nb
2

) + na
2 ∪1 nb

2 + dna
2 ∪2 nb

2

] + d

[
1

2

(
na

1 ∪1 nb
1

) ∪ ω2

]
. (C106)

Therefore, up to a possible 3-cocycle term, the stacking law for ν3 is

ν tot
3 = νa

3νb
3 (−1)(na

1∪nb
1 )∪1(na

2+nb
2 )+na

2∪1nb
2+dna

2∪2nb
2+na

1∪(na
1∪1nb

1 )∪nb
1+ca (ω2∪1ω2 )∪3(nb

1∪ω2 ) i(na
1∪1nb

1 )∪ω2+na
1∪nb

1∪nb
1 . (C107)

The fact that we have obtained a reasonable stacking rule for ν3 which reduces to the known correct result when ω2 = 0 supports
our conjectured stacking rule for n2. Equations (C100) and (C107) are our conjectured stacking rules for invertible phases with
unitary symmetry.

APPENDIX D: EQUIVALENCE OF O4 OBSTRUCTIONS
FOR c− = 0 FROM G-CROSSED BRAIDED TENSOR

CATEGORIES AND THE FIXED-POINT WAVE FUNCTION

In Ref. [20], the O4 obstruction, Eq. (136), is obtained by
the fixed-point wave function construction:

O4(01234)

= (−1)[n2∪n2+n2∪1dn2+ω2∪n2](01234)+ω2(013)dn2(1234)

+ (−1)dn2(0124)dn2(0234)(−i)dn2(0123)[1−dn2 (0124)](mod 2).

(D1)

We first expand the last few terms which are not cup products.
Notice that, in Ref. [20], the convention is dn2 = ω2 ∪ n1,
which is different from dn2 = n1 ∪ ω2 defined in this paper.

ω2(013)dn2(1234) + dn2(0124)dn2(0234)

= ω2(013)ω2(123)n1(34) + ω2(012)ω2(023)n1(24)n1(34).
(D2)

To match the formula Eq. (136) with c− = 0, we reverse the
branching structure 〈01234〉 → 〈43210〉 and the terms above
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becomes

n1(01)ω2(123)ω2(134) + n1(01)n1(02)ω2(124)ω2(234)

= n1(01)ω2(123)ω2(134)

+ n1(01)(n1(01) + n1(12))ω2(124)ω2(234)(mod 2)

= n1(01)(ω2(123)ω2(134) + ω2(124)ω2(234))

+ n1(01)n1(12)ω2(124)ω2(234)

= [n1 ∪ (ω2 ∪1 ω2) + ζ (n1, ω2)](01234). (D3)

The first term n1 ∪ (ω2 ∪1 ω2) is a coboundary since it is n1 ∪
dω2

2 ∼ dn1
2 ∪ ω2 ∼ d (n1 ∪ n2) ∼ 0. The last term in Eq. (D1)

(after reversing the branching structure) is

− 1
2 [dn2(1234)(1 − dn2(0234))(mod 2)]

= − 1
2 [n1(12)ω2(234) − n1(02)n1(12)ω2(234)], (D4)

where we have used dn2 = n1 ∪ ω2 since the ordering of
vertices are reversed. The expression in the bracket is auto-
matically 0, 1 if all n1 and ω2 are 0,1, so the mod 2 action is
unnecessary. It can be further simplified as

− 1
2 [n1(12)ω2(234) − (n1(01) + n1(12))n1(12)ω2(234)

+ dn1(012)n1(12)ω2(234)]

= 1
2 [n1(01)n1(12)ω2(234)] − dn1(012)

2 n1(12)ω2(234)

= 1
2 [n1 ∪ n1 ∪ ω2](01234) − n1(01)n1(12)n1(12)ω2(234)

= 1
2 [n1 ∪ n1 ∪ ω2](01234) − [n1 ∪ n1 ∪ ω2](01234)

∼ 1
2 [n1 ∪ n1 ∪ ω2](01234), (D5)

where we have used n1 ∪ n1 ∪ ω2 = d (n1 ∪ n2) (mod 2). In
the cup product part, n2 ∪ n2 + n2 ∪1 dn2 is invariant under
reversing branching structure, and ω2 ∪ n2 is transformed to
n2 ∪ ω2. Hence, the total O4 obstruction is

O4 = (−1)P (n2 )+n2∪ω2+ζ (n1,ω2 )in1∪n1∪ω2 , (D6)

which agrees with the obstruction obtained from G-crossed
braided tensor categories Eq. (136) with c− = 0.

APPENDIX E: A NONANOMALOUS REFERENCE STATE
FOR INTEGER c−

Let us provide a description for a nonanomalous “refer-
ence” bosonic shadow theory enriched by Gb symmetry, with
general n1, n2 = 0, ω2 = 0 and we assume the symmetry is
unitary s1 = 0. When c− is a half-integer, n1 = 0, and we can
take the Gb symmetry to act trivially, i.e., the background Gb

gauge field decouples, and thus the symmetry is nonanoma-
lous. Thus we will focus on the case of integer c−.

To describe the data n1, we note it is related to the gauge
field of the charge conjugation symmetry in the Chern-Simons
theory Spin(2c−)1 description of the bosonic shadow theory,

B1 = A∗
bn1. (E1)

Gauging the Gb symmetry is equivalent to orbifold of the
Spin(2c−)1 chiral algebra by Gb symmetry with action spec-
ified by n1 [87]. In the following we will provide another
description of the resulting theory, which is manifestly well-
defined. Furthermore, since the theory couples to the Gb gauge

field only through Eq. (E1), and the unitary Z2 charge con-
jugation symmetry does not act projectively on the anyons,
the Gb symmetry does not fractionalize on the anyons. In the
language of Gb-crossed BTCs, thts means that the theory has
all reference η symbols equal to 1.

To obtain the theory coupled to the gauge field Ab of the Gb

symmetry, we can start with the partition function that couples
to B1, denoted by Z[B1], and then perform the following
manipulation:

∑
B2

(∑
B1

Z[B1](−1)
∫

(B1+A∗
bn1 )∪B2

)
= Z[A∗

bn1], (E2)

where B2 is the two-form Z2 gauge field that gauges the
one-form symmetry generated by (−1)

∮
B1+A∗

bn1 in the theory
whose partition function is given by the bracket on the left
hand side of Eq. (E2), denoted as

T × (Gb)0, (E3)

where T is the theory obtained by gauging the Z2 charge con-
jugation symmetry, with partition function ZT = ∑

B1
Z[B1],

and (Gb)0 is the untwisted Gb gauge theory with vanishing
Dijkgraaf-Witten action [88], and it can described by the
quantum double model based on group Gb [89].

Let us give an explicit description of the theory T . If
we gauge the Z2 charge conjugation 0-form symmetry, the
bosonic shadow theory Spin(2c−)1 becomes [50]

T = Pin+(2c−)1 ↔ Spin(1)1 × Spin(2c− − 1)1, (E4)

where Spin(1)1 is the nonspin Ising TQFT with c− = 1/2
and three anyons I, ψ, σ . If we gauge the dual Z2 one-
form symmetry generated by the boson (ψ,ψ ) of Spin(1)1 ×
Spin(2c− − 1)1, we recover the original bosonic shadow the-
ory Spin(2c−)1.

Thus we find that gauging the Gb symmetry in the bosonic
shadow theory with n1 gives

T × (Gb)0

Z2
= Spin(1)1 × Spin(2c− − 1)1 × (Gb)0

Z2
, (E5)

where the Z2 quotient denotes gauging the nonanomalous Z2

one-form symmetry generated by the boson

(ψ,ψ, ei
∮

A∗
bn1 ), (E6)

where ei
∮

A∗
bn1 is the bosonic Wilson line of the Gb gauge

theory that carries the one-dimensional representation spec-
ified by n1. Since the generator of the diagonal Z2 one-form
symmetry is a boson, it can be gauged, giving a well-defined
nonanomalous theory. If the Gb gauge field is not dynami-
cal but a background gauge field, this gives a nonanomalous
Gb symmetry-enriched theory based on the topological order
Spin(2c−)1. The topological data of the theory Eq. (E5) can
be obtained using anyon condensation of the boson Eq. (E6)
as in Ref. [90].

APPENDIX F: ABSOLUTE ANOMALY FOR
NONPERMUTING SYMMETRIES AND THE

PONTRYAGIN SQUARE

Consider a bosonic SET phase with anyons given by the
UMTC C, and with a general symmetry group G. Suppose the
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symmetry does not permute the anyons. Then, Ref. [12] shows
that the absolute anomaly of this phase is given by Eq. (A31).
This equation has the form “O4 = R FFF

FFF .” Here we will show
that this formula can be reproduced from the anomaly of the
one-form symmetry [62] as discussed in Ref. [35].

It will be useful to have a concrete representation for the
F and R symbols of the Abelian anyons in C. If the Abelian
anyons in C (which are given by a group A) themselves form
a modular category, we can describe their F and R symbols
by a nondegenerate symmetric K matrix with even diagonal
entries:

F abc = eiπ �aT K−1(�b+�c−−−→
b+c), (F1)

Rab = eiπ �aT K−1 �b. (F2)

If the Abelian anyons in A do not form a modular category,
we can use the same formulas by taking the K matrix corre-
sponding to the Drinfeld center Z (A) of A. In the K matrix
formalism, let the symmetry fractionalization anyon t(g, h) be

denoted by
−−−→
t(g, h). Substituting the relevant expressions into

Eq. (A31), and simplifying, we obtain

O4(g, h, k, l) = eiπ
−−−→
t(g,h)T K−1−−−→

t(k,l)

× eiπ
−−−−−→
t(ghk,l)T K−1[

−−−−→
t(gh,k)+−−−→

t(g,h)−−−−−→
t(g,hk)−−−−→

t(h,k)]

× eiπ
−−−−−→
t(g,hkl)T K−1[

−−−→
t(h,k)+−−−−→

t(hk,l)−−−−−→
t(h,kl)−−−−→

t(k,l)]

(F3)

= eiπ
−−−→
t(g,h)T K−1−−−→

t(k,l) × eiπ
−−−−−→
t(ghk,l)T K−1d

−−−−−→
t(g,h,k)

× eiπ
−−−−−→
t(g,hkl)T K−1d

−−−−→
t(h,k,l). (F4)

Let the components of �t be given by integers ti, i =
1, 2, . . . , dim K . Then, using the definition of the cup-1 prod-
uct (Appendix B) we can decompose the anomaly into the
following terms:

O4 = e
iπ

∑
i

(K−1 )ii (ti∪ti−ti∪1dti ) × e
i2π

∑
i< j

(K−1 )i j (ti∪t j−ti∪1dt j )
(F5)

= e
iπ

∑
i

(K−1 )iiP (ti ) × e
i2π

∑
i< j

(K−1 )i j (ti∪t j−ti∪1dt j )
. (F6)

To obtain the second term in this result, we used K−1
i j =

K−1
ji . For a 2-cochain X , the Pontryagin square is defined

as P (X ) = X ∪ X − X ∪1 dX . The last expression can be
obtained from the anomaly of one-form symmetry [62] by
setting the background of the intrinsic one-form symmetry
equals A∗t for background G gauge field A [35].

APPENDIX G: EQUIVALENCES IN THE Gb-CROSSED
DESCRIPTION

1. s1 = 0

In Sec. IV E, we showed that for unitary symmetries, re-
labelling the fermion parity fluxes leads to an equivalence
(n2, ν3) � (n2 + ω2, ν

′
3). In this section, we show that this is

the only allowed equivalence upon relabelling e and m. We ar-
gue as follows. Any additional equivalences can be thought of
as a superposition of the one which takes n2 → n2 + ω2, and
another gauge transformation which preserves the F, R, and
U symbols but modifies the η symbols, and thus n2, by some

additional terms. Here we show that such additional gauge
transformations cannot transform η. We consider c− = 0 for
simplicity; a stacking argument given below shows that this is
also true when c− �= 0.

The desired gauge transformation is some combination of
a vertex basis transformation � and a symmetry action gauge
transformation γ (defined in Appendix A). By demanding that
the F and R symbols are invariant under �, we obtain the
constraints

�ab�a×b,c = �bc�a,b×c, �ab = �ba. (G1)

where a, b, c are anyons. Using this, we can express
each �ab in terms of three independent variables, say �em =
�me, �eψ = �ψe, �mψ = �ψm, the rest being obtained as
follows:

�ψψ = ��e��m, (G2)

�ee = �eψ�em, (G3)

�mm = �mψ�em. (G4)

For the U symbols to also be invariant under the gauge trans-
formation, we require

γa×b

γaγb
= �

gagb

�ab
=
(

�a′b′

�ab

)n1(g)

, (G5)

where a permutation of e and m takes a → a′, b → b′. We
impose the physical constraint γψ = 1. From invariance of U ,
we find that

γ 2
e = 1

γ 2
m

=
(

�ee

�mm

)n1

, (G6)

γeγm = 1. (G7)

Thus we can set γm = 1
γe

= θ for some complex function θ :
Gb → U(1). Such a γ changes ηm by the amount

γm(gh)

γm(g)γgm(h)
= γm(gh)

γm(g)γm(h)

(
γm(h)

γe(h)

)n1(g)

(G8)

= θn1(gh)−n1(g)−n1(h)+2n1(g)n1(h) (G9)

= 1, (G10)

the last line being an identity. Thus gauge transformations that
preserve F, R, and U cannot change ηm; hence they cannot
change n2.

We now argue that there cannot be additional equivalences
even when c− = 0. Suppose there was an equivalence of
the form (c−, n1, n2, ν3) � (c−, n1, n2 + λ2, ν

′
3) for some 2-

cocycle λ2, with c− �= 0. Now we can consider a stack of
3 systems: a system with (c− = 0, n0

1, n0
2, ν

0
3 ), the state with

data (c−, n1, n2, ν3), and the inverse of the state with data
(c−, n1, n2 + λ2, ν

′
3). Upon stacking, we would obtain a new

state with c− = 0 but with n0
2 → n0

2 + λ2. However, this state
should be equivalent to the one with (c− = 0, n0

1, n0
2, ν

0
3 ),

since the other two states in the stack were inverses of each
other, by assumption. Thus the equivalence under shifting by
λ2 would hold even for c− = 0. This is a contradiction.
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2. s1 �= 0

In the main text, we showed that there is a relabelling
of e and m which, along with a gauge transformation, takes
n2 → n2 + ω2. We ask if there are other gauge transforma-
tions which preserve F, R, and U but also change η. When
s1 �= 0 the constraints on F and R are identical to those given
above, however, the invariance condition on U now depends
on s1:

γa×b

γaγb
=
(

�a′b′

�ab

)n1

(�ab)2s1 . (G11)

Taking γψ = 1, and a = b = ψ , we obtain (�ψψ )2s1 = 1, thus
�ψψ = ±1. Taking a = b = e, m separately, we obtain

γ 2
m = (�mm)−2s1

(
�mm

�ee

)n1

, γ 2
e = (�ee)−2s1

(
�ee

�mm

)n1

.

Under this γ , ηm(g, h) changes by an amount

γm(gh)

γm(g)(γgm(h))1−2s1(g)

= dγ −1
m (g, h)(γm(h))2s1(g)

(
γm

γe
(h)

)n1(g)−2n1(g)s1(g)

.

(G12)

Note that ηm can only change by ±1. Thus the square of the
above quantity must equal 1. By plugging in the expressions
for γ 2

m and γ 2
e and simplifying, we obtain

1 =
(

�ee

�mm

)2α

, α = −s1n1+ 2n1s1+ 2(n1 ∪1 s1)(n1+ 2s1).

(G13)

This equality should hold for arbitrary n1, s1. Therefore we
demand that (

�mm

�ee

)2

= 1. (G14)

We also have �mm

�ee = �mψ

�eψ = �ψψ (�mψ )2. The above equa-
tion then implies that

(�mψ )4 = (�eψ )4 = 1. (G15)

Now we can obtain the change in ηm. We use the parametriza-
tion

γm = (�mψ )n1−s1 (�em)−s1 (�ψψ )
n1
2 , (G16)

γe = (�mψ )s1−n1 (�em)−s1 (�ψψ )−
n1
2 . (G17)

After simplifying with the help of the above constraints, the
total shift in ηm equals

ηm → ηm × (�ψψ )s1n1 (�mψ )2(s1n1+n1s1 ). (G18)

We see that gauge transformations with �ψψ = −1 shift ηm

by (−1)s1n1 . The corresponding shift in n2 is

n2 → n2 + s1n1. (G19)

In Ref. [47], it is noted that the condition �ψψ = −1 leads
to problems in the classification of SET phases with antiu-
nitary symmetries. In our case, this condition introduces an
extra equivalence when n1 �= 0 compared to when n1 = 0.
Thus, following Ref. [47], we impose the restriction �ψψ = 1
by hand. Now if (�mψ )2 = −1, n2 is only shifted by a 2-
coboundary n1s1 + s1n1; this equivalence is already present
in the theory. We conclude that all gauge transformations with
γψ = 1 and �ψψ = 1 which preserve the F, R, and U symbols
must also preserve η up to 2-coboundaries. Thus the only
other equivalence on n2 is the one that takes n2 → n2 + ω2.
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