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Orbital angular momentum driven anomalous Hall effect
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Orbital angular momentum (OAM) plays a central role in regulating the magnetic state of electrons in
nonperiodic systems such as atoms and molecules. In solids, on the other hand, OAM is usually quenched
by the crystal field, and thus has a negligible effect on magnetization. Accordingly, it is generally neglected in
discussions around band topology such as Berry curvature and intrinsic anomalous Hall effect (AHE). Here,
we present a theoretical framework demonstrating that crystalline OAM can be directionally unquenched in
transition metal oxides via energetic proximity of the conducting d electrons to the local magnetic moments. We
show that this leads to “composite” Fermi pockets with topologically nontrivial OAM textures. This enables a
giant Berry curvature and a resultant intrinsic nonmonotonic AHE, even in collinearly ordered spin states. We
use this model to explain the origin of the giant AHE observed in the forced ferromagnetic state of EuTiO3 and
propose it as a general scheme for OAM driven AHE.

DOI: 10.1103/PhysRevB.105.235142

I. INTRODUCTION

The anomalous Hall effect (AHE) is a variant of the Hall
effect that arises in magnetic conductors even in the absence
of an external magnetic field. AHE has both extrinsic con-
tributions, i.e., related to skew-scattering mechanisms, and
intrinsic contributions, which are related to the geometric
and topological properties of electronic states as formulated
by Berry [1]. In a solid, we can treat the momentum space
of the lattice, also known as the Brillouin zone (BZ), as a
parameter space which in turn defines a manifold of electronic
states that has a defined connection and curvature, commonly
known as Berry connection and Berry curvature [2], respec-
tively. Heuristically the Berry connection can be seen as the
k-space dual of the magnetic potential, which gives us some
intuition as to its connection to the AHE, and how we can
have a Hall current in the absence of an external magnetic
field. Berry curvature in a system can typically be attributed to
energetically proximate energy eigenstates that are guaranteed
by the symmetries and degrees of freedom of the system.
Typically the focus is on degrees of freedom such as the
spin or valley index, rather than orbital angular momentum
(OAM), as the latter is usually quenched or of a trivial nature
in solids.

Recently, the field of “orbitronics” has linked the orbital
degree of freedom, and correspondingly OAM, to a variety
of topological, and Hall current phenomena. This includes
linking the valley Hall effect and or the spin Hall effect to an
underlying orbital Hall effect [3–6], an orbitally driven (quan-
tum) AHE [7–10], with direct links made to the underlying
orbital ordering [7–9], and momentum space orbital textures,
generated through an external electronic field or through lack
of centrosymmetry, that result in Hall currents [4,11,12].
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Building upon this, we present a framework for an ex-
ternally controllable, orbitally driven AHE that arises from
complex OAM textures. We examine a scenario in which the
electronic structure possesses a collinear spin angular momen-
tum (SAM) texture, but its OAM varies across the BZ due to
orbital ordering from anisotropy externally imposed through
a magnetic proximity effect. We show that the resulting OAM
texture generates an emergent spin-orbit (SO) field that varies
nontrivially over k space, despite the collinearity of SAM,
leading to composite Fermi pockets (energy isosurfaces of
each band) with regions of different orbital character sepa-
rated by sharp boundaries. This, in turn, generates a large
OAM-dependent Berry curvature, dominating the contribu-
tion to the intrinsic AHE. Due to the topological nature of the
OAM textures, the anomalous Hall conductivity, σ AHE

xy , is non-
monotonic with respect to the Fermi energy. As an example,
we apply our model to the forced-ferromagnetic (FFM) phase
of the rare-earth transition-metal oxide perovskite EuTiO3.
We show this system exhibits collinear SAM and noncollinear
OAM, resulting from the applied magnetic field and energetic
proximity of the Eu 4 f and Ti 3d orbitals. This enables us
to externally control the OAM induced Berry curvature, and
resultant AHE, directly through the magnetic field orientation.
Through this, we explore the Fermiology and Berryology of
the low-energy bands, hosting the charge carriers, and find
they are directionally warped by an Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between Eu 4 f moments, medi-
ated through Ti 3d states. This is shown to lead to an intrinsic
nonmonotonic σ AHE

xy that has been experimentally observed
for EuTiO3 but so far eluded rigorous explanation [13–15].

II. COMPUTATIONAL METHODS

Bulk electronic structure calculations for EuTiO3 and
SrTiO3 were performed within the density functional the-
ory (DFT) using the Perdew-Burke-Ernzerhof exchange-
correlation functional [16], as implemented in the WIEN2K
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FIG. 1. (a) and (b) Magnetic configurations of EuTiO3, in the paramagnetic (PM) and forced-ferromagnetic (FFM) phase, respectively.
The external field is along the (001) direction. The insets in (a) and (b) show the corresponding RKKY interaction. (c) and (d) Schematic
representations of the resulting density of states (DOS) in PM and FFM phases, respectively. (e) Model potentials, reflecting the symmetry
reduction of the system. (f) Band diagram for Ti 3d states. (g), (h) Angular momentum in the system. (g) States with dxy orbital character have
fully quenched OAM. (h) States formed from superpositions of dxz, dyz have unquenched OAM, effectively uncoupled from SAM.

package [17]. Relativistic effects, including spin-orbit cou-
pling, were fully taken into account. An effective Hubbard-
like potential of Ueff = 6 eV for Eu was used to model the
strong on-site Coulomb interaction of the Eu 4 f states [18].
As discussed in Ref. [18], this correction can also treat the
DFT’s systematic misalignment of the conduction bands and
their electronic dispersion at and well above the conduction
band minimum. For both compounds, a cubic crystal structure
with a lattice parameter of 3.905 Å was used. The correspond-
ing BZ was sampled by a 10 × 10 × 10 k mesh. The lowest
six conduction bands were then downfolded into a six-band
tight-binding (TB) model using maximally localized Wannier
functions [19,20] with the Ti 3dxy, Ti 3dyz and Ti 3dxz orbitals
as the projection centers. The resulting TB wave function
|n(k)〉 was finally used to compute the expectations values
of spin angular momentum, 〈n(k)|̂S|n(k)〉 ≡ 〈̂S〉, and orbital
angular momentum, 〈n(k)|L̂|n(k)〉 ≡ 〈L̂〉. From this the wave
functions are used to compute σ AHE

xy as detailed in Wang et al.
[21],

σ AHE
xy = e2

h̄

1

NkVc

∑
k

(−1)�z(k),

�α (k) =
∑

n

fn(k)�α,n(k) (1)

where �α,n is the α = {x, y, z} component of the Berry curva-
ture of Wannier band n,

�α,n = −εαβγ Im

[〈
∂n

∂kβ

∣∣∣∣ ∂n

∂kγ

〉]
, (2)

where εα,β,γ is the Levi-Civita tensor, fn is the Fermi-Dirac
distribution, {k} is the sampling mesh, Nk the size of the
mesh, and Vc the volume of the unit cell. The BZ integration
of σ AHE

xy was carried out using a 200 × 200 × 200 k mesh
adopting an additional 10 × 10 × 10 subdivision within each
volume increment wherever the Berry curvature was greater
than 10 Å−2.

III. EuTiO3 OVERVIEW

EuTiO3 is a rare-earth perovskite [22] that has the novel
property of separate conduction (Ti) and magnetic (Eu) cen-
ters, allowing it to possess both a high carrier mobility (in
excess of 3000 cm2 V−1 s−1 at 2 K) [18] and metamagnetism
[23]. This metamagnetism arises out of a delicate competi-
tion between a superexchange antiferromagnetism (AFM) and
an indirect ferromagnetic order through the Eu ions [24,25].
The system is naturally more stable in the weak AFM phase
at temperatures below 5.5 K [26–28], which effectively can
be regarded as a paramagnetic (PM) phase, as depicted in
Fig. 1(a). Under a low magnetic field (2.1 T), EuTiO3 tran-
sitions to an FFM order [18,29–31], as depicted in Fig. 1(b).
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Forced ferromagnetism is distinguished from itinerant ferro-
magnetism, which is driven entirely by intrinsic exchange
interactions, by the magnetic ordering arising from interac-
tions between an external magnetic field and local magnetic
centers, Eu 4 f in our case. The Eu 4 f sites do interact with
each other through the Ti 3d conduction states in a double-
exchange interaction, leading to a complete spin polarization
of carriers for a broad range of carrier densities, as exper-
imentally verified through magnetotransport measurements
[18] for carriers up to 4 × 1019 cm−3. We have schematically
illustrated the resulting change in the electronic structure from
magnetization in Figs. 1(c) and 1(d).

The low-energy conduction bands here are dominated by
the Ti 3d–t2g states, i.e. {dxy, dyz, dxz} orbital submanifold,
owing to the octahedral symmetry (Oh) of the host perovskite
structure. Magnetizing the system along the (001) direction
further splits the t2g states into two branches t ′

2g made of
{dxz, dyz} and t ′′

2g made of dxy as depicted in Figs. 1(e) and 1(f)
(which will be discussed in further detail later on). Due to this
magnetic phase transition, these states undergo a tetragonal
warping [15,18] despite the cubic symmetry of the crystal
field. It should be noted that the crystal structure of cubic
perovskites, such as SrTiO3 and EuTiO3, naturally deforms to
a tetragonal phase due to lattice instabilities [32–35], which
will induce an anisotropy that affects the t2g states. However,
the directional distortions induced by the magnetic exchange
will dominate the electronic properties of the t2g states over
such a structural change. As such, first-principles calculations
based on a cubic structure capture the experimentally mea-
sured Fermiology of FFM EuTiO3 on a quantitative level, as
detailed in Maruhashi et al. [18]. This magnetic distortion,
as will be discussed later, is governed by a directional OAM
operator L̂, which, when added to the SAM operator Ŝ, mod-
ifies the total angular momentum operator Ĵ. However, as the
exchange induced Zeeman splitting is an order of magnitude
larger than the spin-orbit coupling (SOC) [see Figs. 2(a) and
2(b)], the t2g states are in the strong field regime and the OAM
is effectively uncoupled from the SAM, such that Ĵ = Ŝ + L̂,
as shown in Figs. 1(g) and 1(h).

IV. ELECTRONIC STRUCTURE

To aid the discussion, it is worthwhile comparing EuTiO3

to its twin compound SrTiO3, which shares the same crystal
structure and similarly has high carrier mobility, but lacks any
magnetic ordering [36–38]. In SrTiO3, as EuTiO3, the Ti t2g

states form a conduction manifold close to the Fermi energy
(EF ) [39,40]. As such, the SrTiO3 t2g bands are analogous to
those in undoped AFM EuTiO3 where there is no net spin
polarization. However, in EuTiO3 the Eu2+ 4 f electrons form
a nearly flat subgap manifold 0.5 eV from the conduction
band minimum (CBM), with an admixture of O 2p and Ti 3d
states [18,40], as shown in Fig. 2. By doping, we access the Ti
t2g states which act as a mediator for an RKKY interaction
between the Eu 4 f states due to their energetic proximity
[29,31] and the small admixture of Ti 3d states in the Eu
4 f manifold. More precisely speaking, Eu 4 f electrons are
exchanged through the Ti 3d states with another Eu center,
which is considerably “easier” if the spin of all three bands
matches. As such, it is energetically favorable for the Eu 4 f
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FIG. 2. (a) Spin-projected band structure of EuTiO3 along the
high-symmetry points of the Brillouin zone, energy offset against
the conduction band minimum (ECBM). (b) Spin-orbital-projected
density of states (DOS) in the same energy window.

and Ti 3d states involved in the RKKY interaction to adopt
the same direction of spin. With the application of an external
magnetic field above 2.1 T, the 4 f states align along the
field and adopt an FFM order (spin up). Furthermore, the Ti
3d spin-up states are brought down in energy by the RKKY
interaction, spin polarizing the t2g conduction states as shown
schematically in Fig. 1(d), and as can be observed in the
band structure in Fig. 3(a). Importantly, as the magnetic order
arises from the “separate” Eu magnetic centers, the t2g states
retain high mobility, and due to the localized nature of the 4 f
moments, we have direct control over the spin of the t2g states
via manipulation of the applied magnetic field.

V. ORBITAL-DEPENDENT DIRECTIONAL
DISTORTION OF FERMI SURFACE

For the case of (001) magnetization, which is what is
considered in Figs. 1 and 3, the t2g manifold near the CBM
forms Fermi pockets with three distinct shapes [18] as shown
in Fig. 3. The Fermi pockets intersect each other in the BZ,
resulting in two distinct types of symmetry protected cross-
ings in the kx-ky plane [shown in Fig. 3(a)] that are topological
features of the Berry curvature. The first type are Weyl nodes,
occurring between states of opposite spin along 	 → X. The
second type, which are part of the titled nodal lines, are
formed by states of the same spin but opposing orbital char-
acter along 	 → M and are protected by the planar mirror
symmetry of EuTiO3 [see Fig. 3(b)].

Figures 3(c)–3(k) show the orbital character, 〈̂S〉, and
〈L̂〉 projected onto the Fermi pockets at a typical carrier
density where only the spin-up states are accessed, nc =
4 × 1019 cm−3 (corresponding to EF = 66 meV). Here, we
see distinct regions of different orbital character, a simple
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FIG. 3. (a) Low-energy electronic structures of FFM EuTiO3 (solid lines) and SrTiO3 (dashed). Black dots indicate the protected band
crossings. (b) A magnified view of EuTiO3 bands and their orbital characters. (c)–(e) The orbital character, (f)–(h) 〈̂S〉, and (i)–(k) 〈L̂〉 projected
onto the resultant three Fermi pockets for a Fermi energy, EF indicated in (b), corresponding to a carrier density of nc = 4 × 1019 cm−3.

collinear spin texture, and regions with (un)quenched OAM.
We show all three pockets accessed at this energy. However,
we are primarily interested in the “light,” more dispersive,
second and third pockets as these will dominate transport
properties. Given the collinearity of 〈̂S〉, the behavior of the
SO term ĤSO ∝ L̂ · Ŝ must be entirely dependent on the OAM
texture, which is in turn related directly to the orbital charac-
ter. Specifically, in regions dominated by dxy, 〈L̂〉 is strongly
suppressed.

The emergence of ĤSO leads to a characteristic compres-
sion and elongation of the second and third pockets along the
z direction, respectively. This contrasting behavior is due to
the relative orientation of 〈̂S〉 and 〈L̂〉, which are antiparallel
and parallel for the second and third pockets, respectively.
Accordingly, the second pocket is lowered by 〈ĤSO〉, thereby
becoming more dispersive than the third pocket in the kx-ky

plane, manifesting as the above-mentioned directional distor-
tions.

These distortions are quantified by the plot given in
Fig. 4(a), where we can see how the cross-sectional area of the
pockets varies with the angle of the plane of the cross section.
Importantly, as these cross-sectional areas are directly related
to the Shubnikov–de Haas oscillations in EuTiO3, this Fermi-
pocket warping is observable in any directional anisotropy of
such oscillations [41,42]. To build up a clearer picture of ĤSO

we consider its variation along the paths in k space generated
by the intersection of the FPs and the plane kx = ky as shown
in the right inset of Fig. 4. Such a path is captured by a single
parameter, θ , the angle of the intersecting in-plane k from the

(0,0,1) direction. The magnitude of 〈L̂〉, the dxy projection,
and the corresponding 〈ĤSO〉 along the path is shown in
Figs. 4(c) and 4(e). For the warped pockets there is a sign
change in 〈ĤSO〉 moving from regions of a different orbital
character due to the twisting of 〈L̂〉, and the sign of the 〈ĤSO〉
is opposite between each pocket on the top/bottom of the
pockets as expected.

VI. MECHANISM OF ORBITAL ANGULAR
MOMENTUM QUENCHING

To understand the origin of noncollinear OAM it is
worthwhile discussing the general symmetry properties and
behavior of d orbitals in perovskite structures. As already
mentioned in Figs. 1(c) and 1(d), the crystal field in a cubic
perovskite structure, subject to no external stimuli, reduces
the continuous SO(3) symmetry of an electron around a free
ion to Oh. The 3d orbitals, which are fivefold degenerate
in free space, form two submanifolds corresponding to the
eg{x2 − y2, z2} and t2g{xy, xz, yz} irreducible representations
of Oh. These manifolds are two- and threefold degenerate,
respectively, but they are separated from each other by an
energy gap, owing to the fact the t2g orbitals are farther from
the ligands, and so experience less repulsion [43]. The angular
component of these orbitals can be expressed in terms of cubic
harmonics [44], i.e., as a sum of spherical harmonics Y m

l that
reflects the symmetry of the lattice. Importantly, for l = 2, the
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dxy orbital projection (〈P̂dxy 〉), magnitude of OAM (|〈L̂〉|), and spin-orbit coupling 〈ĤSO〉 over the path k = (0, 0, 1) to k = (1, 1, 0). Such a
path is depicted, for an example, in the inset for the Fermi pocket of Band 2 under (001) magnetization. The plots go horizontally from Band
2 to Band 3, and vertically from (001) magnetization to (111). The radius corresponds to the expectation values in natural units, such that they
lie in the interval [−1, 1], and is shifted such that the origin corresponds to r = −1, so we can show the full range of the spin-orbit terms.

t2g manifold can be written explicitly as

dxy = i√
2

(
Y −2

2 − Y 2
2

)
,

dxz = 1√
2

(
Y −1

2 − Y 1
2

)
,

dyz = i√
2

(
Y −1

2 + Y 1
2

)
.

(3)

Given that L̂z|Y m
l 〉 = m|Y m

l 〉, it is apparent for any state of the
form

|X 〉 = ∣∣Y m
l

〉 + eiφ
∣∣Y −m

l

〉
, (4)

where φ ∈ R,

〈X |̂Lz|X 〉 = 0. (5)

In addition, as L̂x and L̂y only mix Y m
l → Y m±1

l , we can see
that

〈X |̂Lx|X 〉 = 〈X |̂Ly|X 〉 = 0, (6)

implying that

〈X |L̂|X 〉 = 0. (7)

As such, for the unmixed t2g states given in Eq. (3) 〈L̂〉= 0,
i.e., we say OAM has been quenched [45]. This can be

anticipated from the Oh symmetry, as there is no way to define
a preferred direction for OAM.

A. Orbital ordering for (001) magnetization

Magnetization along the z-axis (001) breaks the Oh sym-
metry of the EuTiO3, but importantly we retain a fourfold
rotational symmetry in the x-y plane. The generator of this
rotation group is a rotation of π

2 about the z axis. Hence to
show a potential V̂ obeys this symmetry, it is sufficient to
show it is invariant under such a π

2 rotation. If we expand our
potential in terms of spherical harmonics,

V̂ =
l∑

m,n=−l

Vm,n

∣∣Y m
l

〉〈
Y n

l

∣∣, (8)

we can see that after rotating we have

V̂ → V̂ ′ =
l∑

m,n=−l

Vm,ne
π
2 (m−n)|Y m

l 〉〈Y n
l |. (9)

Hence, for V̂ to be invariant under such a rotation we
have the requirement that Vm,n 
= 0 ⇒ m = n or m − n = ±4.
As such, the only off-diagonal terms are those that couple
the m = ±2 harmonics. Furthermore, from the Hermiticity
of V̂ and the property that Y 2

2 = (Y −2
2 )∗, we have the results
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FIG. 5. Orbital character, 〈̂S〉, and 〈L̂〉 projected onto the Fermi pockets resulting from Band 2 and Band 3 (top and bottom rows,
respectively) for the (111) magnetization.

V2,−2 = V ∗
2,−2 = V ∗

−2,2 = V−2,2 and V2,2 = V−2,−,2. Hence it is
easy to show that the dxy = i√

2
(Y −2

2 − Y 2
2 ) orbital is an eigen-

state of V̂ , as are the spherical harmonics Y ±1
2 . This analysis

is directly related to the orbital angular momentum, as this
generates the SO(3) rotation group, and so the dxy orbitals are
distinct from the {dxz, dyz} due to their fundamentally differing
rotational symmetries.

Consequently, the t2g manifold is further split, with the
dxy becoming separated from the {dxz, dyz} orbitals which are
degenerate along the high-symmetry planes kx = ky due to
their equivalent dispersion. Inclusion of 〈ĤSO〉 will then open
a gap, which in any multiorbital manifold will result in some
orbital mixing. What is crucial here is that this degeneracy
leads to a perfect orbital mixing between {dxz, dyz} orbitals
along these planes. Importantly, this explains the connection
between 〈L̂〉 and orbital character as shown in Fig. 3: Regions
of a dxy character fully quench OAM, whereas regions with
{dxz, dyz} tend to retain it, with full unquenching along the
kx = ky planes where the {dxz, dyz} states are perfectly mixed.
Along such planes, 〈L̂〉 can exceed 〈̂S〉 by a factor of 2 and
so comes to dominate the magnetization of the conducting
states. As such, one can see that, given a multiorbital conduc-
tion manifold in the presence of SOC, the crystal symmetry
considered is enough to unquench OAM due to the full orbital
mixing.

Such a mixing arises from a real-space interorbital hopping
between the dxz and dyz orbitals, which is facilitated by the
same symmetry considerations above. Importantly, it has been
shown that such off-diagonal interorbital hopping terms can
lead to a large anomalous velocity, and so in the presence
of anisotropy, such as our magnetic field, will generate a net
AHE [46,47].

B. Orbital ordering for (111) magnetization

From the above discussion one can infer how an external
magnetic field could be used to control the OAM texture. To
explore this, we consider magnetization along the (111) direc-
tion. This again breaks the octahedral symmetry, but retains
the threefold rotational symmetry around this axis. Although
it is not possible to give a full treatment of the crystal potential
here, it is apparent that the x-y, x-z, and y-z planes are all
equivalent and so we do not expect large splitting between
any of the t2g states, and so in turn do not expect any large
quenching of OAM. Figures 4(d) and 4(f) confirm that there is
less pronounced OAM quenching and less variation in 〈ĤSO〉,
leading to less distortion of the Fermi pockets [Fig. 4(b)].
Figure 5 shows that the symmetry properties of this magneti-
zation lead to smoother boundaries between regions of orbital
character, and importantly that the dxy orbitals are no longer
isolated, leading to the less pronounced OAM quenching. 〈̂S〉
is still collinear and now directed along (111). Hence, we have
directly controlled the Fermiology, OAM texture, and spin
direction by manipulating an external magnetic field.

VII. BERRY CURVATURE

Each Fermi pocket exhibits sharp boundaries between the
regions of different orbital characters for the (001) magnetiza-
tion case. Hence these separate two distinct but energetically
proximate eigenstates, leading to a large Berry curvature
along these boundaries [2], that contributes to an intrinsic
AHE [1,48]. Crucially, this Berry curvature arises due to a
complex OAM texture because (as discussed previously) these
“composite” Fermi pockets are generated by a varying 〈ĤSO〉
field, despite a collinear SAM. To support this claim, we make
an analytic link between OAM texture and Berry curvature
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FIG. 6. Fermi pocket of Band 2 at nc = 4 × 1019 cm−3. The left-hand side shows Berry curvature magnitude from Eq. (13). The right-hand
side shows divergence of OAM. Arrows show OAM on two paths along the top and bottom of the pocket, respectively. The insets show
Berry curvature calculated numerically from Bloch states. (b) Reference band structure, with four Fermi energies marked corresponding to
nc = 0.5, 2, 20, 50 × 1019 cm−3. (c)–(f) z component of Berry curvature at said Fermi energies, taken in the kx-ky plane with kx and ky varying
from 0 to 0.15 π/a, where a is the real-space lattice constant. Black dots mark symmetry protected crossings. (g) nc dependence of the σ AHE

xy .
The shaded areas correspond to the energy windows shaded with the same colors in (b). (h) Divergence of OAM over path on the band 2 FP
that passes through the nodal line [shown by the black line in (a)], where θ is the polar angle parametrizing the path.

that is easily computable. We start with the general expres-
sion for the Berry curvature originating from the nth energy
eigenstate at k, |n(k)〉 in the BZ,

�α,n = −εαβγ Im

[〈
∂n

∂kβ

∣∣∣∣ ∂n

∂kγ

〉]
, (10)

which has a magnitude

|�n(k)|2 =
∑
α,β

(〈
∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉2

−
∣∣∣∣
〈

∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉∣∣∣∣2)
. (11)

Given that |n(0)〉 is an eigenstate of ĤSO, and that 〈̂S〉 is
collinearly ordered along the z direction, it must be an eigen-
state of L̂z. This allows us to approximate |n(k)〉 as being
a small perturbation from an L̂z eigenstate for a range of k
accessed by suitably small doping concentrations. This holds
true in our scheme, as the primary Berry curvature features
occur as boundaries between dxy and {dxz, dyz} regions where
the states are close to quantized, and the nodal lines 	 → M
where the mirror symmetry and band degeneracy give perfect
L̂z eigenstates. From this, it can be shown that around key
Berry curvature features

∂

∂kβ

(
1

λn

∂λn

∂kα

)
∝ Re

[〈
∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉]
, (12)

where λn ≡ 〈n|̂Lz|n〉. The full derivation of this term can be
found in Appendix C. Putting Eqs. (11) and (12) together,

|�n(k)|2 ∝
∑
α,β

(
∂

∂kβ

(
1

λn

∂λn

∂kα

))2

− ∂

∂kβ

(
1

λn

∂λn

∂kα

)
∂

∂kα

(
1

λn

∂λn

∂kβ

)
. (13)

This term is plotted explicitly for the second pocket in the
left-hand side of Fig. 6(a). Comparing it with the total �n(k)
directly calculated from the Bloch wave functions [see the in-
sets in Fig. 6(a)], we find a good agreement. This accordingly
confirms the link between OAM texture and Berry curvature.

VIII. ORBITAL ANGULAR MOMENTUM DRIVEN
ANOMALOUS HALL EFFECT

The OAM texture and its topological nature is further eluci-
dated in the right-hand side of Fig. 6(a). For the second Fermi
pocket, we can see that the kz = 0 plane separates regions with
a negative/positive OAM divergence, ∇k · 〈L̂〉, above/below
it, respectively. Hence, the OAM “flows” from the bottom
half, which acts as a source, to the upper half as a sink. The
direction of this flow characterizes the OAM texture type, and
is opposite for the third Fermi pocket compared to the first
two. The OAM itself is also depicted along the top and bottom
of the pocket, to reinforce the pole/antipole-like behavior of
〈L̂〉 in these regions.
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A. Anomalous Hall conductivity

The Berry curvature contributes to an intrinsic AHE as
follows,

σ AHE
xy = −e2

h̄

∑
n

∫
BZ

f [En(k)]�z,n(k)
dk

(2π )3
(14)

where f is the Fermi-Dirac distribution, and the integral is
across the entire BZ [1]. Increasing EF , we expect a sys-
tematic evolution in the magnitude and sign of �z,n(k) as
we access different OAM texture types. We focus on the z
component of � as the x and y components will have vanish-
ing integrals over the BZ due to the rotational symmetry of
the system, hence they do not contribute towards the AHE.
Starting from the CBM, where only the first and second pock-
ets (which are of the same OAM character) are present, the
occupied states in the BZ carry a giant positive �z(k), which
in turn leads to a positive σ AHE

xy growing monotonously with
increasing EF [compare Figs. 6(b), 6(c) and 6(g)]. Once EF

crosses the third pocket, a new region with a negative �z(k)
contribution emerges due to opposite OAM character of the
second pocket [see Fig. 6(d)]. The competition between these
two regions reaches its critical point at the protected crossing
between the second and third pocket along the 	 → M direc-
tion, bringing σ AHE

xy to its peak, as highlighted by the region I
shaded in yellow in Fig. 6(g). Further increasing EF leads to
the domination of the negative �z(k) contribution, manifested
by a sign change in σ AHE

xy for nc ∼ 2 × 1019 cm−3 [cyan re-
gion II in Fig. 6(g)]. This trend continues until EF crosses the
Weyl node along the 	 → X direction at nc ∼ 2 × 1020 cm−3.
At this point σ AHE

xy , which is now negative, shows another
turning point and begins to increase, as depicted in the purple
region III in Fig. 6(g).

Such an nc-dependent sign change in σ AHE
xy is consis-

tent with the previous experimental observations [13–15].
In particular, a comparison to the experimental results of
σ AHE

xy presented in Fig. 4(D) of Takahashi et al. [14] shows
great agreement between our calculations and real life mea-
surements, except for an overall sign difference, as the
experimental measurements are sensitive to the carrier charge,
which is negative here due to the electron-type carriers.
Nevertheless, our calculations demonstrate that the observed
intrinsic σ AHE

xy can be well described by such complex, topo-
logical OAM textures.

B. Topology of OAM texture

To elaborate on the role of the 	 → M protected crossings
in the Berry curvature, and how this relates to the OAM
texture, we note that these are part of a nodal line in the kx-ky

plane that begins along this direction, and at our plotted carrier
density (4 × 1019 cm−3) intersects the Fermi pocket as a pair
of protected crossings, which we expect to be topological fea-
tures of the Berry curvature, acting as quantized monopoles.
At this nc, one of these crossings occurs at an azimuthal angle
φ = 49.3◦ from the kx axis. Considering ∇k · 〈L̂〉 over a path
[shown as a black line in Fig. 6(a) on the Fermi pocket] that
intersects this crossing [Fig. 6(h)] we can see that it becomes
nonanalytic at the degeneracy, showing these are as much
topological features of the OAM texture as they are of the

Berry curvature. Hence the inclusion of the nodal line, and
thus moving between regions I and II of �z, corresponds
directly to a change in OAM texture for the Fermi pockets.

IX. CONCLUSION

In conclusion, externally imposed anisotropies on systems
with complex orbital manifolds, through energetic proximity
to magnetic centers, can directionally unquench OAM. The
resulting nontrivial, topological OAM textures can generate
large Berry curvature, with an intrinsic orbital AHE, even
in systems with collinear spin textures. In discussing OAM
in EuTiO3, we explained previous observations of warped
Fermiologies and a nonmonotonic σ AHE

xy as arising from k-
space varying OAM. Given the ubiquity of transition-metal
perovskites, and orbitally complex systems in general, our
analysis forms a simple, general platform for an orbitronic
AHE that is easily controlled due its dependence on imposed
anisotropies. Finally, we hope our analysis has highlighted the
role of OAM textures in orbitally driven AHE.
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APPENDIX: BERRY CURVATURE TERM DERIVATION

Here, we detail the full derivation of the expression relating
OAM texture to the Berry curvature of the Brillouin zone (BZ)
as discussed in the main text. For the nth energy eigenstate
at k, |n(k)〉, consider the general expression for its contribu-
tion to the Berry curvature over a three-dimensional (3D) BZ
(k dependence of |n〉 is implicit from now on),

�α,n = −εαβγ Im

[〈
∂n

∂kβ

∣∣∣∣ ∂n

∂kγ

〉]
, (A1)

and use the standard vector algebra identity εαβγ εαζη =
δβζ δγ η − δβηδγ ζ to write its magnitude

|�n(k)|2 =
∑
α,β

(〈
∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉2

−
∣∣∣∣
〈

∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉∣∣∣∣2)
. (A2)

We can then relate this to OAM as follows: First, consider
that the energy eigenstates must be eigenstates of ĤSO at the
gamma point, and given that at low energies the spin is entirely
collinear along z this means that more specifically they are
eigenstates of L̂z. Hence we make the approximation that for
a range of k our states are close to eigenstates of L̂z such that
we remove off-diagonal terms:

L̂z|n〉 = Cn|n〉 +
∑
m 
=n

Cm|m〉 ≈ Cn|n〉 ≡ λn|n〉. (A3)

As the OAM texture arises from the changing orbital character
of the energy eigenstates and not any k-space variation in the
OAM operator itself, it is clear that

〈n|∇kL̂z|n〉 = 0. (A4)
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Combining Eqs. (A3) and (A4), and taking the k dependence
of λn to be implicit,

∂λn

∂kα

=
∫ [

∂n∗

∂kα

L̂zn + n∗ ∂L̂z

∂kα

n + n∗L̂z
∂n

∂kα

]
dr3

=
∫ [

n∗L̂z
∂n

∂kα

−
(

∂n

∂kα

)∗
L̂zn

]
dr3

= 〈n|̂Lz

∣∣∣∣ ∂n

∂kα

〉
−

〈
∂n

∂kα

∣∣∣∣L̂z|n〉

= λn

(〈
n

∣∣∣∣ ∂n

∂kα

〉
−

〈
∂n

∂kα

∣∣∣∣n
〉)

, (A5)

where we have used the anti-Hermitian property of ∂ki . From
this we write

∂

∂kβ

(
1

λn

∂λn

∂kα

)
=

〈
∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉
+

〈
∂n

∂kβ

∣∣∣∣ ∂n

∂kα

〉

−
〈

∂2n

∂kα∂kβ

∣∣∣∣n
〉
−

〈
n

∣∣∣∣ ∂2n

∂kα∂kβ

〉

= 4Re

[〈
∂n

∂kα

∣∣∣∣ ∂n

∂kβ

〉]
, (A6)

Hence,

|�n(k)|2 ∝
∑
α,β

(
∂

∂kβ

(
1

λn

∂λn

∂kα

))2

− ∂

∂kβ

(
1

λn

∂λn

∂kα

)
∂

∂kα

(
1

λn

∂λn

∂kβ

)
. (A7)

[1] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Rev. Mod. Phys. 82, 1539 (2010).

[2] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[3] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809

(2007).
[4] D. Go, D. Jo, H.-W. Lee, M. Kläui, and Y. Mokrousov,

Europhys. Lett. 135, 37001 (2021).
[5] S. Bhowal and G. Vignale, Phys. Rev. B 103, 195309 (2021).
[6] T. P. Cysne, M. Costa, L. M. Canonico, M. B. Nardelli, R. B.

Muniz, and T. G. Rappoport, Phys. Rev. Lett. 126, 056601
(2021).

[7] M. Zhang, H.-h. Hung, C. Zhang, and C. Wu, Phys. Rev. A 83,
023615 (2011).

[8] G.-F. Zhang, Y. Li, and C. Wu, Phys. Rev. B 90, 075114 (2014).
[9] C. Wu, Phys. Rev. Lett. 101, 186807 (2008).

[10] H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J.
Inoue, Phys. Rev. Lett. 102, 016601 (2009).

[11] S. Bhowal and S. Satpathy, Phys. Rev. B 101, 121112(R)
(2020).

[12] D. Go, D. Jo, C. Kim, and H.-W. Lee, Phys. Rev. Lett. 121,
086602 (2018).

[13] K. S. Takahashi, M. Onoda, M. Kawasaki, N. Nagaosa, and Y.
Tokura, Phys. Rev. Lett. 103, 057204 (2009).

[14] K. S. Takahashi, H. Ishizuka, T. Murata, Q. Y. Wang, Y. Tokura,
N. Nagaosa, and M. Kawasaki, Sci. Adv. 4, aar7880 (2018).

[15] K. Ahadi, Z. Gui, Z. Porter, J. W. Lynn, Z. Xu, S. D. Wilson, A.
Janotti, and S. Stemmer, APL Mater. 6, 056105 (2018).

[16] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[17] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen,
and L. D. Marks, J. Chem. Phys. 152, 074101 (2020).

[18] K. Maruhashi, K. S. Takahashi, M. S. Bahramy, S. Shimizu,
R. Kurihara, A. Miyake, M. Tokunaga, Y. Tokura, and M.
Kawasaki, Adv. Mater. 32, 1908315 (2020).

[19] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997).

[20] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[21] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B
74, 195118 (2006).

[22] J. Brous, I. Fankuchen, and E. Banks, Acta Crystallogr. 6, 67
(1953).

[23] E. Stryjewski and N. Giordano, Adv. Phys. 26, 487 (1977).
[24] H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, H. Murakami, K.

Tanaka, and I. Tanaka, Phys. Rev. B 83, 214421 (2011).
[25] T. Birol and C. J. Fennie, Phys. Rev. B 88, 094103 (2013).
[26] J. H. Lee, X. Ke, N. J. Podraza, L. F. Kourkoutis, T. Heeg, M.

Roeckerath, J. W. Freeland, C. J. Fennie, J. Schubert, D. A.
Muller, P. Schiffer, and D. G. Schlom, Appl. Phys. Lett. 94,
212509 (2009).

[27] T. R. McGuire, M. W. Shafer, R. J. Joenk, H. A. Alperin, and
S. J. Pickart, J. Appl. Phys. 37, 981 (1966).

[28] C.-L. Chien, S. DeBenedetti, and F. D. S. Barros, Phys. Rev. B
10, 3913 (1974).

[29] T. Katsufuji and Y. Tokura, Phys. Rev. B 60, R15021 (1999).
[30] T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 (2001).
[31] Z. Gui and A. Janotti, Phys. Rev. Lett. 123, 127201 (2019).
[32] D. Bessas, K. Z. Rushchanskii, M. Kachlik, S. Disch, O.

Gourdon, J. Bednarcik, K. Maca, I. Sergueev, S. Kamba, M.
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