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Integer quantum Hall effect of two-component hard-core bosons in a topological triangular lattice
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We study the many-body ground states of two-component hard-core bosons in topological triangular-lattice
models. Utilizing exact diagonalization and density-matrix renormalization group calculations, we demonstrate
that at commensurate two-thirds filling per lattice site, a two-component bosonic integer quantum Hall (BIQH)

effect emerges with the associated K = ((1) (l)) matrix under strong intercomponent Hubbard repulsion. The

topological nature is further elucidated by (i) a unique ground state degeneracy with a robust spectrum gap,
(ii) a quantized topological Chern number matrix C = K~!, and (iii) two counterpropagating edge branches.
Moreover, with increasing nearest-neighbor repulsions, the ground state undergoes a first-order transition from

a BIQH liquid to a commensurate solid order.
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I. INTRODUCTION

The bosonic integer quantum Hall (BIQH) state, as a
bosonic analog of a fermionic topological insulator, is one
of the simplest symmetry-protected topological phases with
U(l) x U(1) global symmetry [1]. In the past, a possible
integer quantized quantum Hall effect was numerically con-
sidered in a Harper-Hofstadter model with a topological
C =2 band [2]. Later, such numerical studies were ex-
tended to strongly interacting two-component bosons in a
two-dimensional magnetic field based on cold atomic neu-
tral systems [3-6]. The fascinating properties of a BIQH
phase are that it is characterized by (a) Hall conductivity
quantized to an even integer [7-9] and (b) two counterprop-
agating chiral modes. Recently, such lattice realizations of a
BIQH phase have been also actively explored, including an
exact diagonalization (ED) calculation of single-component
bosons at filling v =1 in the lowest topological flat band
with Chern number C = 2 identified by a unique ground
state with a quantized |o,, = 2| Hall conductance [10,11],
density-matrix renormalization group (DMRG) identification
of various hard-core bosonic lattices with correlated hoppings
through Laughlin’s argument of quantized charge pumping
related to Hall conductance [12—-14], and a Monte Carlo study
of two interpenetrating square lattices of quantum rotors [15].
In Ref. [16], composite fermion theory was proposed for the
symmetry-protected BIQH state of single-component bosons
in Chern bands with C = 2.

However, so far examples of the BIQH phase for two-
component bosons in Chern bands with C = 1 are lacking,
and the identification of such a symmetry-protected topologi-
cal insulator in bosonic systems would expand the taxonomy
of topological phases of matter, which is the aim of our current
paper. Actually, for single-component bosons in topological
flat bands, previous numerical investigations revealed an ana-
log of quantum Hall effects in Chern bands with C =1 to
those in continuum Landau levels [17-22], and a series of
color-entangled Abelian topological states in Chern bands
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with C > 1 at various filling fractions [23-27]. Nevertheless,
the topological order of multicomponent bosons in topolog-
ical flat bands reveals a fertile topic to be uncovered with
many possible intriguing topological phases [28], aside from
the theoretical interest. In a series of works, the quantum Hall
effects of multicomponent bosons including Halperin (mmn)
states [29,30] and their multicomponent generalizations (in-
cluding Bose-Fermi mixtures and non-Abelian spin-singlet
clusters) [31-34] in topological flat bands with C = 1 have
been numerically demonstrated through ED and DMRG cal-
culations of both intracomponent and intercomponent Hall
transport responses. The versatile experimental ability in the
design and control of different iconic topological models in
cold atoms, such as Haldane-honeycomb [35] and Harper-
Hofstadter models [36—39], has been exemplified as a valuable
platform for studying such topological phases in Chern bands
for bosons in cold atom systems.

In this paper, we theoretically address the open issues re-
garding the emergence of a robust BIQH state at a filling factor
v = 2 in certain topological lattices, and then further validate
its topological properties. This paper is organized as follows.
In Sec. II, we introduce the interacting two-component hard-
core bosonic Hamiltonian in a three-band triangular-lattice
model with the lowest Chern band of Chern number C = 1 un-
der on-site and nearest-neighboring Hubbard repulsions, and
give a description of our numerical methods. In Sec. III, we
explore the many-body ground state at strong on-site Hubbard
repulsion and present a detailed proof of the BIQH state at
filling v = 2 by ED and DMRG calculations of its topologi-
cal information. We will explore its ground state degeneracy,
Chern number matrix, drag charge pumping, and chiral edge
modes, according to the K matrix classification. Also, we ex-
amine the possible competing solid order phase arising from
nearest-neighboring repulsion, and discuss its transition into
the BIQH state by varying interactions. Finally, in Sec. IV,
we summarize our results and discuss the primary interplay
between interactions and band topology.

©2022 American Physical Society
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FIG. 1. (a) Schematic plot of the topological triangular-lattice
model in Eq. (1). The single-arrow link shows the hopping direction
carrying chiral flux ¢, = ¢ in the next-nearest-neighbor hopping,
while the double-arrow link shows the hopping direction carrying
chiral flux ¢, = 2¢ in the nearest-neighbor hopping. Three sub-
lattices A, B, C are labeled by blue, green, and red solid circles,
respectively. The hopping amplitudes are #,,#, (—t;, —t,) along the
solid (dotted) lines. The magenta e,, e, indicate the real-space lat-
tice translational vectors. (b) Single-particle energy spectrum in the
Brillouin zone with the Chern number of each band.

II. MODEL AND METHOD

Here, we will consider the following Hamiltonian of in-
teracting two-component hard-core bosons coupled with each
other via on-site and extended Hubbard interactions in a three-
band topological triangular-lattice model,
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Here, 0 = 1, | are the pseudospin indices for hard-core
bosons (for instance, spinor bosons or a bilayer system), b;a
is the particle creation operator of pseudospin ¢ at site r,
Npo = cl’yﬂcr,g is the particle number of pseudospin ¢ at site
r (n., takes the values O or 1 due to the hard-core con-
straint), and (---) and ({---)) denote the nearest-neighbor
and next-nearest-neighbor pairs of sites. The geometry of the
topological triangular lattice is depicted in Fig. 1(a) with three
inequivalent sites A, B, C in each unit cell. The total number
of lattice sites is Ny = 3 x N, x N, with N; x N, unit cells.

However, in contrast to Ref. [24], it is emphasized that here
we choose the negative tunnel couplings t; = —t, 1, = —t/4,
t = 1 with the same chiral flux structure ¢ = 7 /3, such that
the single-particle band structure is reverted with the lowest
topological flat band of Chern number C = 1. The peculiar
property is that the lowest Chern band is well separated from
the upper bands with a very large energy gap around A/t =
4.7 and the mixing effect of the upper bands could be small
even for strong interacting particles, as indicated in Fig. 1(b).
Further, we take the strength of the on-site Hubbard repulsion
U, and the strength of the nearest-neighbor repulsion V.

In our exact diagonalization (ED) and density-matrix
renormalization group (DMRG) simulations, we fix the total
particle filling of the lowest Chern band at v = vy + v, =
2 with vy = Ny /(NeNy), vy = N /(NiNy), where N, is the
global particle number of pseudospin o with U (1) symmetry.
Thus the occupation filling per lattice site is commensurate
(ne) = (3", nro) = (Ny + N, )/Ny = 2/3 in a triangular lat-
tice.

In the ED study of small finite periodic lattice systems, the
energy states are labeled by the total momentum K = (K, K,)
in units of (27 /Ny, 27t /Ny ) in the Brillouin zone. While the
ED calculations on a torus geometry are limited to a system
with 18 sites, we exploit infinitt DMRG on the cylindrical
geometry for larger systems, and keep the maximal bond di-
mension up to M = 14 000 to obtain accurate results, starting
with a random initial state. In the DMRG, we choose the
geometry of cylinders with open boundary conditions along
the x direction, and periodic boundary conditions along the y
direction.

III. BOSONIC INTEGER QUANTUM HALL EFFECT

In this section, we set out to systematically present and dis-
cuss the numerical results for the topological information of
the many-body ground state of the model Hamiltonian Eq. (1).
For v = 2 filling of topological flat bands, we anticipate a
bosonic integer quantum Hall effect, while for commensurate
filling 2/3 in a triangular lattice, a competing solid order
is also expected. Without nearest-neighboring interactions
V =0, below we show that a two-component bosonic frac-
tional quantum Hall (FQH) effect emerges under strong
on-site intercomponent repulsion U 3> ¢, whose topological

order is classified by the K = ((1) (1)) matrix. In the following,

we shall elucidate the topological properties of the ground
state, including topological degeneracy, topological Chern
number matrix, drag charge pumping, and the entanglement
spectrum, according to field theory predictions of the charac-
teristic K matrix.

A. Ground state degeneracy

First, we demonstrate the topological ground state degen-
eracy on a finite periodic lattice using the ED study. As
shown in Figs. 2(a) and 2(b) for two-component hard-core
bosons in a strongly interacting regime U > ¢,V =0 (i.e.,
the infinite case U = oo which avoids double occupancy by
any component and has the merit of reducing the size of
the Hilbert space in numerical calculations), our extensive
numerical calculations of the low-energy spectrum in different
finite periodic lattice systems show that there exists a well-
defined single ground state at momentum sector K = (0, 0),
which is separated from higher-energy levels by a large visible
gap. We also calculate the density and spin structure factors
for the ground state using DMRG on infinite cylinders, and
exclude any possible charge or spin density wave orders as the
competing ground states, due to the featureless constant value
in the correlation functions (ny o fy ') 22 (Mr o) (Mr o) = 1/9
for [r' —r| > 2.

Meanwhile, to demonstrate the topological robustness of
the ground state, we use the twisted boundary condition
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FIG. 2. Numerical ED results for the low-energy spectrum of
two-component hard-core bosons at v =2 with U =00, V =0 in
a topological triangular lattice. The system sizes are (a) Ny = 3 X
2 x2and (b) Ny =3 x 2 x 3.

Y (rs + Ny) = ¥ (r, ) exp(i62), where 62 is the twisted angle
of pseudospin o in the @ = x,y direction, mimicking the
particle momentum shift k7 — kJ + 6% /N,. We further plot
the evolution of the low-energy spectral flow on the param-
eter plane of two different types of flux quanta (67, Q'TV ) with
0y = Gf =0 and (6} =67, 9%’ = 9{). As shown in Figs. 3(a)
and 3(b), we find that this unique ground state at K = (0, 0)
evolves without mixing with any excited level, and the sys-
tem always reverts to itself upon the insertion of one flux
quanta when 0? =2, Gf =0, and 6% = 6% = 2. This ro-
bust unique degeneracy is consistent with the determinant of
the K matrix.

B. Chern number matrix
We numerically divide the twisted angles (6%,6.,)
into (m+ 1) x (m+ 1) coarsely discretized mesh points
0,0”)) = (2kw /m, 2l /m) where 0 < k,I < m. Then the

o’ o
Berry connection of the wave function between two neigh-

boring mesh points is defined as A,ﬁ = Yk, DYk £1,1)),

Af} = (Y(k, )|k, I £ 1)). The Berry -curvature on
the small Wilson loop plaquette (k,I) — (k+1,1) —
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FIG. 3. Numerical ED results for the low-energy spectral flow
of two-component hard-core bosons Ny =6, Ny =6, N, =18
with U = o0, V =0 in topological triangular lattice on the two
different parameter planes: (a) (67, 0¥ ) with 6] = Gi' =0 and (b)
Oy =65, 0{ = Hi').

(b) Cp =1
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FIG. 4. Numerical ED results for Berry curvatures

F® AGIAO, /2 of the unique ground state at K = (0,0) of
two-component hard-core bosons Ny = 6, N, = 6, N, = 18 with
U =00, V=0 in a topological triangular lattice under different
twisted angles: (a) (61, 6}) and (b) (67, 6)).

k+1,1+1)—> (k,l+1)— (k,I) is given by the
gauge-invariant  expression  F,o/(62,0°,) x 4n%/m* =

Im1n[Az,lA.ly<+1,1Al:fl,I+1Ak_,>>y+1]' ) )

From this we can analyze the quantized topological Chern
number of a given many-body ground state for interacting
systems, in relation to Hall conductance [40]. For two-

component systems, we adopt the Chern number matrix C =

(gn gﬁ) which was previously introduced for the quan-
tum spin Hall effect [41,42]. On the parameter plane of
two independent twisted angles 67 C [0, 2x], 9;, C [0, 2m],
we can also define the Chern number of the many-body
ground state wave function ¥ (6%, 6.,) as an integral C,o =

[[ d0xde’ F,,(6%,62,)/27, where the Berry curvature is
Y > < Y

given by ’
oy
0., 00, 1962 [)

Four (602,02 = Im<< i

00}
In our ED study of finite system sizes for two-component
hard-core bosons at v = 2, for the unique ground state at
momentum K = (0, 0), by numerically calculating the Berry
curvatures using an m x m mesh Wilson loop plaquette in the
boundary phase space with m > 10, we obtain the topological
invariant as a summation over these discretized Berry curva-
tures. As indicated in Figs. 4(a) and 4(b), we confirm that for
different finite sizes, this unique ground state hosts a vanishing
diagonal Chern number C;y =0 with a vanishingly small
Berry curvature |F;y A0 A6y /2| < 1, and an integer quan-
tized off-diagonal Chern number C; | = 1 with a finite smooth
Berry curvature F, Tx f AQ%‘AOi /27 . Therefore, we establish that
the ground state hosts a well-defined Chern number matrix,

which just equals the inverse of the K = (? (1)) matrix,
Crp Cpy 0 1
— _ _ k-l
C= (CM c. )= (1 0) =K. 2)

C. Drag charge pumping

Furthermore, as a remarkable feature, Eq. (2) implies that a
two-component quantum Hall system can exhibit a fascinating
intercomponent drag Hall conductance between pseudospin 1
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FIG. 5. The charge transfer in the x direction for two-component
hard-core bosons at vy = v = 1 with U = oo, V = 0 on the infinite
cylinder of a topological triangular lattice at two-thirds lattice filling
under the insertion of flux quantum 6} = 6, 6] = 0 of pseudospin 1
along the y direction for different cylinder widths: (a) N, = 3 and (b)
N, =4.

and pseudospin |, quantitatively determined by the symmetric
matrix elements C4, = C4+. According to Laughlin’s argu-
ments, a charge Hall conductance allows quantized charge
pumping upon the adiabatic thread of one flux quantum [43].
To simulate this physical effect, we can utilize DMRG to
calculate the charge pumping on infinite cylinder systems as
the twisted angle 6% changes [44].

Numerically we cut the cylinder along the x direction into
two equal halves, and the total charge of each component in
the left part of the cylinder can be calculated from the expec-
tation value of the particle number NX(6.,) = tr[p. (6., )NL]
(here, Py, the reduced density matrix of the left part, classified
by the quantum numbers AQ4, AQ,). Once the inserting flux
quantum 6, is adiabatically changed from zero to 277, we can
obtain the evolution of the total charge of each component.
The net charge transfer of the total charge of pseudospin
o is now encoded by NX(0), = 27) — N5(6), = 0), mani-
festing the intercomponent drag charge Hall response, while
NE(6), = 2m) — NE(62, = 0) denotes the usual intracompo-
nent Hall response. As illustrated in Fig. 5, for different
cylinder widths under the flux thread 64 =0, 0, =0, 6 C
[0, 2], we find the charge pumpings

ANE = [NF@m) = NE(0)| = Cyy = 0,
ANE = INF@m) = NEO) = Cpp = 1,

in agreement with the calculation of the Chern number matrix
in Eq. (2) for two-component hard-core bosons at fillings
v =2

D. Chiral edge modes

For the edge modes of Abelian FQH effect, they are de-
scribed by free bosonic operators (namely collective density
or current operators) which conserved the charge and spin
quantum numbers. The characteristic chirality of edge modes
and their level counting can be revealed through a low-lying
entanglement spectrum in the bulk [45,46]. By examining the
structure of the momentum-resolved entanglement spectrum
on the Ny =5 cylinder, we observe two counterpropagating

(8) AQ,+AQ, =0 (b) AQ+AQ =1
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FIG. 6. Chiral edge mode identified from the momentum-
resolved entanglement spectrum for two-component hard-core
bosons at v; = v, =1 with U = oo, V = 0 on the infinite N, =5
cylinder of a topological triangular lattice at two-thirds lattice filling
in the typical total charge sectors of (a) AQy + AQ, =0 and (b)
AQy + AQ, = 1. Here, AQ, denotes the relative boson number
AQ, = Nt — NI of the left part of the infinite cylinder (N0 is
the boson number of the state of o, with the largest eigenvalue).
The horizontal axis shows the relative momentum AK = K, — K0
(in units of 277 /N,). The numbers above the black dashed line label
the level counting. In (a), the red circle denotes the level from
the subsector AQy = AQ, = 0 and the blue upper (lower) triangle
denotes the level from the subsector AQ; — AQ, = £2. In (b),
the red upper (lower) triangle denotes the level from the subsector
AQy — AQ, = %1 and the green upper (lower) triangle denotes the
level from the subsector AQy — AQ, =

branches of the low-lying bulk entanglement spectrum, con-
sistent with the nonchiral nature of the BIQH phase.

In effective field theory, we can simulate the excitation
level of the edge Hamiltonian Hegee = 277 /Ny X v5(LE 4 L7)
in momentum space with the momentum shift operator AK =
27 /N, x (L — L*) for two counterpropagating modes. Here,
L =Y %2 jnfY 4+ (AQy + AQ,)?/4 and n5® denotes the
set of non-negative integers describing harmonic oscillator
modes. The pure charge or spin edge branch is determined by
(L°#0,L°* =0) or (L°=0,L* #0), and the value (L, L%)
determines the energy level with a specific momentum AK.
Therefore we can obtain the degeneracies of each edge mode
(given by the total number of elements in the set {(n?, nj)}
with a given excitation energy) in any total charge sector
AQy + AQ,: For AQy + AQ, =0, the level counting of
the charge branch is 1,1,2,... and the level counting of
the spin branch is 1, 3,4, ..., as indicated in Fig. 6(a); for
AQy + AQ, =1, the level counting of the charge branch
is 2,2,4,... and the level counting of the spin branch is
2,2,6,...,as indicated in Fig. 6(b).

E. Phase transition

Finally, we discuss the stability of the BIQH liquid
when the nearest-neighboring repulsion V is turned on. For
single-component hard-core bosons in a triangular lattice at
commensurate lattice fillings 2/3 or 1/3, the V3 x /3 solid
ordering pattern dominates [47-49]. Here, we also antic-
ipate that for strong repulsion V/t > 1, the BIQH liquid
should be destroyed and the strongly interacting bosons would
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FIG. 7. Numerical ED results for the low-energy spectrum of
two-component hard-core bosons at v = 2 with infinite U = oo in a
topological triangular lattice as a function of the nearest-neighboring
interaction V/t. The system sizes are (a) N, =3 x 2 x 2 and
(b) Ny =3 x 2 x 3. The black dashed line indicates the level-
crossing point of the lowest ground state. The insets show the
zoom-in scans of the low-energy spectrum near the transition point.

form a similar solid order pattern. Slightly different from the
threefold degeneracy of a solid order of single-component
bosons, for two-component bosons, the mutual exchange of
the positions of intercomponent bosons leads to the same
degenerate solid order due to the pseudospin-SU(2) symmetry
of nearest-neighboring repulsion V ZJ,U/ Zmr,) Ny o fp.g =
Vv Z(r,r/)(nr’,T + e Ve g 0 )=V Z(m,) nyne. In the
ED study of the low-energy spectrum, as V increases from
zero as shown in Figs. 7(a) and 7(b) for different sys-
tem sizes, we observe that the protecting gap of the BIQH
ground state gradually collapses down to zero near a tran-
sition point V = V,. We also verify that for small V < V,,
the density-density correlation (nyn,) &~ 2/3 x 2/3is feature-
less and almost uniform as the distance |r’ —r| changes.
However, for large V > V., (nyn,) displays the commen-
surate pattern (nyn,) >~ 1 when np,n, fall into the same
sublattice, and the density-density structure factor s(q) =
i €T (nung) — (np)(ny)]/N; exhibits a strong peak at

wave vector q = 0, which indicates the solid order. Across the
transition point, the ground state undergoes a level crossing
with the excited levels, and the system enters into the solid
order phase for V > V. with a cluster of highly degenerate
low-lying energy states.

IV. CONCLUSION

To summarize, we have introduced a microscopic topo-
logical triangular-lattice model of interacting two-component
hard-core bosons as a possible realization of a bosonic inte-
ger quantum Hall effect at filling fraction v = 2. For strong
on-site intercomponent Hubbard repulsion, we numerically
demonstrate the emergence of the BIQH phase at two-thirds
lattice filling in a topological triangular lattice. Our com-
prehensive ED and DMRG simulations of different system
sizes establish the inherent topological characteristics of this
ground state: (i) the unique ground state degeneracy, (ii) quan-
tized topological Chern number matrix C = K™, (iii) integer
quantized intercomponent drag charge pumping without an
intracomponent Hall response, and (iv) two counterpropagat-
ing charge and spin edge branches, as predicted by the K =
((1) (1)) matrix classification. Also, we examine the robustness
of the BIQH phase in the presence of nearest-neighboring re-
pulsion, and claim the first-order phase transition between the
BIQH phase and a solid order phase as nearest-neighboring
repulsion increases from weak to strong. Along with the other
efforts on explorations of the BIQH effect in lattice models,
our results contribute a special example of the realization of
the BIQH phase by tuning intercomponent repulsion.
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