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Topological classification and diagnosis in magnetically ordered electronic materials

Bingrui Peng,1,2,* Yi Jiang ,1,2,* Zhong Fang,1 Hongming Weng ,1,3 and Chen Fang 1,3,4,†

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
4Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China

(Received 5 April 2021; revised 18 April 2022; accepted 19 May 2022; published 27 June 2022)

We show that lattice symmetry groups without time reversal, also known as magnetic space group symmetries,
protect topological invariants as well as surface states that are distinct from those of nonmagnetic topological
states. We obtain, by explicit and exhaustive construction of topological crystals using lower-dimensional
building blocks, the full topological classification of electronic band insulators that are magnetically ordered
for each one of the 1421 magnetic space groups (MSGs) in three dimensions with significant spin-orbit
coupling. Compared with previous works on classification which include the results for some of the MSGs,
our unified framework systematically gives the complete classification for all MSGs. We have also computed the
symmetry-based indicators (SIs) for each nontrivial class and, by doing so, establish the complete mapping from
symmetry representations to topological invariants. Our work goes beyond Elcoro et al. [L. Elcoro, B. J. Wieder,
Z. Song, Y. Xu, B. Bradlyn, and B. A. Bernevig, Nat. Commun. 12, 5965 (2021)] by constructing all gapped
magnetic topological crystalline states, among which many cannot be diagnosed by SIs. By doing so, we have
also identified all SIs that do not correspond to any gapped states but gapless Weyl semimetals.
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I. INTRODUCTION

Magnetic space groups (MSGs) [1] describe the sym-
metry of lattices where magnetic moments (e.g., spins) are
magnetically ordered. Magnetic ordering necessarily breaks
time-reversal symmetry (TRS) and, as the order parameter is a
vector, usually also breaks some point-group symmetries (ro-
tation and reflection). In many magnetically ordered materials,
especially those having antiferromagnetism, there are a spe-
cial type of composite symmetries: a group element m = g · T
is the composition of a space-group (SG) symmetry g and TRS
T . Consider, for example, an antiferromagnetic Néel order
polarized along z with propagation vector Q = (π/a, 0, 0),
where a is the lattice constant. The lattice translation by one
unit cell along x, {E |100}, is broken and time reversal, T , is
also broken, while their composition {E |100} · T remains a
symmetry. [Here we use E to represent the identity 3 × 3 ma-
trix, representing the trivial element of O(3).] For realistic
magnetic materials, their magnetic structure could be more
complicated compared to simple collinear configurations, and
MSGs are thus required to describe their magnetic orderings.
By considering all possible combinations of TRS with SG
symmetries, and the absence thereof, there are 1651 Shub-
nikov SGs (SSGs) which are classified into four types. If there
is no antiunitary symmetry, the SSG is type I (i.e., 230 original
SGs). The other three types of SSG have the general form
of M = G + m · G, where m is an antiunitary symmetry. If
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m = T is the TRS and G is an SG, the SSG is type II; if
m = g · T , where g is a nontrivial point group operation and
G a halving subgroup of an SG, the SSG is type III; and,
lastly, if m = {E |klm} · T , where {E |klm} is a pure lattice
translation and G an SG, type IV. By this definition, type-II
SSGs contain TRS and hence describe nonmagnetic materials.
In this paper, we focus on MSGs, i.e., 1421 type-I, -III, and
-IV SSGs.

MSGs are also the symmetries of the effective Hamiltoni-
ans describing elementary excitations, such as magnons and
electrons, that move within a magnetically ordered lattice. In
this paper, we focus on magnetic materials in which coherent
quasiparticle fermion excitations form band(s) within a finite
range of the Fermi energy and study the band topology of
these fermions. Our theory can, in principle, be applied to any
magnetic materials where the notion of electronlike quasipar-
ticles is valid, at least near the Fermi energy. Itinerant magnets
[2], heavy-fermion metals [3], and doped Mott insulators [4]
that maintain a magnetically ordered state are considered to
belong to this large class of materials.

The interplay between symmetry and topology has been a
focus of modern condensed-matter research [5–8]. For a given
symmetry group and a nonzero gap, all band Hamiltonians
are grouped into equivalence classes, where two Hamilto-
nians in the same (different) class(es) can(not) be smoothly
deformed into each other, while maintaining both the gap and
the symmetry. Each equivalence class is denoted by a unique
set of integers called the topological invariants [9–16], the
forms and types of which only depend on the symmetry group
and dimensionality. How many distinct equivalence classes
exist for a given symmetry group in a given dimension, and
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TABLE I. Comparison of different methods for computing clas-
sifications. K-theory-based methods give the complete classification
for each MSG, but only part of type-I symmorphic MSGs are com-
puted [51]. The layer construction method adopted in Ref. [52],
where only MSGs having nontrivial SIs are treated, cannot guarantee
the complete classification for each MSG, as there exist a large
number of nonlayer constructions. The real-space recipe we use in
this paper, however, can obtain complete classifications for all MSGs.

K theory Classification for type-I symmorphic MSGs

Layer construction Classification for MSGs with SI

Real-space recipe Complete classifications for all MSGs
with and without SI

what are the topological invariants for each class? This is
the question we call the problem of topological classification.
The theory of topological classification for time-reversal and
particle-hole symmetries has been done in all dimensions
using the K theory [17–19]; the classification problem for a
single spatial symmetry plus time reversal in three dimensions
has been solved, usually heuristically, for several symme-
tries [20–29], and the classification problem for arbitrary SGs
plus time reversal in three dimensions has been attempted
using either the real-space recipe argument [30–32] or the
double-strong-topological-insulator construction [26,33] ar-
gument more recently.

The classification problem of magnetic topological crys-
talline insulators (MTCIs), i.e., gapped topological crystalline
states protected by MSGs, begins with the theory of axion in-
sulators protected by space-inversion symmetry without time
reversal [6,28,34–42], followed by the theory of antiferro-
magnetic topological insulators [43–46], again followed by
the discovery of several topological invariants protected by
wallpaper groups (WGs) [47,48] and magnetic point groups
(MPGs) [49,50] as well as part of type-I symmorphic MSGs
[51]. A more systematic attempt is made in Ref. [52], where
the layer-construction (LC) method reveals a number of
unique topological states. In this paper, we use the real-space
recipe method developed in Refs. [31,32] to complete MTCI
classification for all MSGs, which was not achieved by pre-
vious schemes, including K-theory [51] and the LC method
[52]. A comparison of these methods are shown in Table I.
Effectively, the real-space recipe converts the problem of
topological classification into a LEGO puzzle, where one tries
to find distinct ways one can build an edgeless construction
using some given pieces. Each piece has a gapless edge state,
which should cancel with edge states of adjacent pieces on
the common edge they meet to fulfill the condition that the
bulk is fully gapped. This LEGO puzzle is then further trans-
formed into finding all independent integer solutions of a set
of linear equations on a Zn ring. This method not only yields
a complete topological classification of gapped bands in each
of the 1421 groups, but also gives us, for each nontrivial
equivalence class, one explicit and microscopic construction
that we call the topological crystal (TC) [31]. We emphasize
that our method finds more topological classes than the LC
method because LCs are a type of TCs, while not all TCs
are LCs. (In fact, we show that at least 553 of the 1421

TABLE II. Summary of preceding works on magnetic topolog-
ical states. We remark that Ref. [52] used the layer construction
method to obtain the interpretations of SIs (but omitted nonlayer
constructions), and discussed only part of the gapless SIs. Reference
[70] studied several type-IV MSGs with gapless SIs together with
other gapless phases that lie out of the scope of SIs.

and

Topology
in MSGs

Previous works

MSGs have at least one topological state that cannot be layer
constructed.)

If the classification gives us the labels (topological invari-
ants) for the equivalence classes into which gapped states
are put in, the topological diagnosis then tells us to which
equivalence class a specific, given material (Hamiltonian)
belongs. Ideally, a diagnosis scheme computes the topolog-
ical invariants of that Hamiltonian, and by comparing these
values with the labels on the equivalence classes, one puts
the Hamiltonian into the right one. However, topological in-
variants are notoriously difficult to compute [23,53] and, for
some, we do not even have the explicit expressions in terms
of the wave functions of the bands [25,26]. Fortunately, if
we relax the requirement of ideal diagnosis to approximate
diagnosis, the story is completely changed. An approximate
diagnosis uses partial information on the wave function, and
in return gives us partial information on the topological invari-
ants, not invariants themselves. For example, an approximate
diagnosis for systems with n-fold rotation symmetry yields
the invariant (Chern number) modulo n by using only the ro-
tation eigenvalues at several high-symmetry momenta [28,54].
Recently, the theory of symmetry-based indicators (SIs) [55]
and that of topological quantum chemistry [56], enhanced
by the full mapping from indicators to topological invariants
[30], give birth to a fast approximate diagnosis scheme. This
fast-diagnosis scheme has been applied to a large number
of nonmagnetic materials [57–59]. SI theory in MSGs has
been partly tackled in previous works, with SI formulas for
type-I MSGs derived by Ono and Watanabe [60] and SI group
structures in all SSGs provided by Watanabe et al. [61]. More
recently, Elcoro et al. [52] gave all SI formulas in SSGs and
used the LC method to obtain the physical interpretations for
SIs that are LC representable. Several hundreds of magnetic
topological materials have also been predicted using SIs [62].
We summarize the preceding works on classification and di-
agnosis of magnetic topological states in Table II.

In this paper, we rederive the explicit formulas for all SIs
in terms of band representations (which in part differ from
previous works [52,60]) and we calculate the values of SIs
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FIG. 1. The main content of this paper, including the classifi-
cation and diagnosis of gapped topological states in MSGs. The
real-space recipe is adopted to construct topological crystals to obtain
the classifications, which turn out to include both layer and nonlayer
constructions. We exhaust all topological invariants together with
their corresponding surface states and derive explicit formulas for
symmetry-based indicators (SIs) in MSGs for the purpose of diag-
nosis. By computing invariants and SIs for real-space constructions,
we found the quantitative mappings between invariants and SIs. As
a byproduct, we find all SIs that do not correspond to any gapped
states, which thus correspond to Weyl semimetals in MSGs.

for each TC in every MSG. As each gapped state can be
adiabatically continued to a TC, this result in fact yields the
mapping from invariants to SIs. In this calculation, we find
that certain SI values are never taken in any TC, and hence
can only indicate nodal band structures [71–88]. This is a
major advantage of our work as the classification we obtained
exhausts all gapped MTCIs, which allow us to identify SIs for
gapless states. These nodes are evasive as they are away from
any high-symmetry points (HSPs) or lines. In fact, we show
that all these nodal indicators indicate Weyl nodes at generic
momenta or pinned to a high-symmetry plane in the Brillouin
zone (BZ). In a numerical diagnosis, the indicators are by far
easier to obtain than the invariants because the former only
depend on the band representations at fewer than or equal
to eight momenta and the latter depend on the valence-band
wave functions in the entire BZ. Therefore, an inverse map-
ping from SIs to invariants/nodes is generated using a script,
provided along with the paper in Ref. [89]. In Fig. 1, we show
the main contents of our work. We refer to many details in our
lengthy Supplemental Material [90].

II. CLASSIFICATION

A. General scheme

It has been argued in Refs. [91–93] that symmetry-
protected topological states (SPTs) protected jointly by
on-site and crystalline symmetries can be constructed by
placing SPTs protected by on-site symmetries alone in a
symmetric way that maintains crystalline symmetries and
under the condition of being fully gapped in the bulk, as
well as being stable under adding trivial states. This idea of
real-space construction, when applied to noninteracting topo-
logical crystalline insulators (TCIs), becomes that all TCIs

can be adiabatically deformed into a special form of real-
space constructions called topological crystals, which means
classifying TCIs is equivalent to classifying TCs. TCs are
real-space patterns built from topological pieces in lower
dimensions, which were first applied to nonmagnetic SGsto
obtain the full classifications of nonmagnetic TCIs [31], with
results consistent with those obtained by doubled-strong-
topological-insulator method [33]. In nonmagnetic SGs, the
lower-dimensional pieces are 2D topological insulators and
mirror Chern insulators, protected by on-site symmetry TRS
and possible mirror symmetry, and have gapless edge states.
They are arranged by SG symmetries in real space in a
symmetric way such that all edge states cancel with each
other, resulting in a fully gapped bulk. This scheme has also
been applied to interacting bosonic systems to obtain the
SPT classifications, where the whole symmetry groups are
direct products of on-site symmetries and spatial symmetries
[32,94–96]. The physical validity of the real-space construc-
tion can be argued, as in Ref. [92], as follows. By adding
a fine mesh of trivial degrees of freedom, the correlation
length can be made as small as desired, which allows the
reduction of general crystalline SPT states to TCs built from
well-defined lower-dimensional states. In this paper, we apply
the real-space recipe to construct TCs to obtain the complete
classification of all gapped topological states protected by
MSGs.

To start, we build a structure of a cell complex by us-
ing MSG symmetries, including both unitary and antiunitary
ones, and partition the 3D space into finite 3D regions called
asymmetric units (AUs) that fill the whole 3D space without
overlaps. In fact, all AUs are symmetry related and can be
generated by choosing one AU and then copying it using
MSG operations. AUs are also called 3-cells, and the 2D faces
where they meet are 2-cells. Similarly, 1D lines where 2-cells
intersect are 1-cells, and the endpoints of 1-cells are 0-cells.
The interior of an AU consists of generic Wyckoff positions
which have only the identity symmetry, while high-symmetry
Wyckoff positions always lie on the boundary of AUs, i.e., 2-,
1-, and 0-cells.

To construct TCs in 3D, we should take account of all
d-dimensional topological building blocks with d � 3. For
each cell, its local symmetry group is defined as the collection
of symmetries that keep every point of the cell unchanged. The
local symmetry group of a cell determines the on-site symme-
try class (Altland-Zirnbauer class [97]) of the Hamiltonian on
that cell. For MSGs, the effective symmetry class of a cell is
always class A or class AI. Note that although some cells have
a mirror plane as on-site symmetry, the states on them can be
divided into two sectors by mirror eigenvalues, each of which
belongs to class A. A 2-cell may have a local symmetry group
generated by M · T , and a 1-cell local symmetry group gen-
erated by C2 · T . Because (M · T )2 = (C2 · T )2 = +1, those
cells belong to symmetry class AI. According to the tenfold
way results [19], systems of class AI have trivial classification
in 1D, 2D, and 3D, and nontrivial classification in 0D, while
systems of class A have nontrivial classification in 0D and 2D
and trivial classification in 1D and 3D. As shown in Ref. [31],
0D states can be considered as trivial atomic insulators [98],
which means only 2D topological building blocks need to be
considered in the construction of TCs for MSG. Furthermore,
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there are two types of 2-cells depending on whether they
coincide with mirror planes. If they coincide, they can be
decorated with mirror Chern insulators characterized by two
Z numbers, i.e., two mirror Chern numbers for ±i mirror sec-
tors and, if not, with Chern insulators characterized by one Z
number, i.e., the Chern number. Therefore, there are only two
types of building blocks for our real-space recipe, i.e., Chern
insulators and mirror Chern insulators. We remark that due
to the absence of TRS in MSGs, the mirror Chern insulator
we use here does not require two mirror Chern numbers to
be opposite with each other, i.e., C+

m �= C−
m generically, which

are different from the mirror Chern insulators in nonmagnetic
SGs with C+

m = −C−
m [21,22].

Having building blocks in hand, we next enumerate all
topological inequivalent decorations on the cell complexes
in MSGs. Before proceeding, note that the building blocks
themselves form a finitely generated Abelian group, e.g., Z for
Chern insulators and Z2 for mirror Chern insulators. There-
fore, the TCs built from them form a linear space with integer
coefficients, such that two TCs can be added to obtain another
TC, and there exists a maximal set of linearly independent
TCs (the generators) for each MSG. As a result, one just
needs to obtain the generators to describe the full set of TCs.
As TCs are supposed to be fully gapped topological states,
all the boundary states contributed by 2D building blocks
(Chern insulators and mirror Chern insulators) should cancel
with each other on each 1-cell, leading to fully gapped states
inside the bulk, a condition known as the gluing condition
[31] or no-open-edge condition [32]. After this procedure,
we obtain a set of generators that form an Abelian group Zn.
However, this is generally not the final classification because
some generators will reduce from Z type to Z2 type after
a process of subtracting topological trivial elements called
bubble equivalence [31,32]. The final classification can be
expressed as a quotient group Ker/Img, a structure resembling
group (co)homology, where Ker stands for the linear space of
TCs satisfying no-open-edge condition and Img for the space
of bubble-equivalence. These final classifications of MSGs
have the form Zn × Zl

2 and can be found in Supplemental
Material [90] Sec. O.

In Fig. 2, we show the procedures for constructing TCs in
MSG P4. Figure 2(a) shows the cell complex of P4, where
the unit cell is partitioned into four cuboids (i.e., four AUs)
by the C4 symmetry, and three colored facets denote three
independent 2-cells. As there is no mirror symmetry in P4,
the only building block is the 2D Chern insulator. In Fig. 2(b),
we plotted the TC generated by placing a Chern insulator
with C = 1 on the green 2-cell. Because C4 and translation
symmetry preserve the direction of chiral edge states of the
green 2-cell, the generated TC consists of complete 2D Chern
insulator layers on z ∈ Z planes, which is a 3D quantum
anomalous Hall (QAH) state. In Figs. 2(c) and 2(d), Chern
insulators are placed on the red and yellow 2-cells. However,
in (c) and (d) (or any linear combinations of them), there ex-
ist 1-cells (e.g., vertical green lines) where symmetry-related
2-cells meet, having chiral edges states that run in the same
direction and fail to cancel each other, which means their bulk
states are gapless. As a result, the only possible TC in P4
is (b), which is characterized by the weak invariant (Chern
number) and leads to the Z classification of this MSG.

O

C4 C4

C4 C4

(a) Cell complex of P4 (b) 3D QAH state

(c) Incompatible (d) Incompatible

FIG. 2. Procedures for constructing topological crystals. (a) The
cell complex of MSG P4, where the unit cell is partitioned by C4

into four AUs, and the three colored facets denote three independent
2-cells. (b) Placing Chern insulators on the green 2-cells generates a
3D quantum anomalous Hall state. (c), (d) Placing Chern insulators
on the red or yellow 2-cells cannot generate compatible TCs, as their
edge states fail to cancel each other, e.g, on the vertical green 1-cells.

Lastly, we compare the real-space constructions for non-
magnetic SGs and MSGs. First, observe that their building
blocks are different. In nonmagnetic SGs, due to the TRS, the
building blocks are two-dimensional topological insulators
and mirror Chern insulators with C+

m = −C−
m , while in MSGs,

the building blocks are Chern insulators and mirror Chern
insulators with independent C+

m and C−
m . More significantly,

for nonmagnetic SGs, one can obtain most of the TCs by
LCs, which involve only layered 2D TIs and mirror Chern
insulators as building blocks [30], with only 12 nonmagnetic
SGs having states beyond LCs [31]. However, non-LCs exist
widely in MSGs, and constructing with layers only may lose a
number of TCs. By contrast, the real-space recipe employing
the structure of the cell complex automatically includes both
LCs and non-LCs, giving the complete collection of TCs,
hence the complete classification of gapped topological states.

B. Topological invariants

MTCIs are characterized by crystalline-symmetry-
protected topological invariants. Previous works have looked
into some of the topological invariants protected by magnetic
crystalline symmetries, with the earliest one being the axion
insulators with inversion invariants [28,36], followed by
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TABLE III. MSG symmetries and their corresponding invari-
ant types. We use the Seitz symbol {O|t} to represent symmetries
with nonzero translations, where R denotes a lattice translation and
t a fractional translation. The invariants of the unitary screw and
antiunitary glide are bound to the translation invariant, with their
values being 1

n and 1
2 of the translation invariant, respectively. All

Z invariants correspond to either the Chern number or mirror Chern
number and all Z2 invariants correspond to the axion angle θ (when
all Z invariants are zero).

MSG symmetries Invariant type and interpretation

Unitary rotation Cn,
Antiunitary improper point group Trivial
Symmetries P · T , M · T , Sn · T

Unitary improper Sn, P, {M| 1
2 }

Z2:
Antiunitary translation {E |t} · T

Axion angle
Antiunitary proper Cn · T , {Cn|t} · T

Unitary translation {E |R}
Z:

Unitary mirror M
(mirror)

Unitary screw {Cn|t}
Chern number

Antiunitary glide {M| 1
2 } · T

the antiferromagnetic topological insulators protected by
antiunitary translations [43,44]. In this paper, we exhaustively
enumerate all topological invariants in MSGs.

Formally, having nontrivial symmetry-protected topologi-
cal invariants means a topological state cannot be smoothly
deformed into a trivial state when the symmetry is preserved.
Especially, if a MTCI cannot be adiabatically connected to
an atomic insulator with the symmetry operation g preserved,
we say it has a nontrivial g invariant. As all MTCIs are adi-
abatically connected to TCs, we can utilize TCs to derive all
invariants protected by MSG symmetries. In our real-space
recipe, given a symmetry operation g alone, if nontrivial TCs
compatible with g can be constructed, then we say g can pro-
tect nontrivial topological invariants. More specifically, each
independent TC corresponds to an independent invariant, and
they have the same group structure, e.g., a Z2 TC owns a Z2

invariant.
To find which symmetry operations in MSGs can protect

nontrivial invariants and what kinds of the invariants they
protect, we take account of all of MSG symmetries one by
one, including translation, rotation, inversion, mirror, rotoin-
version (Sn), screw, glide, and those combined with TRS such
as Cn · T , etc. We consider when each of them is present alone,
what TCs can be constructed. If no TC exists, this symmetry
has only a trivial invariant; if TCs exist, this symmetry must
protect nontrivial topological invariants, and we further decide
how many independent TCs and whether they are Z type or Zn

type by checking if the TCs can be smoothly deformed into
trivial states after multiplying n times. In this way, we know
all the MSG symmetries that can singly protect nontrivial
topological invariants, with each symmetry hosting at most
one invariant, being either Z2 type or Z type. We summarize

the results in Table III and classify these invariants into three
types:

(1) Trivial invariants: Cn rotations and antiunitary im-
proper point group symmetries in MSGs cannot host nontriv-
ial decorations. Take C2, for example. When there is only a
C2 symmetry alone, consider a 2D plane that passes the C2

axis, which is partitioned into two 2-cells by the axis. Chern
insulators cannot be decorated on the two 2-cells, because
their chiral edge modes on the C2 axis are C2 related, and as
such are in the same direction and cannot gap out each other.
This is different from the nonmagnetic case where C2 has a Z2

invariant [30,31], as the building blocks in nonmagnetic SGs
are 2D TIs and two C2-related helical edge states can cancel
with each other.

(2) Z invariants: Unlike nonmagnetic MSGs where only
mirror symmetries have Z invariants (i.e., mirror Chern num-
ber), here in MSGs, as the building blocks are both Z type,
we have many other Z invariants, including the invariant of
unitary translation, unitary screw, and antiunitary glide, which
are all related to the Chern number.

(3) Z2 invariants: A large proportion of MSG symmetries
protect Z2 invariants, with many of them unique to MSGs,
such as antiunitary translations/rotations/screws. In Supple-
mental Material [90] Sec. D, we define a special type of
decoration called Z2 decoration, which has zero weak invari-
ants and all Z2 invariants bond together and equal to 1 (for
mirror Chern numbers, we can define (C+

m + C−
m ) mod 2 as a

Z2 invariant), and can be seen as an axion insulator with the
axion angle θ = π . For Z2 decorations, all these Z2 invariants
merge into one Z2 invariant, i.e., the axion invariant, whose
definition can be taken as the 3D magnetoelectric polarization
P3 according to Refs. [6,34,54]. For decorations with nonzero
Z invariants, Z2 invariants can still be defined, but are origin-
(convention-) dependent and no longer indicate axion insula-
tors [99].

Each nontrivial invariant has its distinct anomalous sur-
face state due to the bulk-boundary correspondence. Because
the topological invariants together with their surface states
can be superimposed, we only need to derive the surface
state for every single invariant, and the surface states of all
MTCIs can be readily known from their invariants. Among
these surface states in MSGs, some have already been dis-
cussed in previous works, including those protected by C2 · T
[24,53,63,64], C4 · T [65], glide [53,66–69], and antiunitary
translation [43,44,100], etc. (for spinless invariants including
Cn · T and antiunitary translation, see Refs. [45,46]), while
some are first proposed in this paper, such as the one protected
by antiunitary glide. We plot these surface states in Fig. 3,
and more details can be found in Supplemental Material [90]
Sec. C. As an example shown in Fig. 3(3), on a cylinder
geometry, the surface states protected by Cn · T, n = 2, 4, 6
have a single Dirac cone on the top surface, and n chiral hinge
modes related to each other under Cn · T on the side surface.

Although we find all the topological invariants protected by
MSG symmetries, we have not derived their explicit formulas
in k space, which could be complicated. Instead, we compute
these topological invariants in real space for the TCs we built
using a unified method as follows [31]. Given an MSG M
and an element g ∈ M, first choose a generic point r inside
an arbitrary AU, then draw a path connecting r and its image
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ai Tai 1×

1× 1× 1×

|C
m
|× 1×

t1/2

(10) unitary screw {Cn|t1/n}, n=2,3,4,6

(1) unitary translation (2) anti-unitary translation

(4) mirror

(3) anti-unitary rotation CnT, n=2,4,6

(8) inversion (9) S4

(7) anti-unitary screw {Cn|t}T, n=2,4,6(5) unitary glide (6) anti-unitary glide

inversion/S4 center:  

rotation/screw axis: 

mirror/glide plane: 

t1/2

chiral hinge mode:

2D surface mode:

Z×

2Z×

2Z× 3Z× 4Z× 6Z×

FIG. 3. Surface states of symmetries with nontrivial topological invariants in MSGs, with the surface terminations preserving correspond-
ing symmetries. These surface states can be 1D chiral hinge modes and 2D surface modes, with 2D modes being either slopelike chiral surface
modes in (1), (6), (10), or Dirac cones in (2)–(5). More details can be found in Supplemental Material [90] Sec. C.

point g · r, under the only constraint that the path does not
cross any 1-cells and 0-cells. The corresponding invariant δ(g)
is determined by the decorated 2-cells that the path crosses,
i.e., the total Chern number or mirror Chern number accu-
mulated through the path. The invariants thus calculated are
well-defined and do not depend on the choice of the generic
point r or the path. The full listing of topological invariants
of the TCs will prove to be useful in the Sec. III, where we
use SIs to diagnose topological states, and TCs function as an
intermedium to connect SIs and invariants.

We take one example to show the correspondence between
invariants and surface states for a given MSG. The type-
III MSG 3.3 P2′ has three independent generators of TCs.
One of them is protected by C2y · T with nonzero invariant
δ(C2y · T ) = 1 (i.e., a C2y · T -protected axion insulator), while
the other two are protected by the translation symmetries in x
and z directions, with nonzero weak invariant δ({E |100}) = 1
and δ{E |001} = 1, respectively (i.e., 3D QAH states with
x/z-directional QAH vectors). For the first decoration, the
surface state protected by C2y · T has been described before, as
shown in Fig. 3(3), while the other two translation decorations
have one chiral surface mode on the 2D surface preserving
the translation symmetry in the x/z direction, as shown in
Fig. 3(1).

C. Nonlayer constructions

The abundance of non-LCs distinguishes the TCs in MSGs
from those in nonmagnetic SGs, where most of the decora-

tions are LCs. In fact, LCs are just a special type of TCs where
2D planes are uniformly decorated, while non-LCs contain
nonuniform decorations or incomplete 2D planes.

We use type-I MSG Pmmm as a representative to show the
characters of non-LCs. Pmmm has three orthogonal mirrors
Mx, My, and Mz, which do not commute with each other due
to the spin rotation. Placing mirror Chern insulator layers
with (C+

m ,C−
m ) = (1,−1) on any of the six mirror planes, i.e.,

x, y, z = 0, 1
2 , forms six independent LCs. However, one can

still construct a distinct nonlayer decoration falling outside
the linear space of these six LCs. As shown in Fig. 4, this
nonlayer decoration is constructed by sewing small patches
of mirror Chern insulators with (C+

m ,C−
m ) = (1, 0) or (0,−1)

on each mirror 2-cell, with adjacent patches having opposite
mirror Chern numbers, making each mirror plane nonuniform.
Each 1-cell is shared by four patches, with patches in different
directions contributing opposite chiral edge modes, canceling
with each other and satisfying the no-open-edge condition.
Take z = 0 plane as an example, where all adjacent 2-cells
are related by Mx or My. As both Chern number and Mz

eigenvalues are reversed under Mx,y, if one patch has mirror
Chern numbers (1,0), then the other two patches adjacent to it
must have mirror Chern numbers (0,−1). More detailed dis-
cussions for the transformation properties of (mirror) Chern
numbers are given in Supplemental Material [90] Sec. A.

This non-LC is distinct from LCs, where each mirror plane
is decorated with a uniform, infinite-sized mirror Chern insu-
lator. The decorated 2-cells of this non-LC are all pinned on
the mirror planes, preventing it to be deformed into an LC.
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FIG. 4. The non-LC of Pmmm, where the arrows denote the
directions of the chiral edge modes on the 2-cells. Note we only plot
the 2-cells around the origin point inside the unit cell, and omit the six
side surfaces for simplicity, which are in fact all decorated. Assume
eight inversion centers have coordinate r = 1

2 a1δ1 + 1
2 a2δ2 + 1

2 a3δ3,
where δi = 0, 1 and ai is the lattice vector. The 2-cells around an
inversion center have the same decoration as shown in the figure if∑

i δi is even, while the 2-cells have opposite directional edge modes
if

∑
i δi is odd.

Although this non-LC seems complicated, we observe
that it can be connected to the time-reversal strong
TI (STI) from the perspective of surface states. On
the one hand, this non-LC has mirror Chern numbers
(C+

m,ki=0,C−
m,ki=0,C+

m,ki=π
,C−

m,ki=π
) = (1,−1, 0, 0), i =

x, y, z, which lead to a nontrivial mirror-protected surface
state with a single Dirac cone on ki = 0 in the 2D surface
BZ. On the other hand, an STI put on Pmmm lattice also
has a single Dirac cone on each surface. By the principle of
bulk-edge correspondence, we conclude that the STI with
Pmmm symmetry can be adiabatically deformed into this
non-LC by breaking the TRS while preserving crystalline
symmetries. Note that for Pmmm, despite the absence of
TRS, the three mirrors anticommuting with each other also
enforce the energy bands to form Kramers-like pairs, i.e.,
twofold degeneracy with the same parity and opposite mirror
eigenvalues. Therefore, the three mirror symmetries still pin
the surface Dirac cone on the mirror invariant lines when
the TRS is broken. As a result, we can use the tight-binding
models of STIs, for example, the 3D Bernevig-Hughes-Zhang
(BHZ) model[101], to describe this non-LC.

As mentioned before, unlike nonmagnetic SGs where only
12 SGs have non-LCs [31], non-LCs exist widely in MSGs.
For instance, all the supergroups of MSG 47.249 Pmmm
can host a non-LC as one of its MTCI classification gen-
erators, and similar for MSG 25.57 Pmm2, 84.51 P42/m,
10.44 P2′/m, 75.3 P4′, 6.21 Pam, and 75.5 PC4, thus the
total number of MSGs that have non-LCs is at least 553,
i.e., the number of the supergroups of these MSGs, including
MSGs with different Bravais lattices. As argued in Ref. [31],
STI is compatible with all crystalline symmetries, thus the
abundance of non-LCs in MSGs can be understood in a way
that they can be obtained by inducing magnetism in STIs in
different lattices.

We remark that the non-LCs in these MSGs, when being
a Z2 decoration, are all axion insulators. As STIs are also
axion insulators, when the TRS is broken, there still exist other
unitary improper or antiunitary proper symmetries that have
nontrivial Z2 invariants, preserving the quantized π axion

TABLE IV. Generating SIs and generating MSGs in MSGs. We
use a simplified notation to represent the SI group, i.e., Zn1,n2,··· =
Zn1 × Zn2 × · · · . Among these generating MSGs, only Pnc′c′ are
type-III MSGs, while all the others are type I. The definition and in-
terpretation of these SIs can be found in Supplemental Material [90]
Sec. G.

MSG X BS SI

P1 Z2,2,2,4 z2P,1, z2P,2, z2P,3, z4P

Pmmm Z2,2,2,4 z′
2P,1, z′

2P,2, z′
2P,3, z′

4P

Pn, n = 2, 3, 4, 6 Zn znC

Pn/m, n = 2, 3, 4, 6 Zn,n,n z+
nm,0, z−

nm,0, z+
nm,π

P4 Z2,2,4 z2,S4 , z2,Weyl, z4C

P4/mmm Z2,4,8 z′
2P,1, z+

4m,π , z8

P6/mmm Z6,12 z+
6m,π , z12

Pnc′c′, n = 2, 4, 6 Zn z′
nC

angle. In the above example of Pmmm, the axion angle θ is
quantized by Mx,y,z and inversion.

III. DIAGNOSIS

The symmetry-based indicator (SI) is a powerful tool
for diagnosing topological states [55,56,102] and has been
applied in both nonmagnetic SGs [30,33,103] and MSGs
[52,60,61,70], leading to the discovery of a significant number
of unique topological materials [57–59,62].

However, the mappings between SIs and topological
invariants in MSGs have not been fully investigated. In this pa-
per, we derive the explicit formulas of all SIs, and their quan-
titative mappings to topological invariants if correspond to
gapped states, and possible Weyl point configurations if corre-
spond to gapless states. These two different correspondences
are found thanks to the MTCI classifications, which exhaust
all gapped MTCI states. Specifically, we compute SI for each
TC and, by assuming the classification by real-space construc-
tion is complete [91–93], SI values not taken by any TC must
correspond to gapless states. We remark that all HSP semimet-
als and high-symmetry line (HSL) semimetals [57] are not
considered in this paper, which have representation-enforced
nodes on HSPs or along HSLs that necessarily break the
compatibility relations and lie outside the scope of SI theory.

A. Explicit expression of SIs

Among 1421 MSGs, 688 of them have nontrivial SIs. De-
spite the seemingly large number, SIs in all MSGs can be
induced from 16 generating MSGs, which we list in Table IV,
with only ten corner cases to be discussed later.

Most of the SIs can be expressed in terms of some topo-
logical invariants. In fact, the idea of diagnosing nontrivial
topology using only the symmetry data on HSPs in the
BZ stems from the Fu-Kane formula [16] for nonmagnetic
SGs with inversion symmetry, and in the following works
[28,36,54] Cn rotation eigenvalues are used to calculate the
Chern number modulo n, i.e., the znC indicator in Table IV.
When there exist mirror planes perpendicular to the rotation
axis, the znC indicator can be applied to two mirror sectors
which give the z±

nm,0/π indicator, where ± represents two
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mirror sectors. There are also three type-III generating MSGs
Pnc′c′, n = 2, 4, 6 which have antiunitary glide symmetries
that make all irreducible corepresentations (coirreps) twofold
degenerate (with the same Cn eigenvalues) on the kz = π

plane, allowing the definition of a new set of SIs z′
nC using the

number of degenerate pairs, the value of which corresponds to
the Chern number divided by two modulo n of the 2D BZ. The
interpretations of other generating SIs are left in Supplemental
Material [90] Sec. G.

The word “generating” means the SIs in other MSGs can
be expressed in terms of these generating SIs. Some times, the
generation involves the reduction of the SI group, e.g., from
Z4 to Z2 by taking only the even numbers in Z4. Moreover,
the interpretation of the SI, generated from the same generat-
ing SI, can be different in different MSGs. For example, the
znC indicator originally represents the Berry phase of a closed
loop in the 2D BZ as shown in Supplemental Material [90]
Sec. K, and it becomes the Chern number when the state is
gapped. However, as shown later, in some other groups, this
indicator, if nonzero, indicates gapless topological states, and
its value represents the number of Weyl points. For another
example, the z′

4P indicator is adopted in some MSGs where
the co-irreps are not doubly degenerate with the same parity.
In these cases, the interpretation of these SIs may change,
which takes case-by-case examination, and the SI expressions
are only effective and may become invalid when, for example,
the origin point is changed. Thus we fix the coordinate system
to avoid these problems by adopting the Bilbao convention
[104–107] when calculating SIs. SI formulas are also written
in co-irreps following the Bilbao website, where irreps of
type-I MSGs are the same as Bilbao and co-irreps of type-III,
IV MSGs are generated using a homemade code, with details
given in Supplemental Material [90] Sec. M.

To sum up, the SI formulas in generating SIs can be used to
express all SIs in other MSGs, except ten corner-case MSGs
which have SI formulas given independently using co-irreps
in Supplemental Material [90] Sec. H. Here we show an ex-
ample of MSG 42.222 Fm′m′2, which has a Z2 indicator with
expression

z2,42.222 = N (�3) − N (A3) mod 2, (1)

where N (K̄i ) represents the number of co-irrep K̄i. This MSG
has MTCI classification Z, the generator of which has weak
invariants δw = (1, 1, 0) and all other invariants equal zero.
The SI z2,42.222 = 1 represents this generator as well as all the
odd number copies of it. Note that this indicator is different
from the choice in Ref. [52].

B. Computation of SIs for topological crystals

In this section, we show how one can calculate the SIs for a
given TC. As most of the SIs correspond to some topological
invariants, including z2P,i, z4P, z′

2P, znC, z±
nm,0/π , z2,S4 , and z′

nC ,
their values can be determined directly. For example, the Z2 ×
Z2 × Z2 × Z4 indicators defined in P1̄ have straightforward
meanings:

z2P,i = δw,i mod 2, z4P = 2δ(P), (2)

where δw,i(i = 1, 2, 3) is the weak invariant and δ(P) is
the inversion invariant. Note that z4P = 1, 3 represent Weyl
semimetals [28,36].

However, there also exist many SIs that cannot be read
directly from the invariants, including z′

4P, z8, and z12. To
determine their value for a TC, we need to find a compatible
set of co-irreps for the TC and then calculate the SIs of the
co-irrep set. The result does not, however, depend on which
particular set we choose as long as it is compatible with the
TC. This is because a given set of invariants, that is, a given
TC, can only correspond to one possible set of SIs. Therefore,
we only need to find one compatible set of co-irreps for the
TC and calculate its SI.

Finding compatible co-irreps for an LC is simple, but to a
non-LC, TC can be challenging. Fortunately, as shown before
that many of the non-LCs in MSGs are adiabatically con-
nected to STIs, the BHZ model describing STIs can be used,
which has symmetries of SG 221 plus the TRS, a supergroup
to many MSGs. As a result, we can adjust the model parame-
ters such that the BHZ model and the non-LCs share the same
set of invariants, and then compute the SIs for the BHZ model,
with details in Supplemental Material [90] Sec. L.

The mappings between invariants and SIs only need to be
derived for the generating MSGs shown in Table IV. Other
MSGs, except the corner cases and Weyl states, either are
the supergroups of these generating MSGs or have a different
Bravais lattice, and their mappings can be induced from the
mappings of the generating MSGs. For corner cases, we derive
their mappings case by case in Supplemental Material [90]
Sec. H.

C. The mapping from SIs to invariants

So far, we have obtained the mapping from invariants to SIs
for topological gapped states protected by all MSGs, listed in
Supplemental Material [90] Sec. P. A practically more useful
mapping is its inverse, one from SIs to invariants. This is
because, on one hand, the SIs only depend on the co-irreps
at HSPs, and as such are far easier to obtain in first-principles
calculations. On the other hand, the invariants, as shown in
the previous section, are directly related to the topological
surface states that may be detected experimentally. A mapping
from SI to invariants hence links first-principles calculations
to experimental observables. These mappings from SIs to
invariants are one to many in general, in which a given SI set
may be mapped to multiple invariant sets.

Assume an MSG has m linearly independent TCs, which
have invariant sets V1,V2, . . . ,Vm and SI sets S1, S2, . . . , Sm.
Given an arbitrary SI set S from the SI group, to find all the
possible invariant sets corresponding to it, one needs to solve
the linear equation

∑m
i=1 xiSi = S, where xi are coefficients

to be determined. The invariant sets corresponding to S can
be obtained using the solved xi. This inhomogeneous linear
equation can be solved by first finding a special solution and
then adding all the general solutions to its homogeneous coun-
terpart, i.e., the solutions of the corresponding homogeneous
linear equation,

∑m
i=1 xiSi = 0, which gives the invariant sets

that have zero SIs.
Following this line, we have developed an algorithm that

automatically computes all possible sets of invariants for a
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FIG. 5. The Weyl point configuration of MSG 81.37, where the
blue and orange dots represent Weyl points of opposite chiralities,
the red line represents the S4 axis, and two yellow planes represent
kz = 0, π planes.

given set of SIs. The code and the full results which have been
entered into a large table may be downloaded from Ref. [89].

D. Weyl semimetal SIs

Unlike nonmagnetic spinful SGs [30] where for each
nonzero SI there exist at least one gapped topological state
that corresponds to it, we find many SIs in MSGs can only
correspond to gapless Weyl semimetals [52,60,61,70]. As the
full mapping from TCs to SIs has been found for each MSG,
SI values that do not belong to the image of this mapping
necessarily correspond to gapless states. Although these Weyl
semimetals have Weyl points at generic momenta or unpinned
momenta on a high-symmetry BZ plane, the symmetries of
MSGs require their creation or annihilation to happen at
HSPs, which makes it possible to detect them using SIs. These
Weyl semimetals can be classified into two types, with one be-
ing interplane Weyl points that lie between ki = 0 and ki = π

planes, and the other being in-plane Weyl points that lie on
ki = 0 or π planes, where i denotes the main rotation axis of
the MSG. We leave the full discussion of Weyl semimetals
to Supplemental Material [90] Sec. I and use one example of
type-4 MSG 81.37 PC4 to illustrate the basic idea.

MSG 81.37 can host a multiple of four Weyl points on both
kz = 0/π planes, with Weyl points connected by S4 symmetry
having opposite chiralities, as shown in Fig. 5. This MSG
has MTCI classification Z2 and SI group Z2 × Z2. The SI
group is larger than the MTCI group. One of the Z2 indicators
can be chosen as z2,S4 , the odd value of which corresponds
to the decoration with S4 invariant δ(S4) = 1, while the other
Z2 indicator can be chosen as z4C/2, the odd value of which
represents the Weyl states. Notice that the Weyl points are
S4 symmetric and they can only be annihilated at HSPs on
the kz = 0/π plane. Moreover, z4C,kz=0 = z4C,kz=π = 0 or 2
always holds (as long as the compatibility relations hold),
which means the Weyl points will appear simultaneously on
kz = 0, π planes. The in-plane nature of this type of Weyl
states is enforced by the C2 · T symmetry.

IV. DISCUSSION

In this paper, we present a complete topological classifi-
cation of gapped magnetic crystalline states with significant
spin–orbital coupling that can be well-characterized in terms

of band structures by explicit construction of real-space TCs,
i.e., 3D patterns built by 2D topological patches, including
both layer and non-layer constructions. We enumerate all
nontrivial topological invariants in MSGs together with their
anomalous surface states, and calculate the invariant values
for TC generators in each MSG. We also derive the explicit
formulas for symmetry indicators in terms of the symmetry
representations at high-symmetry momenta. We compute the
SI values for each TC generator, and by combining them with
the invariant values, we find the complete mappings between
SIs and invariants in all MSGs. The SI values not taken by any
TCs thus correspond to Weyl semimetals, with possible Weyl
point configurations tabulated.

Our diagnosis scheme can be readily applied to the search
for realistic magnetic topological materials. For MSGs
with nontrivial SI groups, one can extract the co-irrep data
from first-principles calculation results [108,109]. When all
compatibility relations are satisfied (which means the material
is not a HSP or HSL semimetal [57]), the SI values can be
obtained by feeding the co-irrep data into the SI formulas.
If the SI values indicate a gapped state, by consulting the
quantitative mappings between SIs and topological invariants
at Ref. [89], one can immediately find the corresponding
invariants and furthermore the corresponding surface states.
Otherwise, the state is a Weyl semimetal and possible
Weyl point configurations can be found in Supplemental
Material [90] Sec. I.

For MSGs without SIs but with nontrivial classifications,
we list in Supplemental Material [90] Sec. Q the topological
invariants for each generator of classification, and one can
directly compute the topological invariants to diagnose the
states. Although difficult to compute compared to SIs, there
are still elaborated tools like Wilson loop formalism [110]
to determine various topological invariants such as (mirror)
Chern numbers, which may require detailed inspections of the
connectivity of the Wilson loop spectrum.

The classification results in this paper, although computed
for noninteracting systems, are still meaningful when weak
electron-electron interactions are considered. For axion in-
sulators, the Z2 invariant (i.e., the axion angle θ ) is still
well-defined in the presence of interactions. The 3D QAH
states characterized by nonzero Z invariants and chiral edge
states are also stable against interactions. However, the mirror-
protected topological states with mirror Chern numbers Cm =
C+

m = −C−
m need to be modified by reducing their invariant

Cm from Z to Z8 when interactions are involved [111,112].
Given the success of the real-space recipe in previous

works [31,32] and the present paper, we are looking forward
to its application in other physical systems to obtain the
topological classifications, for example, in magnetic electron
systems with negligible spin-orbit coupling and TC supercon-
ductors, which may involve the reformulations of the building
blocks, no-open-edge conditions, and bubble equivalences.
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