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Topological charge Fano effect in multi-Weyl semimetals
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We theoretically analyze the Fano interference in a single impurity multi-Weyl semimetal hybrid system and
show the emergence of the topological charge Fano effect in the bulk local density of states. In multi-Weyl
semimetals, the number of Fermi arcs at the system boundaries is determined by the topological charge J , a
direct consequence of the “bulk-boundary” correspondence principle. Analogously, we find that J also modulates
the bulk Fano profile of the system with an embedded quantum impurity. Thus by increasing J , the Fano line
shape evolves from resonant, typical for J = 1 (single Weyl), towards antiresonant, extrapolating to the so-called
hyper Weyl semimetals with J � 1. Specially for the maximum case protected by the rotational symmetry C2J=6,
namely, the J = 3 (triple Weyl), which acquires asymmetric Fano profile, the Fano parameter absolute value is
predicted to be tan(C2J=6), where C2J ≡ (360◦/2J ) defines the rotational angle. Hence, the Fano discretization in
the J term introduces the topological charge Fano effect in multi-Weyl semimetals. We also suggest a transport
device where we expect that the proposed Fano effect could be detected.

DOI: 10.1103/PhysRevB.105.235135

I. INTRODUCTION

Multi-Weyl semimetals [1–8] are intriguing generaliza-
tions of standard Weyl semimetals [9–19], once they can lead
to a plethora of fascinating effects, such as chiral, optical
and transport anomalous properties [7–9,11,16–18,20–22]. In
multi-Weyl semimetals, the band-structures at the so-called
Weyl crossing points, show highly anisotropic dispersion
relations, being relativistic exclusively in one momentum di-
rection, while in the other two, a power-law dependence is
ruled by the topological charge J [19]. This topological num-
ber corresponds to the quantized Berry phase of the Dirac
fermions in graphene [23]. As Weyl points appear in pairs
with opposite chiralities, they behave as source and drain of
an Abelian Berry curvature, thus mimicking (anti)monopoles
placed far apart in the reciprocal space. Amazingly, such
points are connected to each other via crystal boundaries, in
particular, by opened surface states known as Fermi arcs. No-
tably, these exotic states can be observed by ARPES [1,2] and
turn into the experimental proof of the magnetic monopoles
existence in the momenta space.

In multi-Weyl semimetals, the winding number also plays
the role of a higher topological charge J > 1 [1]. This charge
arises from the merging of J single chiral-degenerate Weyl
nodes into multi-Weyl points, which are point group sym-
metry protected up to J = 3 [15], namely, by means of the
rotational symmetry C2J . In this manner, the “bulk-boundary”
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correspondence dictates that for a given J value determined
in an infinite bulk system, J pairs of Fermi arcs appear in the
corresponding finite version of the setup [10]. Some examples
of multi-Weyl materials are HgCr2Se4 and SrSi2 with J = 2
(double Weyl) [12,15,20,24], and A(MoX )3 (A=Rb or Tl and
X=Te) with J = 3 (triple Weyl) [13].

In this work, we focus on the “bulk-boundary” correspon-
dence for Fermi arcs surface states and the topological charge
from the bulk, in order to present the concept of the topologi-
cal charge Fano effect in multi-Weyl semimetals. To this end,
we theoretically explore the bulk Fano interference [25,26] in
the LDOS (local density of states) for a single impurity multi-
Weyl semimetal hybrid system, as sketched in Fig. 1(a). As a
matter of fact, the Fano interference arises from the coupling
between a discrete energy level and an energy continuum [26].
It has been widely investigated in several platforms, ranging
from classical mechanics [27] to topological superconduc-
tivity [28,29]. Coupled harmonic oscillators with a driving
force [27], photonic systems [30], Jaynes-Cummings-like
cavities [31], electronic quantum transport setups made of An-
derson adatoms [32–35], atomically frustrated molecules in
Weyl metals [8], and topological superconducting nanowires
with quantum dots [29], among others [26], constitute the
broad variety of examples where Fano interference manifests
itself.

Here, we reveal that the increase of J modifies the bulk
Fano profile of a multi-Weyl semimetal with a single impu-
rity, by means of the tuning of Fano asymmetry parameter
qJ , from resonant line shape (|qJ=1| → ∞) towards antires-
onant one (|qJ�1| → 0). We highlight that while the former
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FIG. 1. Overview of the topological charge Fano effect in multi-
Weyl semimetals. (a) Slab of a bulk multi-Weyl semimetal system
hosting an impurity. [(b)–(d)] Qualitative summary of our findings:
corresponding band structures from Eq. (3) with ky = 0, Q = 0.4kD

and Fermi arcs surface states upon changing the topological charge
J . Related bulk Fano profiles vs the dimensionless resonant energy
detuning x of the impurity appear depicted at the inset panels. The
Fano profile evolves from resonant behavior (b) to the antiresonant-
type (d) as J increases. The pairs of Fermi arcs are determined by
the J value, which imposes the bulk Fano line shape. This profile is
determined by the absolute value of the Fano asymmetry parameter
|qJ | = tan(C2J ) (c), where C2J ≡ (360◦/2J ) stands for the angle of
the rotational symmetry group. In summary, the “bulk-boundary”
correspondence [10] defines the grounds of the topological charge
Fano effect in multi-Weyl systems.

identifies J = 1 case (single Weyl) [inset panel of Fig. 1(b)],
the latter predicts a Fano antiresonant profile characterized
by J � 1. For such a case, we relax, as we shall clarify
later on, the aforementioned crystalline protection [15] and
make explicit that the fingerprint for this situation, which
we introduce as the hyper Weyl semimetal, is represented
by a suppressed Fano parameter (|qJ�1| → 0) [inset panel of
Fig. 1(d)].

We clarify that hyper Weyl semimetals should be under-
stood as a conjecture, being a hypothetical case corresponding
to a huge topological charge. However, some research groups
have reported spinless platforms with J = 4 [36,37], pointing
out that it is still capital to consider a generalized descrip-
tion. Noteworthy, for J � 3, the Fano parameter becomes
finite, discretized in J and shows a decaying behavior. Partic-
ularly for the maximum allowed case by the point symmetry
group protection, i.e., the J = 3 value for the C2J=6 rotational
symmetry group, we predict |qJ=3| = tan(C2J=6), with the
rotational angle C2J ≡ (360◦/2J ) and an asymmetric Fano
line shape [inset panel of Fig. 1(c)]. Thereby, our findings
introduce the idea of the topological charge Fano effect in
multi-Weyl semimetals.

II. THE MODEL

The Hamiltonian mimicking our system [Fig. 1(a)], with
h̄ = 1, reads

H = HWeyl + HImp. + HHyb., (1)

where

HWeyl =
∑

ks

ψ
†
kss[D(k̃J

−σ+ + k̃J
+σ−) + vF (kz − sQ)σz]ψks

(2)

is the part describing multi-Weyl fermions with spinor ψ
†
ks =

(c†
ks↑c†

ks↓), c†
ksσ (cksσ ) for creation (annihilation) of an elec-

tron carrying winding number J , momentum k, spin σ =↑,↓
and chirality s = ±1 for the Weyl nodes sQ, which break
time-reversal symmetry. The nonrelativistic part is expressed
in terms of k̃± = (kx ± iky)/kD, being kD = D/vF (D) the
Debye-like momentum (energy) cutoff as in graphene system
[38], σ± = 1

2 (σx ± iσy) and σz are the Pauli matrices. We
stress that the winding number J , namely, the topological
charge, gives the number of Fermi arcs pairs at the system
boundaries, as ensured by the “bulk-boundary” correspon-
dence principle [10]. In the last term of Eq. (2), which is of
relativistic-type, the slope of the Dirac cones in the z direction
of the momentum space is the Fermi velocity vF .

The band-structure of Eq. (2) can be computed straightfor-
wardly and leads to the following dispersion relation

ε±
ks = ±vF

√
k2

zs + |k̃+|2Jk2
D, (3)

wherein +(−) corresponds to the conduction (valence) band,
with kzs = kz − sQ and it is depicted in Figs. 1(b)–1(d). Ad-
ditionally, it is worth mentioning that for J = 1 (single Weyl)
the Weyl semimetal has well-defined Dirac cones in all mo-
mentum directions [Fig. 1(b)], while for J � 1, we have a
hypothetical hyper Weyl semimetal case [Fig. 1(d)], in which
its band-structure shape saturates due to a huge topological
charge. Further, a single Anderson-like impurity [32] can be
described by the Hamiltonian

HImp. = −U

2
+

∑
σ

(
εdσ + U

2

)
ndσ + U

2

(∑
σ

ndσ − 1

)2

,

(4)

where the impurity electronic energy level is εdσ , with number
operator ndσ = (ndσ )2 = d†

σ dσ , being d†
σ (dσ ) the correspond-

ing creation (annihilation) operator and U is the Coulomb
repulsion between two electrons with opposite spins (σ̄ =
−σ ). The hybridization term, which accounts for the host-
impurity coupling, reads

HHyb. = v
∑

σ

( f †
0σ dσ + H.c.), (5)

where the field operator

f0σ = 1√
N

∑
ks

cksσ (6)

describes the host site locally coupled to an embedded
quantum impurity, with v being the impurity-host coupling
strength and N the number of states delimited by kD.
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We would like to call attention to the following: by making
the choice εdσ = −U/2, the second term of Eq. (4) disap-
pears and the Hamiltonian H becomes invariant under the
particle-hole transformation cksσ → c†

−ksσ and dσ → −d†
σ .

This characterizes the particle-hole symmetric regime of the
model, which will be employed without loss of generality, in
order to determine the system bulk LDOS. Consequently, the
LDOS profile exhibits mirror symmetry in the energy domain
ε and the bulk Fano profile can be finally known.

III. LDOS AND FANO PROFILE

From the time Fourier transform of the retarded Green’s
function (GF)

Gσ = −iθ (t )〈{ f0σ (t ), f †
0σ (0)}〉H, (7)

i.e., G̃σ , we verify the validity of the Dyson equation

G̃σ = G̃0
σ + G̃0

σ vG̃Imp.σvG̃0
σ (8)

via the equation-of-motion approach [39], with G0
σ and

GImp.σ = −iθ (t )〈{dσ (t ), d†
σ (0)}〉H (9)

representing the pristine multi-Weyl and impurity GFs, re-
spectively. Thus the Fano formula [25,26] in the bulk

LDOS = − 1

π
ImG̃σ (10)

is expected to emerge, if in the impurity

DOS = − 1

π
ImG̃Imp.σ , (11)

their resonant states [39] exhibit a lorentzian profile.
As we consider the case of T � TK → 0 (Kondo tempera-

ture) [40] and the system has a pseudogap at the Fermi level,
Kondo correlations do not emerge [14] and consequently,
the Coulomb blockade regime [39] takes place. The latter is
characterized solely by the resonant states εdσ and εdσ + U ,
and the correlation U in G̃Imp.σ , can be safely treated in
the framework of the Hubbard-I approximation [7,8,39]. The
Hubbard-I approximation is indeed, a mean-field calculation,
i.e., a truncation scheme on the system GFs, which determines
the impurity GF G̃Imp.σ , in particular, by accounting for the
electronic correlation U in Eq. (4) within a certain regime
of validity. We stress that the presence of the Hubbard term
U in Eq. (4), which shows a quadratic dependence on the
number operator ndσ , prevents inevitably, the analytical and
exact evaluation of G̃Imp.σ . This lack of completeness, natu-
rally, does not catch the complete low-energy regime of the
single impurity Anderson model [32]. More specifically, the
one characterized by T � TK, εdσ < 0, εdσ + U > 0 and, as
a result, the Kondo peak present in Eq. (11). We call the
attention that such a resonance is a many-body effect, which
is due to a spin-flip process between the electrons from the
impurity and the host conduction states.

It is worth mentioning that one of us in Ref. [14] has
demonstrated, by employing the numerical renormalization
group [14], that the Kondo peak emerges solely in multi-Weyl
semimetals when the Fermi level is off resonance from the
Dirac point, i.e., the so-called charge neutrality point ε = 0.
By approaching this spot, the multi-Weyl semimetal presents

a pseudogap, as we will verify later on, that scales with the
power law (ε2)1/J in the topological charge J for the pristine
host density of states. It means that at the charge neutrality
point, the host does not contain states to screen in an an-
tiferromagnetic way the localized magnetic moment at the
impurity site and lead to the Kondo peak in the impurity den-
sity of states of Eq. (11). Thus the spin-flip process quenches
and even with T � TK → 0, for multi-Weyl semimetals, the
Kondo peak does not rise at ε = 0. This scenario is fully
distinct from a metallic system, once at the corresponding
charge neutrality point, the pristine host density of states is
finite. As the Hubbard-I method disregards such a spin-flip
mechanism to obtain the impurity GF G̃Imp.σ , then we can
safely adopt it to our system, only if we maintain the Fermi
level at ε = 0, where for multi-Weyl semimetals the absence
of states is ensured. By taking into account such an assump-
tion, we employ the well-established GF in the Hubbard-I
approximation as follows:

G̃Imp.σ = − 1

v2ImG̃0
σ

(
wx

x + i
+ wx̄

x̄ + i

)
. (12)

This ensures, as expected, the lorentzian line shape in the
DOS, with wx = 1 − 〈nd σ̄ 〉 and wx̄ = 1 − wx being spectral
weights for the dimensionless resonant energies detuning

x = ε − εdσ − v2ReG̃0
σ

−v2ImG̃0
σ

(13)

and

x̄ = ε − εdσ − U − v2ReG̃0
σ

−v2ImG̃0
σ

, (14)

respectively, wherein

〈ndσ 〉 =
∫ 0

−D
DOSdε (15)

is the impurity occupation. The pristine host GF, or simply the
propagator of the pristine Weyl fermions, is just

G̃0
σ = 1

N
∑

ks

ε + i0+

(ε + i0+)2 + (ε+
ks)2

= ReG̃0
σ + iImG̃0

σ

= ∣∣G̃0
σ

∣∣ exp(iδJ ), (16)

where δJ represents the phase of the propagator, in particular
in the absence of the impurity, which is expected to depend
upon the topological charge J via the dispersion relation ε+

ks
of Eq. (3). It reads

tan δJ = ImG̃0
σ

ReG̃0
σ

. (17)

This quantity, as we will see later on, is deeply connected to
the Fano asymmetry parameter qJ of the system, responsible
for modulating the bulk Fano profile for the LDOS. Partic-
ularly for a multi-Weyl semimetal with J � 3, in addition,
we will show that qJ becomes ruled by the angle (360◦/2J ),
which surprisingly, is recognized as the angle of the rotational
symmetry group C2J . As we know, such a symmetry group
stabilizes locally multi-Weyl points in the momentum space
[15].
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Now we are able to express the LDOS according to Fano
formula [25,26]. We begin by introducing into Eq. (8), the
quantities as follows:

ReG̃0
σ = − 1

π

∫ +D

−D

ImG̃0
σ

ε − y
dy

= − 1

π
sgn(ε)ImG̃0

σ

∫ +D/ε

−D/ε

(u2)1/J

1 − u
du

= −qJ ImG̃0
σ , (18)

due to the Kramers-Kronig relations [39], wherein y = uε and
the Fano asymmetry parameter is given by

qJ = −ReG̃0
σ

ImG̃0
σ

= − cot δJ ,

= 1

π
sgn(ε)P.V.

∫ +D/ε

−D/ε

(u2)1/J

1 − u
du, (19)

where P.V. stands for the Cauchy principal value and we
clearly see that the phase δJ of Eq. (17) for the pristine Weyl
fermions propagator of Eq. (16) then dictates the Fano asym-
metry parameter. Moreover,

ImG̃0
σ = − 3π3/2�

(
1
J

)
2JD

J+2
J �

(
2+J
2J

) (ε2)1/J , (20)

with �(x) being the Gamma function and the power-
law (ε2)1/J is characterized by a pseudogap at the Fermi
level (ε = 0).

We emphasize that Eq. (20) holds for arbitrary J and men-
tion that so far, solely analytical expressions up to J = 3 were
obtained [19]. We are aware that the crystalline rotational
symmetry C2J imposes the limitation J � 3, in particular
when the spin degree of freedom comes into play [15]. How-
ever, the J = 4 case is still possible and emerges in spinless
systems [36,37]. Thus we develop an extrapolation given by
Eq. (20) and get a generalized Fano asymmetry parameter.

The aforementioned accomplishment was possible after
employing in Eq. (16) the procedures as follows: (i) the
standard substitution N = ∑

ks → 	
(2π )3

∫
d3k = 	

6π2 k3
D, with

	 as the volume element in real space; and (ii) the hyper-

spherical transformation given by kx = kD( ε+
ks sin θ

D )
1
J cos φ,

ky = kD( ε+
ks sin θ

D )
1
J sin φ and kzs = kD

ε+
ks
D cos θ (0 � θ � π,

0 � φ � 2π ), with Jacobian

J(ε+
ks, θ, φ) = k3

D

D

(
ε+

ks

D

)2/J (sin θ )
2
J −1

J
(21)

and property
∫
G̃0

σ d3k = ∫
G̃0

σ J(ε+
ks, θ, φ)dε+

ksdθdφ.
We can finally obtain the bulk Fano profile, which from

here, we call by natural Fano profile (NFP), once it is
expressed in terms of their natural coordinates x and x̄. Tak-
ing into account the spin degree of freedom, we find the
NFP=2LDOS/ρ0(1 + q2

J ), with

ρ0 = − 1

π
ImG̃0

σ (22)

as the pristine multi-Weyl DOS and

NFP = 2

1 + q2
J

[
wx

(x + qJ )2

x2 + 1
+ wx̄

(x̄ + qJ )2

x̄2 + 1

]
, (23)

which holds in the wide-band limit D/ε → ∞. As we are
interested in impurity levels nearby the Fermi energy, such
a limit prevents that the time-reversal symmetry breaking
lifts the system spin degeneracy [14]. From Eq. (23) and for
ε < 0 (ε > 0), the NFP shows amplitudes of minimum and
maximum at x = −qJ (x̄ = −qJ ) and x = 1/qJ (x̄ = 1/qJ ),
respectively.

We highlight that the LDOS spectral line shape itself, as
we shall see in the numerical analysis, will not exhibit a Fano
profile as a function of energy ε for a given qJ , as it occurs for
flat band systems with energy and J independent host DOS
[33–35]. Additionally, we will verify that for the revealing
of such a behavior, one should analyze the Fano profile as a
function of x or x̄, namely, the natural coordinates for the Fano
profile to emerge. Nevertheless, before that, we should firstly
evaluate carefully the integral over u variable in Eq. (19).

We call attention that, in particular for qJ=1 and qJ=2, the
functions depending on u do not vanish in the limits u →
±∞, which is a common pathology in low-energy models
[38]. This feature constitutes a technical difficulty in solving
Eq. (19) numerically. Hence, to handle accordingly with this
lack of integrability issue, we should, as already performed
in graphene system [38], solve first the integral analytically
by keeping the ratio D/ε finite and assuming later on, the
limit ε/D � 1 in the ReG̃σ 0 evaluations. Such cases are then
described by

ReG̃0
σ (J = 1) = 3ε

D3

(
ε ln

|D + ε|
|D − ε| − 2D

)
(24)

and

ReG̃0
σ (J = 2) = 3π

4D2
ε ln

ε2

|ε2 − D2| , (25)

respectively, which provide

qJ�2 = −ReG̃0
σ (J � 2)

ImG̃0
σ (J � 2)

= − cot δJ�2 (26)

as dependent both on energy for ε/D � 1 and topological
charge J .

However, the necessary vanishing behavior is present in
qJ�3 as a function of u and consequently, it makes the inte-
gral in Eq. (19) to behave finite for D/ε → ∞, which can
be found analytically simultaneously with the ratio D/ε →
∞. This results into an interesting finding, i.e., an energy-
independent Fano asymmetry parameter discretized in the
topological charge J , which reads

qJ�3 = −sgn(ε) tan(C2J�6), (27)

where we define C2J ≡ (360◦/2J ) as the angle for the
corresponding rotational symmetry group. Together with
Eqs. (24)–(26), this gives the set of analytical expressions
that defines the topological charge Fano effect in multi-Weyl
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systems. Notice that for J = 3, qJ=3 = −sgn(ε) tan(C2J=6) =
−sgn(ε)

√
3, while for J � 1, we have |qJ�1| → 0, which

corresponds to the maximum allowed point group symmetry
protected case, namely, the C2J=6 rotational symmetry group,
and the hypothetical hyper Weyl semimetal, respectively.

We emphasize that for J � 3 such a crystalline symmetry,
hereby expressed in Eq. (27) via the C2J parameter, then sta-
bilizes the merge of chiral-degenerate Weyl points with J = 1
each and leads to an unique point enclosing a multitopological
charge J > 1. This spot in momentum space is the so-called
multi-Weyl point, where the aforementioned symmetry glues
together multiple Weyl points with unitary topological charge
and prevent them to split away.

Thus we can point out that the Fano parameter role in
the accounted picture is self-contained in Eq. (27) and arises
from Eq. (17), which authorizes the link qJ�3 = − cot δJ�3 =
−sgn(ε) tan(C2J�6), from where we perceive that the NFP of
Eq. (23) becomes settled by the topological charge J. As for
J � 3 the phase δJ�3 of the Weyl fermions in the propagator
of Eq. (16) depends on the dispersion relation ε+

ks of Eq. (3), it
yields the Fano asymmetry parameter qJ�3 to be ruled by the
angle (360◦/2J ), which is related to the rotational symmetry
group C2J�6. Distinctly, for J � 2 the dispersion relation ε+

ks
introduces in qJ�2 of Eq. (26) complex dependencies on the
topological charge J, in particular obeying Eqs. (24) and (25),
which affect peculiarly the NFP of Eq. (23).

As aftermath, independently of the J strength, the broad-
ening of the impurity levels [Eq. (12)] and the LDOS change
into a Fano-type profile in the natural coordinates [Eq. (23)],
are expected to occur in both the scenarios. In summary, the
system exhibits two paths of transport that interfere to each
other: one consists of electrons that travel through the orbital
f0σ of the host and that wherein they visit the impurity dσ and
return to f0σ , being a process modulated by qJ .

IV. RESULTS AND DISCUSSION

A. Natural Fano profile and discretized Fano parameter

As stated previously, we consider the particle-hole sym-
metric regime. In this case, εdσ = −U/2 and wx = wx̄ = 1/2
(〈nd σ̄ 〉 = 1/2 from self-consistent calculations), with U =
v = 0.14D. Taking into account Eq. (23), in Fig. 2, we present

the spectral analysis of the bulk LDOS = ρ0
(1+q2

J )
2 NFP as

a function of ε and the first part of the NFP versus x for
several J values. As the dimensionless resonant energy detun-
ing x is proportional to the deviation from the resonant state
εdσ = −U/2 within the valence band, its domain holds for
ε < 0. Thus the second part of Eq. (23) as a function of x̄
exhibits a reversed profile, once x̄ = −x in the domain ε > 0
(conduction band), where the resonant state εdσ + U = U/2
resides and ReG̃0

σ (ε > 0) = −ReG̃0
σ (ε < 0) fulfills particle-

hole symmetry [14]. Hence, the dependence of Eq. (23) on
x̄ is not shown, for a sake of simplicity.

Counterintuitively, the LDOS in Fig. 2(a) does not show
Fano profiles around the resonant states as a function of ε

upon changing J , as it should occur, despite the Fano parame-
ters being dictated by Eqs. (26) and (27). Such a feature arises
from the topological charge J and energy ε dependencies
present in the resonant states broadening � = −2v2ImG̃σ 0 =
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FIG. 2. (a) LDOS = ρ0
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J )
2 NFP [Eq. (23)] versus energy ε in

units of the cutoff D for several J values and particle-hole symmetric
regime: εdσ = −U/2 and wx = wx̄ = 1/2, with U = v = 0.14D (see
the main text). The increase of J turns the pseudogap flanked by the
impurity resonant states more pronounced with a sharp dip. (b) Nat-
ural Fano profile NFP [first part of Eq. (23)] vs x and dependent on
J for ε < 0. In the case of ε > 0, the profile is just reversed as a
function of x̄ and it is not shown, for a sake of simplicity. We clearly
verify that J modulates the Natural Fano profile.

2πv2ρ0 and quasiparticle dressing term v2ReG̃0
σ of the

impurity. These quantities, in particular, appear in the reso-
nant energies detuning x = 2(ε − εdσ − v2ReG̃0

σ )/� and x̄ =
2(ε − εdσ − U − v2ReG̃0

σ )/� entering into Eq. (23). From
the latter, we perceive that x and x̄ are not linearly propor-
tional to ε. This characteristic is restored when � and v2ReG̃0

σ

become energy and J independent, as verified in metallic flat
bands near the Fermi level [33–35]. Consequently, solely in
this particular situation, the LDOS profile as a function of ε

shows Fano line shapes.
Therefore, in the case of multi-Weyl semimetals, one

should analyze 2LDOS/ρ0(1 + q2
J ), namely, the NFP given

by Eq. (23), as a function of the natural coordinate x or x̄
instead of ε, to indeed perceive the emerging NFP around
x = 0 or x̄ = 0. Such analysis appears in Fig. 2(b), where
we verify that the increase of J drives the system from the
resonant Fano profile for the case of single Weyl semimetal
J = 1, towards the hyper Weyl semimetal with J � 1, which
is identified by an antiresonant line shape. Further, the Fano
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FIG. 3. (a) Minimum amplitude position −qJ of the Fano profile
from Eq. (27) [see also Figs. 1(c) and 2(b)] with decaying behavior
as a function of J � 3 for energies ε > 0 and ε < 0. (b) The same for
the maximum amplitude position 1/qJ , but with a linear dependence
on J . (a) and (b) make explicit that the Fano asymmetry parameter
qJ given by Eq. (27) consists of a discretized quantity in the J term,
yielding the topological charge Fano effect.

minimum and maximum amplitudes positions for ε < 0 given
by x = −qJ and x = 1/qJ , respectively, then appear in such a
figure marked by arrows, just in order to make explicit the
discretized Fano parameter in J . However, in Fig. 2(a) for the
LDOS representation as a function of ε, the role of J solely
lies in the renormalization of the resonant states towards the
Fermi level as J increases, pointing out that the semimetallic
pseudogap becomes characterized by an extremely sharp dip,
due to its spectral power-law (ε2)1/J in Eq. (20).

It is worth noting that the discretization observed in
Fig. 2(b) arises from Eq. (27), which together with Eqs. (24)–
(26) are the most capital ones of the current work: they encode
the topological charge Fano effect in multi-Weyl systems,
once they allow the tuning of the Fano line shape by changing
the topological charge J . Equivalently, according to the “bulk-
boundary” correspondence, the pairs of Fermi arcs surface
states present at the system boundaries are fixed by the J
value [10], which also imposes the Fano profile line shape of
the bulk.

With this in mind, we see from Fig. 3(a) that for ε < 0
the limits −qJ→3 → − tan(C2J=6) = −√

3 and −qJ�1 → 0
are reached, while for ε > 0 we have −qJ→3 → tan(C2J=6) =√

3 and −qJ�1 → 0. Interestingly enough for J = 3, |qJ=3| =
tan(C2J=6) = √

3 ≈ 1, 732 and the Fano profile, according
to Fig. 2(b), rises as asymmetric. Particularly for the −qJ

decaying behavior with J reported in Fig. 3(a), we highlight
that such a feature is connected straightforwardly to the sys-
tem band structure. As stated previously, the band-structure

saturates into one characteristic for the hyper Weyl semimetal-
type with J � 1, as depicted in Fig. 1(d). As an aftermath, if
the shape generated by the dispersion ε±

ks from Eq. (3) remains
unchanged by increasing J � 1 [Fig. 1(d)], so does the Fano
parameter, which attains to |qJ�1| → 0, once it depends on ε+

ks

via the GF G̃0
σ of the pristine host. As a result, the antiresonant

Fano profile becomes the hallmark of hyper Weyl semimetals.
In Fig. 3(b), we show the corresponding behavior for 1/qJ ,

which is linear instead. Note that 1/qJ for ε < 0 follows an
increasing linear trend, while for ε > 0 it is the opposite. This
reflects the own particle-hole symmetry characteristic of the
Fano parameter and it occurs because the multi-Weyl points
and Fermi level are energy-degenerate. Thereby, the band-
structure also has particle-hole symmetry, as well as the 1/qJ

quantity. Most importantly, both the −qJ and 1/qJ behaviors
as functions of J make explicit that the Fano parameter is
discretized, thus characterizing the topological charge Fano
effect in multi-Weyl semimetals.

B. Experimental proposal to detect the topological
charge Fano effect

From the spectral analysis performed so far, we perceive
that the NFP of Eq. (23) requires natural coordinates to be
viewed, such as x and x̄ from Eqs. (13) and (14), respectively.
This characteristic relies in the fact that both the latter expres-
sions are highly nonlinear functions in the ε degree, which
turns the detection of the Fano profiles encoded by Eq. (23)
a hard challenge by varying ε. However, we propose an al-
ternative path to overcome such an experimental obstacle. We
begin with by noticing that if we consider the impurity level
εdσ = εd in Eq. (4) a tunable parameter, while ε, ReG̃0

σ and
ImG̃0

σ as constant numbers, we finally gain the desired linear
dependence of x and x̄, not with ε, but with εd instead. Thus
Eq. (23) as a function of εd is expected to show Fano profiles,
once εd rises as the natural coordinate for the emanation of the
Fano profile. The tunability of εd to become feasible from an
experimental perspective needs a remake of Fig. 1(a) into the
transport-type device of Fig. 4(a), which we introduce as the
multi-Weyl bar.

The multi-Weyl bar consists of a quasilinear bulk system
with an external impurity, where this side-coupled impurity
is supposed to overlap with both the surface and bulk states
of the system. A similar approach was done to the electron
channel treated in the quantum wire theoretically explored in
Ref. [41]. In such a work, one of us derived a transmittance
formula of an impurity side-coupled to the electron channel
and found Fano profiles in the zero-bias conductance by tun-
ing εd , due to the assumption of a gate voltage Vg attached
to this impurity. It was found that the conductance reflects
the system bulk properties via the transmittance coefficient,
hereby with the shorthand notation TBulk(εd ) = G/G0, where
G is the zero-bias conductance at T � TK → 0 and G0 =
e2/h stands for the conductance quantum. The bulk properties
come up, once TBulk(εd ) depends upon the spectral density of
the host site described by the fermionic operator connected to
the impurity. Thus, in our system, this corresponds to Eq. (6)
for f0σ and consequently, it allows, together with Eq. (23) for
the NFP and the quantum transport formalism developed in
Ref. [41], to derive the equality TBulk(εd ) = NFP. As the NFP
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(a)

(b)

FIG. 4. (a) Sketch of the multi-Weyl bar device, where an im-
purity appears side-coupled. The arrows denote the current direction
from the source to drain leads (not depicted). This system consists of
an experimental proposal for detecting the topological charge Fano
effect. (b) The bulk transmittance TBulk(εd ) = NFP versus εd for sev-
eral J values is determined via Eq. (23), with ε = eV → 0 as a small
bias-voltage. The εd degree is tunable by a gate voltage Vg attached
to the impurity, thus leading to a transmittance with Fano profiles
nearby the energies εd = −U and εd = eV. Around them, we can
apply Eq. (23) to experimental data, extract the Fano asymmetry
parameter qJ and estimate via Eq. (27) the topological charge J.

The middle point between such energy positions corresponds to the
particle-hole symmetry (PHS), wherein the condition εd = −U/2 is
fulfilled.

is bounded by 2, this upper limit represents the maximum of
the transmittance by accounting for the two spin channels.

However, we should adapt carefully the transport formal-
ism done in Ref. [41] for a quantum wire to multi-Weyl
semimetals in the geometry of the bar depicted in Fig. 4(a).
First, multi-Weyl semimetals have pseudogap [Eq. (20)] and
it does not make sense to perform a zero-bias analysis, but
this can be easily solved by placing TBulk(εd ) slightly off the
charge neutrality point ε = 0, namely ε = eV → 0, being eV
a small bias voltage in which the system conducts. This fixes
ε, ReG̃0

σ and ImG̃0
σ at eV → 0 in Eqs. (13) and (14) for x

and x̄, respectively, thus restoring the highly desired linearity
of these quantities with εd , which is necessary for the Fano
profiles to appear. Second, the practical realization of the
multi-Weyl bar implies in a finite system, where the Fermi
arcs surface states contribute inevitably to the total transmit-
tance, together with the bulk states with eV → 0. Despite
this present characteristic of the experimental proposal, as
Fermi arcs surface states are topologically protected [1–8], in
opposite to the bulk states, the Fano patterns in the total trans-
mittance as a function of εd are expected to have the latter as
their source. This means that topologically protected states are

supposed to stay robust under external perturbations, in par-
ticular, those that do not break the symmetry that protect such
states. In this manner, these states become immune to Fano in-
terference. Here, by changing εd , the particle-hole symmetry
(PHS) of the Hamiltonian of Eq. (1) breaks down, but it does
not unprotec topologically the Fermi arcs surface states, once
they are not protected by such a symmetry. Consequently, the
Fano patterns in the total transmittance are expected to be
dictated by TBulk(εd ), which for ε = eV → 0, leads to Fano
profiles around εd = −U and εd = eV, as shown in Fig. 4(b)
for several J values.

We stress that the quantification concerning whether the
total transmittance depends weakly on the Fermi arcs surface
states is not the focus of the main analysis of the current work.
Thus further investigation into the dependence degree of the
Fano interference on the Fermi arcs surface states will be ad-
dressed elsewhere. It is worth emphasizing that the proposed
device depicted in Fig. 4(a) points out a way to induce Fano
line shapes in the total transmittance, just by changing εd

for fixed small bias-voltage eV → 0. Experimentally speak-
ing, from one detected Fano line shape, we can extract the
Fano asymmetry parameter qJ via Eq. (23) and by employing
Eq. (27), for instance, determine the topological charge J .

To summarize, for TBulk(εd ) versus εd , the Fano line shape
in Fig. 4(b) is also modulated by J and obeys the same trend
previously observed in Fig. 2(b). Equivalently, the deeper
meaning of the “bulk-boundary” correspondence applied to
the here proposed Fano effect is the following: the greater the
amount of Fermi arcs surface states given by J at the system
boundaries, the more the Fano profile will be antiresonant
within the bulk.

V. CONCLUSIONS

In this work, we determine the Fano asymmetry parameter
for a single impurity coupled to a multi-Weyl semimetal and
introduce the concept of topological charge Fano effect. Ac-
cording to the “bulk-boundary” correspondence, which states
that the number of Fermi arcs at the boundaries of a finite
size system is determined by the magnitude of the topolog-
ical charge, known from its bulk version with infinite size,
we then reveal the modulation of the system Fano profile,
due to the bulk LDOS, by such surface states. This can be
emulated in our theoretical framework by the tuning of the
topological charge value, which allows the Fano profile to
change from the resonant pattern for single Weyl semimetal,
towards the antiresonant Fano line shape, which identifies
hyper Weyl semimetals. Additionally, for the maximum al-
lowed protected case by the rotational symmetry group C2J=6,
namely, the triple Weyl semimetal J = 3 and rotational angle
defined by C2J ≡ (360◦/2J ), we predict the absolute Fano pa-
rameter |qJ=3| = tan(C2J=6) and an asymmetric Fano profile.
Additionally, we indicate a quantum transport setup where we
expect that the here proposed Fano effect could be present.

ACKNOWLEDGMENTS

We thank the Brazilian funding agencies CNPq (Grants
No. 302887/2020-2, No. 308410/2018-1, No. 311980/2021-0,
No. 305738/2018-6, No. 311366/2021-0, No. 305668/2018-8,

235135-7



W. C. SILVA et al. PHYSICAL REVIEW B 105, 235135 (2022)

and No. 308695/2021-6), Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior–Brasil (CAPES) – Finance Code
001, the São Paulo Research Foundation (FAPESP; Grant
No. 2018/09413-0) and FAPERJ Process No. 210 355/2018.

L.S.R. and I.A.S. acknowledge support from the Icelandic
Research Fund (project “Hybrid polaritonics”). I.A.S. also
acknowledges support from the Program Priority 2030. L.S.R.
thanks A.C.S. and Unesp for their hospitality.

[1] M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S.-Y. Xu, and
J.-X. Yin, Nat. Rev. Mater. 6, 784 (2021).

[2] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang,
Annu. Rev. Condens. Matter Phys. 8, 289 (2017).

[3] B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337
(2017).

[4] H. Zheng and M. Zahid Hasan, Adv. Phys.: X 3, 1466661
(2018).

[5] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[6] J. Hu, S.-Y. Xu, N. Ni, and Z. Mao, Annu. Rev. Mater. Res. 49,
207 (2019).

[7] Y. Marques, W. N. Mizobata, R. S. Oliveira, M. de Souza, M. S.
Figueira, I. A. Shelykh, and A. C. Seridonio, Sci. Rep. 9, 8452
(2019).

[8] W. N. Mizobata, Y. Marques, M. Penha, J. E. Sanches, L. S.
Ricco, M. de Souza, I. A. Shelykh, and A. C. Seridonio,
Phys. Rev. B 102, 075120 (2020).

[9] S. Park, S. Woo, E. J. Mele, and H. Min, Phys. Rev. B 95,
161113(R) (2017).

[10] R. M. A. Dantas, F. Peña-Benitez, B. Roy, and P. Surówka,
Phys. Rev. Research 2, 013007 (2020).

[11] T. Hayata, Y. Kikuchi, and Y. Tanizaki, Phys. Rev. B 96, 085112
(2017).

[12] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.
107, 186806 (2011).

[13] Q. Liu and A. Zunger, Phys. Rev. X 7, 021019 (2017).
[14] G. T. D. Pedrosa, J. F. Silva, and E. Vernek, Phys. Rev. B 103,

045137 (2021).
[15] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev.

Lett. 108, 266802 (2012).
[16] R. M. A. Dantas, F. Peña-Benitez, B. Roy, and P. Surówka,

J. High Energy Phys. 12 (2018) 069.
[17] S. Ahn, E. J. Mele, and H. Min, Phys. Rev. B 95, 161112(R)

(2017).
[18] S. P. Mukherjee and J. P. Carbotte, Phys. Rev. B 97, 045150

(2018).
[19] H.-F. Lü, Y.-H. Deng, S.-S. Ke, Y. Guo, and H.-W. Zhang,

Phys. Rev. B 99, 115109 (2019).
[20] Q. Chen and G. A. Fiete, Phys. Rev. B 93, 155125 (2016).
[21] T. Nag and S. Nandy, J. Phys.: Condens. Matter 33, 075504

(2020).

[22] B. Sadhukhan and T. Nag, arXiv:2203.12756.
[23] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[24] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,

T.-R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane,
D. Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H.
Lin, and M. Z. Hasan, Proc. Natl. Acad. Sci. USA 113, 1180
(2016).

[25] U. Fano, Phys. Rev. 124, 1866 (1961).
[26] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.

Phys. 82, 2257 (2010).
[27] Y. S. Joe, A. M. Satanin, and C. S. Kim, Phys. Scr. 74, 259

(2006).
[28] J. J. Xia, S. Q. Duan, and W. Zhang, Nanoscale Res. Lett. 10,

223 (2015).
[29] L. S. Ricco, V. L. Campo, I. A. Shelykh, and A. C. Seridonio,

Phys. Rev. B 98, 075142 (2018).
[30] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. Kivshar,

Nat. Photon. 11, 543 (2017).
[31] J. Gollwitzer, L. Bocklage, R. Röhlsberger, and G. Meier,

npj Quantum Inf. 7, 114 (2021).
[32] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[33] V. Madhavan, W. Chen, T. Jamneala, M. Crommie, and N.

Wingreen, Science 280, 567 (1998).
[34] N. Knorr, M. A. Schneider, L. Diekhöner, P. Wahl, and K. Kern,

Phys. Rev. Lett. 88, 096804 (2002).
[35] O. Újsághy, J. Kroha, L. Szunyogh, and A. Zawadowski,

Phys. Rev. Lett. 85, 2557 (2000).
[36] C. Cui, X.-P. Li, D.-S. Ma, Z.-M. Yu, and Y. Yao, Phys. Rev. B

104, 075115 (2021).
[37] T. Zhang, R. Takahashi, C. Fang, and S. Murakami, Phys. Rev.

B 102, 125148 (2020).
[38] B. Uchoa, V. N. Kotov, N. M. R. Peres, and A. H. Castro Neto,

Phys. Rev. Lett. 101, 026805 (2008).
[39] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics, An Introduction (Oxford University
Press, Oxford, 2012).

[40] A. C. Hewson, The Kondo Problem to Heavy Fermions
(Cambridge University Press, Cambridge, 1993).

[41] A. C. Seridonio, M. Yoshida, and L. N. Oliveira, Europhys. Lett.
86, 67006 (2009).

235135-8

https://doi.org/10.1038/s41578-021-00301-3
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1080/23746149.2018.1466661
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1146/annurev-matsci-070218-010023
https://doi.org/10.1038/s41598-019-44842-8
https://doi.org/10.1103/PhysRevB.102.075120
https://doi.org/10.1103/PhysRevB.95.161113
https://doi.org/10.1103/PhysRevResearch.2.013007
https://doi.org/10.1103/PhysRevB.96.085112
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevX.7.021019
https://doi.org/10.1103/PhysRevB.103.045137
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1007/JHEP12(2018)069
https://doi.org/10.1103/PhysRevB.95.161112
https://doi.org/10.1103/PhysRevB.97.045150
https://doi.org/10.1103/PhysRevB.99.115109
https://doi.org/10.1103/PhysRevB.93.155125
https://doi.org/10.1088/1361-648X/abc310
http://arxiv.org/abs/arXiv:2203.12756
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1073/pnas.1514581113
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1088/0031-8949/74/2/020
https://doi.org/10.1186/s11671-015-0914-3
https://doi.org/10.1103/PhysRevB.98.075142
https://doi.org/10.1038/nphoton.2017.142
https://doi.org/10.1038/s41534-021-00445-8
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1126/science.280.5363.567
https://doi.org/10.1103/PhysRevLett.88.096804
https://doi.org/10.1103/PhysRevLett.85.2557
https://doi.org/10.1103/PhysRevB.104.075115
https://doi.org/10.1103/PhysRevB.102.125148
https://doi.org/10.1103/PhysRevLett.101.026805
https://doi.org/10.1209/0295-5075/86/67006

