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Second harmonic helicity and Faraday rotation in gated single-layer 1T ′ -WTe2
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A single layer of the 1T ′ phase of WTe2 provides a rich platform for exotic physical properties such as the
nonlinear Hall effect and high-temperature quantum spin Hall transport. Utilizing a continuum model and the
diagrammatic method, we calculate the second harmonic conductivity of monolayer 1T ′-WTe2 modulated by an
external vertical electric field and electron doping. We obtain a finite helicity and Faraday rotation for the second
harmonic signal in response to linearly polarized incident light in the presence of time-reversal symmetry. The
second harmonic signal’s helicity is highly controllable by altering the bias potential and serves as an optical
indicator of the nonlinear Hall current. Our study motivates future experimental investigation of the helicity
spectroscopy of two-dimensional materials.
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I. INTRODUCTION

Two-dimensional (2D) materials such as transition metal
dichalcogenides (TMDs), with the chemical formula MX 2,
where M stands for the transition metal atom (W, Mo) and X
is the chalcogen atom (Te, Se, or S), appear in different crys-
talline structures such as hexagonal (2H), tetragonal (1T ), and
distorted (1T ′ and 1Td ) structures [1–3]. Noncentrosymmetric
TMDs exhibit unique physical properties such as circular
dichroism, piezoelectricity, the nonlinear Hall effect, and sec-
ond harmonic generation due to their distinct phases [4–15].
The distorted 2D WTe2 has attracted a surge of interest due
to diverse ground state phases such as quantum spin Hall,
superconductivity, polar metals, and ferroelectricity [16–20].

The 1T phase of WTe2 has a rhombohedral (ABC) stacking
with one tungsten layer sandwiched between two tellurium
layers and has D3d point group [21]. However, the freestand-
ing 1T system is unstable, and it undergoes a spontaneous
lattice distortion to form a period-doubling distorted structure
known as the 1T ′ phase with point group C2h [22]. Note that
the metal atoms in the 1T ′ phase rearrange in the zigzag chain.
The 1T ′ phase possesses mirror plane symmetry Mx perpen-
dicular to the x direction and twofold rotational symmetry C2x

and hence remains I = MxC2x inversion symmetric [16,23–
25]. Moreover, the monolayer 1Td structure, with point group
C1s [26], breaks the twofold rotational symmetry because it
has more distortion than the 1T ′ phase and preserves the
mirror symmetry Mx; hence, it breaks the inversion symme-
try [26]. As a result of this inversion symmetry breaking, a
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weak intrinsic in-plane displacement field emerges in the 1Td

structure, and the dispersion is spin polarized.
By applying an external vertical electric field in a dual-

gated system of distorted (1T ′ and 1Td ) WTe2, one can
efficiently create a controllable displacement field [26] sim-
ilar to the case of a biased bilayer graphene [27–30] [see
Fig. 1(a)]. Upon the use of a strong external electric field,
the field-induced band gap dominates the intrinsic one in the
1Td phase. In the absence of the spin-orbit interaction and
the vertical field, the low-energy dispersion of WTe2 reveals

FIG. 1. (a) Lattice-distorted 1T ′ structure of WTe2 in the pres-
ence of an external vertical electric field E, where the top and bottom
atomic layers are shown in different colors. (b) Energy dispersion
of single-layer 1T ′-WTe2 in the momentum space with the finite
bias potential U . (c) Dispersion along the kx direction at different
bias potentials, U = 0, U = δSOC, and U = 2δSOC, where the blue
solid curve shows the spin index s = +1 and the red dashed curve
shows s = −1. Here Q′ = −Q, and the spin-orbit coupling strength
δSOC = vxQ, where vx parametrizes the electron velocity along the
x direction at large kx . We have neglected the tilt in the schematic
dispersion in order to highlight the topological features.
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two topologically protected tilted Dirac cones in the neigh-
borhood of the � point [31–33]. The spin-orbit-induced band
inversion drives the system into a quantum spin Hall phase
at a reasonably high temperature (100 K) [25,34–37]. The
schematic view of the 1T ′-WTe2 dispersion is shown in Fig. 1.
The energy bands are degenerate at zero bias potential with
a band gap due to the spin-orbit interaction. However, the
band degeneracy breaks if the bias potential U is turned on.
Interestingly, on U approaching the strength of the spin-orbit
coupling δSOC, the spin-polarized band gap vanishes around
one Dirac point. With more distortion (U > δSOC), the bands
remain nondegenerate, and the gap again opens up, as shown
in Fig. 1(c).

Strong and diverse forms of nonlinear response in 2D
materials are drawing attention for applications in all-optical
modulators [38–43]. Especially, a strong nonlinear Hall re-
sponse has been measured in single-layer and bilayer WTe2

that can be described in terms of the Fermi surface average of
the Berry curvature derivative, the so-called Berry curvature
dipole [44–61]. The second harmonic generation (SHG) is
utilized to measure the internal lattice distortion (strain) in
2D crystals [62]. The dynamical form of the nonlinear Hall
effect manifests in the second harmonic transverse current in
response to the linearly polarized light in noncentrosymmet-
ric 2D materials such as biased single- and few-layer WTe2

[58,63–67]. Interestingly, theoretical studies have provided
the direct correspondence of high harmonic helicity (circular
dichroism) and the topological nature of the electronic band
structure [68,69]. For instance, it has been shown that the non-
linear helicity spectroscopy can sharply distinguish between
trivial and topological phases of the Haldane model in the
hexagonal 2D materials [70,71].

Despite extensive studies of all-optical amplitude modu-
lation, the phase and polarization modulation of the second
harmonic signal have not been systematically studied in
TMD materials. Faraday rotation and dichroism effects can
be employed to explore the polarization of second harmonic
radiation. The Faraday effect is the rotation of the polariza-
tion plane of a linearly polarized light upon its propagation
through a medium [72–80] which decomposes the linear po-
larized light into left- and right-handed circular components.
In isotropic materials, the Faraday rotation emerges only af-
ter breaking the time-reversal symmetry. In such cases, the
left- and right-handed components of the polarized light ex-
perience different refraction index and hence propagate with
different phase velocities that lead to the rotation of a polar-
ization plane (Faraday rotation) as well as finite ellipticity
(helicity). The nonlinear Hall effect does not require time-
reversal symmetry to be broken, and therefore, a finite helicity
and Faraday rotation are expected for the SHG signal. To
the best of our knowledge, the SHG signal’s polarization in
single-layer 1T ′-WTe2 has not been explored microscopically.

This study aims to fill this gap by developing a micro-
scopic continuum analysis of the polarization and amplitude
modulations in single-layer 1T ′-WTe2. We study the second
harmonic response for the time-reversal symmetric and dis-
torted 1T ′-WTe2 in the presence of a vertical electric field.
We first propose the theory for the nonlinear Faraday rotation
angle and the second harmonic helicity in terms of the second-
order optical conductivity. We explore the effects of bias

potential induced by the vertical electric field on the second
harmonic susceptibility, Faraday rotation angle, and second
harmonic helicity. We find that significantly large helicity
can be achieved near the interband transitions. A linear light
with frequency ω can be effectively converted to a circularly
polarized light with frequency 2ω. The process is controllable
by the interplay of the Fermi energy and the bias potential.

II. THEORETICAL METHOD

We consider a low-energy model in the 2D momentum
space for the distorted 1T ′ phase of WTe2, which is described
as [26]

Ĥ={Ak2 Î+(δ + Bk2)σ̂z+vykyσ̂y+U σ̂x} ⊗ ŝ0 + vxkxσ̂x ⊗ ŝy.

(1)
The spin-mixing term U ′σ̂y ⊗ ŝx is neglected since, usually,
we have U � U ′ [26]. Notice that ŝ0 is the identity matrix
in the spin basis and ŝi=x,y correspond to the spin Pauli ma-
trices. The Pauli matrices σ̂i=x,y,z and identity matrix Î are
in the orbital basis {ψ+, ψ−} = {p orbital of Te, d orbital
of W}, which is separated by the fundamental gap 2δ at the
� point. Here U represents the coupling between the out-
of-plane electric field and the orbitals, with the wave vector
k = (kx, ky) having k = |k|. The k · p parameters vx, vy, A, and
B are obtained after fitting to realistic low-energy dispersion
of 1T ′-WTe2 [26,81]. In our analysis, we focus on the impact
of bias potential U on the nonlinear response of the system.

Since ŝy and ŝ0 commute, using a unitary transformation,
we obtain the Hamiltonian in a spin basis where ŝy → s = ±
is diagonal. Then, we calculate eigenvalues ελ

k,s, eigenvectors

|uλ
k,s〉, and then matrix elements 〈uλ1

k,s|Ô|uλ2
k,s〉, in which Ô

stands for the paramagnetic and diamagnetic current opera-
tors’ elements, required for the response function evaluation.
Corresponding to the Hamiltonian (1), the energy dispersion
is given by

ελ
k,s = Ak2 + λ

√
(δ + Bk2)2 + v2

y k2
y + (U + svxkx )2, (2)

and the eigenvectors are |uλ
k,s〉 =

1/
√

2[
√

1 ± bk,s,
√

1 ∓ bk,s], where bk,s = (δ + Bk2)/Ek,s,
with Ek,s = [(δ + Bk2)2 + h̄2v2

y k2
y + (U + svxkx )2]1/2, and

λ = + (−) for the conduction (valence) band. In addition
to the time-reversal symmetry, this model also possesses
the mirror symmetry along the x̂ direction, which ensures
the dispersion ε(kx, ky) = ε(−kx, ky). In the absence of bias
potential, U = 0, and for δ/B < 0, the system has two gapless
nodes (valleys) at τQ = (τ

√|δ/B|, 0), with τ = ± being the
valley index. The schematic picture of the dispersion is
shown in Fig. 1. The energy gap 2
± at the valley point
τQ is given by 
± = U ± vxQ for each spin-valley index
τ s = ±. Similar to the Kane-Mele model in graphene with
spin-orbit coupling [82], 1T ′-WTe2 is in the topological (i.e.,
quantum spin Hall) phase when |vxQ| > |U | and is trivial for
|vxQ| < |U |. The finite bias potential U breaks the inversion
symmetry of the system, and it opens the gap around two
points (Q points) in the Brillouin zone, as depicted in Fig. 1.
However, the time-reversal symmetry of the system remains
preserved. Further, this externally tunable bias potential is an
artifact of the in-plane electrical polarization induced by an
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FIG. 2. Feynman diagrams for the (a) paramagnetic and (b) dia-
magnetic contributions to the second-order response. Here solid lines
indicate the electron propagators, and dotted lines refer to external
photons. The symbol ωi represents the incoming and outgoing fre-
quencies, ω� = ω2 + ω2, and ĵa, κ̂ab, and ξ̂abc denote one-, two-, and
three-photon current vertices, respectively.

external out-of-plane electric field due to the intrinsic lattice
distortion, as displayed in Fig. 1(a) [26].

A. Nonlinear response of gated 1T ′-WTe2

Light-matter interaction is modeled via minimal coupling
h̄k → h̄k + eA(t ), where A(t ) is an external vector potential.

Due to the nonlinear dispersion of the Hamiltonian, both one-
and two-photon couplings are present [83]. We begin with the
phenomenological relation of the second-order current in the
frequency domain in response to an external vector potential
A(t ), with the time-dependent and spatial homogeneous elec-
tric field E(t ) = −∂t A(t ) [75],

J (2)
a (ω� ) =

∑
ω1,ω2

∑
bc

χ
(2)
abc(ω� ; ω1, ω2)Ab(ω1)Ac(ω2)

× δ(ω� − ω1 − ω2). (3)

Here we define A(ω) = −iE(ω)/ω, and the δ function implies
that ω� = ω1 + ω2. For the sake of convenience, we write
the tensor quantity as χ

(2)
abc(ω1, ω2) in further calculations.

The latter second-order response tensor includes two terms
[83,84]:

χ
(2)
abc(ω1, ω2) = χ

(2),D
abc (ω1, ω2) + χ

(2),P
abc (ω1, ω2), (4)

where the terms χ
(2),D
abc and χ

(2),P
abc refer to the diamagnetic and

paramagnetic contributions, respectively. The paramagnetic
susceptibility, a three-point retarded correlation function of
current operator components, is defined diagrammatically in
Fig. 2(a).

Using the many-body diagrammatic perturbation theory,
the second-order paramagnetic susceptibility after one per-
forms the Matsubara frequency summation and then considers
the analytic continuation iωn → ω + iη, with η → 0+, can be
expressed as [85–87]

χ
(2),P
abc (ω1, ω2) =

∑
P

∑
{λi}

∑
k,s

jλ1λ2
a jλ2λ3

b jλ3λ1
c

h̄ω� + ε
λ2
k,s − ε

λ1
k,s + iη

{
f
(
ε

λ2
k,s

) − f
(
ε

λ3
k,s

)
h̄ω1 + ε

λ2
k,s − ε

λ3
k,s + iη

− f
(
ε

λ3
k,s

) − f
(
ε

λ1
k,s

)
h̄ω2 + ε

λ3
k,s − ε

λ1
k,s + iη

}
. (5)

The one-photon coupling is the standard current vertex ĵa = −(e/h̄)∂kaĤ, which is also known as the paramagnetic current
operator. Note that

∑
P stands for the intrinsic permutation symmetry (b, ω1) ⇐⇒ (c, ω2). Here f (ελ

k,s) = [1 + eβ(ελ
k,s−μ)]−1 is

the Fermi-Dirac distribution function, μ is the chemical potential, and β = 1/kBT , where kB is the Boltzmann constant and T is
electron temperature. Similarly, the diamagnetic contribution to the second-order response according to Fig. 2(b) is given by

χ
(2),D
abc (ω1, ω2) =

∑
P

∑
{λi}

∑
k,s

{
jλ1λ2
a κ

λ2λ1
bc

[
f
(
ε

λ2
k,s

) − f
(
ε

λ1
k,s

)]
h̄ω1 + ε

λ1
k,s − ε

λ2
k,s + iη

+ 1

2

(
jλ2λ1
b κλ1λ2

ac + jλ2λ1
c κ

λ1λ2
ba

)[
f
(
ε

λ2
k,s

) − f
(
ε

λ1
k,s

)
]

h̄ω� + ε
λ1
k,s − ε

λ2
k,s + iη

+ ξ
λ1λ1
abc f

(
ε

λ1
k,s

)}
.

(6)

The two-photon and three-photon couplings are given by
κ̂ab = −(e/h̄)2∂ka∂kbĤ and ξ̂abc = −(1/2)(e/h̄)3∂ka∂kb∂kcĤ,
also termed the diamagnetic current operator in the context
of superconductors. Considering the explicit form of the k · p
Hamiltonian (1), the three-photon vertex is zero, and the only
nonvanishing components of the two-photon vertex coupling
are κ̂xx and κ̂yy. However, in order to avoid the artifact in
the low-energy model, we consider the three-photon coupling
contribution by using a gauge invariance argument. Since the
three-photon vertex diagram leads to a frequency-independent
susceptibility, its contribution can be fixed by enforcing the
gauge invariance. This is because the total susceptibility
must vanish χ

(2)
abc(ω1 = 0, ω2 = 0) = 0 for a homogeneous

and time-independent gauge potential [83,86,88].
Due to the mirror symmetry x → −x, the elements of

second-order susceptibility χ
(2)
abc with an odd number of x

indices will vanish. The remaining nonvanishing components
of the second harmonic susceptibility with an even number of
x indices are χ (2)

yxx, χ (2)
xyx, χ (2)

xxy, and χ (2)
yyy, which we compute in

the next section. Additionally, χ (2)
xxy = χ (2)

xyx on interchanging
the last two spatial indices by symmetry. Hence, one is left
with three independent third-rank tensor components.

Using the total second-order susceptibility, one can obtain
the second-order conductivity as follows:

σ
(2)
abc(ω1, ω2) = −χ

(2)
abc(ω1, ω2)

ω1ω2
. (7)

Here we consider ω1 = ω2 = ω to compute second harmonic
conductivities which will be further used below to obtain the
polarization quantities such as the Faraday rotation and the
helicity.
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B. Second harmonic signal polarization

For the analytical derivation in the present study, we as-
sume linearly polarized light with normal incidence and a
generic polarization direction E(t ) = ε̂(φ)E0ei(q·r−ωt ) + c.c.
Here E0 is the amplitude of the incident beam; ε̂(φ) =
x̂ cos φ + ŷ sin φ is the polarization direction, with φ being
the polarization angle with the x axis, and the wave vec-
tor q = −ẑω/c. At normal incidence, the second harmonic
current (taking ω1 = ω2 = ω) follows J(2) = E2

0 (axx̂ + ayŷ),
where the component of the response can be expressed as

aj = σ
(2)
jxx(cos φ)2 + σ

(2)
jyy (sin φ)2 + σ

(2)
jxy sin(2φ). (8)

Here we have used the symmetry relation σ
(2)
jxy = σ

(2)
jyx in

the last term. More specifically, the second harmonic cur-
rent can be written in terms of the longitudinal (along the
polarization direction) and transverse (normal to the polar-
ization direction) components as J(2) = J (2)

L ε̂(φ) + J (2)
T t̂(φ),

where the transverse direction t̂(φ) = ẑ × ε̂(φ). We define the
longitudinal and transverse components of the nonlinear con-
ductivity in the forms σ

(2)
L = J (2)

L /E2
0 = ax cos φ + ay sin φ

and σ
(2)
T = J (2)

T /E2
0 = −ax sin φ + ay cos φ. Here we consider

ax = |ax|eiδx and ay = |ay|eiδy , where δx (δy) refers to the phase
associated with the x̂ (ŷ) component of the response. In the cir-
cular basis representation (l̂, r̂), we can write ar/l ≡ ax ± iay,
where the + (−) sign stands for the right-handed (left-handed)
circular counterpart. Using the circular decomposition along
with the relation between the Stokes and polarization param-
eters [89–91], the Faraday rotation angle ψ is defined as

tan(2ψ ) = S2

S1
= − Im[a∗

l ar]

Re[a∗
l ar]

. (9)

Here Si denotes the Stokes parameters of the monochromatic
light [89], such as S0 = |al |2 + |ar |2, S1 = 2Re[a∗

l ar], S2 =
−2Im[a∗

l ar], and S3 = |al |2 − |ar |2. Similarly, the ellipticity
χ , an angle that defines the amount of the elliptic nature from
the circular shape, is

tan(2χ ) = S3√
S2

1 + S2
2

= |al |2 − |ar |2
|a∗

l ar | . (10)

After performing the straightforward calculations, one can
easily express the Stokes parameters in terms of the lon-
gitudinal and transverse components of the second-order
conductivity and incident polarization angle as S0 = |σ (2)

L |2 +
|σ (2)

T |2 and

S1 = (∣∣σ (2)
L

∣∣2 − ∣∣σ (2)
T

∣∣2)
cos(2φ) − 2

∣∣σ (2)
L

∣∣∣∣σ (2)
T

∣∣ cos δ sin(2φ),

S2 = 2
√

S2
0 − S2

1

∣∣σ (2)
L

∣∣∣∣σ (2)
T

∣∣ cos δ0,

S3 = 2
√

S2
0 − S2

1

∣∣σ (2)
L

∣∣∣∣σ (2)
T

∣∣ sin δ0. (11)

The phase difference between the longitudinal and transverse
components is denoted by δ = δL − δT . The cosine of the
phase difference between ax and ay, i.e., δ0 = δy − δx, is ob-
tained as (see the Appendix)

cos δ0 = X√
X 2 + Y 2

, (12)

where we define X = −(|σ (2)
L |2 − |σ (2)

T |2) sin(2φ) −
2|σ (2)

L ||σ (2)
T | cos δ cos(2φ) and Y = 2|σ (2)

T ||σ (2)
L | sin δ. In

addition to these angular quantities, the state or character
of the polarization is assigned by another dimensionless
parameter, known as helicity (see the Appendix):

h = |al |2 − |ar |2
|al |2 + |ar |2 = 2Im[axa∗

y ]

|ax|2 + |ay|2 = sin(2χ ). (13)

Here the sign of the helicity decides the left- or right-handed
character of the SHG signal. Specifically, if h = +1, the light
is completely right-handed in nature, while h = −1 refers to
the left-handed character of the light. Note that the helicity
is proportional to the phase difference of the longitudinal
and transverse response, h ∝ sin δ, which can be utilized by
probing the value of δ. The presented formalism for the
computation of the nonlinear polarization quantities, Faraday
rotation and ellipticity, is general and applicable for all sys-
tems. In this work, we discuss the case for the time-reversal
symmetric and inversion symmetry broken system 1T ′-WTe2.

III. RESULTS AND DISCUSSION

In this section, we present our numerical results and dis-
cuss the frequency and bias potential dependence of the
nonlinear conductivity. Particularly, we report the polarization
analysis by evaluating a nonvanishing Faraday rotation and
the helicity of the SHG signal in single-layer 1T ′-WTe2.

A. Frequency dependence of the second-order susceptibility

In Fig. 3 , we plot three independent tensor elements of the
nonlinear susceptibility as a function of the scaled incident
frequency h̄ω/μ. The absence of inversion symmetry leads to
the spin-polarized band structure; however, the second-order
response function is spin degenerate due to the time-reversal
invariance. Although both one- and two-photon interband res-
onances are present, the two-photon resonance h̄ω� = 2μ

that occurs at h̄ω/μ = 1 is less pronounced in χ (2)
yxx owing

to the absence of the corresponding two-photon vertex cou-
pling κxy = 0. The situation does not remain the same in the
case of χ (2)

xxy and χ (2)
yyy, where both one-photon and two-photon

absorption processes contribute to the diamagnetic and para-
magnetic susceptibilities. Further, the shape of these interband
resonances can be understood through the anisotropic Fermi
surface in the kx-ky 2D momentum plane. The presence of
the vyky term along the y component of the Pauli basis in
the modeled Hamiltonian creates the anisotropy in the Fermi
surface of WTe2. On moving towards the higher momentum
values, the quadratic term Bk2 becomes large over the linear
terms which ultimately suppress the anisotropic behavior of
the Fermi surface and turn the surface into a more isotropic
form at larger k. In addition to the two interband resonances,
we find another peak for h̄ω > 2μ in Figs. 3(b) and 3(f).
This arises due to the presence of the fundamental gap 2δ at
the � point (k = 0), and for δ = 0, the latter peak is absent.
In addition to these features, we check the tunability of the
second-order susceptibility by altering the bias potential U ,
and we observe strong dependence on U .

The spin-polarized dispersion has different band gaps at
two valley points in the presence of a finite bias potential U .
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FIG. 3. The real and imaginary parts of three distinct components of the second-order susceptibility in response to the linearly polarized
beam at three different bias potential values as a function of an incident energy scaled by the chemical potential. Here we set the parameters
A = 0, δ = −0.25 eV, B = 1 eV Å2, vx = 0.1 eV Å, vy = 0.3 eV Å, μ = 0.2 eV, and χ0 = −e3vy/(4π 2 h̄2).

For a large value of U and given the spin (e.g., spin up),
which corresponds to green curves in Fig. 3, the chemical
potential lies within the conduction band at valley Q′ = −Q,
while it is inside the band gap at valley Q. Accordingly, the
spin-conserved transitions at two-photon and one-photon tran-
sition edges at valley Q′ follow h̄ω = μ and h̄ω = 2μ, while
in the other valley we have a two-photon peak at h̄ω = 
+
with 
± = |U ± vxQ| and one-photon resonance h̄ω = 2
+.
The two resonances at h̄ω = 2μ and h̄ω = 2
+ manifest
as a double-peak profile. This double-peak structure is more
visible in the imaginary part of the response function depicted
in Figs. 3(b), 3(d), and 3(f). The real-part plots reveal a weak
peak at h̄ω = 2μ for larger U .

B. Effect of bias potential

To track the evolution of the nonlinear response with the
out-of-plane electric field, we plot the real and imaginary parts
of the second-order susceptibility versus the bias potential
U at the frequency h̄ω = 2μ, where all responses contribute
significantly, as seen in Fig. 3. We set the other parameters as
μ = 0.1 eV, B = 1 eV Å2, vx = 0.1 eV Å, vy = 0.3 eV Å, and
δ = −0.25 eV for three elements, yxx, xxy, and yyy, in Fig. 4.

In the absence of the bias potential, U = 0, the second har-
monic susceptibility vanishes owing to the preserved inversion
symmetry. Thus, one requires a finite U to break the inversion
symmetry which gives a nonzero response. By increasing U ,
the band gap around Q points widens and further enhances the
susceptibility, as shown in Fig. 4. For small values of U < μ

the response function linearly depends on the bias potential as
the Fermi level lies within the conduction band. The response
function changes sign when U → −U , which implies that

it must be an odd function of U . For larger U that is still
smaller than h̄ω, we notice some resonances due to interband
transitions at h̄ω = 2μ + vxQ. The vanishing response for a
higher amplitude of the bias potential U is because of the
forbidden interband transitions for h̄ω < 
± due to the Pauli
blocking. The presence of an external electric field can alter
the bias potential and therefore control the value of second-
order response in the distorted monolayer WTe2.

C. Helicity and Faraday rotation of the second harmonic signal

Before we analyze the helicity of the SHG signal in
1T ′-WTe2, it is useful to discuss it for trigonal pris-
matic TMD systems such as single-layer MoS2. In single-
layer MoS2 the helicity vanishes due to the mirror (x →
−x) and threefold symmetries. Under mirror and three-
fold symmetries, the only nonzero tensor elements are
given by −σ (2)

yyy = σ (2)
xxy = σ (2)

xyx = σ (2)
yxx . Accordingly, we have

(σ (2)
L , σ

(2)
T ) = −σ (2)

yyy ( sin(3φ), cos(3φ)). Here the longitudinal
and transverse conductivity components are in phase (δ = 0),
and therefore, the helicity vanishes, i.e., h ∝ sin δ = 0. This
result implies that not every noncentrosymmetric system can
generate a second harmonic signal with a finite helicity. The
finite helicity is the result of the chirality of the system, similar
to the optical activity effects [92].

In Figs. 5(a) and 5(b), we plot the Faraday rotation an-
gle ψ/π and helicity versus the incident energy h̄ω at fixed
δ = −0.25 eV and μ = 0.1 eV. In general, the Faraday rota-
tion and helicity depend on the incident polarization angle φ.
Here we consider the polarization angle φ = π/6; thus, the
value of |ψ | for h̄ω� < 2μ approaches an asymptotic finite
value due to the presence of a nonlinear transverse current
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FIG. 4. Plot of the different components of the (a) real and (b) imaginary parts of the nonlinear susceptibility as a function of the bias
potential at h̄ω = 0.2 eV. Here we set the parameters as μ = 0.1 eV, δ = −0.25 eV, vx = 0.1 eVÅ, vy = 0.3 eVÅ, and B = 1 eVÅ2.

component. At low excitation energy h̄ω� � 2μ, the real part
of the nonlinear response function goes to zero, which implies
a vanishing helicity since ax,y are purely real valued.

At h̄ω� > 2μ, both the real and imaginary parts of the
second-order response are finite, as shown Fig. 3, because the

interband transitions lead to a nonvanishing helicity. This is
a signature of the conversion of the linearly polarized light
into the right-handed polarization with double frequency. As
the energy approaches two times the value of the chemical
potential, the system shows maximum positive helicity. At ex-

FIG. 5. (a) Faraday rotation angle and (b) helicity as a function of scaled incident energy at distinct values of U , but fixed μ = 0.1 eV and
δ = −0.25 eV. (c) and (d) The same, but with the bias potential U at an incident energy twice the chemical potential for two different values
of the chemical potential and fixed δ = −0.25 eV, B = 1 eV Å2, vx = 0.1 eV Å, vy = 0.3 eV Å, and polarization angle φ = π/6.

235132-6



SECOND HARMONIC HELICITY AND FARADAY ROTATION … PHYSICAL REVIEW B 105, 235132 (2022)

treme higher energies, the second-order conductivity changes
monotonically by h̄ω, which ultimately yields a saturation be-
havior in the Faraday angle and the helicity in the high-energy
regime. In addition to the energy variation of the quantities,
we also observe that the increase in the bias potential displaces
the overall behavior of the polarization quantities towards the
higher-energy values due to the significant variations in the
band structure of 1T ′-WTe2, as discussed earlier in the case
of second-order response.

To elaborate on the bias potential effect, we show the
results for the Faraday angle and helicity of 1T ′-WTe2 at
one-photon resonance frequency h̄ω = 2μ in Figs. 5(c) and
5(d), which corresponds to the maximum light conversion
to the right-handed state of the polarization. For a given
chemical potential and one-photon resonance condition for
the frequency, we can notice a sudden jump from vanishing
helicity to a finite value at 
− = U − vxQ = 2μ for U > 0.
A further decrease of the bias potential by the vertical electric
field leads to another jump to a larger value of the helicity
at 
− = U − vxQ = μ. For a wide range around small U the
helicity is almost full, h ∼ 1. The corresponding kinks are also
visible in the Faraday rotation angle plot versus the bias poten-
tial. By moving the Fermi level within the conduction band to
higher energy, the number of available states for conduction
increases. This ultimately shifts the helicity jump locations
to higher values μ + vxQ and 2μ + vxQ. Since the interband
transitions are not allowed at |U | > 2μ for h̄ω = 2μ, the
helicity vanishes for large bias potential, as shown in Fig. 5(d).
Furthermore, the behavior of the Faraday rotation angle and
helicity remain symmetrical on interchanging the sign of the
bias potential.

Finally, we refer to the experimental setup [26] for the dual-
gated device of the encapsulated single-layer WTe2 between
thin layers of hexagonal boron nitride (hBN) that demonstrate
the tuning potential of an external vertical electric field. The
corresponding electrical gating results in the net displace-
ment electrical field (or bias potential) between the top and
bottom atomic layers which breaks the inversion symmetry.
The bias potential is determined by the relation U ≈ eεEzd ,
where ε is the dielectric constant of hBN, Ez is the external
vertical electric field, and d is the separation between the
top and bottom atomic layers of 1T ′-WTe2. By setting Ez ≈
0.1V/nm, ε ≈ 3, and d ≈ 0.31 nm [93,94], the above formula
implies U ∼ 0.1 eV, where we have theoretically observed
the maximum susceptibility and the highest second harmonic
helicity.

IV. SUMMARY

To summarize, we studied the Faraday rotation angle and
helicity for the second harmonic radiation in an inversion sym-
metry broken, distorted, and gated 2D single-layer 1T ′-WTe2.
To compute the second harmonic helicity, we first calculate
second-order conductivity within a diagrammatic framework.
We found that the linearly polarized light shows maximum
conversion into a second harmonic signal with right- or left-
handed helicity on propagating through the system when the
incident energy is in resonance with the interband transi-
tion edges. We identified that the linear-to-circular conversion
is pronounced only within the window of the two-photon
transition edge due to the encapsulated features of the band
structure of the system. Our results pave the way for future
helicity spectroscopy experiments which may help us to probe
hidden topology in the nonlinear spectroscopy.
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APPENDIX: DERIVATION OF THE FARADAY ROTATION
ANGLE AND HELICITY

Consider a linearly polarized incident beam of light strik-
ing at the 2D material interface z = 0 in the xy plane which is
defined as

E = ε̂(φ)E0ei(q·r−ωt ) + c.c., (A1)

where the polarization unit vector is ε̂(φ) = x̂ cos φ + ŷ sin φ,
q is the photon wave vector, φ is the polarization angle in the
x̂ direction, ω is the frequency of the incoming beam, E0 is the
amplitude of the beam, and t refers to time. By definition, the
second harmonic current reads

J (2)
a (2ω) = σ

(2)
abc(2ω; ω,ω)Eb(ω)Ec(ω). (A2)

In terms of the longitudinal and transverse components, the
second-order current can be decomposed as follows:

J(2) = J (2)
L ε̂(φ) + J (2)

T t̂(φ). (A3)

Note that the transverse unit vector t̂(φ) = ẑ × ε̂(φ) =
ŷ cos φ − x̂ sin φ. We define the nonlinear conductivity asso-
ciated with the longitudinal and transverse directions:

σ
(2)
L = J (2)

L /E2
0 = ax cos φ + ay sin φ, σ

(2)
T = J (2)

T /E2
0 = −ax sin φ + ay cos φ. (A4)

Here the coefficients ax and ay can be calculated by writing ax = |ax|eiδx and ay = |ay|eiδy . From Eq. (A4), we have

ax = σ
(2)
L cos φ − σ

(2)
T sin φ = ∣∣σ (2)

L

∣∣eiδL cos φ − ∣∣σ (2)
T

∣∣eiδT sin φ, (A5)

ay = σ
(2)
L sin φ + σ

(2)
T cos φ = ∣∣σ (2)

L

∣∣eiδL sin φ + ∣∣σ (2)
T

∣∣eiδT cos φ. (A6)

Straightforward algebraic calculation yields the norm of ax and ay as

|ax| =
√∣∣σ (2)

L

∣∣2
cos2 φ + ∣∣σ (2)

T

∣∣2
sin2 φ − ∣∣σ (2)

L

∣∣∣∣σ (2)
T

∣∣ cos(δ) sin(2φ), (A7)
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|ay| =
√∣∣σ (2)

L

∣∣2
sin2 φ + ∣∣σ (2)

T |2 cos2 φ + ∣∣σ (2)
L

∣∣∣∣σ (2)
T

∣∣ cos(δ) sin(2φ). (A8)

Similarly, the phase difference is given by

tan(δ0) = 2
∣∣σ (2)

T

∣∣∣∣σ (2)
L

∣∣ sin(δ)

2
∣∣σ (2)

T

∣∣∣∣σ (2)
L

∣∣ cos(δ) cos 2φ + (∣∣σ (2)
T

∣∣2 − ∣∣σ (2)
L

∣∣2)
sin 2φ

, (A9)

where δ0 = δy − δx and δ = δL − δT. Stokes parameters for
the monochromatic light consist of four scalar values related
to the polarization angles [89–91],

S0 = |ax|2 + |ay|2,
S1 = |ax|2 − |ay|2 = S0 cos(2χ ) cos(2ψ ),

(A10)
S2 = 2|ax||ay| cos δ0 = S0 cos(2χ ) sin(2ψ ),

S3 = 2|ax||ay| sin δ0 = S0 sin(2χ ).

Here S0 represents the irradiance of the light beam, S1 denotes
the dominant character of the horizontal and vertical compo-
nents based on the sign, S2 refers to the orientation of the
ellipse, S3 corresponds to the handedness of the polarization
state, ψ is the angle of rotation made by polarized light with
respect to the x axis or the original semimajor axis, and χ

is the ellipticity, which defines the angular amount of ellipse
from the circular shape. Similarly, in the circular basis (l̂, r̂)
we can define the following parameters:

S0 = |al |2 + |ar |2, S1 = 2Re(a∗
l ar ),

S2 = −2Im(a∗
l ar ), S3 = |al |2 − |ar |2. (A11)

Now, on dividing S2 by S1, the Faraday rotation angle can be
obtained as

tan(2ψ ) = S2

S1
= 2|ax||ay| cos δ0

|ax|2 − |ay|2 . (A12)

Similarly, the ellipticity can be calculated using the relation

tan(2χ ) = S3√
S2

1 + S2
2

= tan δ0 sin(2ψ ). (A13)

The helicity, which is the ratio of the handedness of the po-
larization state and the irradiance of the light beam, is defined
as

h = |al |2 − |ar |2
|al |2 + |ar |2 = S3

S0
. (A14)

Using the relation for the ellipticity, the helicity becomes

h = sin(2χ ). (A15)
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