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Near-equilibrium approach to transport in complex Sachdev-Ye-Kitaev models
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We study the nonequilibrium dynamics of a one-dimensional complex Sachdev-Ye-Kitaev chain by directly
solving for the steady state Green’s functions in terms of small perturbations around their equilibrium values.
The model exhibits non-Fermi-liquid behavior without quasiparticles and features diffusive propagation of both
energy and charge. We explore the thermoelectric transport properties of this system by imposing uniform
temperature and chemical potential gradients. We then expand the conserved charges and their associated
currents to leading order in these gradients, which we can compute numerically and analytically for different
parameter regimes. This allows us to extract the full temperature and chemical potential dependence of the
transport coefficients. In particular, we uncover that the diffusivity matrix takes on a simple form in various
limits and leads to simplified Einstein relations. At low temperatures, we also recover a previously known result
for the Wiedemann-Franz ratio. Furthermore, we establish a relationship between diffusion and quantum chaos
by showing that the diffusivity eigenvalues are upper bounded by the chaos propagation rate at all temperatures.
Our work showcases an important example of an analytically tractable calculation of transport properties in a
strongly interacting quantum system and reveals a more general purpose method for addressing strongly coupled
transport.
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I. INTRODUCTION

The study of quantum systems out of equilibrium can shed
light on many outstanding questions regarding thermaliza-
tion, transport, and quantum many-body chaos in condensed
matter theories. In addition to these conceptual problems,
there are many practical questions motivated by recent exper-
imental advances in ultracold atoms and solid state systems,
which present new avenues for investigating the nonequilib-
rium dynamics of many-body systems. In particular, quantum
transport has garnered a lot of attention recently in an attempt
to uncover new features of the dynamical processes governing
the behavior of strongly interacting systems out of equi-
librium. Despite numerous efforts, practical calculations of
transport coefficients in quantum many-body systems remain
challenging from both a theoretical and technical standpoint
[1], especially at low temperatures.

One-dimensional models have emerged as prototypical ex-
amples for studying transport phenomena, partly due to their
computational tractability. They usually consist of interacting
particles or spins on a lattice that are driven away from equi-
librium by certain external biases. The system then relaxes to a
steady state dictated by its microscopic dynamics, which typ-
ically involves the transport of conserved quantities according
to local conservation laws [2,3]. These conserved charges and
their associated currents are the quantities of interest.

*czanoci@mit.edu
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A common implementation of this idea involves connect-
ing the system to baths that drive it toward a desired steady
state, where many transport properties are easily available
[1,4,5]. However, reaching this nonequilibrium steady state
(NESS) in the hydrodynamic limit can be practically challeng-
ing [6], since most numerical techniques are usually limited to
small systems and short evolution times. If we could bypass
simulating the open-system nonequilibrium dynamics entirely
and instead access the emergent NESS directly, we would be
able to immediately find all the transport properties of the
system.

For a general class of models, we have previously shown
that the local Green’s functions in NESS are only slightly
perturbed from their equilibrium values in the case of weak
driving [7]. This allowed us to find these nonequilibrium
corrections explicitly in terms of the equilibrium Green’s
functions, without having to solve for the open-system dy-
namics. Our method is equivalent to a first-order expansion in
the local gradients, and thus falls under the umbrella of linear
response theory. In this approximation, the temperature and
chemical potential differences across the system are assumed
to be small compared to their average values. Conveniently,
most experimental setups studying transport in many-body
systems also operate in the linear-response regime.

The class of models in question consists of lattices built
from the Sachdev-Ye-Kitaev (SYK) model [8–19] describing
fermions with random all-to-all q-body interactions. In this
paper, we will focus specifically on the complex fermion
version of SYK [8–12,18–24], which has an additional con-
served global U (1) charge. This model displays a multitude of
remarkable properties, ranging from an emergent approximate
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conformal symmetry at low temperatures [12–14] to maximal
many-body chaos [25]. In fact, the SYK model is holo-
graphically dual to extremal charged black holes with AdS2

horizons [12–15,26–30], and has a residual entropy directly
connected to the Bekenstein-Hawking entropy of these black
holes [12,26,27]. The model and its many variations [31–37]
belong to a class of systems realizing holographic quantum
matter without quasiparticles, and thus represent a valuable
platform for studying non-Fermi-liquid behavior [10–12,19].
Given the interesting physical properties of the SYK family
of models, several experimental implementations have been
recently proposed [38–49].

The nonequilibrium dynamics of SYK models has been
previously studied through various quench protocols [50–54]
or through couplings to external baths [7,55–60] and Lindblad
operators [61,62]. In particular, several questions pertaining
to transport and chaos in higher-dimensional lattices of cou-
pled SYK clusters have been addressed [7,21,31–37]. These
include many indicative properties of non-Fermi liquids, such
as diffusive propagation of energy [21,31,33] and resistivity
that scales linearly with temperature [33,36]. Moreover, it
was shown that the same time-reparametrization field is re-
sponsible for the propagation of both low-energy modes and
quantum chaos [21,31], thus leading to a connection between
energy diffusion and the butterfly velocity [63–73].

Nonetheless, the problem of characterizing transport for
arbitrary model parameters remains mostly unsolved. Many
of the previous approaches relied on the large-q limit or the
low-temperature Schwarzian effective action to describe the
energy and charge fluctuations [31,32,68,70]. These methods
have a limited range of applicability and often do not lead to
explicit solutions for the transport coefficients. In this paper,
we propose a more general approach based on the expansion
of the SYK Green’s functions in the near-equilibrium regime,
in the presence of constant temperature and chemical potential
gradients. This allows us to compute the charge and energy
currents throughout an SYK chain, and hence determine the
associated diffusivities and conductivities. This method has
the immediate advantage of delivering numerical results for
any values of temperature, chemical potential, and q. Addi-
tionally, we obtain closed-form solutions in the limits of large
q and q = 2.

This work represents a natural extension of our previous
analysis of energy diffusion in Majorana SYK models [7].
Since complex fermions feature both charge and energy con-
servation, we were able to fully characterize the combined
thermoelectric response of a non-Fermi liquid and expose
some of its most fascinating aspects. First, we studied the
interplay of transport with various thermodynamic quantities
and the physics of phase transitions. Second, we showed that
the diffusivity matrix takes on a particular form at both high
and low temperatures, as well as in the large-q limit. Third,
we verified that the Wiedemann-Franz ratio approaches a
known constant at zero temperature [21]. Last, but not least,
we related the eigenvalues of the diffusivity matrix to an
upper bound set by chaos D± � v2

B/λL at all temperatures
and saturated in the conformal limit [7,21,31,70]. Our results
provide concrete values for the transport coefficients that can
be measured in the aforementioned experiments. But most im-
portantly, they suggest a promising path toward more general

FIG. 1. Schematic depiction of the infinite one-dimensional SYK
chain in nonequilibrium. Each site contains N fermions with intra-
cluster coupling J0 and intercluster coupling J1. The system is subject
to uniform biases ∇μ and ∇β. In the steady state, homogeneous
charge and energy currents jQ,E flow through the chain. The local
Green’s functions are perturbed from their equilibrium values G(t )
by the linear response contributions F (t ).

studies of out-of-equilibrium phenomena in strongly interact-
ing systems in which one directly accesses nonequilibrium
steady states of interest.

The rest of the paper is structured as follows. In Sec. II we
introduce our one-dimensional SYK model. Subsequently, in
Sec. III we describe in detail our approach to studying the
equilibrium, nonequilibrium, and chaotic properties of this
model. In Sec. IV we review the phase diagram of the complex
SYK model and present our main results for the transport
coefficients as a function of temperature and chemical po-
tential. We also discuss a chaos bound on diffusivities in that
section. We then provide a brief discussion of our findings and
comment on possible extensions in Sec. V. The details of our
calculations are available in the appendices.

II. MODEL

The building block of our model is a complex SYK clus-
ter [8–12,18–24] with random all-to-all q-body interactions
among N fermions in (0 + 1) dimensions. In order to study
transport in this model, we generalize it to an infinitely long
one-dimensional chain (see Fig. 1), where each site x is an
SYK cluster characterized by the Hamiltonian

Hx
0 =

∑
{i},{ j}

J (0)
i1...i q

2
j1... j q

2

(
cx

i1

)† · · · (cx
i q

2

)†
cx

j1 · · · cx
j q

2

, (1)

where q is an even integer and {i} denotes the restricted
sum over 1 � i1 < · · · < i q

2
� N . The neighboring sites of the

chain interact via a similar Hamiltonian

Hx,x+1
1 =

∑
{i},{ j}

J (1)
i1... j q

2

(
cx

i1

)† · · · (cx
i q

2

)†
cx+1

j1
· · · cx+1

j q
2

+ H.c.

(2)

The fermions obey the standard anticommutation relations
{(cx

i )†, cx′
j } = δi jδxx′ . Note that we choose the interaction term

to consist of the same number of fermion operators from each
site and one can consider adding more general interactions
that may change the transport properties of the model [21].
The SYK couplings are complex, independent Gaussian ran-
dom variables with zero mean obeying

J (0,1)
i1...i q

2
j1... j q

2

= (J (0,1)
j1... j q

2
i1...i q

2

)∗
, (3)

〈(
J (0,1)

i1...i q
2

j1... j q
2

)2〉 = J2
0,1(q/2)!(q/2 − 1)!

Nq−1
. (4)
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The numerical coefficients are chosen to cancel additional
factors in the path integral, and the powers of N ensure the
correct scaling of extensive thermodynamic variables.

For future convenience, we write the total system Hamilto-
nian in terms of bond operators Hx,x+1 acting on consecutive
sites (x, x + 1),

H =
∑

x

Hx,x+1 =
∑

x

(
1

2
Hx

0 + 1

2
Hx+1

0 + Hx,x+1
1

)
. (5)

This Hamiltonian has a globally conserved U (1) charge
density Q =∑x Qx, where the local charge density Qx ∈
(−1/2, 1/2) is defined as in Ref. [21],

Qx = 1

N

∑
i

〈(
cx

i

)†
cx

i

〉− 1

2
. (6)

The only other conserved quantity is the energy, and it is
precisely the interplay between the transport properties of
these two conserved charges that we aim to study.

We should mention that similar higher-dimensional SYK
models have been previously studied in the context of
transport [7,21,31–37,68], quantum chaos [59,69,74–76], and
quantum phase transitions [32,77–80]. Most importantly, a
generalization of our setup to arbitrary graphs coupled to
thermal reservoirs should be straightforward [7].

III. METHODS

In this section, we derive the equations governing the
equilibrium and nonequilibrium dynamics of our model, re-

view the definitions of various thermodynamic, transport, and
chaos-related quantities that we report later in the paper, and
show how these observables simplify in the limit of small and
large q.

A. Equilibrium

We begin with the equilibrium description of our model,
which is most easily done in imaginary time. The SYK chain
maintains all the exactly solvable properties of a single SYK
cluster in the large-N limit [12,18,21,33]. We are interested
in the grand-canonical partition function Z = Tr e−β(H−μQ),
where β = 1/T is the inverse temperature and μ is the chem-
ical potential that fixes the value of Q. In equilibrium, these
parameters are constant (site-independent) throughout the sys-
tem. Due to the self-averaging property of this model at large
N [12], it is sufficient to consider the replica-diagonal partition
function with independent functional integrals over fermion
bilinear operators Z = ∫ [dGx][d�x]e−S , for which the Eu-
clidean effective action, after integrating out the fermions,
becomes

S =
∑

x

(Sx,x+1 + Sx ), (7)

Sx,x+1 = −2NJ2
1

q

∫
dτ1dτ2[−Gx(τ1, τ2)Gx+1(τ2, τ1)]

q
2 , (8)

Sx = −N log det[(∂τ − μ)δ(τ1 − τ2) + �x(τ1, τ2)] − N
∫

dτ1dτ2

(
�x(τ1, τ2)Gx(τ2, τ1) + J2

0

q
[−Gx(τ1, τ2)Gx(τ2, τ1)]

q
2

)
. (9)

For each site x, we defined the Euclidean time-ordered
fermion two-point function

Gx(τ1, τ2) = − 1

N

N∑
i=1

〈
T cx

i (τ1)cx
i (τ2)†

〉
, (10)

and the fermion self-energy �x(τ1, τ2) as the associated La-
grange multiplier. In the large-N limit, the saddle point of this
effective action produces the Schwinger-Dyson (SD) equa-
tions of motion

Gx(iωn) = 1

iωn + μ − �x(iωn)
, (11)

�x(τ ) = (−1)
q
2 −1Gx(τ )

q
2
(
J2

0 Gx(−τ )
q
2 −1

+ J2
1 Gx−1(−τ )

q
2 −1 + J2

1 Gx+1(−τ )
q
2 −1), (12)

where ωn = (2n + 1)π/β is a Matsubara frequency and we
assumed time-translation invariance τ = τ1 − τ2 in equilib-
rium. At half filling (μ = 0), the Green’s function and all
the other quantities derived from it are identical to those of
a Majorana SYK model. The only difference is that complex
fermions have twice as many degrees of freedom, leading to a
trivial doubling of all the extensive observables.

As we have previously shown [7], for a uniform chain
in equilibrium, the Green’s functions take on the site-
independent value G(τ ) and the effective on-site coupling

becomes J =
√

J2
0 + 2J2

1 . In other words, the SD equa-
tions for an interacting SYK cluster have the exact same form
as those of an isolated (0 + 1)-dimensional SYK model with
coupling J:

G(iωn) = 1

iωn + μ − �(iωn)
,

�(τ ) = J2G(τ )
q
2 [−G(−τ )]

q
2 −1. (13)

This system of SD equations can be solved numerically using
the method described in Appendix A.

B. Thermodynamics

Once we obtain the solutions of the equilibrium SD equa-
tions, we can compute any thermodynamic variable. Our goal
here is twofold. First, we would like to derive expressions for
the common thermodynamic functions, such as entropy and
heat capacity, that would help us identify a phase transition in
the complex SYK model and assess its impact on the trans-
port coefficients and chaos [23,53,81–84]. Second, we need

235131-3



CRISTIAN ZANOCI AND BRIAN SWINGLE PHYSICAL REVIEW B 105, 235131 (2022)

to find the susceptibility matrix, which relates diffusivities
and conductivities [63,85–87], as described in more detail in
Sec. III D.

Since our system is homogeneous, we can focus on the
thermodynamic properties of a single SYK node with inter-
action strength J . In what follows, all the extensive quantities
are replaced by their densities per particle (i.e., divided by N).
As is the case for most thermodynamic problems, our starting
point is the grand-canonical potential 
. In the large-N limit,

 is approximated by evaluating the action on the saddle-
point equations of motion


 = −T log Z

= T

[∑
n

log

(
G(iωn)

G0(iωn)

)
− q − 1

q

∑
n

×�(iωn)G(iωn) − log[2 cosh(μ/2T )]

]
, (14)

where G0(iωn) = (iωn + μ)−1 is the free-fermion Green’s
function. Here we have regularized the logarithm by adding
and subtracting the free-fermion contribution [18,21,33], and
evaluated the last term using the Matsubara frequency sum-
mation [85–87]. The free energy is given by a Legendre
transform F = 
 + μQ. Recall that the charge and chemical
potential can be obtain from their respective ensembles at
fixed temperature,

Q = −
(

∂


∂μ

)
T

= 1

2
[G(0+) − G(β−)],

μ =
(

∂F

∂Q

)
T

= −∂τ G(0+) − ∂τ G(β−), (15)

where the second equalities in terms of Green’s function are
derived in Refs. [12,18]. Note that our definition of the grand-
canonical potential in Eq. (14) gives us exactly the charge
density introduced in Eq. (6).

The entropy is computed as the first derivative of the po-
tential, using the standard thermodynamic identities

S = −
(

∂


∂T

)
μ

= −
(

∂F

∂T

)
Q

. (16)

A striking feature of the SYK model is its nonzero residual
entropy S0 in the limit of zero temperature, which is not due
to an exponentially large ground state degeneracy, but rather
because of the exponentially small level spacing all the way
down to the ground state [8,9,11,12]. We will use this entropy
to distinguish between an SYK-like ground state and a trivial
one in Sec. IV A, and will also relate it to the thermopower in
Appendix D.

The static susceptibility matrix χ relates the change in
macroscopic observables due to the variation of the underly-
ing microscopic quantities,

( ∇Q
∇E − μ∇Q

)
=
(

χ11 χ12

χ21 χ22

)(∇μ

∇T

)
, (17)

and can be cast in terms of the second derivative of the grand
potential [85–87],

χ =
( −( ∂2


∂μ2

)
T −( ∂2


∂μ∂T

)
μ,T

−T
(

∂2

∂T ∂μ

)
T,μ

−T
(

∂2

∂T 2

)
μ

)
. (18)

By virtue of equality of mixed partial derivatives, the off-
diagonal elements are always related by χ21 = T χ12. The
diagonal elements can be interpreted as the charge compress-
ibility,

K ≡ χ11 = −
(

∂2


∂μ2

)
T

=
(

∂Q

∂μ

)
T

, (19)

and heat capacity at constant chemical potential,

Cμ ≡ χ22 = −T

(
∂2


∂T 2

)
μ

= T

(
∂S

∂T

)
μ

. (20)

The heat capacity at fixed charge can be related to the other
entries in the susceptibility matrix via the thermodynamic
identity [63]

CQ = T

(
∂S

∂T

)
Q

= Cμ − T χ2
12

K
. (21)

Finally, the linear-in-T coefficient of the specific heat is sim-
ply defined as γ = CQ/T .

Both K and γ play an important role in transport. They
appear as the coefficients in the low-temperature Schwarzian
effective action used to describe charge and energy fluctua-
tions [21]. We will also show that in this conformal limit, the
ratio of energy to charge diffusivities is governed by K/γ .

C. Nonequilibrium

Although the Euclidean time formulation works well for
thermodynamics, it is not suitable for nonequilibrium dynam-
ics, due to the problems arising from analytic continuation to
zero frequency. Therefore, the nonequilibrium evolution of a
quantum many-body system is better described in real time us-
ing the Schwinger-Keldysh formalism [88,89]. Following the
derivation in Refs. [33,58], we can write down the terms in a
Lorentzian effective action after integrating out the fermions,
just as we did in imaginary time,

Sx,x+1 = 2iNJ2
1

q

∫
C

dt1dt2Gx(t2, t1)
q
2 Gx+1(t1, t2)

q
2 , (22)

Sx = −iN log det[∂tδC (t1, t2) + i�x(t1, t2)] + iN

×
∫
C

dt1dt2

(
J2

0

q
Gx(t2, t1)

q
2 Gx(t1, t2)

q
2

−�x(t1, t2)Gx(t2, t1)

)
, (23)

where C denotes the closed-time Keldysh contour consisting
of a positive and a negative branch [88,89]. Recall that in the
Schwinger-Keldysh formalism, the contour-ordered Green’s
functions Gx(t1, t2) are actually 2 × 2 matrices, where each
entry corresponds to a placement of the time arguments on
either branch of the contour. The off-diagonal entries of this
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matrix are the well-known greater and lesser Green’s func-
tions

G>
x (t1, t2) ≡ Gx(t−

1 , t+
2 ) = − i

N

N∑
i=1

〈ci(t
−
1 )c†

i (t+
2 )〉, (24)

G<
x (t1, t2) ≡ Gx(t+

1 , t−
2 ) = i

N

N∑
i=1

〈c†
i (t−

2 )ci(t
+
1 )〉, (25)

where t±
i live on the positive and negative branch, re-

spectively. The contour-ordered Green’s functions above are
related to the more conventional retarded, advanced, and
Keldysh Green’s functions via a Keldysh rotation [88,89]

GR
x (t1, t2) = (t1 − t2)[G>

x (t1, t2) − G<
x (t1, t2)], (26)

GA
x (t1, t2) = (t2 − t1)[G<

x (t1, t2) − G>
x (t1, t2)], (27)

GK
x (t1, t2) = G>

x (t1, t2) + G<
x (t1, t2). (28)

The corresponding self-energies are defined in a similar
manner.

For the purposes of our analysis, we will only consider
states in thermal equilibrium or steady states weakly perturbed
from equilibrium [7]. In both cases, the fermion Green’s func-
tions become time-translation invariant and satisfy the identity
[90]

G≷
x (t1, t2) = G≷

x (t = t1 − t2) = −G≷
x (−t )∗. (29)

Furthermore, their values at t = 0 are related to the local
charge and chemical potential via

Qx = −iG>
x (0) + 1

2 = −iG<
x (0) − 1

2 ,

μx = ∂t G
>
x (0) − ∂t G

<
x (0), (30)

which follow from an analytic continuation of Eq. (15) to real
time.

To obtain the Schwinger-Dyson equations governing the
real-time dynamics of the system, we can look for large-N
saddle-point solutions of the Lorentzian action [33,58]:

GR
x (ω) = 1

iω − �R
x (ω)

,

�≷
x (t ) = G≷

x (t )
q
2
(
J2

0 G≶
x (−t )

q
2 −1

+ J2
1 G≶

x−1(−t )
q
2 −1 + J2

1 G≶
x+1(−t )

q
2 −1
)
. (31)

Note that these equations are only valid for the time-
translation-invariant case. For more general nonequilibrium
setups, one has to derive the full Kadanoff-Baym equa-
tions and solve them numerically [7].

We emphasize that the real-time action does not involve a
chemical potential, since μx is a property of the state, rather
than the Hamiltonian. Oftentimes this issue is addressed by
explicitly adding a mass term −μx

∑N
i=1(cx

i )†cx
i to the Hamil-

tonian [12,33,57,58,60]. This works in imaginary time, where
it is simply equivalent to working in the grand-canonical en-
semble. However, the chemical potential and mass term are
not equivalent in real time [83], with the Green’s functions
being typically off by a factor of eiμxt , which can lead to
incorrect dynamics and transport properties.

Similarly, Eq. (31) does not have an explicit dependence on
chemical potential or temperature, in contrast to its Euclidean-
time counterpart in Eq. (12). Hence there are infinitely many
distinct saddle-point solutions of the real-time SD equation to
which we can converge, each corresponding to different μx

and βx. To circumvent this problem, we use the fluctuation-
dissipation theorem (FDT) [85–87] to set the values of these
parameters,

iGK
x (ω)

Ax(ω)
= tanh

(
βx(ω − μx )

2

)
, (32)

where Ax(ω) = −2 Im GR
x (ω) is the spectral function and

GK
x (ω) is the Fourier transform of the Keldysh Green’s func-

tion. Fixing the local temperature and chemical potential in
this way is applicable to both the equilibrium and near-thermal
steady states under consideration [7]. The FDT, together with
Eq. (31), form a closed set of equations that can be solved
iteratively to find a unique solution (see Appendix A).

So far we have assumed that each cluster has a well-defined
chemical potential μx and inverse temperature βx. This is in-
deed true for a uniform chain in equilibrium with μx = μ and
βx = β. Similarly to the imaginary-time version, the real-time
site-independent solution G≷(t ) is the same as that of a single

SYK node with an effective coupling J =
√

J2
0 + 2J2

1 . We
have also shown that in the presence of a small bias throughout
the chain, the NESS Green’s functions at late times are only
slightly perturbed from their equilibrium values [7], as long
as we are still in the linear response regime. This bias can
be introduced by either directly coupling the system to baths
at different chemical potentials and temperatures [7,55–60],
or by introducing an effective coupling to the environment
through Lindblad operators [61,62]. As we will discuss in
detail in the next section, to extract the thermoelectric trans-
port coefficients, it is enough to impose a uniform chemical
potential or temperature gradient along the chain. Thus one
can define local parameters that are ever so slightly perturbed
from their equilibrium values,

μx = μ + x∇μ, βx = β + x∇β, (33)

with |∇μ| � μ and |∇β| � β. This allows us to write the
near-equilibrium Green’s functions in terms of an extra site-
dependent correction

G≷
x (t ) = G≷(t ) + xF≷

μ,β (t ), (34)

where |F≷
μ,β (t )| � |G≷(t )| are the nonequilibrium contribu-

tions proportional to the gradients

F≷
μ (t ) = dG≷(t )

dμ
∇μ,

F≷
β (t ) = dG≷(t )

dβ
∇β. (35)

The subscripts refer to whether the perturbation is due to
a chemical potential or a temperature gradient. To first
order, these contributions can be summed to characterize
the system’s response to any mixed thermoelectric bias.
Equation (34) is analogous to a gradient expansion in hydro-
dynamics. We see that to access the nonequilibrium transport
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physics in the linear response regime, it is sufficient to solve
the SD equations in real time at equilibrium.

D. Transport

Our model has charge and energy as the only two con-
served quantities. These are expressed in terms of the local
on-site charge density Qx and the on-bond energy den-
sity Ex,x+1 = 〈Hx,x+1〉 = (Ex

0 + Ex+1
0 )/2 + Ex,x+1

1 introduced
in Sec. II. The charge density can be computed from the
real-time Green’s functions using Eq. (30), while the energy
density has contributions from

Ex
0 = −2i

J2
0

q

∫ t

−∞
dt1
(
G>

x (t, t1)
q
2 G<

x (t1, t )
q
2 − H.c.

)
,

Ex,x+1
1 = −2i

J2
1

q

∫ t

−∞
dt1
(
G>

x (t, t1)
q
2 G<

x+1(t1, t )
q
2

+ G<
x (t1, t )

q
2 G>

x+1(t, t1)
q
2 − H.c.

)
. (36)

These conserved quantities have an associated charge cur-
rent density jQ

x = dQx/dt and energy current density jE
x =

dEx,x+1/dt , respectively. The formulas for the currents flow-
ing across a site x can be derived by combining the continuity

equation and Heisenberg’s equation of motion [2,3], resulting
in

jQ
x = i[Qx, Hx,x+1], (37)

jE
x = i[Hx−1,x, Hx,x+1]. (38)

Computing the expectation value of these commutators in
the Schwinger-Keldysh formalism is more involved and we
provide a derivation in Appendix B. Our general formulas for
the currents are given by Eqs. (B2) and (B4)–(B6).

In equilibrium, there are no currents flowing through the
system. To observe a finite current, we have to introduce
a small bias, accomplished, for instance, by connecting the
chain to reservoirs at its two ends [7]. In the long-time limit,
when the system reaches its steady state, the currents become
uniform throughout the chain jQ,E ≡ 〈 jQ,E

x 〉, as shown in
Fig. 1. In the linear response regime, the gradients are also
small and constant as in Eq. (33). Therefore, we can use
Eq. (34) to write all the quantities of interest in terms of the
equilibrium Green’s functions and to first order in nonequi-
librium corrections F≷

μ,β (t ). For example, the charge gradient
becomes

∇Q = −iF>
μ,β (0), (39)

while the energy gradient is given by

∇E = 2J2
∫ ∞

0
dt Im

[
[−G>(t )G<(t )∗]

q
2

(
F>

μ,β (t )

G>(t )
+ F<

μ,β (t )∗

G<(t )∗

)]
. (40)

Similarly, the charge current in Eq. (B2) becomes

jQ = qJ2

2

∫ ∞

0
dt Re

[
[−G>(t )G<(t )∗]

q
2

(
F>

μ,β (t )

G>(t )
− F<

μ,β (t )∗

G<(t )∗

)]
, (41)

and the energy current in Eqs. (B4)–(B6) simplifies to

jE = 1

2
J2

1 J2 Re( j++ + j+−), (42)

j++ = q
∫ ∞

0
dt
∫ ∞

t
dt ′[G>(t )G<(t )∗G>(t ′)G<(t ′)∗]

q
2 −1(G<(t ′ − t )∗[G<(t )∗F>

μ,β (t ′) − G>(t ′)F<
μ,β (t )∗]

− G>(t ′ − t )[G<(t ′)∗F>
μ,β (t ) − G>(t )F<

μ,β (t ′)∗]), (43)

j+− = −q
∫ ∞

0
dt
∫ ∞

t
dt ′[G>(t )∗G<(t )G>(t ′)G<(t ′)∗]

q
2 −1(G<(t ′ − t )∗[G>(t )∗F>

μ,β (t ′) − G>(t ′)F>
μ,β (t )∗]

− G>(t ′ − t )[G<(t ′)∗F<
μ,β (t ) − G<(t )F<

μ,β (t ′)∗]). (44)

Within linear response, the currents are related to the con-
jugate gradients via the conductivity matrix L,(

jQ

jE − μ jQ

)
= −

(
σ α

αT κ̄

)(∇μ

∇T

)
, (45)

where σ ≡ L11 is the electrical conductivity, α ≡ L12 is
the thermoelectric conductivity, and κ ≡ L22 − L12L21/L11 =
κ̄ − α2T/σ is the thermal conductivity [63,85–87,91]. The
off-diagonal elements are constrained by the Onsager recipro-
cal relation L21 = T L12. The quantity jE − μ jQ is referred to
as the heat current [63]. Equation (45) contains three unknown
transport coefficients. To solve it, we will consider two differ-

ent setups (see Fig. 1): one with ∇μ = constant and ∇T = 0
(or equivalently ∇β = 0), and the other with ∇μ = 0 and
∇T = constant. This will give us a system of equations from
which we can easily derive σ , α, and κ̄ (or κ). We will refer
to the nonequilibrium contribution in each scenario as F≷

μ (t )

and F≷
β (t ), respectively [see Eq. (35)].

The SYK model is known to exhibit diffusive transport
[21]. The hydrodynamic relations defining the diffusivity ma-
trix D are given by

(
jQ

jE − μ jQ

)
= −

(
D11 D12

D21 D22

)( ∇Q
∇E − μ∇Q

)
, (46)
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where D11 is the charge diffusion constant, D22 is the thermal
(not energy) diffusion constant, and the off-diagonal elements
describe mixed transport [63]. The diffusivity matrix can be
diagonalized, with eigenvalues D± describing the coupled
diffusion of charge and heat. It is these modes that govern the
dynamics of charge and energy fluctuations in the system and
are thus more physically relevant than the individual entries in
D [21,63]. In particular, in order for the fluctuations to decay,
we must have that D± � 0, while the matrix elements Di j can
be negative.

Finally, combining Eqs. (17), (45), and (46) yields the gen-
eralized Einstein relation L = Dχ . In the absence of coupling
between the charge and energy carriers (e.g., at μ = 0), we
have χ12 = α = 0 and recover the standard Einstein relations
for charge σ = D11K and energy κ = D22Cμ transport [63].
However, more generally, one has the coupled relations given
by the full matrix equation.

E. Chaos

The non-Fermi-liquid phase described by the SYK model
is known to be highly chaotic [13,14] and even saturates
a bound on chaos at low temperatures [25]. In such max-
imally chaotic theories, energy dynamics and diffusion are
fundamentally related to chaos [72,73]. Moreover, the thermal
diffusion constant of SYK models in the conformal limit is
directly controlled by the butterfly velocity [7,21,31,70], thus
realizing a conjectured bound on diffusion in incoherent met-
als [63–73]. In this section, we review the many-body chaos
properties of the SYK model and will later show that chaos
provides an upper bound on diffusivity in SYK chains at any
temperature and chemical potential. We will mostly follow
our analysis of the Majorana SYK model [7].

We begin by introducing the out-of-time-order correlation
function (OTOC), which has been widely used as a measure
of chaos in quantum systems [14,25,92–95]. The regularized
OTOC in real time is defined as

C(x, t1, t2) = 1

N2

N∑
i, j=1

Tr
[
ycx

j (t1)†yc0
i (0)†ycx

j (t2)yc0
i (0)

]
,

(47)
where y = e−βH/4/Z1/4 evenly spaces the fermionic fields
along the thermal circle [37]. To leading order, the OTOC can
be written as

C(x, t1, t2) = Fd − F (x, t1, t2)

N
, (48)

where Fd is just a constant corresponding to the disconnected
correlator and F is the first-order contribution stemming from
the contraction of c0

i with cx
j [96]. For a chaotic system with

a large hierarchy of timescales between thermalization and
scrambling, we expect F to scale exponentially as eλLt , where
t1 = t2 = t is in the Lyapunov regime β � t � β ln N [96].
The Lyapunov exponent λL determines the rate of growth
of an operator under Heisenberg evolution and serves as
a quantum mechanical measure for information scrambling
in phase space [94]. For an isolated SYK cluster, F (t1, t2)
is determined by summing over a set of ladder diagrams
[14,22,37,75,77,83,97], resulting in the self-consistency
equation

F (t1, t2) =
∫ ∞

−∞
dt3dt4KR(t1, t2, t3, t4)F (t3, t4), (49)

where KR is the retarded kernel

KR(t1, t2, t3, t4) = (q − 1)J2GR(t1 − t3)GA(t4 − t2)GW (t3 − t4)
q
2 −1GW (t4 − t3)

q
2 −1

= (q − 1)J2GR(t1 − t3)GR(t2 − t4)∗|GW (t3 − t4)|q−2. (50)

Here GW is the Wightman Green’s function and we used
the symmetry properties GA(−t ) = GR(t )∗ and GW (−t ) =
GW (t )∗ to simplify the expression. For fermionic systems,
the Wightman propagator is related to the spectral function
in frequency space via [37]

GW (ω) = A(ω)

2 cosh(βω/2)
. (51)

To determine the Lyapunov exponent, we follow the pre-
scription in Ref. [98], which works for both Majorana and
complex SYK. We define a variant of the kernel with a pa-
rameter α < 0:

KR
α (t, t ′) =

∫ ∞

−∞
ds eαsKR

(
s + t

2
, s − t

2
,

t ′

2
,− t ′

2

)
. (52)

This operator can be cast in matrix form, with its largest
eigenvalue kR(α) depending on α. The Lyapunov exponent
is then determined by the equation kR(−λL ) = 1. This con-
dition is equivalent to F being an eigenvector of the kernel
KR with eigenvalue 1. The Lyapunov exponent of a (0 + 1)-

dimensional SYK model is known to saturate the bound λL �
2π/β at low temperatures [13,14,25].

For spatially extended systems, such as our one-
dimensional chain, the operators can also grow in space.
Chaos propagation in a translation-invariant system is de-
scribed by the Fourier transform of the momentum-space
OTOC,

F (x, t ) ∼
∫ ∞

−∞

d p

2π

eλL (p)t+ipx

cos[λL(p)β/4]
, (53)

where λL(p) is the momentum-dependent Lyapunov exponent
[37]. In the hydrodynamic limit, this integral can be evalu-
ated using a saddle-point approximation. Depending on the
parameters of our model, the integral can either pick up a
contribution solely from the saddle point ps, or from both
the saddle point and the momentum-space pole p1, both of
which are located on the imaginary axis ps,1 = i|ps,1| [37,98].
In either case, the result can be written as

F (x, t ) ∼ eλL (ps,1 )(t−|x|/vB ), (54)
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where the butterfly velocity vB is defined as

vB =
{

λL (ps )
|ps| , if |ps| < |p1|,
2π

β|p1| , if |ps| > |p1|. (55)

Physically, the butterfly velocity vB defines a light cone that
bounds the speed of operator growth in space [93]. It can also
be viewed as a temperature-dependent extension of the Lieb-
Robinson velocity [99].

To compute the butterfly velocity, it is enough to find
the momenta ps,1 according to Ref. [98]. For a uniform
SYK chain, the retarded kernel in momentum space factor-

izes KR(p) = s(p)KR, where s(p) = 1 + qJ2
1

2(q−1)J2 [cos(p) − 1]

is the spatial kernel [31] and KR is the kernel for a single
cluster defined in Eq. (50). Therefore the eigenvalues of the
kernel also factorize kR(p, α) = s(p)kR(α). The momentum-
dependent Lyapunov exponent can be obtained by solving
the equation kR(p,−λL(p)) = 1. At p = 0, we recover our
previous formula for the Lyapunov exponent of a single clus-
ter. Generally, this equation has to be solved numerically by
repeatedly diagonalizing the kernel in Eq. (52) and using the
bisection method, although closed-form solutions are avail-
able in some limits (see Sec. III G). Once we have the entire
function λL(p), the location of the saddle point can then be
found by solving λL(ps) = psλ

′
L(ps), while p1 is the momen-

tum at which the Lyapunov exponent attains its maximum
value λL(p1) = 2π/β.

We can now use the newly introduced measures of chaos
to define a characteristic chaos diffusivity v2

B/λL, which is
known to be closely related to the thermal diffusion constant
in strange metals [7,21,31,63–73]. In fact, we will show that
for all systems under consideration, the chaos diffusivity pro-
vides an upper bound D± � v2

B/λL, just as in the Majorana
case [7].

F. q = 2 limit

Although the Green’s functions generally do not have a
closed-form representation, they simplify significantly in the
limits of small and large q, which we discuss next. We start
with the special case of q = 2 corresponding to free fermions,
where the system has a quasiparticle description [21] and the
Hamiltonian becomes integrable and nonchaotic [100,101].

The SD equations are quadratic and can be solved exactly
[50]. The spectral function in equilibrium is given by

A(ω) = 2

J

√
1 −

(
ω

2J

)2

for |ω| < 2J, (56)

and the Green’s functions can be obtained from the
fluctuation-dissipation theorem

G≷(ω) = ∓ iA(ω)

1 + e∓β(ω−μ)
, (57)

followed by an inverse Fourier transform

G≷(t ) = ∓ i

πJ

∫ 2J

−2J
dω

e−iωt

1 + e∓β(ω−μ)

√
1 −

(
ω

2J

)2

. (58)

Finally, we can derive the nonequilibrium contributions from
Eq. (35). It is straightforward to check that F<

μ,β (t ) = F>
μ,β (t )

and

Re[G<(t ) − G>(t )] = 0, (59)

Im[G<(t ) − G>(t )] = B1(2Jt )

Jt
, (60)

where B1 is the Bessel function of the first kind. With this in
mind, we arrive at the following simplified formulas for the
energy gradient and currents:

∇E = 2J
∫ ∞

0
dt

B1(2Jt )

t
Re F>

μ,β (t ), (61)

jQ = −J2
1

J

∫ ∞

0
dt

B1(2Jt )

t
Im F>

μ,β (t ), (62)

jE = −J2
1

∫ ∞

0
dt
∫ ∞

t
dt ′ B1(2Jt )

t

B1(2J (t ′−t ))
t ′−t

Re F>
μ,β (t ′).

(63)

The charge gradient is still given by Eq. (39). The equa-
tions above contain all the necessary information to calculate
the conductivities and diffusivities numerically at arbitrary μ

and β using the nonequilibrium setups described in Sec. III D.
Moreover, we were able to compute closed-form results for
these transport coefficients in the limit of zero and infinite
temperatures, as described in Appendix C.

G. Large-q limit

We now turn to the opposite limit of large q, where an
analytic approximation for the Green’s function at all temper-
atures is available [14,21,97,102]. To leading order in 1/q, the
Green’s functions for an SYK model in equilibrium can be
expanded as

G>(t ) = − i

eβμ + 1

(
1 + g(t )

q
+ · · ·

)
≈ − ieg(t )/q

eβμ + 1
, (64)

G<(t ) = i

e−βμ + 1

(
1 + g(t )∗

q
+ · · ·

)
≈ ieg(t )∗/q

e−βμ + 1
, (65)

where “...” denotes higher-order terms, and g(t ) is a function
of order 1 satisfying g(t )∗ = g(−t ) and g(0) = 0 [97]. With
this ansatz, the SD equations are equivalent to a differential
equation for g(t ),

−∂2g(t )

∂t2
= iq[�>(t ) + �<(t )∗] = 2J 2eg(t ), (66)

where J = J
√

q21−q cosh2−q(βμ/2) is the effective cou-
pling. Notice that the original theory has two independent
scales βJ and βμ, while the new differential equation only
depends on the combined βJ [97]. This holds even after
including higher-order terms in 1/q and seems to be an artifact
of this expansion [102]. The large-q limit is well defined only
when we adjust the original coupling J such that the rescaled
interaction J is kept finite as q → ∞. This implies that J
has to be a function of βμ, which makes the comparison
with the numerical results at finite q and constant J a bit
more complicated. A direct comparison is possible for μ = 0,
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where we recover some of our findings for Majorana fermions
[7].

The solution to Eq. (66) is of the form found in Ref. [14],

eg(t ) = cos2(πv/2)

cosh2
[

πv
β

( iβ
2 + t

)] , (67)

where v satisfies

βJ = πv

cos(πv/2)
. (68)

This gives us the full dependence of the Green’s functions on
μ and β. We find it convenient to write the derivatives F≷

μ,β as
follows,

F>
μ,β (t )

G>(t )
= fμ,β (t )

q
− hμ,β

1 + e−βμ
, (69)

F<
μ,β (t )

G<(t )
= fμ,β (t )∗

q
+ hμ,β

1 + eβμ
, (70)

where hμ = β∇μ, hβ = μ∇β, and fμ,β (t ) are nonequilib-
rium contributions to g(t ) in the presence of small gradients
(see Ref. [7] for the Majorana case),

fμ(t ) = dg(t )

dμ
∇μ,

fβ (t ) = dg(t )

dβ
∇β. (71)

Our nonequilibrium observables simplify drastically in terms
of these functions,

∇Q = hμ,β

4 cosh2(βμ/2)
, (72)

∇E = J 2

q2 cosh2(βμ/2)

∫ ∞

0
dt Im[eg(t )(2 fμ,β (t ) − qhμ,β tanh(βμ/2))], (73)

jQ = − J 2
1 hμ,β

4 cosh2(βμ/2)

∫ ∞

0
dt Re[eg(t )] = −J 2

1 hμ,β cos(πv/2)

4J cosh2(βμ/2)
, (74)

jE = 1

2
J 2

1 J 2 Re( j++ + j+−), (75)

j++ = i

q2 cosh2(βμ/2)

∫ ∞

0
dt
∫ ∞

t
dt ′eg(t )+g(t ′ )[ fμ,β (t ′) − fμ,β (t ) − qhμ,β tanh(βμ/2)], (76)

j+− = i

q2 cosh2(βμ/2)

∫ ∞

0
dt
∫ ∞

t
dt ′eg(t )∗+g(t ′ )[ fμ,β (t ′) − fμ,β (t )∗]. (77)

Notice that the charge gradient and current do not have any
dependence on fμ,β (t ) and we can already obtain closed-form
expressions for them. On the other hand, the energy gradient
and current require an explicit calculation of fμ,β (t ) for differ-
ent biases, which we defer to Appendix C. Nevertheless, we
managed to compute the diffusivity and conductivity matrices
analytically for arbitrary μ and β in the large-q limit and will
present our results in the next section.

Finally, we comment on the chaos characteristics in this
approximation. The Lyapunov exponent has been previously
computed in the large-q limit [97,98]. Since the same deriva-
tion applies for both Majorana and complex fermions, one
finds, in our notation,

kR(α) = 8(πv)2

α(α − 2πv/β )β2
. (78)

Hence the momentum-dependent Lyapunov exponent is given
by

λL(p) = πv

β
(
√

1 + 8s(p) − 1)

= πv

β

(√
9 + 4

J2
1

J2
[cos(p) − 1] − 1

)
, (79)

from which the butterfly velocity can be found numerically
by solving the appropriate equations from Sec. III E. For
a single SYK cluster we recover the well-known answer
λL(0) = 2πv/β [97,98]. We immediately see that in the
low-temperature limit v → 1 and the system is maximally
chaotic [13,14,25]. Moreover, in this limit, the butterfly veloc-
ity approaches vB = πJ1/

√
3βJ and the thermal diffusion

constant saturates the chaos bound D+ = D22 = v2
B/λL =

πJ 2
1 /6J [see Eq. (86)].

IV. RESULTS

We report our results on the thermodynamic, transport, and
chaos properties of the complex SYK model in the follow-
ing sections. We show that there are two distinct phases in
equilibrium, each leading to very different scalings of our ob-
servables. We then study the dependence of the diffusivity and
conductivity matrices on chemical potential and temperature,
in relation to the aforementioned phases. Lastly, we investi-
gate a bound on diffusion imposed by the chaotic dynamics of
the system.

In order to emphasize that our methods are applicable
to a range of parameters, we display results for different
interaction orders q. To this extent, we fix the rescaled cou-
plings J0,1|μ=0 = J0,1

√
q21−q = 1, which sets the results for
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different q on equal footing and allows for a direct comparison
to previously reported values for Majorana fermions [7]. It
also keeps J independent of both μ and β. Furthermore, we
only focus on the regime with μ � 0, since the sign of μ can
be changed by simply swapping the roles of the creation and
annihilation operators in our model.

A. Equilibrium phase diagram

We begin by investigating the phase diagram of the SYK
model at finite chemical potential and temperature. In this
model, a first-order phase transition arises as a result of the
competition between a high-entropy SYK-like phase and a
low-entropy harmonic-oscillator-like phase, and it has been
extensively studied in the literature [23,53,81,82,84].

The SD equations can have two distinct solutions depend-
ing on the values of μ and β. At small μ, the behavior is
similar to the Majorana SYK case. The model has a trivial
perturbative expansion around the maximally mixed state at
high temperatures, and a nontrivial conformal regime with
an emergent approximate time-reparametrization symmetry at
low temperatures [14]. The latter regime also features a finite
zero-temperature entropy and maximal chaos, reminiscent of
nearly extremal black holes. Therefore, we label this region as
the high-entropy or SYK-like phase [81,82].

On the other hand, in the limit of large μ, the model
behaves like a set of weakly coupled harmonic oscillators
and the ground state is given by the unique Fock vacuum
all the way to zero temperature [81,82]. Hence the system is
nonchaotic, and has a vanishingly small entropy at low tem-
peratures and an exponentially decaying Euclidean two-point
function G(τ ) ∼ e−μτ . We will refer to this as the low-entropy
or harmonic-oscillator-like phase [81,82].

The two solutions are separated by a finite first-order phase
transition line, which starts at (T = 0, μ∗) and culminates at
a critical point (Tc, μc) with asymmetric q-dependent critical
exponents [81,82,84]. For q = 4, we have μ∗ ≈ 0.52, Tc ≈
0.16, and μc ≈ 0.83. At the critical point, the two solutions
are identical and the transition becomes second order. For T >

Tc, the SD equations have only one solution, corresponding to
a high-temperature perturbative regime, and the system is in a
supercritical phase [81,82]. The high- and low-entropy phases
can be smoothly connected by going around the critical point,
which emphasizes that there is no sharp distinction between
them. We summarize these findings in the phase diagram of
Fig. 2. Note that all of our units are rescaled by a trivial factor
of J compared the diagrams in Refs. [81,82].

On the transition line, the values of 
 for the two solutions
are equal and the two phases can coexist [see Fig. 3(a)].
Upon crossing the line, the Green’s function jumps from one
solution to the other, causing a discontinuity in the first-order
derivatives of the potential. This is illustrated in Figs. 3(b)
and 3(c), where the charge and entropy show clear signs of
a first-order phase transition for μ∗ � μ � μc. Consequently,
second derivatives experience a singularity at the transition
point, as exemplified by the charge compressibility K in
Fig. 3(d). Notice that the T = 0 state has a finite entropy
and compressibility below μ∗, while above μ∗ it has maximal
charge and zero entropy and compressibility. This is consis-
tent with our previous description of the two phases.

FIG. 2. Phase diagram of the complex SYK model for q = 4–8,
in units of J = √3 × 2q−1/q. The lines correspond to first-order
phase transitions between a high-entropy SYK-like phase and a low-
entropy harmonic-oscillator-like phase. They start at (T = 0, μ∗)
and end at the critical point (Tc, μc ). At high temperatures, the system
enters a supercritical phase.

The same qualitative behavior is observed for all values of
q � 4, with the transition line shrinking rapidly as q increases
(see Fig. 2). We expect this transition to disappear completely
in the infinite-q limit, as can be seen explicitly from the ther-
modynamic potential in Eq. (C35). The low-entropy solution
becomes favorable when the second term switches sign from
negative to positive, which never happens at finite tempera-
tures because tan( πv

2 ) > πv
4 for all v ∈ (0, 1). Analogously,

there is no phase transition in the case of q = 2 either. The
grand-canonical potential in Eq. (C2) and its derivatives are
smooth, continuous functions, and the Green’s function al-
ways converges to its free-fermion value.

FIG. 3. Phase transition characteristics of the SYK model for
q = 4. Grand-canonical potential (a), charge (b), entropy (c), and
charge compressibility (d) as a function of temperature. Signatures
of a first-order phase transition are seen for 0.52 � μ � 0.83. The
thermodynamic derivatives Q and S experience a jump where the
potential 
 changes slope, while the compressibility K shows a
discontinuity.
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FIG. 4. Temperature dependence of diffusivity D for q = 2 and
multiple values of μ. Individual entries of the diffusivity matrix
(a)–(d) and its eigenvalues (e)–(f) approach finite values at zero
temperature in accordance with Eq. (C33).

B. Near-equilibrium transport

The presence of a phase transition has important conse-
quences for both the transport coefficients and the Lyapunov
exponents discussed next. In the high-entropy phase, we
find that transport is diffusive and the Lyapunov exponent
is nonvanishing. Since the high- and low-entropy phases are
smoothly connected by going around the critical point via the
supercritical phase, we expect that the dynamics is diffusive
and chaotic throughout the phase diagram. However, we do
observe extreme changes in the diffusivities and Lyapunov ex-
ponents in the vicinity of the phase transition line. Moreover,
while these properties are expected to be nonvanishing, they
can be very small and quite difficult to ascertain numerically.
Therefore, when applicable, we will restrict our analysis to
the SYK-like phase, where our quantities of interest are more
straightforward to obtain. Lastly, for all the parameter regimes
considered below, we checked numerically using the same
open-system setup as in Ref. [7], that the NESS solutions of
the full Kadanoff-Baym equations in the presence of weak
driving indeed take on the form in Eq. (34). Thus our ansatz
is justified.

We now proceed with our results for the simplest free-
fermion case of q = 2. We numerically compute all the
integrals in Sec. III F and extract the transport coefficients.
Their values are plotted in Figs. 4 and 5 as a function of
inverse temperature and for different μ ∈ [0, 2J]. In the limits
of zero and infinite temperature, we were able to find the linear
response functions analytically and obtained exact solutions
for both D and L in Appendix C. It is easy to check that
they agree with our numerical results in Figs. 4 and 5 in the
corresponding limits. We will elaborate below on the specific
structure of the diffusivity and conductivity matrices in these
limits.

FIG. 5. Temperature dependence of conductivity matrix L for
q = 2 and several values of μ. Electrical conductivity (a) saturates to
a constant at zero temperature, while thermoelectric (b) and thermal
(c) conductivities approach zero as 1/β. The μ dependence at low
temperatures is quadratic, in agreement with Eq. (C34). (d) The
Wiedemann-Franz ratio converges to its free-fermion value of π2/3.

Next, we discuss our results for q � 4. Since all these
cases are very similar, we focus on q = 4 in the main pan-
els of Figs. 6 and 7, with the understanding that the same
conclusions hold for larger q. At small μ, we recover the
same behavior as in the Majorana case [7]. For μ = 0.7 and
μ = 0.83, we encounter the phase transition within our range
of temperatures, and the transport coefficients drop close to
zero abruptly. At large μ, we avoid the phase transition com-
pletely and directly enter the low-entropy phase. In this case,
the conductivities and D± smoothly decrease as we lower

FIG. 6. Temperature dependence of diffusivity D for q = 4 and
multiple values of μ. The matrix elements Di j (a)–(d) and eigenval-
ues D± (e)–(f) are shown in the SYK-like phase. The eigenvalues
reach a constant at low temperatures and its variation with μ for
different q is shown in the inset. The diffusivity decreases for both
larger μ and q.
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FIG. 7. Temperature dependence of conductivity matrix L for
q = 4 and several values of μ. Electrical (a), thermoelectric (b), and
thermal (c) conductivities are shown in the SYK-like phase. The in-
sets display their low-temperature asymptotic behavior as a function
of μ. (d) The Wiedemann-Franz ratio converges to π2/12 for q = 4.
The inset confirms that the scaling generalizes to κβ/σ → 4π2/3q2

for other values of q.

the temperature. Notice that D11 can become negative as we
approach the low-entropy phase, which seems troubling at
first. However, recall that only the eigenvalues D± are required
to be positive to ensure the decay of charge and energy fluctu-
ations, which we verify to be the case in Figs. 6(e) and 6(f).

There are a lot of features that emerge from the structure
of the diffusivity matrix for both q = 2 (Fig. 4) and q � 4
(Fig. 6). At high temperature, D12 = 0 and D21 ∼ μ. The
eigenvalues D± are identical to the diagonal entries D11,22 and
approach finite μ-independent values. At low temperature and
away from the phase transition, the other off-diagonal entry
vanishes D21 = 0 and the eigenvalues D+ = D22 and D− =
D11 converge to β-independent values. The μ dependence of
these numbers for different q is shown in the inset of Figs. 6(e)
and 6(f) and in Eq. (C33). We see that the diffusivity decreases
with both μ and q. These constraints on the diffusivity matrix
and the generalized Einstein relations are enough to conclude
that

σ = D11K, κ = D22γ /β, (80)

at both high and low temperatures. These nontrivial relations
are checked explicitly for q = 2 in Appendix C. The same
dependence among transport coefficients was found for holo-
graphic theories and the SYK chain in the conformal limit
[21]. There it was attributed to the interplay between the
global U (1) charge and the emergent PSL(2, IR) symmetry. It
is interesting that here we see the same structure also emerge
at infinite temperature.

The conductivity matrix can be examined in the same way
(see Figs. 5 and 7). At high temperature, all the conductivities
are zero, while at low temperature, σ is finite and κ decays
as 1/β. In fact, as T → 0 we observe a linear-in-T resistivity
σ−1, above a background residual resistivity σ−1

0 , according
to the prediction in [24,36],

1

σ
= 1

σ0

(
1 + 4αG

T

J

)
, (81)

where αG is a known numerical constant [14]. A linear fit to
our data yields αG ≈ 0.194 for μ = 0 and q = 4, which is
very close to the literature value αG ≈ 0.187 (e.g., Fig. 9 in
[14]). This linear-in-T resistivity is a common feature of many
non-Fermi-liquid models [11,19,33–36]. The μ dependence
of the conductivities at low temperature is available in the
inset of Fig. 7 and in Eq. (C34). We notice that α scales
linearly with μ, while σ and κ̄ have a dependence that is closer
to quadratic. We can also combine these results to show that
our model has a nonvanishing thermopower all the way to zero
temperature, as discussed further in Appendix D.

These observations about the structure of the conductivity
matrix lead us to believe that the Wiedemann-Franz ratio
κβ/σ approaches a constant at zero temperature. Indeed we
find numerically in Fig. 7(d) for q = 4 and analytically from
Eq. (C34) for q = 2 that

lim
β→∞

κβ

σ
= 4π2

3q2
, (82)

in agreement with the results of Ref. [21]. This also holds for
other values of q, as long as we are still in the SYK-like phase,
as shown in the inset of Fig. 7(d). The slight deviations at
larger values of μ are caused by our inability to numerically
reach low enough temperatures without crossing the phase
transition. At zero temperature, we can combine the two re-
sults above to find that the ratio of diffusivities obeys [21]

D+
D−

= D22

D11
= 4π2

3q2

K

γ
. (83)

Finally, we are ready to present our findings in the large-q
limit, following the derivation in Sec. III G and Appendix C.
We find that D12 = 0, which together with the Einstein rela-
tions is enough to conclude that Eq. (80) holds for all values
of μ and β. Moreover, we can combine the conductivities in
Eq. (C50) and Eq. (C53) to arrive at the Wiedemann-Franz
ratio

κβ

σ
= 4π2v2

3q2
. (84)

At zero temperature, v → 1 and we recover the results in
Eq. (82) and Eq. (83). Therefore, all the previously found
features of transport at finite q are also applicable to the
infinite-q regime. In addition, this expansion provides com-
pact solutions for all the transport coefficients over the entire
parameter range (see Appendix C).

In order to make a fair comparison to the finite-q results, we
restrict ourselves to the case μ = 0, for reasons explained in
Appendix C. The charge and energy diffusion modes decouple
and we are left with a diagonal diffusivity matrix

D− = D11 = J 2
1

J cos

(
πv

2

)
, (85)

D+ = D22 = J 2
1

3J

[
πv

2
sin

(
πv

2

)
+ cos

(
πv

2

)]
. (86)

The temperature dependence enters the expressions implicitly
through v [see Eq. (68)]. We plot these results in Fig. 8(a),
together with the finite q values obtained numerically by fol-
lowing the prescription in Sec. III D. All the curves obey the
same pattern and the agreement with the q → ∞ result clearly
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FIG. 8. Comparison between finite- and infinite-q diffusivities
and conductivities at μ = 0. (a) The diffusivity eigenvalues D±
(dashed and dotted lines) are upper bounded by the chaos propaga-
tion rate v2

B/λL (solid lines) for all q. (b) The electrical conductivity
σ (solid lines) and thermal conductivity κ (dashed lines) show little
variation with q.

improves with increasing q. The energy diffusion constant D22

agrees with our previous answer for Majorana fermions [7],
as expected for μ = 0. Similarly, the electrical and thermal
conductivities are given by

σ = J 2
1

J 2

πv

4
, (87)

κ = J 2
1

βq2J 2

(πv)3

3
. (88)

These are shown in Fig. 8(b) next to their finite-q counterparts.
The agreement is quite good even for moderate values of q.

C. Chaos

In this section, we further explore the connections between
transport and many-body chaos. We numerically diagonalize
the kernel introduced in Sec. III E and extract the Lyapunov
exponent λL and the butterfly velocity vB. Both of these quan-
tities only weakly depend on the chemical potential μ in the
SYK-like phase. In particular, we checked that in the limit of
infinite temperature and finite charge density, both λL and vB

saturate the bounds proposed in Ref. [69]. Upon approaching
the phase transition, they decay exponentially with μ and
tend to zero in the low-entropy phase [83,97]. This is not

FIG. 9. The diffusivity eigenvalues D± (dashed and dotted lines)
and the chaos bound v2

B/λL (solid lines) for q = 4 and different
chemical potentials. The bound is saturated in the conformal limit.
All three quantities drop to zero outside the SYK-like phase.

surprising, since the conserved U (1) charge constrains the
phase-space dynamics of the system. A large chemical poten-
tial eventually renders the system integrable, as manifested by
a transition to the harmonic-oscillator-like phase, for which
very weak chaotic behavior is expected.

The ratio v2
B/λL exhibits a similar behavior. In Fig. 9 we

plot its temperature dependence in the SYK-like phase for
q = 4 and compare it to the diffusivity eigenvalues D±, since
these are more physically relevant than the diagonal entries of
D. Our results indicate that D± � v2

B/λL at all temperatures,
suggesting that chaos upper-bounds diffusion. This inequality
generalizes the bound we previously found for energy dif-
fusion in Majorana SYK chains [7]. We observe that in the
limit of zero temperature and for μ < μ∗, the thermal dif-
fusivity saturates the chaos bound D22 = D+ = v2

B/λL. This
remarkable result is a consequence of the fact that the same
reparametrization degrees of freedom are responsible both for
thermal diffusion and the OTOC chaos dynamics [14,31]. The
charge diffusivity, on the other hand, is not easily related to
chaos in this model [21]. In Fig. 8(a) we verify that the same
results hold for other values of q, as well as in the large-q
limit.

The fact that the SYK chain reaches this equality in the
conformal limit has been previously shown for both Majo-
rana and complex fermions [21,31]. However, our method for
calculating the diffusivities at arbitrary μ and β allows us to
confirm the inequality D± � v2

B/λL beyond the conformal or
large-q limits [70]. A similar bound has been found for other
families of models as well [68,69,103]. We should mention
that this inequality is by no means universal, since there are
examples of theories where it holds in the opposite direction
[64–66]. A more rigorous upper bound on diffusivity can
be written in the form of D � v2τeq [67,71,104,105], where
v ∼ vB is the operator growth velocity and τeq is the local
equilibration timescale, which can be much larger than the
Lyapunov timescale 1/λL [67].
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V. DISCUSSION

This work has described the thermodynamic, transport,
and chaos properties of an SYK chain with general q-body
interactions. Our main result is a detailed analysis of the
near-equilibrium response of local Green’s functions to small
external biases. More specifically, we expanded the Green’s
function of each SYK cluster to first order in the nonequilib-
rium corrections F≷

μ,β due to constant chemical potential and
temperature gradients. We were then able to express all the
conserved charges and their associated currents in terms of
these functions. The calculations were carried out analytically
for q = 2 and q → ∞, and numerically for all other values
of q using the solutions of the Schwinger-Dyson equation de-
scribed in Appendix A. This allowed us to fully characterize
the mixed thermoelectric response of the model in terms of
its diffusivity, conductivity, and susceptibility matrices. More-
over, we showed that the eigenvalues of the diffusivity matrix
satisfy the inequality D± � v2

B/λL at all temperatures, with
equality achieved for D+ in the conformal limit. This result
generalizes our previous bound on energy diffusion in the
case of Majorana fermions [7] and establishes a connection
between transport and chaos in the SYK model.

Our analysis has revealed new features in the structure of
the transport coefficients. In particular, we showed that one of
the off-diagonal entries of the diffusivity matrix approaches
zero at both high and low temperatures, as well as in the large-
q limit. Together with the Einstein relations, this results in a
simplified expression for the conductivities in Eq. (80), which
was previously established only for SYK and holographic
models in the conformal limit [21]. Additionally, we showed
that the Wiedemann-Franz ratio approaches the finite value
4π2/3q2 at zero temperature, in agreement with Ref. [21].
For q = 2 we recover the universal Fermi liquid prediction in
the form of the Lorenz number π2/3. We should emphasize
that for q � 4, this result is not universal and depends on the
specific choice of interaction between clusters [21].

Although our methods are valid for arbitrary values of β

and μ, we have to be careful when interpreting our results
close to the phase transition between the high- and low-
entropy phases and in the low-entropy phase. Specifically,
various transport quantities experience a sudden drop or di-
vergence when crossing the transition. Moreover, since the
low-entropy phase has very small values of the diffusivity and
Lyapunov exponent, we cannot always robustly study the low-
temperature limit of our observables past the phase transition.
Hence, in some instances, we have to restrict ourselves to
small values of μ, where the SYK-like phase extends all the
way to zero temperature. Given the weakly coupled nature of
the low-entropy phase, other analytical methods may be useful
in that regime, if the physics is of interest.

Our work paves the way for further analytical and numeri-
cal studies of linear response in quantum many-body systems.
In this paper, we focused on the zero-frequency response of
a uniform one-dimensional chain, but generalizations should
be straightforward. For example, the frequency dependence
of the transport coefficients can be extracted by imposing a
time-dependent oscillatory bias [7,52]. Our methods are also
suited for other higher-dimensional non-Fermi-liquid models
built from SYK clusters [34,35], or more general theories

with tractable local Green’s functions. The same ideas can in
principle be applied to study transport in more conventional
spin systems [1,4–6], where the NESS is approximated as
a tensor network, although the details of this calculation are
more complicated.

Despite its success predicting the main features of trans-
port, linear response theory has some limitations as a probe
of nonequilibrium dynamics in quantum systems. It would be
interesting to investigate the effect of strong driving on our
SYK system, where nonlinear effects, such as Joule heating,
play an important role. To capture the physics beyond linear
response, one would have to solve the full Kadanoff-Baym for
the system out-of-equilibrium [7]. Probing nonlinear transport
and out-of-equilibrium phase transitions are both interesting
future directions.

The SYK chain discussed in this paper is a solvable the-
oretical model displaying some of the major properties of
a non-Fermi liquid [19]. However, its non-Fermi-liquid be-
havior is yet to be observed experimentally. In recent years,
multiple experimental realizations [38–45] and quantum sim-
ulations [46–49] of SYK have been proposed. These include
ultracold-atom experiments [40,41], Majorana modes at the
interface of a topological insulator and superconductor [42],
semiconductor wires coupled through a disordered quantum
dot [43], superconducting circuits [44], and graphene flakes
[45]. The latter configuration, based on the zeroth Landau
level in graphene flakes with irregular boundaries subject to
strong magnetic fields, is especially well suited for probing
mesoscopic transport in the complex SYK model [60,106].
One could use this setup to look for signatures of a linear-in-T
resistivity at low temperatures according to Eq. (81). It has
also been suggested that measurements of the thermopower
can serve as an indicator of the nonvanishing residual entropy
at low temperatures [106]. This opens up the possibility of
directly comparing our theoretical predictions with actual ex-
perimental data.
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APPENDIX A: NUMERICAL SOLUTIONS OF THE SD
EQUATIONS

As mentioned in the main text, the Schwinger-Dyson equa-
tions in both real and imaginary time are solved numerically
for the case of a single isolated SYK cluster in equilibrium.
Our approach in Euclidean time is almost identical to the
original one for Majorana fermions [14]:

(1) Initialize G(iωn) with the free-fermion propagator
(iωn + μ)−1 and compute its inverse Fourier transform G(τ ).

(2) Calculate �(τ ) using the second line in Eq. (13) and
Fourier-transform it to �(iωn).
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(3) Compute a new Green’s function G̃(iωn) from the first
line in Eq. (13) and get its inverse Fourier transform G̃(τ ).

(4) Perform a weighted update G(τ ) ← (1 − α)G(τ ) +
αG̃(τ ) with α = 0.3.

(5) Repeat steps 2–4 until the iterative procedure con-
verges maxτ |G(τ ) − G̃(τ )| < ε with ε = 10−12.

The imaginary-time domain is discretized as τn = ndτ ,
where dτ = β/M, −M � n � M, and M = 220. Similarly,
the Matsubara frequencies are given by ωn = (2n + 1)dω,
with dω = π/β and −M � n � M − 1. All the thermody-
namic properties are then derived from the grand-canonical
potential in Eq. (14).

Our algorithm for obtaining the real-time Green’s functions
is an extension of the method used in Ref. [50] for Majorana
fermions:

(1) Initialize G≷(t ) with the q = 2 result in Eq. (58).
(2) Calculate �≷(t ) using the second line in Eq. (31)

(for a single cluster G≷
x = G≷

x±1 = G≷). Evaluate the retarded
self-energy �R(t ) = (t )[�>(t ) − �<(t )] and its Fourier
transform �R(ω).

(3) Compute GR(ω) from the first line in Eq. (13) and find
the spectral function A(ω) = −2 Im GR(ω).

(4) Determine a new Green’s function G̃≷(ω) from the
FDT in Eq. (57) and get its inverse Fourier transform G̃≷(t ).

(5) Perform a weighted update G≷(t ) ← (1 − α)G≷(t ) +
αG̃≷(t ) with α = 0.7.

(6) Repeat steps 2–5 until the iterative procedure con-
verges maxt |G≷(t ) − G̃≷(t )| < ε with ε = 10−5.

The real-time domain is discretized as tn = n dt , where
dt = 0.05, −M � n � M, and M = 104. Similarly, Fourier
transform frequencies are given by ωn = n dω, with dω =
2π/Mdt and −M � n � M. At large values of μ and β, the
above procedure can experience convergence issues. In order
to mitigate this problem, we perform an additional annealing
step, where we start at a high temperature and gradually lower
it while rerunning the algorithm with the Green’s functions

initialized to the previously converged values from a higher-
temperature run.

APPENDIX B: CHARGE AND ENERGY CURRENTS

In this section, we present a derivation of the formulas
for the charge and energy currents introduced in Sec. III D.
The nonequilibrium expectation value of any operator can
be computed in the Keldysh formalism using the generating
functional [88,89]. For a one-dimensional chain, the charge
current at site x is given by

jQ
x = i[Qx, Hx,x+1] = i

[
Qx, Hx,x+1

1

]
= i

∑
{i},{ j}

(
J (1)

i1... j q
2

(
cx

i1

)† · · · (cx
i q

2

)†
cx+1

j1
· · · cx+1

j q
2

− H.c.
)
,

(B1)

and its expectation value is similar to the on-bond energy

〈
jQ
x

〉 = −J2
1

2

∫ t

−∞
dt1
(
G>

x (t, t1)
q
2 G<

x+1(t1, t )
q
2

− G<
x (t1, t )

q
2 G>

x+1(t, t1)
q
2 + H.c.

)
. (B2)

This result is equivalent to the tunneling current formula de-
rived in Ref. [57] for q = 2.

In a similar fashion, the energy current at site x is

jE
x = i[Hx−1,x, Hx,x+1]

= i

(
1

2

[
Hx

0 , Hx,x+1
1 − Hx−1,x

1

]+ [Hx−1,x
1 , Hx,x+1

1

])
.

(B3)

The calculation of its expectation value mirrors the one for the
energy current in the Majorana case [7], except that now we
have extra contributions from the Hermitian conjugate terms
in the interaction Hamiltonian:〈

jE
x

〉 = 1
2 J2

1 J2 Re( jx−1,x,x+1
++ + jx−1,x,x+1

+− ), (B4)

jx−1,x,x+1
++ =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

x−1(t1, t )
q
2 G<

x (t2, t )
q
2 −1G>

x (t, t1)
q
2 −1G>

x (t2, t1)G>
x+1(t, t2)

q
2

−
∫ t

−∞
dt2

∫ t2

−∞
dt1G>

x−1(t, t1)
q
2 G>

x (t, t2)
q
2 −1G<

x (t1, t )
q
2 −1G<

x (t1, t2)G<
x+1(t2, t )

q
2

+
∫ t

−∞
dt2

∫ t2

−∞
dt1G<

x−1(t2, t )
q
2 G<

x (t1, t )
q
2 −1G>

x (t, t2)
q
2 −1G<

x (t1, t2)G>
x+1(t, t1)

q
2

−
∫ t

−∞
dt2

∫ t2

−∞
dt1G>

x−1(t, t2)
q
2 G>

x (t, t1)
q
2 −1G<

x (t2, t )
q
2 −1G>

x (t2, t1)G<
x+1(t1, t )

q
2 , (B5)

jx−1,x,x+1
+− =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

x−1(t1, t )
q
2 G>

x (t2, t )
q
2 −1G>
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These expressions simplify greatly for a uniform chain in
the near-equilibrium linear response regime, as shown in
Sec. III D.

APPENDIX C: EXACT CALCULATIONS OF THE
TRANSPORT COEFFICIENTS

In Sec. III D we introduced a simple nonequilibrium cor-
rection F≷

μ,β (t ) to the Green’s functions in the linear response
regime. We showed that the conserved quantities and their cur-
rents can be expanded to first order in this function. Next, we
will consider special cases where it is possible to analytically
compute the equilibrium Green’s functions, and hence also
F≷

μ,β (t ). In particular, we will provide detailed derivations for
the susceptibility, diffusivity, and conductivity matrices in the
limit of zero and infinite temperature for q = 2, as well as
in the q → ∞ limit at arbitrary temperature. This will be a
continuation of our discussion of these limits in Sec. III F and
Sec. III G.

1. q = 2 limit

The SYK Hamiltonian for q = 2 is equivalent to a random-
hopping model. The partition function can be computed
directly from the free-fermion picture [14]. After fixing the
reference energy level to match our convention for the charge
in Eq. (6), we have

Z =
∏

|ω|<2J

e−βμ/2(1 + e−β(ω−μ) ). (C1)

Note that unlike Majoranas, complex fermions are not paired
up when performing the product over all modes. The thermo-
dynamic potential becomes


 =
∫ 2J

−2J
dω g(ω)

(
log(1 + e−β(ω−μ) ) − βμ

2

)
, (C2)

where we introduced the normalized density of states g(ω) =
A(ω)/2π . The entries of the susceptibility matrix can be found
by taking second derivatives of the potential:

χ11 =
∫ 2J

−2J
dω

β

4πJ cosh2[β(ω − μ)/2]

√
1 −

( ω

2J

)2
,

(C3)

χ12 =
∫ 2J

−2J
dω

β2(ω − μ)

4πJ cosh2[β(ω − μ)/2]

√
1 −

( ω

2J

)2
,

(C4)

χ22 =
∫ 2J

−2J
dω

β2(ω − μ)2

4πJ cosh2[β(ω − μ)/2]

√
1 −

( ω

2J

)2
.

(C5)

Now switching over to transport, from Eq. (58) we can
deduce

F>
β (t ) =

∫ 2J

−2J
dω

i(μ − ω)e−iωt∇β

4πJ cosh2[β(ω − μ)/2]

√
1 −

( ω

2J

)2
,

(C6)

F>
μ (t ) =

∫ 2J

−2J
dω

iβe−iωt∇μ

4πJ cosh2[β(ω − μ)/2]

√
1 −

( ω

2J

)2
.

(C7)

All these integrals can always be performed numerically, but
in the special case of high or low temperatures, we can evalu-
ate them analytically.

a. Infinite-temperature limit

First consider β → 0 and expand everything to leading
order in β. For instance, the susceptibility matrix becomes

χ =
(

β

4 − β2μ

4

− βμ

4
β2(J2+μ2 )

4

)
, (C8)

and hence γ = β3J2/4. In the case when we bias our chain
with a temperature gradient, we can approximate

F>
β (t ) = −B2(2Jt )

2t
∇β + i

μB1(2Jt )

4Jt
∇β, (C9)

where B1,2 are Bessel functions of the first kind. Plugging this
into Eqs. (39) and (61)–(63), we find

∇Q = μ

4
∇β, (C10)

∇E = −J2

4
∇β, (C11)

jQ = −2μJ2
1

3πJ
∇β, (C12)

jE = 8J2
1 J

15π
∇β. (C13)

Similarly, in the presence of a chemical potential gradient we
can write

F>
μ (t ) = β3μB2(2Jt )

4t
∇μ + i

βB1(2Jt )

4Jt
∇μ, (C14)

and therefore deduce a new set of observables:

∇Q = β

4
∇μ, (C15)

∇E = β3μJ2

8
∇μ, (C16)

jQ = −2βJ2
1

3πJ
∇μ, (C17)

jE = −4β3μJ2
1 J

15π
∇μ. (C18)

Together these form a set of four equations each for the diffu-
sivity and conductivity matrices. The solutions are given by

D =
(

8J2
1

3πJ 0

− 8μJ2
1

15πJ
32J2

1
15πJ

)
, (C19)

L =
(

2βJ2
1

3πJ − 2β2μJ2
1

3πJ

− 2βμJ2
1

3πJ
8β2J2

1 J
15π

+ 2β2μ2J2
1

3πJ

)
, (C20)

in agreement with the results in Figs. 4 and 5. Note that
D21 = μ(D22 − D11). In addition, we can check that the gen-
eralized Einstein relation L = Dχ is indeed satisfied and that
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the thermal conductivity takes the form

κ = 8β2J2
1 J

15π
= D22γ

β
. (C21)

b. Zero-temperature limit

Now take the opposite limit of β → ∞ and expand in 1/β.
To leading order, the susceptibility is given by

χ =

⎛
⎜⎜⎝

1
πJ

√
1 − ( μ

2J

)2 − πμ

12J3β

√
1−( μ

2J )2

− πμ

12J3β2
√

1−( μ

2J )2

π
3βJ

√
1 − ( μ

2J

)2
⎞
⎟⎟⎠, (C22)

and γ = π
3J

√
1 − ( μ

2J )2. The nonequilibrium contribution

from a temperature gradient is

F>
β (t ) = πe−iμt

3Jβ3

(
iμ

4J2
√

1 − ( μ

2J

)2 − t

√
1 −

( μ

2J

)2
)

∇β,

(C23)
leading to

∇Q = πμ

12(βJ )3

1√
1 − ( μ

2J

)2 ∇β, (C24)

∇E = − π

3β3J

1 − 2
(

μ

2J

)2√
1 − ( μ

2J

)2 ∇β, (C25)

jQ = − πμJ2
1

6β3J4
∇β, (C26)

jE = πJ2
1

3β3J2

(
1 − 3

( μ

2J

)2)∇β. (C27)

Analogously, the contribution due to a chemical potential
gradient can be expanded as

F>
μ (t ) = i

e−iμt

πJ

√
1 −

( μ

2J

)2∇μ, (C28)

and hence our final observables are

∇Q = 1

πJ

√
1 −

( μ

2J

)2∇μ, (C29)

∇E = μ

πJ

√
1 −

( μ

2J

)2∇μ, (C30)

jQ = − J2
1

πJ2

(
1 −

( μ

2J

)2)∇μ, (C31)

jE = −μJ2
1

πJ2

(
1 −

( μ

2J

)2)∇μ. (C32)

Solving for the transport coefficients, we conclude that

D =

⎛
⎜⎜⎝

J2
1
J

√
1 − ( μ

2J

)2 − μJ2
1

4J3
√

1−( μ

2J )2

− π2μJ2
1

12β2J3
√

1−( μ

2J )2

J2
1
J

√
1 − ( μ

2J

)2
⎞
⎟⎟⎠, (C33)

L =
(

J2
1

πJ2

(
1 − ( μ

2J

)2) −πμJ2
1

6βJ4

− πμJ2
1

6β2J4
πJ2

1
3βJ2

(
1 − ( μ

2J

)2)
)

, (C34)

which agrees with our numerics in Figs. 4 and 5. Again, we
find that D21 = μ(D22 − D11) = 0 to first order in 1/β. The
nonzero contribution above is a higher-order correction nec-
essary to satisfy the Einstein relation. Equation (80) holds as
expected with κ = κ̄ = D22γ /β. Our answer agrees with the
free-fermion calculation in Ref. [33] that found σ = 1/π and
κ = πT/3 in units of J ≈ J1 = 1 and μ = 0, thus providing
an independent consistency check of our methods.

2. Large-q limit

We now return to the large-q analysis of Sec. III G and dis-
cuss the thermodynamic properties of our model in this limit.
The grand-canonical potential has been previously derived in
Ref. [21],


 = − 1

β
log [2 cosh(βμ/2)]

− 2πv

βq2 cosh2(βμ/2)

[
tan
(πv

2

)
− πv

4

]
. (C35)

To leading order in 1/q, the charge becomes

Q = 1

2
tanh

(
βμ

2

)
+ O

(
1

q2

)
. (C36)

It follows that at low temperatures, the chemical potential
should scale as μ ∼ T to maintain a constant charge. This
stems from a failure of the infinite-q and infinite-β limits to
commute, which is an inherent shortcoming of this expansion
[97].

Taking a second derivative, we find the susceptibilities

χ11 = β

4 cosh2(βμ/2)
+ O

(
1

q2

)
, (C37)

χ12 = − β2μ

4 cosh2(βμ/2)
+ O

(
1

q2

)
, (C38)

χ22 = (βμ)2

4 cosh2(βμ/2)

[
1 +

(
2πv

qβμ

)2 1
πv
2 tan

(
πv
2

)+ 1

]
,

(C39)

where the second term in χ22 is necessary to obtain the
leading-order contribution to

γ = β

q2 cosh2(βμ/2)

(πv)2

πv
2 tan

(
πv
2

)+ 1
. (C40)

The prefactors can also be written in terms of the
charge cosh2(βμ/2) = (1 − 4Q2)−1. Note that in the zero-
temperature limit, at fixed charge, the compressibility χ11

diverges with β, which is unphysical. The correct behavior
can be recovered by keeping the next-order term in the large-q
expansion and taking the temperature to zero first [21]. This is
another example where the order in which we take the limits
matters.

In the case of transport, we first imagine maintaining a
constant chemical potential gradient across the chain held at
a fixed temperature. The nonequilibrium contribution defined
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in Eq. (71) can be computed via the chain rule

fμ(t ) = −(q − 2)
β2J

4
tanh

(
βμ

2

)
cos
(

πv
2

)
πv
2 tan

(
πv
2

)+ 1

×
[(

1 − 2it

β

)
tan

(
πv

2
− iπvt

β

)
− tan

(πv

2

)]
.

(C41)

The energy gradient is obtained by direct integration

∇E = βJ tanh
(

βμ

2

)
2q cosh2

(
βμ

2

)[ πv
2 cos

(
πv
2

)
πv
2 tan

(
πv
2

)+ 1
+ sin

(πv

2

)]
∇μ.

(C42)
However, the energy current is a bit more subtle. It turns out
that the overall contribution from the terms proportional fμ is
zero, so we only have to consider the last term in Eq. (76). We
use the identity∫ ∞

0
dt
∫ ∞

t
dt ′ Im

[
eg(t )+g(t ′ )] = − sin(πv)

2J 2
, (C43)

and finally arrive at

jE = −βJ 2
1 tanh

(
βμ

2

)
4q cosh2

(
βμ

2

) sin(πv)∇μ. (C44)

The other two observables related to charge transport are
given by Eqs. (72) and (74).

Next, we will consider a slightly simpler setup where we
impose both a temperature and chemical potential gradient,
but maintain a constant charge ∇Q = 0. From Eq. (C36) this
is equivalent to holding βμ constant along the chain and
setting β∇μ = −μ∇β, i.e., hμ = −hβ . In linear response,
this corresponds to an additive contribution from both fμ and
fβ , which we denote by

fQ(t ) =
[
1 + iJ t sin

(
πv
2

)]
tan
(

πv
2 − iπvt

β

)− tan
(

πv
2

)
β

πv

[
πv
2 tan

(
πv
2

)+ 1
] ∇β.

(C45)
This is exactly the answer we found for a Majorana chain [7],
up to a constant prefactor. Therefore, we can follow the same
calculations to find

∇E = − J
q2β cosh2(βμ/2)

πv cos
(

πv
2

)
πv
2 tan

(
πv
2

)+ 1
∇β, (C46)

jE = J 2
1

q2β cosh2(βμ/2)

πv

3
cos2

(πv

2

)
∇β. (C47)

Note that the charge current vanishes as expected, since jQ ∼
(hμ + hβ ) = 0 for this setup.

Finally, combining all the results into a system of equa-
tions, we deduce the diagonal diffusivity entries

D11 = J 2
1

J cos
(πv

2

)
, (C48)

D22 = J 2
1

3J
[πv

2
sin
(πv

2

)
+ cos

(πv

2

)]
, (C49)

and the off-diagonal values D12 = 0 and D21 = μ(D22 −
D11). Similarly, the conductivities are

σ = J 2
1

J 2

πv

4 cosh2(βμ/2)
, (C50)

α = −βμσ = −βμ
J 2

1

J 2

πv

4 cosh2(βμ/2)
, (C51)

κ̄ = βμ2 J 2
1

J 2

πv

4 cosh2(βμ/2)

[
1 + 4

3

(
πv

qβμ

)2]
, (C52)

and we can check the dependence in Eq. (80),

κ = J 2
1

J 2

(πv)3

3βq2 cosh2(βμ/2)
= D22γ

β
. (C53)

The large-q approximation has given us remarkably simple
closed-form answers for all the transport coefficients. The
generalized Einstein relation now can be checked explicitly.
Notice that the conductivities, just like the susceptibilities, are
suppressed by a factor of cosh2(βμ/2). This again suggests
that we should scale our parameters to maintain a finite value
of βμ. In our numerics at finite q, we maintain both J and μ

constant while sweeping a wide range of temperatures. There-
fore, in order to make the results of the large-q approximation
consistent in this regime, we will restrict ourselves to the case
μ = 0 when comparing to fixed-q results.

APPENDIX D: THERMOPOWER

If a temperature gradient is applied across a material with
free charge carriers, a potential gradient will arise as a result of
the carriers’ motion from hot to cold areas. The magnitude of
this thermoelectric effect is characterized by the thermopower
, also known as the Seebeck coefficient. The thermopower is
defined as the ratio of the induced potential gradient ∇μ to the
applied temperature gradient ∇T after the system has reached
a steady state with no charge current [85–87]. Equation (45)
implies

 = −∇μ

∇T
= α

σ
. (D1)

Materials with high thermopower are very important for build-
ing efficient thermoelectric generators and coolers. A useful
metric for quantifying the effectiveness of a thermoelectric
material for practical applications is the dimensionless ther-
moelectric figure of merit

ZT = σ2T

κ
= α2T

σκ
= κ̄

κ
− 1. (D2)

For conventional metals and insulators, ZT is at most of order
1 [107]. Recently, it has been shown that the thermopower
of Dirac and Weyl semimetals in an external magnetic field
grows linearly with the magnitude of the field and can reach
extremely high values [107–109]. This makes it possible to
have ZT � 1 in these materials.

We now calculate the thermopower and thermoelectric fig-
ure of merit for the complex SYK model using our previous
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FIG. 10. Temperature dependence of the thermopower (solid
lines) for the SYK model with q = 4. At low temperatures in the
SYK-like phase,  approaches the conformal answer 2πE (dashed
lines), which shows agreement with the Mott formula for ther-
mopower in this regime. The inset shows the thermoelectric figure of
merit ZT for the same parameters.

results for the conductivity matrix. We showcase our findings
for q = 4 in Fig. 10. The thermopower reaches a nonzero
constant at low temperatures and increases with μ as we
approach the phase transition. The thermoelectric figure of
merit is of order 1 and has a similar dependence on β and
μ. This is consistent with a previous analysis of thermopower
in SYK models and holographic theories [21,106], where the
authors showed that in the low-temperature limit

 = 2πE, (D3)

where E is the particle-hole asymmetry of the fermionic spec-
tral function [9,18,21], which can be expressed in terms of
charge via a Luttinger-Ward identity

e2πE = sin(π/q + θ )

sin(π/q − θ )
, (D4)

Q = − θ

π
−
(

1

2
− 1

q

)
sin(2θ )

sin(2π/q)
. (D5)

Note that with our conventions, both E and θ are negative.
By combining this result with the Wiedemann-Franz ratio
in Eq. (82), we find that the figure of merit should scale as
ZT = 3q2E2 at low temperatures. The asymmetry diverges as
the charge becomes larger when leaving the SYK-like phase,
which explains the scaling in Fig. 10.

The nonvanishing thermopower in the limit of zero tem-
perature is a remarkable feature of the SYK model. It can be
related to the existence of a finite zero-temperature entropy
S0 via an exact Kelvin formula [9,21], which in turn follows
from the Mott formula for thermopower [110,111]. Recently,
it has been suggested that thermopower measurements can
serve as a direct probe of the residual entropy S0 [106]. This
low-temperature behavior is in stark contrast to that of a Fermi
liquid, whose thermopower vanishes linearly with T . In fact,
we can see this explicitly for the q = 2 SYK, where Eq. (C34)
implies  ∼ T and ZT ∼ T 2.

The thermoelectric parameters can be computed exactly in
the large-q limit. We find the simple expressions  = −βμ

and ZT = 3q2(βμ)2

4(πv)2 . The thermopower is directly related to Q
through Eq. (C36) and is constant at fixed charge. At high
temperatures, πv ≈ βJ and the figure of merit remains finite
with ZT ∼ q2μ2. This precisely matches our results in the
inset of Fig. 10. Given this scaling of ZT , it seems possible to
further increase the thermodynamic figure of merit by going
to higher-q SYK models.
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