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We study interference patterns and Friedel oscillations (FO) due to scattering from two or more localized
impurities and scattering from extended inhomogeneities in the two-dimensional lattice systems of interact-
ing fermions. Correlations between particles are accounted for by using an approximate method based on
the real-space dynamical mean-field theory and a homogeneous self-energy approximation (HSEA), where
the site-dependent part of the self-energy is neglected. We find that the interference maxima and minima change
systematically as we vary the relative distance between the two impurities. At the same time, the increase of the
interaction does not shift the position of interference fringes but only reduces their intensities. A comparison
with the single impurity cases clearly shows complex patterns in FO fringes induced by additional multiple
scattering processes. In the case of an extended steplike potential the system becomes more homogeneous when
the interaction increases. FO and interference patterns are not present in the Mott insulating phase in both single

and many impurity models.
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I. INTRODUCTION

The presence of an external inhomogeneous potential or
localized defects in metallic systems modulates the electronic
charge density around these lattice imperfections due to scat-
terings of the electrons near the Fermi surface. These charge
density oscillations are known as the Friedel oscillations (FO)
and are mostly visible at low temperatures [1-3]. FO occur
in real materials due to the presence of adatoms, interstitial
defects, or surface irregularities after cleavage. The studies
of FO can be significant for a wide range of systems as
we discussed in [4-6]. To mention a few, FO have been
observed experimentally in quantum corals, metal surfaces
like Cu(111), semiconductor surfaces like GaAs(111) around
point defects using scanning tunneling microscopy (STM) at
around 4-5 K [7-10]. FO have been seen to produce an asym-
metry in the quantum transport at the interface of monolayer
and bilayer graphene, which can be used as an application in
novel quantum switching devices [11]. It has been demon-
strated that the FO, due to the topological defects in the
carbon nanotubes, are important for understanding properties
like selective dot growth, magnetic interaction through carbon
nanotubes and optical spectroscopy of interface states using
the tight-binding model [12]. Kolesnychenko et al. observed,
using a scanning tunneling microscopy (STM), anisotropic
FO while studying the surface electronic structure of transi-
tion metal Cr(001) produced by the cleavage of a single crystal
having surface areas where impurity concentrations slightly
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exceeded the bulk concentration due to the existence of a high
dopant zone in the crystal [13].

In order to understand theoretically the FO in Cr or
other transition metals, which belongs to the class of cor-
related electronic systems, it is important to consider the
Coulomb interaction between the electrons. FO have been
studied in one-dimensional (1d) interacting fermions us-
ing several theories, e.g., the bosonization method or the
density-matrix renormalization group [14,15], and the Bethe-
Ansatz local-density approximation [16]. The Fermi liquid
theory for two-dimensional (2d) and three-dimensional (3d)
systems [17] was applied to investigate FO. The FO in-
duced by nonmagnetic impurities in 2d Hubbard model in
the presence of interactions have been studied using the
slave-boson technique, which involves the static renormal-
ization of the impurity potential [18]. FO seen around the
Kondo screening cloud in the presence of magnetic im-
purities using the z-matrix formalism have been reported
in [19].

The dynamical mean-field theory (DMFT) is considered
an advanced and suitable technique to capture the effects of
correlations, particularly around the Mott metal to insulator
transition, which is significant for describing the compounds
with partially filled d and f shells, e.g., transition metals and
their oxides [20-25]. A real space extension of DMFT (R-
DMEFT) is needed to treat strongly correlated inhomogeneous
systems [26-29].

In our previous work we investigated the behavior of FO in
models of correlated lattice systems in the metallic and Mott
insulating phases in the presence of a single impurity potential
using the R-DMFT [4,6]. We reported that the oscillations get
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damped with increasing the interaction, and disappear at the
Mott transition and beyond it in the Mott insulating phase.

In reality, a single-site impurity potential could be a too
idealized model when we deal with inhomogeneities on sur-
faces of true materials. There are usually more than one defect
or contamination. One even encounters extended inhomo-
geneities and interface effects in multilayered nanostructures,
for example as discussed in Ref. [30]. Grosu et al. studied
the problem of FO in a 1d noninteracting electron gas in
the presence of two impurities, modeled by a double delta
function separated by a finite distance, using a linear re-
sponse theory [31]. They showed that the presence of the
second impurity significantly changes the density oscillations
(changing the positions of the maxima and minima) depend-
ing on the distance between the impurities. The studies of
two-impurity scattering have been further extended to a 1d
interacting fermionic system using the bosonization method
in [32]. The scattering and quasiparticle interference from two
and multiple magnetic impurities adsorbed on 2d and 3d inter-
acting hosts have been probed using the #-matrix formalism
and the numerical renormalization group [33,34]. However,
in these studies the interference effects are discussed in the
local density of states in the presence of interactions and not
in the particle density oscillations.

We thus see that the studies of FO in the presence of two or
multiple impurities have been conducted mostly for 1d inter-
acting systems, while an attempt to understand real materials
requires models in two and higher dimensions. Moreover, the
behavior of FO in the Mott insulating regime for models with
many imperfections has not been addressed. Also the current
state of knowledge lacks any quantitative treatment of the
screening and interference effects in systems with interparticle
interactions.

A proper description of FO in real materials with strong
electronic correlations demands a realistic modeling com-
bining the density functional theory within the local density
approximation and DMFT (LDA+DMFT) [35,36] and its
extension in real space. Such techniques are computationally
nontrivial in the presence of inhomogenities, particularly if
it is not just an adatom but an impurity atom embedded in
the host, e.g., Cr atom in a Pb surface [37]. The translational
invariance of the lattice is broken in such a case.

Motivated by this state of art we extend our earlier
study [6] by adding to the simple one-band Hubbard model
various types of impurity potentials and inhomogeneities.
The correlations are treated by using an approximate self-
energy based on DMFT where the site-dependent part of the
self-energy is neglected. We name this approximation the
homogeneous self-energy approximation (HSEA) and discuss
itin Sec. II. We investigate both noninteracting and interacting
two-dimensional finite lattice systems.

In this paper we address the following questions: (a) How
do the FO change due to the interference effects when we
introduce the second impurity? (b) How does the interference
change when we vary the distance between the impurities and
switch on the interaction? (c) How does the whole picture
change if we generalize the two impurities to multiple impuri-
ties scattered over the lattice or the extended inhomogeneity?
(d) Do we see any interference effect or FO for any of these
models of impurity potential in the Mott insulating phase?

Our investigation shows that the interaction reduces the in-
terference pattern in FO and the impurity screening. However,
the interaction does not alter the position of the interference
maxima and minima for the particle-hole symmetric case.

The paper is organized as follows. in Sec. II we discuss
lattice models and methods used to solve them. We intro-
duce there physical quantities describing physical properties
of these systems. Afterwards in Sec. III we present our nu-
merical results for (a) two impurities, (b) multiple impurities,
(c) a chain of impurities or a domain wall, and (d) extended
inhomogeneity. Finally, in Sec. IV we conclude our results
and provide an outlook.

II. MODELS AND FORMALISM
A. Models

We consider the one-band Hubbard model [38—40] with an
external inhomogeneous potential

H=Y"tial, djo+ Y Vig d}, dic +U Y _ iy, (1)

ij,o io i

where a;, (&;) is the annihilation (creation) fermionic oper-
ator with spin o on the ith lattice site, and 7;; is the hopping
matrix element between the ith and jth sites with ¢; = 0. The
second term describes the external (inhomogeneous) potential
given by Vj,, which is assumed to be real. The third term
models the local part of the electronic interaction between two
fermions with opposite spins located on the same lattice site.

We consider a two-dimensional square lattice with the
number of lattice sites N, = 312 (the size of the lattice is
31x31) and the following models of the external (inhomo-
geneous) spin independent potential:

(i) Two single-site impurities placed either along the di-
agonal direction of the lattice or along a vertical direction
of the lattice for different relative distances. Mathematically,
Vi = Vo18iiy, + Vo26iip, -

(i) A more general case where several impurities are ir-
regularly distributed over various lattice sites. This aims to
model a contaminated surface with various dopant zones or
interstitial defects. Mathematically, V; = V18, + Vo26ii, +
Vo3Biip, + - -+

(iii) A chain of impurities placed along the diagonal and
vertical directions of the lattice aimed to model a domain wall
or an interface. In freshly cleaved samples such domain walls
can be found connecting large lattice inhomogeneities and can
be observed experimentally using STM.

(iv) A steplike potential or extended inhomogeneity across
the lattice aimed to describe inhomogeneous surface irregu-
larities after a cleavage. Mathematically, Vi, = VO (X; — Xp),
where Xj is the horizontal lattice coordinate where the steplike
potential begins [i.e., the Heaviside function ®(x) is nonzero].

B. Method

All single-particle properties of the system are obtained
from the retarded Green’s function obtained by inverting the
matrix Dyson equation [41] in the lattice position space:

G@) =[z+mwl—t—V-x@1]", @

where 7z = w + {0 is the energy approaching the real axis
from above and w is the chemical potential (& = 1). X(z)
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FIG. 1. Friedel oscillations (FO) in particle densities (71;) due to two impurities of equal magnitude, i.e., Vo, = Vy, = 24, placed at Ry =
(15a, 15a) and Ry, = (15a, 22a), respectively, along the vertical axis of the (31 x 31) square lattice. We show the change in interference
pattern of FO due to scattering from the two impurities for (a) U = O¢, (b) U = 2¢, (¢) U = 5¢, and (d) U = 12¢. The insets (on the right) show
oscillations along the vertical line passing through the impurities. The color scale is spanned in between the highest and the lowest values of
the density in the system. The color scale changes for different U since the minimal value of the density increases with it. We do not show
the actual densities on the impurity sites, which are substituted by the second lowest values in the plots. Otherwise the impurity contribution

would overshadow any contributions in 7;.

is the site independent homogeneous part of the self-energy
which approximates the effect of correlations and is calculated
using the DMFT for the same parameters of the corresponding
homogeneous Hubbard Hamiltonian. Hereafter, all matrices
are expressed in bold faced notation. The nondiagonal matrix
t corresponds to the hopping amplitudes #;; and the diagonal
matrix V reflects the on-site inhomogeneous potential V;. The
unity matrix is written as 1.

In the DMFT the self-energy is diagonal in lattice site
indices and accounts for all local dynamic correlation effects.
In case of homogeneous lattice systems, all lattice sites are
equivalent. In this case, the self-energy is computed by map-
ping a lattice site into an effective single impurity Anderson
model (SIAM) and solving it by using standard techniques
like continuous time quantum Monte Carlo, an exact diago-
nalization, a numerical renormalization group method (NRG),
etc. However, in the presence of external impurities, transla-
tional invariance of the lattice is broken and the lattice sites
are nonequivalent. Hence, it is essential now to solve the
SIAM separately at each lattice site and the local self-energy
becomes explicitly site dependent. In other words, in an inho-
mogeneous system the self-energy has a homogeneous part
due to the electron-electron interactions and an inhomoge-
neous part due to the contribution from the interaction and the
external impurities. Owing to the site dependent part of the
self-energy, the result of the impurity potential in the system
is not static but effectively dynamic [5]. Ideally, in order to
get the full picture of a correlated inhomogeneous system we
should consider both the homogeneous and inhomogeneous
parts of the self-energy solving the full real-space DMFT (R-
DMEFT) equations self-consistently [5].

Unfortunately, deciphering the full R-DMFT equa-
tions is computationally exhaustive, especially for higher-

dimensional systems with a large number of lattice sites.
Hence, as a first approximation we omit the inclusion of the
inhomogeneous, site-dependent part of the self-energy in our
present studies to obtain some initial insights on the behavior
of the system with correlations. We call this approximation
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FIG. 2. FO in particle denisties (77;) in the square lattice in
the presence of a single impurity Vy = 24¢ in the center [Ry =
(15a, 15a)]. All other model parameters and plotting style is the
same as in Fig. 1. We show (a) U = 0¢t, (b) U = 2¢, (c) U = 5¢, and
(d) U = 12¢. We only show the vertical line passing through sites
containing the impurity for a comparison with Fig 1. A complete
density profile for the single impurity case is available in [6].
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FIG. 3. The variation in the interference patterns in the FO of particle densities (7;) for different relative distances between the two
impurities of equal magnitude Vo; = Vg, = 24¢. The first impurity Vo, is kept fixed at Ry, = (154, 15a) and the position of the second impurity
is shifted along the vertical line and placed at Ry, = (15a, 19a), Ry, = (154, 20a), Ry, = (15a, 21a), Ry, = (15a, 274) (from top to bottom,
respectively). We show the interactions U = 2t (a,c,e,g) and U = 5¢ (b,d,f,h). All other model parameters and the plotting style are the same

as in Fig. 1.

the homogeneous self-energy approximation [6]. The homo-
geneous part of the self-energy is computed by solving the
DMEFT self-consistency equations for infinite homogeneous
system at zero temperature and half filling (particle-hole sym-
metric case) by using the NRG method [42]. This essentially
implies setting the parameter V;, = 0 in Eq. (1). The open-
source code “NRG Ljubljana” [43,44] is used for this purpose.
The computed self-energy (the HSEA) is then transferred to
the real space Dyson equation (2) containing the impurity
potential Vi, # 0 and used to obtain the one-particle Green’s
function. We note here that although the self-energies are
computed for a homogeneous system, the Green’s function is
still obtained by inverting the Dyson equation containing the
impurity potential in the real space and thus inhomogeneity of
the system is taken into account.

A detailed discussion of the R-DMFT and HSEA is pre-
sented in [6], wherein we also show that the results obtained

from these two methods qualitatively agree for a single im-
purity potential. It might be an interesting future project to
compare the results obtained from the full R-DMFT and from
the HSEA for our models of the multiple impurity potentials.
However, we do not expect significant changes because even
in the metallic regime the FO decay quickly in space with
a power law. We also observe that a possible change in the
density of particles due to a change of the self-energy by
inhomogeneous potential is a higher order effect beyond the
linear response regime.

C. Physical quantities

Once we know the Green’s function of the system from
Egs. (1) and (2) we obtain the local spectral function as

Aig(w) = — %Im Giig (). 3)
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Having (3) we compute the spin resolved local density of
particles at zero temperature as

Ep
iy = / A (@)f (@) do. @)

—00

We consider spin rotational invariant systems, i.e., fi;y = 7;|,
and the total number of particles per site is given by

n=— i, 5)

where 7i; = n;; + n;;. Equation (4) is the most relevant for our
studies of FO.

We further quantify the screening and interference effects
in the system by the screening charge defined by

2= (- ") ©)

where the summation runs over all the lattice sites and 7ipom
corresponds to the density of particles of the reference homo-
geneous system (i.e., with V; = 0).

III. NUMERICAL RESULTS

We choose the chemical potential & = U/2 such that the
homogeneous system is at half filling, i.e., # = 1. In all cases
the hopping amplitude #;; = ¢ is only between nearest neigh-
bors. We set ¢ = 1 to define the energy units and set the lattice
constant a = 1 to define the length units in our numerical
calculations. The band-width W of the system is given by
W = 2zt, where z is the coordination number. The system
is subjected to the periodic boundary conditions with a finite
number of the lattice sites N.. We perform our simulations at
zero temperature (7 = 0).

The strength of electronic correlation is controlled by tun-
ing the parameter U. We study the 2d homogeneous system
for different U values and see that the Mott transition occurs at
U, =~ 11.5t. Hence, we choose U = 0¢, 2¢t, 5¢, and 12¢ values
to represent a noninteracting lattice gas, a weakly interacting
metallic phase, an intermediate interacting metallic phase,
and a Mott insulating phase of the inhomogeneous system,
respectively.

A. Two impurities

We start with the case where two impurities are present
in the system. In Fig. 1 we show the interference patterns in
FO due to two impurities of equal magnitude Vy; = Vy, = 24¢
placed in the lattice sites (15a, 15a) and (154, 22a) along the
vertical direction of the square lattice for the noninteracting
system and the interacting system with U = 2¢, 5¢, and 12¢.
We further compare with the case where only a single impurity
is present in the system in Fig. 2. On comparing Figs. 1 and
2, the interference effect induced by the second impurity is
visible. We see that within the HSEA the interaction does not
change the position of the interference maxima and minima
but reduces their heights and intensities as seen in U = 2¢
and 5¢ cases. This is analogous to the damping of FO with
the interactions in the single impurity case. Such behavior is
attributed to the particle-hole symmetry in the system. The na-
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FIG. 4. Friedel oscillations (FO) in particle densities (72;) in the
presence of two impurities of equal magnitude, i.e., Vo; = Vip = 241,
placed at Ry = (9a, 9a) and Ry, = (15a, 15q), respectively, along
the diagonal direction of the square lattice. The interactions U = 2t
(upper panel) and U = 5¢ (lower panel). The model, all other param-
eters, and the plotting style are the same as in Fig. 1.

tures of the noninteracting system and the weakly interacting
one with U = 2t are very similar. No interference effects and
FO are visible in the Mott insulating phase at U = 12¢. The
disappearance of the FO in the Mott insulating phase is due
to a gap opening around the Fermi level, and the Fermi edge
cutoff, responsible for oscillatory behavior, is absent.

In order to investigate how the interference maximum and
minimum changes as we vary the relative distance between
the impurities, in Fig. 3 we fix the position of the first impurity
at (15a, 15a) and vary the position of the second impurity to
(15a, 19a), (15a, 20a), (15a, 21a), and (154, 27a). We show
only the cases for U = 2t and 5t since the behavior of the
noninteracting system is very similar to the U = 2¢ one and no
interference effects were seen in the system with U = 12¢. We
see the occurrence of a minimum for (154, 19a) and a max-
imum for (15a,20a). Beyond a certain crossover distance,
e.g., for (15a, 27a), the interference effects are negligible and
the inhomogeneities behave independently as in the diluted
impurity regime. Again, on comparing the cases U = 2¢ and
U = 5t we see that the interaction does not change the posi-
tions of the maximum and minimum but reduces their height.
In other words, we conclude that the interaction reduces the
interference effects.

We now place two impurities of equal magnitude Vy; =
Vo2 = 24t along the diagonal direction of the lattice at sites
(10a, 10a) and (154, 15a) and show the cases for U = 2t and
U = 5t in Fig. 4. Comparing Figs. 4 and 3, we already see that
the interference patterns are qualitatively different when the
impurities are placed along the diagonal. Particularly, for U =
5t alternate regions of high and low density along the diagonal
of the lattice are clearly visible. The interference pattern in
the interstitial region between the two impurities is the most
dominant. No FO or scattering interference effects are visible
forU = 12t.
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In order to get a quantitative description of the interference
effects with the relative distance between the impurities we
study the dependance of the screening charge as defined by
Eq. (6) for different positions of the second impurity, i.e.,
when placed along the vertical or along diagonal directions as
shown in Fig. 5 (top and bottom panels) respectively. When
the two impurities are placed along the vertical line, an oscil-
latory behavior is seen in the screening charge, i.e., maxima
(minima) appear when the impurities are separated by an odd
(even) number of lattice sites both for the noninteracting and
interacting systems. The screening charge does not change
with distance and reaches its constant residual value in the
Mott phase (U = 12¢), again confirming the absence of any
FO or interference effects in this regime.

The oscillatory behavior in screening charge with the dis-
tance is absent when the impurities are placed along the
diagonal direction as seen in Fig. 5 (bottom panel). Along the
diagonal direction the Manhattan distance between the two
sites is always even and, hence, there are always interference
minima in the FO. If one compares the evolution of Z for
even lattice spacings in the upper panel with the same ones
in the lower panel, they almost match perfectly. The screening
charge reaches the same constant residual value for U = 12¢
as in the case when the impurities are placed along the vertical
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FIG. 6. FO in particle densities (#;) in the presence of five impu-
rities each of magnitude V; =V, = V5 =V, = Vs = 10¢ distributed
on the lattice sites located at R = (3a, 3a), (20a, 5a), (5a,20a),
(25a, 22a), and (174, 28a) of the square lattice. We show the inter-
ference in FO due to the impurities for (a) a noninteracting system
(U = 0r) and the systems with the interactions (b) U = 2t, (c) U =
5t, and (d) U = 12¢. All other model parameters and the plotting
style are the same as in Fig. 1.

direction. In both cases, at any given distance the screening
charge is reduce with increasing interactions, which is in
agreement with the case when only a single impurity is present
in the system [6].

B. Multiple impurities

We now move to a more complex case where we extend
our studies to several impurities randomly distributed over the
surface. This aims to model a contaminated surface of a tran-
sition metal in the presence of dopant/defects, e.g., the Cr 001
surface in [13]. We use the square lattice also to predict the
behavior on the surfaces of 3d systems, exploiting the fact that
lower dimensions can also mimic the higher dimensions in the
DMEFT approximation due to the momentum independence in
the self-energy. This feature has also been exploited in [6].

In Fig. 6, we consider five impurities each of magnitude
Vo = 10¢, distributed on the lattice at sites: (3a, 3a), (20a, 5a),
(5a, 20a), (25a, 22a), (17a, 28a) for the noninteracting sys-
tem and systems with U = 2¢, U = 5¢, and U = 12¢. We see
oscillations around the impurities together with a complex
interference pattern (like a checkerboard) in the interstitial
spaces between the impurities for the noninteracting system
and systems with U = 2, 5¢. Interference effects get localized
around the impurities with increasing interactions (cf. U =
5t). No FO are observed in the Mott insulator for (U = 12¢).
This is in agreement to our previous studies where a single
impurity or two impurities are present in the system. Thus
we conclude that, at least within HSEA, the absence of FO
and any interference effects due to scattering in the Mott
insulating phase is rather universal irrespective of the model
of the inhomogeneous potential.
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FIG. 7. FO in particle densities (7;) due to the scattering from
a chain of impurity atoms of equal magnitude V, = 24¢ along the
diagonal direction of the square lattice. Interference effects on FO are
shown for (a) noninteracting system (U = 0t), (b) U =2¢, (c) U =
5t,and (d) U = 12¢. The model, all other parameters, and the plotting
style are the same as in Fig. 1.

C. A chain of impurities

Next, we study the case where a chain of impurities each of
magnitude (Vy = 24¢) is placed along the diagonal direction
and a vertical direction of the square (31x31) lattice. This
aims to model a domain wall or an interface. We investigate
the behavior of FO for these two orientations of the chain with
the different interactions. First, in Fig. 7 we present the case
for a diagonally oriented chain for the noninteracting system
and systems with U = 2¢, 5¢, and 12¢. The insets shows a
projection of the densities along a zigzag line oriented per-
pendicularly to the diagonal direction. FO are visible around
the chain and the behavior is similar for the noninteracting
system and U = 2t, as in the other previously presented cases.
FO get localized around the chain with increasing interaction
(cf. U = 5t). On the ends of the cut (corners of the lattice)
we observe an increase of oscillations, which is due to the
imposed periodic boundary conditions in a finite (small) sys-
tem. In the case of a Mott insulator with U = 12¢ no FO are
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FIG. 8. FO in particle densities (#;) due to the scattering from a
chain of impurity atoms of equal magnitude V,, = 24¢ along the ver-
tical line of the square lattice. Interference effects on FO are shown
for (a) U = 2t and (b) U = 12¢. The model, all other parameters, and
the plotting style are the same as in Fig. 1.

visible. The chain creates an interface and effectively forms
two subsystems separated in space.

In Fig. 8 we show the behavior for the system with inter-
actions if the chain of impurities is oriented along the vertical
direction. The inset shows a horizontal cut perpendicular to
the chain. In contrast to the previous case we do not see
any FO but just a density minimum corresponding to the
repulsive potential for both the noninteracting and interacting
systems. We only show the cases for U = 2¢ and U = 12¢
since the behavior of the system does not change much with
the interactions. This different behavior as compared to the
diagonally oriented chain lies in the geometrical orientation
of the impurities with respect to each other. If the chain is ver-
tically oriented, each impurity site has two neighboring sites
occupied by impurities. On the other hand, if the chain is di-
agonally oriented, each impurity site is completely surrounded
by nearest neighboring sites without impurities. Hence, in the
latter case the distance between the impurity sites and the
sites on a perpendicular cut, measured in Manhattan metric,
is always even, in contrast to the former case, where it is
always odd. This difference makes the interference pattern
between FO created by each impurity from the chain always
constructive in the diagonal case, while it is destructive in the
vertical case.

In Fig. 9 we compare the FO from the diagonally ori-
ented chain (blue line) and from the vertically oriented chain
(green line) of impurities, presented above, with the FO of
a one-dimensional lattice having a single impurity potential
(red line), with Ny = 32 sites and a single impurity V, = 12¢
placed in the center. We also show the FO from a single im-
purity potential in the square lattice (black line). We consider
the noninteracting systems for all these cases. The comparison
shows that none of the 2d systems could be simplified to
an assembly of 1d chains with a single impurity potential.
While the vertically oriented chain shows no oscillations,
the decay of FO due to the diagonally oriented chain is not
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FIG. 9. Comparison of FO along a 1d lattice chain with N, = 32
sites and a single impurity potential V, = 12¢ placed at the center
(1d), across the perpendicular cut for a chain of impurities Vy = 24¢
along the diagonal chain (D), vertical chain (V), and a single impurity
potential V) = 24t placed at the center of the square lattice (S). We
show the noninteracting case U = 0Oz.

exactly similar to the 1d chain. Eventually, the FO from both
the vertically and diagonally oriented chains are also quite
different compared to a chain from a 2d lattice with a single
impurity potential at the center. Hence, the substantial role of
the geometrical orientation of the chain of impurities on the
interference effect prevents one from simplifying this system
to equivalent 1d chains with single impurity potentials assem-
bled together.

D. Extended inhomogeneity

Next, we apply a steplike potential across the square lat-
tice (32x32), i.e., for all the lattice sites with x coordinates
X; < 15a the potential is Vy = 3¢ and in the rest of the system
itis Vp = 0. This potential models an extended inhomogeneity
which could correspond to the surface irregularities in ma-
terials developed during the process of cleavage. In Fig. 10
we show local densities in the noninteracting system (upper
panel) and in the interacting system with U = 12¢ (middle
panel). The steplike potential divides the lattice into two half
planes with a different average occupation (72;). FO is visible
for U = 0, but the period of oscillations differs in the two half
planes as illustrated in the inset, where we show the FO in the
cut perpendicular to the potential edge. Different oscillation
periods originate from different uniform densities of particles
in each half of the systems. Any signature of FO is absent for
the Mott phase (U = 12t); cf. the bottom panel of Fig. 10.
In Fig. 10 (bottom panel) the influence of interactions in this
system is studied, taking cuts perpendicular to the step of the
potential. We see that the system becomes more homogeneous
and the screening charge decreases with the increasing inter-
action.

1. Going beyond a simple HSEA scheme

The extended steplike potential discussed here preserves
partially mirror point symmetries of the lattice. Therefore, it
is natural to extend our earlier HSEA scheme and determine
homogeneous self-energies, which correspond to the left side
of the system and to the right side independently. In the right
side the external potential is zero and the corresponding infi-
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FIG. 10. Interference effect on FO due to the scattering from an
extended inhomogeneity: A steplike potential is applied in half of
the square lattice (32x32), such that on the left side of the vertical
symmetry line the potential is V, = 3¢ and on the right side of it
Vo = 0. We show the noninteracting case (upper panel) and Mott
phase (U = 12¢) (middle panel). The right insets show oscillations
on a cut (dotted line in the main panels) perpendicular to the step of
the potential. In the bottom panel we compare a similar cut for the
different interactions U = Ot, 2¢, 5¢, and 12z.

nite system is at half filling. On the left side a finite potential
V; = 3t corresponds to a change of the chemical potential in
the corresponding infinite system. Therefore, the reference
system is away from half filling.

We used two different homogeneous self-energies, ob-
tained by solving DMFT equations using the NRG method,
for the infinite homogeneous systems and the chemical po-
tentials u = 0 and u = —V,, for the left and the right sides
respectively. Then from solving the Dyson equation (2) we
obtain actual densities of particles.

In the results, shown in Fig. 11, we see that the main
difference is in changing the average density on left side of the
system. However, shapes and characters of oscillations seem
to be very similar to those seen in Fig. 10. Hence we conclude
that the HSEA does not take into account very precisely the
Hartree (static) term in the self-energy, which on the impurity
sites is quite different from the homogeneous case. However,
regarding how the particle density oscillates around the aver-
age density, it seems to be independent of this Hartree term.

To make sure that our reasoning is correct we determined
the particles densities in the case of few impurities randomly
distributed on the lattice, as in Fig. 6 in Sec. III B, but with a
modified HSEA scheme. That is, on the impurity sites either
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FIG. 11. The same cut as in Fig. 10 using the self-energy from a
doped Hubbard model.

the self-energy is taken to be zero, cf. upper panels in Fig. 12,
or the self-energy is equal to the interaction, cf. lower panels
in Fig. 12. Comparing Figs. 12 and 6 we conclude that the FO
oscillations are still the same.

IV. CONCLUSIONS

We have studied the interference effects in FO due to
the scattering from two impurities, multiple impurities, and
extended inhomogeneities in noninteracting and interacting
fermion systems. On comparing the FO in the presence of
a single impurity we see that in two-impurity systems the
additional impurity induces interference effects on FO. The
interference maxima and minima change with the relative
position of the impurities up to a certain crossover distance,
beyond which the impurities behave independently. At half
filling, the interaction does not change the positions of max-
ima and minima but reduces their intensity and consequently
the interference effects. The screening charge shows an oscil-
latory behavior with the even and odd lattice spacing between
the impurities along a vertical column. A more complex pat-
tern is seen in the presence of multiple impurities but the
FO still localize around the impurities with the increase in
interaction. In case of extended inhomogeneities the system
also becomes more homogeneous with increasing interaction.
In case of a chain of impurities in the square lattice, FO is
present for a diagonal chain while it is absent for a vertical
chain due to constructive and destructive of FO in these two
geometries respectively. In all the models of the impurity
potential no FO or interference effects are seen in the Mott
insulating phase.

We have used a homogeneous self-energy approximation
based on DMFT for most of our studies, where the inhomoge-
neous part of the self-energy due to the contribution from the
impurities is neglected. However, in the case of extended inho-
mogeneity we show that the inclusion of the inhomogeneous
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FIG. 12. FO in particle densities (7;) in the presence of five
impurities each of magnitude V; =V, =V; =V, = Vs = 10t ran-
domly distributed over the same lattice sites as in Fig. 6. We put the
self-energy to zero (top panel) and the self-energy to be equal to U
(bottom panel) at the impurity sites. We do not see any changes from
the HSEA.

part of the self-energy does not qualitatively alter the pattern
of FO. It is a promising future work to compare the results of
HSEA and full R-DMFT accounting for the inhomogeneous
part of the self-energy for the models of multiple discreet
impurity potential. We do not expect significant changes with
the single-site R-DMFT since a possible change in the density
of particles due to a change of the self-energy by the inhomo-
geneous potential is a higher order effect beyond the linear
response regime. Hence, one can further probe beyond the
single-site DMFT, taking into account the spatial correlations
and nonlocal part of the self-energy, and see if the positions of
interference maxima/minima are altered by the interactions.
Our model studies should further motivate a realistic model-
ing of FO in real materials like transition metal oxides and
transition metal dichalcogenides using LDA+DMFT in real
space and its validation through STM experiments.
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