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Out-of-equilibrium dynamics arising from slow round-trip variations of Hamiltonian parameters
across quantum and classical critical points
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We address the out-of-equilibrium dynamics of many-body systems subject to time-dependent round-trip
protocols across quantum and classical (thermal) phase transitions. They are realized by slowly changing one
relevant parameter w across its critical point wc = 0, linearly in time with a large timescale ts, from wi < 0 to
w f > 0 and then back to wi < 0, thus entailing multiple passages through the critical point. Analogously to the
one-way Kibble-Zurek protocols across a critical point, round-trip protocols develop dynamic scaling behaviors
at both classical and quantum transitions put forward within renormalization-group frameworks. The scaling
scenario is analyzed within some paradigmatic models undergoing quantum and classical transitions belonging
to the two-dimensional Ising universality class, such as one-dimensional quantum Ising models and fermionic
wires, and two-dimensional classical Ising models (supplemented with a purely relaxational dynamics). While
the dynamic scaling frameworks are similar for classical and quantum systems, substantial differences emerge
due to the different nature of their dynamics, which is purely relaxational for classical systems (implying
thermalization in the large-time limit at fixed model parameters), and unitary in the case of quantum systems. In
particular, when the critical point separates two gapped (short-ranged) phases and the extreme value w f > 0 is
kept fixed in the large-ts limit of the round-trip protocol, we observe hysteresislike scenarios in classical systems,
while quantum systems do not apparently develop a sufficiently robust scaling limit along the return way, due to
the presence of rapidly oscillating relative phases among the relevant quantum states.
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I. INTRODUCTION

Many-body systems generally develops out-of-equilibrium
phenomena when they are driven across phase transitions,
due to the fact that large-scale critical modes do not equi-
librate, even when the timescale ts of the variation of the
system parameters is taken very large. Out-of-equilibrium
dynamic phenomena at phase transitions, such as hysteresis
and coarsening, Kibble-Zurek (KZ) defect production, aging,
etc., have been addressed in a variety of contexts, both ex-
perimentally and theoretically, at classical and quantum phase
transitions (see, e.g., Refs. [1–19] and references therein).
Out-of-equilibrium scaling behaviors generally emerge when
slowly crossing a critical point, i.e., in the large-ts limit. They
depend on the nature of the classical or quantum transition, its
universality class, and the type of critical dynamics in classical
systems, see, e.g., Refs. [2,7,12,13,19–33]. Therefore slow
(quasiadiabatic) passages through critical points allow us to
probe the universal features of the long-range modes emerging
at thermal and quantum critical phenomena.

In both classical and quantum contexts, we consider many-
body systems whose Hamiltonian can be written as

H (t ) ≡ H[w(t )] = Hc + w(t ) Hp, (1)

where w(t ) is a time-dependent Hamiltonian parameter,
while Hc and Hp do not depend on time. Hc is supposed
to be a critical Hamiltonian at its transition point, which
may be a quantum continuous transition driven by quantum

fluctuations, or a classical continuous transition driven by
thermal fluctuations. Hp represents a nontrivial relevant per-
turbation. In particular, within quantum many-body models,
one generally assumes that [Hc, Hp] �= 0. The tunable pa-
rameter w controls the strength of the coupling with the
perturbation Hp, and is taken as a relevant parameter driv-
ing the continuous transition. Therefore wc = 0 corresponds
to the transition point. The scaling properties of the out-of-
equilibrium dynamics across phase transitions can be probed
by considering time-dependent protocols where one of the
relevant parameters, such as w(t ), is slowly changed across
the transition point wc = 0, linearly in time with a large
timescale ts.

Across a phase transition, the growth of an out-of-
equilibrium dynamics is inevitable in the thermodynamic
limit, even for very slow changes of the parameter w, because
large-scale modes are unable to equilibrate the long-distance
critical correlations emerging at the transition point, even in
the limit of large timescales of the variations. As a conse-
quence, when starting from equilibrium states at the initial
value wi, the system cannot pass through equilibrium states
associated with the values of w(t ) across the transition point,
thus departing from an adiabatic dynamics. Such a depar-
ture from equilibrium develops peculiar out-of-equilibrium
dynamic scaling phenomena in the limit of large timescale ts
of the time variation of w(t ). A related issue is the so-called
KZ problem, i.e., the scaling behavior of the amount of final
defects after slow passages through continuous transitions,
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from the disorder phase to the order phase [1,2,7,12,13,19–
22,25,29–31,34–40]. The general features of the KZ dynamic
scaling, and in particular the KZ predictions for the abundance
of residual defects, have been confirmed by several analytical
and numerical studies, see, e.g., Refs. [12,13,19,25,31,37]
and citing references, and by experiments for various
physically interesting systems, see, e.g., Refs. [11,14–16,41–
53].

The out-of-equilibrium scaling behaviors of many-body
systems subject to slow passages across classical and quan-
tum critical points present notable analogies. They can be
discussed within a unified renormalization-group (RG) frame-
work, like the equilibrium scaling behaviors that can be
related by the quantum to classical mapping, see, e.g.,
Refs. [19,54]. However, we should recall that, while quantum
systems are ruled by the unitary dynamics of quantum me-
chanics, the out-of-equilibrium scaling behavior of classical
systems depend also on the particular choice of dynamics,
whether it is purely relaxational or it implies conserved quan-
tities, which gives generally rise to different dynamic features
[55–57].

In this paper, we address the effects of slow round-trip vari-
ations of the Hamiltonian parameter w(t ) in Eq. (1), entailing
multiple crossings of quantum and thermal transitions. More
precisely, we consider round-trip protocols where the system
starts at the equilibrium condition (ground state in quantum
systems) associated with the initial value wi = w(ti) < 0, then
the out-of-equilibrium dynamics is driven by linear changes of
w(t ) up to w f > 0, thus crossing the transition point wc = 0,
and then by changing it back to the original value wi < 0,
again linearly in time, which implies a further crossing of the
transition point. The timescale ts of the variations of w(t ) is
unique, and the slow-crossing regime is realized in the large-ts
limit.

We address these issues within classical (see, e.g.,
Ref. [58]) and quantum (see, e.g., Ref. [54]) continuous tran-
sitions, characterized by emerging long-range correlations.
We exploit unified RG frameworks [19,54,56,58–64], which
allow us to derive general dynamic scaling behaviors at
both classical and quantum transitions, in the limits of large
timescale ts of the round-trip KZ protocol and large size L of
the model, using standard RG arguments. For this purpose,
we extend the dynamic RG framework already applied to
standard one-way KZ protocols, see, e.g., Refs. [19,25] and
references therein.

In this exploratory study of slow round-trip protocols
across continuous transitions, we restrict ourselves to tran-
sitions between gapped phases showing only short-ranged
correlations, to avoid the complications arising from the ef-
fects of gapless modes in the ordered phases. This is somehow
different from the standard KZ protocols leading to the KZ
problem, in which, starting from a disordered phase, the sys-
tem is driven to an ordered phases characterized by long-range
correlations, where further important dynamic effects may set
in at large time, such as coarsening phenomena or massless
Goldstone excitations, see, e.g., Refs. [25,32].

In our study, we consider some paradigmatic many-
body systems undergoing quantum and classical transitions
belonging to the two-dimensional (2D) Ising universality
class:

(i) quantum one-dimensional (1D) Ising models with an
external time-dependent longitudinal field;

(ii) quantum Kitaev fermionic wires with a time-dependent
chemical potential;

(iii) classical 2D lattice Ising models undergoing a
finite-temperature transition, supplemented with a purely re-
laxational dynamics driven by an external time-dependent
magnetic field.

In all cases, we consider time-dependent protocols with
round-trip variations of the Hamiltonian parameter corre-
sponding to w(t ) in Eq. (1), crossing twice the critical point
separating classical or quantum phases with finite correlation
lengths, when |w(t )| > 0 in Eq. (1).

As we shall see, the analogy of the scaling behaviors
emerging from standard one-way KZ protocols at classical
and quantum transitions is only partially extended to round-
trip KZ protocols. Indeed substantial differences emerge,
in particular when the extreme value w f > 0 at the return
point (where w(t ) stops increasing and starts decreasing) is
kept fixed and finite in the large-ts dynamic scaling limit of
the round-trip protocol. On the one hand, classical systems
show well-defined scaling phenomena, developing hysteresis-
like scenarios; this is essentially related to the fact that the
purely relaxational stochastic dynamics leads eventually to
thermalization in the large-time limit when keeping the model
parameters fixed [62]. On the other hand, in quantum systems,
the observation of scaling behaviors along the return way
turns out to be more problematic, due to the persistence of
rapidly oscillating relative phases between the relevant quan-
tum states, which make the return way extremely sensitive
to the parameters of the protocol, such as the extreme value
w f and the size of the system. This is essentially related to
the quantum unitary nature of the dynamics. Indeed we ob-
serve some notable similarities with the behavior of quantum
two-level models subject to round-trip protocols, related to
the well-known Landau-Zener-Stückelberg problem [65–68].
Even in this apparently simple case some features of the be-
havior along the return way turn out to be extremely sensitive
to the parameters of the round-trip protocol.

The paper is organized as follows. In Sec. II, we in-
troduce the above-mentioned quantum and classical models
that develop critical behaviors belonging to the 2D Ising
universality class. In Sec. III, we describe the one-way and
round-trip KZ protocols that we consider, across thermal
and quantum transitions. Section IV reports the observables
that we use to monitor the dynamic evolution along the
KZ protocols in the various models considered. Section V
summarizes the dynamic scaling theory associated with one-
way KZ protocols, within RG frameworks which apply to
both classical and quantum transitions. In Sec. VI, we ex-
tend the dynamic scaling theory to round-trip KZ protocols,
emphasizing the possible differences between classical and
quantum behaviors. Section VII reports the numerical anal-
yses that support, and further characterize, the predicted
dynamic scaling behaviors, showing also substantial differ-
ences between classical and quantum round-trip KZ protocols.
Finally, in Sec. VIII, we summarize and draw our conclusions.
Appendix analyzes analogous round-trip protocols within
a two-level quantum model with time-dependent Hamil-
tonian parameters (similar to that used for the so-called
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Landau-Zener-Stückelberg problem), which turns out to be
useful to interpret the results obtained for the quantum many-
body systems.

II. THE MODELS

A. Quantum many-body systems

As a paradigmatic quantum many-body system, we con-
sider the 1D quantum Ising models, described by the
Hamiltonian

HqI (g, h) = −J
L∑

x=1

σ
(1)
x σ

(1)
x+1 − g

L∑
x=1

σ (3)
x − h

L∑
x=1

σ (1)
x , (2)

where L is the system size, σ (k)
x are the Pauli matrices on

the xth site (k = 1, 2, 3 labels the three spatial directions).
In the following, we consider quantum Ising systems with
periodic boundary conditions (PBC), obtained by requiring
σ

(k)
L+1 = σ

(k)
1 .

We recall that the quantum Ising model (2) develops a
quantum critical behavior at g = gc = J and h = 0, belonging
to the 2D Ising universality class, see, e.g., Ref. [54]. The
model is always gapped for h �= 0. The relevant parameters
r ≡ g − gc and h are respectively associated with even and
odd RG perturbations at the Ising fixed point. Their RG di-
mensions are respectively yr = 1/ν = 1 and yh = 15/8, so
that the length scale ξ of the critical modes behaves as ξ ∼
|g − gc|−1/yr for h = 0, and ξ ∼ |g − gc|−1/yh at g = gc. The
dynamic exponent z, controlling the vanishing of the gap
� ∼ ξ−z at the transition point, is given by z = 1. Moreover,
we recall that the RG dimension of the order-parameter field,
associated with the longitudinal operators σ (1)

x , is given by
yl = d + z − yh = 1/8, while that associated with the trans-
verse operator σ (3)

x is given by yt = d + z − yr = 1. In the
following, we assume ferromagnetic nearest-neighbor inter-
actions with J = 1, thus gc = J = 1.

To achieve round-trip protocols between gapped phases,
without degeneration of the lowest quantum states, we
consider Ising chains with PBC at g = gc driven by a time-
dependent longitudinal field h(t ). Therefore, comparing with
Eq. (1), we identify

Hc = HqI (gc, 0), w(t ) = h(t ), Hp = −
∑

x

σ (1)
x . (3)

The quantum Ising Hamiltonian HqI (g, 0) for vanishing
longitudinal field h can be mapped into a quadratic model
of spinless fermions through a Jordan-Wigner transformation
[69,70], obtaining the so-called quantum Kitaev wire [71]:

HK (μ) = −
∑

x

(c†
xcx+1 + c†

xc†
x+1 + H.c.) − μ

∑
x

nx, (4)

where c(†)
x is the fermionic annihilation (creation) operator

on site x of the wire, nx ≡ c†
xcx is the corresponding number

operator, and μ = −2g. The Kitaev model undergoes a con-
tinuous quantum transition at μc = −2gc = −2. Of course,
it belongs to the 2D Ising universality class as well, so that
yμ = yr = 1/ν = 1 (there is no an analog of the longitudinal
field h of the spin formulation (2) within the above fermionic
representation). At the Ising transition the fermionic operators

cx and the particle density operator nx acquire the RG dimen-
sions yc = 1/2 and yn = 1, respectively.

Although the bulk behaviors of the Ising and Kitaev models
in the infinite-volume limit (and thus their phase diagram) are
analogous, some features of finite-size systems may signifi-
cantly differ. As a matter of fact, the nonlocal Jordan-Wigner
transformation of the Ising chain with PBC does not simply
map into the fermionic model (4) with definte boundary con-
ditions. Indeed further considerations apply [70,72], leading
to a less straightforward correspondence, which also depends
on the parity of the particle-number eigenvalue.

The Kitaev quantum wire with antiperiodic boundary con-
ditions (ABC), obtained by requiring that cL+1 = −c1, turns
out to be gapped in both phases separated by the quantum
transition at μc = −2. Indeed, it does not exhibit the lowest-
state degeneracy of the ordered phase of the quantum Ising
chain (namely, the exponential suppression of the gap with in-
creasing L). The reason for such substantial difference resides
in the fact that the Hilbert space of the former is restricted
with respect to that of the latter, so that it is not possible
to restore the competition between the two vacua belonging
to the symmetric/antisymmetric sectors of the Ising model
[19,70,71,73]. Therefore a continuous quantum transition be-
tween gapped phases is also realized within the Kitaev wire
with ABC, by choosing

Hc = HK (μc), w(t ) = μ(t ) − μc, Hp = −
∑

x

nx. (5)

B. Classical Ising model

As a classical paradigmatic model undergoing a finite-
temperature continuous transition, we consider the 2D Ising
model, defined on a square lattice by the partition function

Z =
∑
{sx}

e−βHcI , β = 1/T, (6)

HcI (J, h) = −J
∑
〈xy〉

sxsy − h
∑

x

sx, (7)

where x are the sites of the lattice, 〈xy〉 indicates the nearest-
neighbor sites of the lattice, sx = ±1 are classical spin
variables, and h is an external homogenous magnetic field
(we use the same symbol of the external longitudinal field
of the quantum ising model (2), but this should not lead to
confusion). We consider systems with PBC. We again set
J = 1.

The square-lattice Ising model (7) undergoes a thermal
continuous transition at h = 0 and Tc = 2/ ln(

√
2 + 1) [74].

The critical behavior belongs to the same universality class of
the 1D quantum Ising model. Therefore it is characterized by
the critical exponents ν = 1 and η = 1/4. They are related to
the RG dimension yt associated with the even temperature pa-
rameter by yt = 1/ν = 1, and to that associated with the odd
external field h by yh = 2 − η/2 = 15/8, see, e.g., Ref. [63].

Since we are going to discuss dynamic behaviors, we must
also define the type of dynamics driving the time evolution
of the system. We consider a purely relaxational dynam-
ics (also known as model A of critical dynamics [55,56]),
which can be realized by stochastic Langevin equations,
or just METROPOLIS updatings in Monte Carlo simulations
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[75]. The corresponding dynamic exponent z has been ac-
curately estimated by numerical studies, obtaining z ≈ 2.167
with a relative precision that is apparently better than one
per mille. Indeed, some of the most recent estimates of the
dynamic exponent z for purely relaxational dynamics are
z = 2.1667(5) from Ref. [76], z = 2.168(5) from Ref. [77],
z = 2.1665(12) from Ref. [78], z = 2.172(6) from Ref. [79],
and z = 2.170(6) from Ref. [80], which have been obtained
by numerical analyses based on Monte Carlo simulations in
equilibrium conditions. In the following, we use the estimate
z = 2.167(1).

One may consider time-dependent KZ protocols also in
this classical context, supplementing the partition function (6)
defining the classical Ising model with the purely relaxational
dynamics. Analogously to the quantum case, cf. Eq. (3), we
consider 2D Ising models with PBC at Tc driven by a time-
dependent magnetic field h(t ). Therefore we identify

Hc = HcI (1, 0), β = βc = ln(
√

2 + 1)

2
,

w(t ) = h(t ), Hp = −
∑

x

sx. (8)

III. ONE-WAY AND ROUND-TRIP KZ PROTOCOLS
ACROSS TRANSITION POINTS

In the following, we assume the general Hamiltonian (1),
which represents the three models presented in Sec. II with
the identifications in Eqs. (3), (5), and (8).

A. One-way KZ protocols

KZ-like protocols have been largely employed to investi-
gate the dynamics of critical systems, at quantum transitions
when the many-body system is subject to unitary time evo-
lutions, and at classical (thermal) transitions considering, for
example, a purely relaxational dynamics that can be imple-
mented by standard Langevin equations [55].

1. Quantum KZ protocols

In the case of quantum many-body systems, quasiadiabatic
passages through the continuous quantum transition are ob-
tained by slowly varying w across wc = 0, following, e.g., the
standard KZ procedure.

(i) One starts from the ground state of the many-body
system at wi < 0, that is |�(t = 0)〉 ≡ |�0(wi )〉.

(ii) Then the out-of-equilibrium unitary dynamics, ruled by
the Schrödinger equation

d |�(t )〉
dt

= −i Ĥ [w(t )] |�(t )〉, (9)

arises from a linear time dependence of the Hamiltonian pa-
rameter w(t ), such as

w(t ) = t/ts, (10)

up to a final value w f > 0. Therefore the KZ protocol starts at
time ti = ts wi < 0 and stops at t f = ts w f > 0. The parameter

ts denotes the timescale of the slow variations of the Hamilto-
nian parameter w.

Across a continuous transition, the growth of an out-of-
equilibrium dynamics is inevitable in the thermodynamic
limit, even for very slow changes of the parameter w, because
large-scale modes are unable to equilibrate as the system
changes phase. Indeed, when starting from the ground state
associated with the initial value wi, the system cannot pass
adiabatically through the ground states associated with w(t )
across the transition point (in the infinite volume limit), thus
departing from an adiabatic dynamics. Note that, in the quan-
tum cases that we consider, cf. Eqs. (3) and (5), the slow
variation of the longitudinal field w brings the system from
a gapped condition at wi < 0 to another gapped condition
for w f > 0. This somehow differs from the standard situation
of the KZ problem related to the defect production going
from disorder to order phases, see, e.g., Refs. [1,2,7,12,13,20–
22,25,29–31,34–38].

2. Classical KZ protocols

In the case of many-body systems at classical transitions,
one can again assume that slow passages through the con-
tinuous transition are obtained by slowly varying w across
wc = 0, following the classical KZ procedure.

(i) One starts from an equilibrium thermalized configura-
tion at wi < 0.

(ii) Then the out-equilibrium classical dynamics, ruled
by the relaxational Langevin equation [55], or a standard
METROPOLIS upgrading [75] of lattice configurations, arises
from linear changing of the parameter w(t ), as w(t ) = t/ts,
up to a final value w f > 0. In the case of METROPOLIS-like
dynamics, this can be achieved by incrementing the time
by one unity after one global sweep of the lattice variables
(METROPOLIS upgrading of all lattice spin variables). Again
the KZ protocol starts at time ti = ts wi < 0 and stops at
t f = ts w f > 0.

Since the above protocol involves a stochastic relaxational
process, results are obtained by averaging over an ensemble
of trajectories (starting from an ensenble of thermalized con-
figurations at wi), obtained following the above protocol.

We remark again that the classical out-of-equilibrium phe-
nomena associated with the above protocol occurs between
two phases, for w < 0 and w > 0, with short-ranged correla-
tions. This is again different from standard classical protocols
associated with the KZ problem, in which one passes from
a disordered to an ordered phase characterized by long-range
correlations, where further important dynamic effects may set
in, in particular when the global symmetry is preserved by the
KZ protocol and its initial state, such as coarsening phenom-
ena or massless Goldstone excitations, see, e.g., Ref. [25].

B. Round-trip KZ protocols

We now consider round-trip protocols in which the Hamil-
tonian parameter w(t ) varies linearly from wi < 0 to w f > 0,
which is analogous to the one-way KZ protocol, and then it
returns back to the original value, crossing twice the transition
point. In the case of quantum systems the round-trip KZ
protocol follows the steps.
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(i) One starts at t = ti from the ground state of the many-
body system at wi < 0, given by |�(ti )〉 ≡ |�0(wi )〉.

(ii) The out-equilibrium unitary dynamics, ruled by the
Schrödinger equation (9), is driven by linearly increasing
w(t ): as w(t ) = t/ts from wi < 0 (at time ti = wits < 0) to
w f > 0 (at time t f = w f ts > 0).

(iii) Then, for t > t f the dynamics is ruled by the
Schrödinger equation (9) with an external field w(t ) that de-
creases linearly with the same timescale ts, from w f > 0 to
the original value wi < 0, closing the cycle.

To simplify the protocol, reducing its number of param-
eters, we consider a symmetric round-trip KZ protocol (an
extension of the later results to the most general case is
straightforward) in which we fix

w	 = w f = −wi, (11)

and write the time dependence of w(t ) as

w(t ) = T (t )

ts
for ti = −t	 � t � 3t	, (12)

where

T (t ) = t	 − |t − t	| (13)

is the triangular function going linearly from T (−t	) = −t	
to T (t	) = t	, and then back to T (3t	) = −t	. The parameter ts
represents the timescale of the variation. The parameter t	 > 0
controls the extension, i.e., the starting and final times, of the
protocols, from ti = −t	 to t f = 3t	, and also the interval of
variation of w(t ), from w(ti ) = −t	/ts to w(t	) = t	/ts.

Analogously to the quantum case, we extend the one-way
KZ protocol for classical systems to symmetric round-trip KZ
protocols, by taking the time-dependent parameter w(t ) as in
Eq. (12), with the same definitions.

We finally mention that similar cyclic protocols have been
also considered in various contexts and phase transitions, see,
e.g., Refs. [32,81–85], in particular at first-order phase tran-
sitions to show the emergence of hysteresis phenomena [3].
As we shall see, round-trip KZ protocols of classical systems
will also lead to the emergence of a scaling hysteresis-like
scenarios, however their nature and scaling propeties are sub-
stantially different from that arising at first-order transitions.
In this paper, we will not pursue hysteresis issues at first-order
classical and quantum transitions; however, they may be worth
further investigation, as we will mention in the conclusive
section.

IV. OBSERVABLES TO MONITOR THE
OUT-OF-EQUILIBRIUM DYNAMICS

A. Quantum case

The resulting out-of-equilibrium evolution of quantum
many-body systems can be investigated by monitoring ob-
servables and correlations at fixed time. To characterize the
departure from adiabaticity along the slow dynamic across the
continuous transition, we monitor the adiabaticity function

A(t ) = |〈�0[w(t )] | �(t ) 〉|, (14)

where | �0[w(t )] 〉 is the ground state of the Hamiltonian
H[w(t )], i.e., at instantaneous values of w(t ), while | �(t ) 〉

is the actual time-dependent state evolving according to the
Schrödinger equation (9).

The adiabaticity function measures the overlap of the time-
dependent state with the corresponding ground state of the
Hamiltonian at the same w(t ). Of course, the adiabaticity
function for an adiabatic evolution takes the value A(t ) = 1 at
any time. Since the KZ protocol starts from the ground state
associated with wi = w(ti ), we have A(ti ) = 1 initially. In
general protocols crossing transition points, A(t ) is expected
to depart from the initial value A(ti ) = 1, due to the impossi-
bility of the system to adiabatically follow the changes of the
function w(t ) across its critical value w = 0. Note however
that this is strictly true in the infinite-volume limit. In systems
of finite size L, there is always a sufficiently large timescale
ts, so that the system can evolve adiabatically, essentially
because finite-size systems are strictly gapped, although the
gap � at the continuous quantum transition gets suppressed as
� ∼ L−z. The interplay between the size L and the timescale
ts gives rise to nontrivial out-of-equilibrium scaling behaviors,
which can be studied within finite-size scaling (FSS) frame-
works [19,33].

Another general observable is related to the surplus energy
of the system with respect to its instantaneous ground state at
the given w(t ), i.e.,

Es(t ) = 〈�(t )| H |�(t )〉 − 〈�0[w(t )]| H |�0[w(t )]〉. (15)

Since the protocols considered start from a ground state at ti,
the surplus energy Es(t ) vanishes along adiabatic evolutions,
while nonzero values Es(t ) > 0 are related to the degree of
out-of-equilibrium of the dynamics across the transition.

To monitor the out-of-equilibrium dynamics in the case of
Ising models in the presence of a time-dependent longitudinal
field w(t ), one may consider the evolution of the local and
global average magnetization

mx(t ) ≡ 〈�(t )| σ (1)
x |�(t )〉, M(t ) ≡ 1

L

∑
x

mx(t ), (16)

as well as the fixed-time correlation function of the order-
parameter operator and its space integral,

G(t, x, y) ≡ 〈�(t )| σ (1)
x σ (1)

y |�(t )〉. (17)

Taking into account the translation invariance due to the ab-
sence of boundaries (such as the cases with PBC or ABC), we
trivially have mx(t ) = M(t ) and G(t, x, y) ≡ G(t, x − y). We
also consider the transverse magnetization

N (t ) ≡ 1

L

∑
x

〈�(t )| σ (3)
x |�(t )〉, (18)

and the related subtracted quantity

Ns(t ) = N (t ) − Nc, (19)

where Nc is the ground-state transverse magnetization at the
critical point, i.e., Ref. [72]

Nc = lim
L→∞

〈�0,w = 0|σ (3)
x |�0,w = 0〉 = 2

π
. (20)

In the case of the Kitaev model with ABC subject to a time-
dependent chemical potential, one may consider the particle
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density, and in particular the subtracted definition

ρs(t ) ≡ 〈�(t )| nx |�(t )〉 − ρc, (21)

which is independent of x due to translation invariance, and,
for convenience, we have subtracted its known critical ground-
state value in the infinite volume limit, which is given by [72]
ρc = (π − 2)/(2π ) = 0.18169011 . . . One may also consider
fermionic correlation functions, such as

C(x, t ) ≡ 〈�(t )| c†
j c j+x + c†

j+xc j |�(t )〉, (22)

where j, x ∈ [1, L/2], we have taken into account the transla-
tion invariance of systems with ABC.

B. Classical case

In the case of the classical 2D Ising systems, we consider
the magnetization

mx(t ) ≡ 〈sx〉t , M(t ) ≡ 1

L2

∑
x

mx(t ), (23)

as well as the fixed-time correlation function of the order-
parameter operator and its space integral,

G(t, x, y) ≡ 〈sx sy 〉t . (24)

The symbol 〈 〉t indicates the average over trajectories at time
t . Taking into account the translation invariance due to the ab-
sence of boundaries (such as the cases with PBC), we trivially
have mx(t ) = M(t ) and G(t, x, y) = G(t, x − y).

V. DYNAMIC SCALING ALONG
THE ONE-WAY KZ PROTOCOL

In this section, we outline the main features of the dynamic
scaling behavior that is expected to emerge at the one-way KZ
protocol of the models introduced in the previous sections,
driven by the time dependent w(t ) = t/ts, starting from equi-
librium conditions at wi = w(ti ) < 0.

A. Dynamic FSS for quantum KZ protocols

We first present an overview of the dynamic scaling behav-
ior emerging at quantum one-way KZ protocols. We discuss it
within a dynamic RG framework. The RG arguments leading
to the dynamic scaling framework of KZ protocols at quantum
transitions have been reviewed in Ref. [19] (see in particular
its Chap. 9). Dynamic scaling laws are expected to develop in
the limit of large timescale ts of the driven parameter w(t ), and
large size L of the system. They must describe the interplay
of the various dimensionful scales of the problem, such as
the time t and timescale ts of the KZ protocol, the size L of
the system, and the energy scale � ∼ L−z of the system at the
critical point.

Let us consider observables constructed from a local op-
erator O(x) with RG dimension yo. The dynamic FSS of its
expectation value Os and its two-point correlation function GO

are expected to obey homogeneous scaling laws, such as [19]

Os(t, ts,wi, L) ≡ 〈�(t )|O(x)|�(t )〉
≈ b−yoO(b−zt, byww(t ), bywwi, b−1L), (25)

GO(x, t, ts,wi, L)

≡ 〈�(t )|O(x1) O(x2)|�(t )〉
≈ b−2yo G(b−1x, b−zt, byww(t ), bywwi, b−1L), (26)

where b is an arbitrary (large) length scale, and we assumed
translation invariance, i.e., systems without boundaries such
as PBC or ABC, so that Os does not depend on x, and the
two-point function depends on the difference x ≡ x1 − x2

only. The scaling functions O and GO are expected to be
universal, i.e., largely independent of the microscopic details
of the models and the KZ protocols. Their arguments take into
account the RG dimensions of the various relevant parameters
t , w(t ), wi at the equilibrium quantum transition [19].

To derive a dynamic scaling theory, it is possible to exploit
the arbitrariness of the scale parameter b, by fixing it as
b = L (see, e.g., Ref. [19] for the optimal choice to derive
the dynamic scaling laws in the infinite-volume thermody-
namic limit). Then, the asymptotic dynamic FSS behavior is
obtained by taking ts → ∞ and L → ∞, while appropriate
scaling variables are kept fixed, such as [19]

K = w(t )Lyw , ϒ = ts/Lζ ,

�i = wi t1−κ
s , � = w(t ) t1−κ

s = t/tκ
s , (27)

where

ζ = yw + z, κ = z/ζ , 1 − κ = yw/ζ . (28)

Note that � � �i, K = ϒκ−1�, and that the exponents κ and
1 − κ are both positive and smaller than one. Note that the
most natural time scaling variable t �, where � ∼ L−z is the
critical gap of the system, can be straightforwardly related to
� and ϒ by t � ∼ �ϒ .

Then the dynamic FSS of the generic observables intro-
duced in Eqs. (25) and (26) is given by [19]

Os(t, ts,wi, L) ≈ L−yoO(ϒ,�,�i ), (29)

GO(x, t, ts,wi, L) ≈ L−2yo GO(X, ϒ,�,�i ), (30)

where X ≡ x/L. The above scaling behaviors are expected
to describe the dynamics within the interval ti � t � t f , cor-
responding to the interval wi � w(t ) � w f , therefore the
scaling variable � takes values within the interval

�i � � � � f = w f t
1−κ
s > 0. (31)

Since the dynamic FSS limit at fixed � < � f does not de-
pend on � f , but only on ϒ and �i, in the following of
this section dedicated to one-way KZ protocols, we omit the
dependence on � f . Of course, if we keep w f fixed in the
large-ts limit, i.e. if we do not scale w f to zero to keep � f

fixed, then � f → ∞.
We also mention that the scaling functions may have a

nontrivial large-� behavior. But we postpone this discussion
when we will consider round-trip protocols, where the impact
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of the extreme value w f , and therefore � f , will be important
for the return trajectories in quantum models.

Using the above general dynamic scaling ansatz, we can
derive the dynamic FSS of the longitudinal magnetization M,
the correlation function G, and the transverse magnetization
Ns of the quantum Ising systems, cf. Eq. (16)–(19),

M(t, ts,wi, L) ≈ L−ylM(ϒ,�,�i ), (32)

G(x, t, ts,wi, L) ≈ L−2yl G(X, ϒ,�,�i ), (33)

Ns(t, ts,wi, L) ≈ L−ytN (ϒ,�,�i ), (34)

where M, G, and N are appropriate scale functions, and we
recall that yw = yh = 15/8, yl = 1/8, and yt = 1, for the 2D
Ising universality class.

An analogous scaling behavior is put forward for the adia-
baticity function in quantum systems, cf. Eq. (14),

A(t, ts,wi, L) ≈ A(ϒ,�,�i ) = Ã(ϒ, K,�i ). (35)

Due to the initial condition of the KZ protocol, we must have
A(ϒ,�i,�i ) = 1. Moreover, since ϒ → ∞ keeping K fixed
corresponds to the adiabiatic limit within the FSS framework,
we must also have that

Ã(ϒ → ∞, K,�i ) = 1. (36)

Using standard RG arguments, we may also derive an ansatz
for the dynamic scaling behavior of the surplus energy defined
in Eq. (15), which turns out to be

Es(t, ts,wi, L) ≈ L−zE (ϒ,�,�i ), (37)

where z = 1 is the RG exponent associated with the energy
differences of the lowest states of the spectrum. Note that the
leading analytic background contributions [19,73], generally
arising at the critical point, get canceled by the difference of
the two terms in the definition of Es, cf. Eq. (15).

We now note that, with increasing L, the dynamic FSS
occurs within a smaller and smaller interval δw of values
of |w| around w = 0: since the time interval of the out-of-
equilibrium process described by the scaling laws scales as
tKZ ∼ tκ

s , the relevant interval δw of values of |w|, where
a nontrivial out-of-equilibrium scaling behavior is observed,
shrinks as

δw ∼ tKZ/ts ∼ L−yw , (38)

when keeping ϒ fixed. Therefore, assuming that the KZ pro-
tocol starts from a gapped phase, such as the case of Ising
rings with any |w| > 0, and that the initial wi < 0 is kept fixed
in the dynamic scaling limit (corresponding to �i → −∞),
the same dynamic FSS limit is expected to hold, irrespective
of the value of wi. Thus the dynamic FSS behavior at fixed
wi < 0 in Eqs. (32) and (33) simplify to

M(t, ts,wi, L) ≈ L−ylMi(ϒ,�), (39)

G(x, t, ts,wi, L) ≈ L−2yl Gi(X, ϒ,�), (40)

Ns(t, ts,wi, L) ≈ L−ytNi(ϒ,�), (41)

They are expected to match the �i → −∞ limit, for example,

Mi(ϒ,�) = M(ϒ,�,�i → −∞), (42)

and analogously for the scaling functions Gi and Ni. Analo-
gous limiting scaling functions Ai and Ei can be defined for
the adiabaticity function and the surplus energy, respectively.

Note that, in the limit ϒ → ∞, the evolution as a func-
tion of w(t ) = t/ts corresponds to an adiabatic dynamics.
Indeed, since the finite size L guarantees the presence of a
gap between the lowest states, one may adiabatically cross the
critical point if ϒ → ∞, passing through the ground states
of the finite-size system for w(t ). The adiabatic evolution
across the transition point is prevented only when L → ∞
(before the limit ts → ∞), i.e., when the timescale tr of the
critical correlations diverges, as tr ∼ �−1 ∼ Lz. Within the
FSS framework, the adiabatic limit is achieved by taking the
ϒ → ∞ limit keeping K fixed, cf. Eq. (27).

The scaling behavior in the infinite size thermodynamic
limit can be straightforwardly obtained by taking the L → ∞
limit of the FSS equations, therefore in the limit ϒ → 0 keep-
ing � fixed. Thus, taking the large-ts limit keeping the initial
value wi fixed, we expect the asymptotic dynamic scaling
behavior

M(t, ts,wi, L → ∞) ≈ λ−ylM∞(�), (43)

G(x, t, ts,wi, L → ∞) ≈ λ−2yl G∞(x/λ,�), (44)

where

λ = t1/ζ
s (45)

is the KZ length scale arising from the linear time-dependence
of the Hamiltonian parameter across the transition. Note that

M∞(�) = lim
ϒ→0

ϒyl /ζMi(ϒ,�). (46)

An analogous relation can be derived for the two-point func-
tion. Moreover for the adiabaticity function we obtain

A(t, ts,wi, L → ∞) ≈ A∞(�) = Ai(ϒ → 0,�). (47)

The above dynamic scaling behaviors are expected to apply
in the large-ts and large-L limits. These asymptotic behaviors
are expected to be approached with power-law suppressed
corrections. Scaling corrections to the asymptotic dynamic
scaling limit arises for finite timescales ts, in particular for
moderately large ts. They are expected to be generally con-
trolled by the leading irrelevant perturbations at the 2D Ising
fixed point, which get suppressed as ξ−ω (where ξ is diverging
correlation length, or the KZ length scale λ) with the uni-
versal exponent ω = 2 [73,86–89], and also from analytical
contribution which dominates the corrections arising from the
leading irrelevant perturbation [19,63]. However, typically the
leading corrections in out-of-equilibrium dynamic phenom-
ena arising from KZ protocols are suppressed as λ−1, cf.
Eq. (45), or equivalently as 1/L in the dynamic FSS [19].

Analogous dynamic scaling behaviors are expected for
the protocol within the Kitaev model, essentially replacing
w(t ) = μ(t ) − μc, and yw = yr = 1, and using yc = 1/2 and
yn = 1 (instead of yl ) for the scaling prefactor of the two-point
functions defined in Eqs. (22).

B. Dynamic FSS for classical KZ protocols

The dynamic FSS framework at classical thermal continu-
ous transitions is essentially analogous, so we do not outline
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its derivation, which can be found in Ref. [32]. We introduce
the same scaling variables (27) with the corresponding critical
exponents, see Sec. II B. In particular, the dynamic exponent
associated with the purely relaxational dynamics is given by
z = 2.167(1). Then the dynamic FSS of the observables in-
troduced in Sec. IV B is the same as that reported in Eqs. (32)
and (33). Analogous considerations concern protocols at finite
fixed wi, whose scaling behavior must match that obtained
in the limit �i → −∞, thus leading to the scaling ansatzes
reported in Eqs. (39) and (40), and also Eqs. (43)–(45) in the
infinite-volume limit, formally obtained in the ϒ → 0 limit.
The adiabatic limit is analogously obtained by taking the limit
ϒ → ∞.

In one-way KZ protocols between phases with short-
range correlations, the purely relaxational dynamics leads to
thermalization for sufficiently long times [62], after the out-
of-equilibrium regime across the transition. The limit � → ∞
of M(ϒ,�,�i ) at fixed ϒ is expected to lead to the infinite-
volume equilibrium value of the magnetization. To infer it,
note first that, in a finite volume, the slowest timescale scales
as τr ∼ Lz where z is the dynamic exponent. A necessary con-
dition to obtain equilibrium results is therefore that ts � τr ,
i.e., tsL−z → ∞. At fixed ϒ , since ϒ = ts/Lζ and ζ = yw + z,
we have tsL−z = ϒLyw and hence the condition is satisfied
for L → ∞. Since we take the limit � → ∞, we are con-
sidering the system at times t much larger than the timescale
at which the out-of-equilibrium behavior occurs, so that the
system is in equilibrium. Therefore the scaling function M
should match its equilibrium counterpart Me(K ). Finally,
since K = wLyw = ϒ1−κ�, in the limit � → ∞ at fixed ϒ

we have K → ∞, i.e., we are considering the behavior in the
infinite-volume limit.

The above considerations, arising from the eventual ther-
malization under relaxational dynamics, turn out to be the key
point distinguishing round-trip protocols within classical and
quantum contexts, see below.

VI. DYNAMIC SCALING FOR THE ROUND-TRIP
KZ PROTOCOL

We now address the out-of-equilibrium dynamics at the
round-trip protocols outlined in Sec. III B. The scaling argu-
ments of the one-way protocol can be extended to the case
of round trip. For round-trip protocols we expect a further
nontrivial dependence on the upper extreme value w f of w,
through the scaling variable � f = w f t1−κ

s . In the following,
we consider the symmetric round-trip protocol with w f =
−wi = w	, thus �i = −� f .

A. Quantum dynamic FSS

Analogously to the one-way KZ protocol, we define the
scaling variables

ϒ = ts/Lζ , � = w(t ) t1−κ
s , �	 = w	 t1−κ

s , (48)

where |�| � �	, and the exponents ζ and κ are reported in
Eq. (28). We also define K = w(t )Lyw and X = x/L. Note
that now � is nonmonotonic, like w(t ), cf. Eq. (12), i.e., it
takes the same value twice. For this reason, we divide the
time evolution into two parts: the first outward time evolution

(a), from � = −�	 < 0 to � = �	 > 0 (corresponding to
−t	 � t � t	), and then the second return evolution (b), from
� = �	 to � = −�	 (corresponding to t	 � t � 3t	).

Again, the dynamic FSS behavior is expected to be ob-
tained by taking ts → ∞ and L → ∞, while keeping the
scaling variables ϒ , �, �	, K and X fixed. Then, the expecta-
tion value Os and correlation function GO(x − y) of a generic
local observable O(x) are expected to behave as

O(a/b)
s (t, ts,w	, L) ≈ L−yoO(a/b)(ϒ,�,�	),

G(a/b)
O (x, t, ts,w	, L) ≈ L−2yo G (a/b)

O (X, ϒ,�,�	), (49)

where the superscripts (a) and (b) indicate the outward and
return trajectories. Note that the values of the observables after
the full cycle do not generally equal those at the beginning,
i.e., for finite ϒ

O(b)
s (ϒ,−�	,�	) �= O(a)

s (ϒ,−�	,�	), (50)

unless we consider the adiabatic limit ϒ → ∞. The above
scaling ansatz apply to any observable introduced in Sec. IV
for the quantum models considered. In particular, the adi-
abaticity function and the surplus energy are expected to
behave as

A(a/b)(t, ts,w	, L) ≈ A(a/b)(ϒ,�,�	), (51)

E (a/b)
s (t, ts,w	, L) ≈ L−zE (a/b)

s (ϒ,�,�	). (52)

Concerning the approach to the above asymptotic scaling
behaviors, we expect scaling corrections analogous to those
mentioned in the case of the one-way KZ protocol, at least
when �	 is kept finite.

The above scaling behaviors appear quite similar to those
already emerging at the one-way KZ protocols. However, a
nontrivial issue concerns the existence of the large-�	 limit,
and the existence of a scaling limit of the return trajectories
when w	 > 0 is kept fixed in the round-trip protocol. As we
shall see, classical and quantum systems turn out to behave
differently. On the one hand, the relaxational dynamics of
classical system lead to a well defined dynamic scaling when
keeping w	 > 0 fixed, developing a hysteresislike scenario.
On the other hand, for quantum systems, thus unitary dynam-
ics, such a limit turns out to be problematic, due to rapid
oscillations which make the return somehow chaotic, and
extremely sensitive to the protocol parameters, such as w	,
L, etc.

B. Classical dynamic FSS

The RG framework allows us to describe also the dynamic
FSS arising from round-trip KZ protocols in classical systems.
Indeed, analogous scaling relations apply. We introduce the
same scaling variables as in Eq. (48), and the scaling Eqs. (49)
for generic observables, such as those defined in Eqs. (23) and
(24). An important difference between quantum and classi-
cal systems is related to the large-�	 limit of these scaling
equations.

The large-�	 limit is expected to be well defined for clas-
sical systems driven across transitions between phases with
short-ranged correlations. This is essentially related to the fact
that the purely relaxational dynamics is able to thermalize
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the system at finite w = O(1), i.e., outside the critical re-
gion, for sufficiently large ts. When w(t ) > 0 thermalization is
achieved after a sufficiently large time tth. Therefore an equi-
librium behavior is realized for any t > tth, thus depending on
the actual value w(t ) only, independently of the versus of the
time changes of w(t ). At the turning point, the system is ther-
malized and ready to follow an equivalent trajectory toward
w = −w	, starting from an equilibrium condition as the initial
one. Of course, due to the inevitable out-of-equilibrium when
crossing the transition, the return trajectory with decreasing
w(t ) differs from the one with increasing w(t ), and the size
of the area within the two curves somehow quantifies the
degree of out-of-equilibrium. Therefore, for classical systems
we expect that the limits �	 → ∞ of the scaling functions
exist, i.e.,

lim
�	→∞

M(a/b)(ϒ,�,�	) ≡ M(a/b)
i (ϒ,�), (53)

and analogously for the correlation functions. Moreover, such
limit is expected to be realized by round-trip protocols with
finite w	 > 0. Moreover, the symmetry under Z2 reflection
implies that

M(b)
i (ϒ,�) = −M(a)

i (ϒ,−�). (54)

Since the outward (a) and return (b) trajectories give rise to
a close area, to achieve a quantitative indication of how far
the system is out of equilibrium in the large-ts limit, we may
define [32]

IA(ts,w	, L) = −t−κ
s

∮
dt M(t, ts,w	, L), (55)

where the integration is over the time from the beginning to
the end of the round-trip protocol. Assuming that the �	 →
∞ is well defined, and the system develops a critical hystere-
sis, i.e., a closed area, during the whole round-trip protocol,
the scaling behavior of IA must be independent of the actual
finite value of w	 > 0. Using the dynamic FSS framework
outlined above, we obtain the scaling prediction

IA(ts,w	, L) ≈ L−ylIA(ϒ)

= −L−yl

∫ ∞

−∞
dθ

[
M(a)

i (ϒ, θ ) − M(b)
i (ϒ, θ )

]
= −L−yl

∫ ∞

−∞
dθ

[
M(a)

i (ϒ, θ ) + M(a)
i (ϒ,−θ )

]
.

(56)

As we shall see, the numerical result will confirm that the
scaling function IA(ϒ) is well defined and finite. Note also
that such scaling hysteresis area is expected to shrink in the
adiabatic limit, i.e., for ϒ → ∞.

VII. NUMERICAL RESULTS

In this section, we report numerical analyses for the various
quantum and classical models introduced in Sec. II, subject to
the one-way and round-trip KZ protocols outlined in Sec. III.

A. Along the quantum one-way KZ protocol

The numerical analyses of quantum Ising chains (2) with
a time-dependent longitudinal field is based on exact diago-
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FIG. 1. Dynamic FSS of the quantum Ising chain along the
one-way KZ protocol at fixed �i ≡ wiLyw . We show results for
the adiabaticity function A(t, ts, wi, L) at fixed ϒ = ts/Lζ = 1/4 and
�i = −1 up to L = 16 (bottom) and the longitudinal magnetization
M(t, ts, wi, L) at fixed ϒ = 0.1 and �i = −1 up to L = 18 (top), vs
� = t/tκ

s . The exponents yw , ζ , and κ are reported in Eq. (57). The
approach to the large-ts asymptotic behavior is globally characterized
by O(1/L) corrections (apart from small superimposed wiggles), as
shown by the insets (where the line is drawn to guide the eyes).

nalization. The corresponding Schrödinger equation is solved
using a fourth-order Runge-Kutta method. This approach
allows us to compute the out-of-equilibrium dynamics for
lattice size L � 20, which, as we shall see, turns out to be
sufficient to achieve a robust evidence of the dynamic FSS
outlined in the previous sections, and their problematic as-
pects.

We want to check the dynamic FSS put forward in
Sec. V A. In the case of the quantum 1D Ising model (3), the
exponents entering the definitions of the scaling variables (27)
are

yw = 15/8, ζ = 23/8, κ = 8/23. (57)

Some results for the one-way protocol are reported in Figs. 1
and 2, for the adiabaticity function, defined in Eq. (14), and
the longitudinal magnetization, defined in Eq. (16), at fixed
�i (Fig. 1) and fixed wi (Fig. 2), for lattice sizes up to L = 16
and 18, respectively (this difference is due to the fact that the
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FIG. 2. Dynamic FSS of the quantum Ising chain along the
one-way KZ protocol at fixed wi < 0. We show the adiabaticity
function A(t, ts, wi, L) up to L = 16 (bottom) and the longitudinal
magnetization M(t, ts, wi, L) up to L = 18 (top), at fixed ϒ = 1/4
and wi = −1/8, vs �. As explained in the text, the scaling behavior
emerging at fixed wi < 0 matches that obtained in the �i → −∞
limit.

computation of the adiabaticity function is heavier). Although
the system sizes of the available results are only moderately
large, we clearly observe a collapse toward asymptotic scaling
curves, thus a robust evidence of the dynamic FSS outlined in
Sec. V A. In particular, the dynamic FSS emerging from the
data at fixed wi < 0 turns out to be independent of the actual
fixed value wi < 0, as predicted by the scaling arguments
reported in Sec. V A (in Fig. 2 we only show results for
wi = −1/8, but we have explicitly checked the independence
of wi < 0 of the scaling curves). We note that, as expected, the
adiabaticity function significantly drops crossing the quantum
transition at finite values of ϒ , while it remains close to one,
i.e., the value corresponding to adiabatic evolutions, for large
values of ϒ . We also note that the data show that the conver-
gence to the asymptotic dynamic FSS is globally consistent
with O(1/L) corrections (apart from superimposed wiggles),
see the insets of Fig. 1. Analogous corrections are observed
for other values of the parameters, in particular when keeping
the starting point wi fixed as in Fig. 2.

We remark that the boundary conditions are not particu-
larly relevant for the dynamic scaling behavior of quantum
Ising systems when the KZ protocol is driven by the longi-
tudinal field. Analogous scaling behaviors are expected for
systems with boundaries, such as open boundary conditions.
Note however that, while the power laws are not changed, the
dynamic FSS functions depend on the boundary conditions,
moreover the presence of boundaries gives rise to further
O(1/L) scaling corrections [73].

Analogous results are obtained for the quantum Kitaev
wire, with driving chemical potential. We recall that in
this case the choice of the boundary conditions, such as
ABC, is essential to guarantee that the KZ protocol connects
two gapped phases [19]. The corresponding exponents, cf.
Eq. (28), entering the definitions of the scaling variables (27),
are

yw = 1, ζ = 2, κ = 1/2. (58)

The simpler integrable nature of the quantum Kitaev wire (4)
allows us to easily consider much larger systems, up to L ≈
103, using standard procedures after Fourier transforming to
the momentum space. Again the resulting data (not shown)
for the adiabaticity function, energy surplus, particle density,
and the two-point functions, nicely support the dynamic FSS
outlined in Sec. V A, see also Ref. [19].

We finally mention that other results for one-way KZ pro-
tocols within quantum 1D Ising systems can be found in the
literature, see, e.g., Refs. [12,19,31] and references therein.

B. Along the classical round-trip KZ protocol

The numerical analysis of the classical Ising model is
based on standard Monte Carlo simulations based on lo-
cal METROPOLIS upgrading procedures [75], which provide
a purely relaxational dynamics without conserved quanti-
ties, that is model A according to the standard classification
reported in Ref. [55]. The time unit of this dynamics is
represented by a global sweep of upgradings of all L × L
spin variables. We perform the single-site update sequentially,
moving from one site to one of its neighbors in a typewriter
fashion. The results along the time-dependent protocols are
obtained by averaging over a sample of trajectories (typi-
cally of order 103), starting from an ensemble of thermalized
configurations at the initial parameter values. Also in this
case, relatively large systems can be simulated, typically for
L � 102.

The dynamic scaling arising from the one-way protocol is
quite analogous to that observed at quantum transitions, with
corresponding scaling behaviors, characterized by the static
Ising critical exponents supplemented by the purely relax-
ational dynamic exponent z = 2.167(1). The corresponding
relevant exponents, cf. Eq. (28), entering the definitions of the
scaling variables (27), are

yw = 15/8, ζ = 4.0420(1), κ = 0.5361(1). (59)

In the following, we only report results for the symmetric
round-trip KZ protocols, taking also into account that its first
part is equivalent to the one-way KZ protocol.

The dynamic scaling behavior of the magnetization, cf.
Eq. (49), is fully supported by the data reported in Fig. 3, for
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FIG. 3. Dynamic FSS behavior of M(t, ts, w	, L) for the classical
2D Ising model along the round-trip KZ protocol. Data are obtained
at fixed ϒ = 10−4, fixed �	 = 1.5 (top) and �	 = 2 (bottom), and
are plotted vs � = w(t )t1−κ

s . The arrows indicate the direction of
the protocol along the outward and return trip. The values of the
exponents yw , ζ , and κ are reported in Eq. (59). Statistical errors are
typically smaller than the thickness of the lines. The convergence
to the asymptotic scaling behavior is globally consistent with an
1/L approach, see, for example, the inset of the top figure. Notice
that the return trip goes from right to left, because increasing time
corresponds to decreasing �. We note that the magnetization at
the end of the protocol differs from that at the beginning, i.e., for
� = −�	 along the outward and backward trip, see Eq. (60). Of
course, the values at � = �	 coincide for the two trajectories.

a fixed ϒ = 10−4 and two different values of �	. Analogous
results are obtained for other values of ϒ . As expected the
round-trip cycle does not close the curves for finite values of
ϒ and �	, see Eq. (50), leaving a finite gap between the initial
and final values of the cycle, i.e.,

M(b)(ϒ,−�	,�	) − M(a)(ϒ,−�	,�	) > 0, (60)

which becomes smaller and smaller with increasing �	.
As argued in Sec. VI B, the outward and return trajectories

close in the large-�	 limit, and therefore for finite w	 > 0,
giving rise to a critical hysteresis phenomenon. This is clearly
demonstrated by the results shown in Fig. 4 for two different
finite values of w	 > 0, whose scaling curves coincide. The
outward and return curves for large |�| tend to coincide,
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L = 200
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w  = 0.04 L = 200

FIG. 4. Dynamic FSS behavior of M(t, ts, w	, L) for the classical
2D Ising model along the round-trip KZ protocol for fixed ϒ = 10−4,
and fixed w	 = 0.02 and w	 = 0.04. Statistical errors are typically
smaller than the thickness of the lines. The arrows indicate the
direction of the protocol along the outward and return trip. These
results clearly support the predicted scaling behaviors, see Sec. VI B,
and their independence of the finite value of w	 > 0.

differing only within an interval around � = 0, which be-
comes smaller and smaller with increasing ϒ , and vanishes
in the adiabatic limit ϒ → ∞. Such a dependence on ϒ

is demonstrated by the curves reported in Fig. 5, showing
the magnetization hysteresis for various values of ϒ . They
confirm the scaling law (56) of the hysteresis area. Moreover,
we mention that the data at small values of ϒ (not shown)
hint at a convergence of the scaling hysteresis area IA(ϒ) to a
constant for ϒ → 0.
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FIG. 5. Histeresis curves of the magnetization M(t, ts, w	, L) for
the classical 2D Ising model along the round-trip KZ protocol for
various values of fixed ϒ . They confirm that the hysteresis area
decreases as ϒ increases. The curve for ϒ = 10−4 is taken from the
data shown in Fig. 4, those for ϒ = 0.1 and ϒ = 0.5 are obtained
from simulations for L = 50, whose size is already sufficient to pro-
vide a good approximation of the asymptotic large-L scaling curves
(note that Monte Carlo simulations becomes more demanding with
increasing ϒ).
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FIG. 6. Round-trip dynamic FSS of the quantum Ising chain, cf.
Eq. (3), for a finite �	. We show results for the adiabaticity function
A(t, ts, w	, L) at fixed ϒ = ts/Lζ = 0.1 and �	 = w	L1−κ = √

18,
for the outward (top) and return (bottom) branches of the round-trip
KZ protocol, versus � = w(t )L1−κ , for various size L up to L = 16.
The values of the exponents yw , ζ , and κ are reported in Eq. (57).
Notice that the return trip goes from right to left, because increasing
time corresponds to decreasing �. The collapse of the curves along
both outward and return trips clearly support the dynamic scaling
behavior given in Eq. (51).

As we shall see, these peculiar behaviors of round-trip
protocols developing scaling hysteresis do not have a quan-
tum counterpart, being strictly connected with the fact that
the classical purely relaxational dynamics leads eventually to
thermalization in the large-time limit when keeping the model
parameters fixed.

We also stress that the above hysteresis scenario arises
from the round-trip protocols between phases with short-
ranged correlations. More complicated situations are expected
to occur when round-trip protocols involve ordered phases,
where coarsening phenomena may drastically change the pic-
ture, in particular along the return trip, in the large-�	 limit.

We finally remark that the boundary conditions do not play
a relevant role, indeed analogous scenarios are expected to
emerge in classical Ising systems with boundaries, such as
open boundary conditions.

C. Along the quantum round-trip KZ protocol

1. Scaling for finite ��

To begin with, we show results for round-trip KZ proto-
cols for the quantum Ising chain, cf. Eq. (3), when keeping
�	 finite, see Figs. 6 and 7, respectively for the adiabaticity
function and the longitudinal and transverse magnetizations.
Analogous results are obtained for other values of ϒ and
�	. Analogous results are also obtained for the quantum Ki-
taev wire, cf. Eq. (5), see, for example, the results shown in
Figs. 8–10, respectively for the adiabaticity function, the sur-
plus energy Es defined in Eq. (15), and the two point function
defined in Eq. (22). These results fully support the dynamic
FSS put forward in Sec. VI A when keeping �	 finite.
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FIG. 7. Round-trip dynamic FSS of the longitudinal magne-
tization M(t, ts, w	, L) (bottom figures) and subtracted transverse
magnetization Ns(t, ts, w	, L) (top figures), cf. Eq. (19), in the quan-
tum Ising chain at fixed ϒ = 0.1 and �	 = √

18, for the outward
(top) and return (bottom) branches of the round-trip KZ protocol,
versus �, for various size L up to L = 16. The results clearly support
the dynamic scaling behavior given in Eq. (49).

2. The limit �� → ∞
We now discuss the large-�	 limit, and also the related case

in which we keep w	 > 0 fixed in the round-trip protocols.
This limit turns out to be quite problematic in quantum round-
trip KZ protocols.

Some hints at the absence of a well defined large-�	 limit
of the dynamic scaling behavior are shown by the plots of
Fig. 11 reporting the longitudinal magnetization of a quantum
Ising system of size L = 10 for various �	. When increasing
�	, the curves along the outward way show a good conver-
gence, while no apparent convergence is observed along the
return paths.

When we keep w	 fixed and finite, our computations do not
show evidence of convergence along the return trajectories in
the large-ts and large-L dynamic scaling limit. This is shown
by the curves of the adiabaticity function along the return
branch of the round-trip protocol, see Fig. 12, for w	 = 1/4
and ϒ = 0.1. While convergence is clearly observed along the
outward path, as expected because the one-way KZ protocol
showed a well defined limit in the large-|�i| limit, the return
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FIG. 8. Round-trip dynamic FSS within the quantum Kitaev wire
for a finite �	 = 10. We show results for the adiabaticity function
A(t, ts, w	, L) at fixed ϒ = ts/Lζ = 0.001 and �	 = w	L1−κ = 10,
for the outward (top) and return (bottom) branches of the round-
trip KZ protocol, versus � = w(t )L1−κ , for various size L up to
L = 1000. The values of the exponents yw , ζ , and κ are reported in
Eq. (58). The numerical results clearly support the dynamic scaling
behavior given in Eq. (51).

path does not show a stable convergence pattern. The same
behavior is also shown by the longitudinal and transverse
magnetizations M and N , see for example Fig. 13. Analogous
results are also obtained for the quantum Kitaev wire, see
Fig. 14, where we report results for the adiabaticity function
at ϒ = 0.001 and various large values of �	, for a large lattice
size L = 2000.

To interpret, and understand, the above instability emerg-
ing in quantum systems subject round-trip KZ protocols, it is
useful to make a comparison with the dynamic behavior of
two-level models subject to analogous round-trip protocols,
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FIG. 9. Round-trip dynamic FSS within the quantum Kitaev
wire for a finite �	 = 10. We show results for the surplus energy
Es(t, ts, w	, L) defined in Eq. (15), at ϒ = ts/Lζ = 0.001, and �	 =
w	L1−κ = 10, for the outward (top) and return (bottom) branches of
the round-trip KZ protocol, versus � = w(t )L1−κ , for various size
L up to L = 1000. The results clearly support the dynamic scaling
behavior given in Eq. (52).
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FIG. 10. Round-trip dynamic FSS within the quantum Kitaev
wire for a finite �	. We show results for the two-point function
C(x, t, ts, w	, L), cf. Eq. (22), at fixed X = x/L = 1/3, ϒ = ts/Lζ =
0.001, and �	 = w	L1−κ = 10, for the outward (top) and return
(bottom) branches of the round-trip KZ protocol, vs � = w(t )L1−κ ,
for various size L up to L = 1000.

discussed in Appendix. Analogously to the Landau-Zener-
Stückelberg problem [65,67], we consider a time-dependent
two-level Hamiltonian

H2�(t ) = −β(t )σ (3) + �

2
σ (1), (61)

where � is a constant,

β(t ) = T (t )

ts
for ti = −t	 � t � 3t	, (62)

and T (t ) = t	 − |t − t	| is the triangular function. The quan-
tities τ = T (t )/

√
ts and τ	 = t	/

√
ts play the same role of

the scaling variables � and �	 describing the round-trip KZ
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FIG. 11. Behavior of M(t, ts, w	, L) for fixed L = 10, ϒ = 0.1
for the one way trip (top) and for the return trip (bottom), versus
�, for various �	 up to �	 = 6

√
2. We note that along the outward

path the large-�	 convergence of the curves is rapid (it is essentially
related to the convergence with respect to �i = −�	 of the one-way
protocol); on the other hand, the curves do not appear to approach a
large-�	 limit along the return path.
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FIG. 12. The adiabaticity function A(t, ts, w	, L) of quantum
Ising chains along round-trip protocols, for fixed ϒ = 0.1 and w	 =
1/4, for the outward (top) and return (bottom) branches of the round-
trip protocol, versus �, for various size L up to L = 16. We note that
along the outward path the large-ts convergence is rapid, unlike the
return way where no evidence of convergence is observed.

protocols in quantum many-body systems. The corresponding
Schrödinger equation can be analytically solved in terms of
parabolic cylinder functions Dν (x) [66], see Appendix.

The resulting behavior of the expectation values of σ (3)

and the adiabatic function show that the large-τ	 limit is
problematic, being characterized by large O(1) oscillations
with frequencies increasing proportionally to τ	, roughly. See
Appendix for details. They turn out to be related to the rapid
changes of the relative phase between the relevant states of
the two-level system at the extreme values τ = τ	 when τ	

becomes large, increasing as τ 2
	 . Since the quantum evolution

along the return trajectory turns out to be very dependent on
such phase, it becomes extremely sensitive to the value of τ	,
showing analogous oscillations. As a consequence, the value
of all observables along the return trajectory, from τ = τ	
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FIG. 13. The longitudinal magnetization M(t, ts, w	, L) along
the round-trip protocol, for fixed w	 = 1/4, ϒ = 0.1 for the outward
(top) and return (bottom) branches of the round-trip protocol, versus
�, for various size L up to L = 16.
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FIG. 14. The adiabaticity function A(t, ts, w	, L) for the quantum
Kitaev wire at L = 2000 and ϒ = 0.001 for the outward (top) and
return (bottom) branches of the round-trip KZ protocol, versus �, for
various �	 up to �	 = 140. We note that along the outward path the
convergence is large-�	 convergence is rapid (it is essentially related
to the convergence with respect to �i = −�	 in the one-way KZ
protocol), along the return path the curves do not appear to approach
a large-�	 limit.

down to the return point τ = −τ	, do not show a well defined
limit for τ	 → ∞. The size of the oscillations depend on the
value of the scaling variable υ = ts�2, which plays the same
role of ϒ in the quantum many-body systems, and tend to be
suppressed in the adiabatic limit υ → ∞.

We observe a similar behavior in the quantum many-body
systems. This scenario is demonstrated by the results shown
in Fig. 15, where we report the values of A(a), M (a), and N (a) at
end of the outward branch and A(b), M (b), and N (b) at the end
of the return branch, for KZ protocols with different �	, to
check their large-�	 convergence, for some interval of values
of �	 around large values of �	 and fixed L = 10. Similarly
to the results obtained for two-level model, the observables
at the end of the outward branch oscillate, with a frequency
that becomes larger and larger with increasing �	, and the
oscillations observed after the whole cycle are strongly cor-
related to those at the end of the first branch, doubling the
frequency. Analogous results are obtained for other values of
ϒ . We also note that the oscillations tend to be suppressed
in the adiabatic ϒ → ∞ limit. We believe that this extreme
sensitivity to �	 makes also problematic the large-L limit
after the limit �	 → ∞ shown by the numerical data. Similar
results are also obtained for the quantum Kitaev wire, see
Fig. 16 where we show results for the adiabaticity function
and the particle density. In this case the values at the end of the
outward way appear quite stable, but the return way is again
characterized by large (less regular) oscillations with larger
and larger frequencies with increasing �	.

The above results for both the quantum Ising rings and
Kitaev wires strongly suggest that in quantum many-body
systems the large-�	 limit of the dynamic KZ scaling does
not exist along the return trajectories, and, as a consequence,
no dynamic scaling is observed along the return trip when
w f > 0 is kept fixed and finite in the round-trip KZ protocols.
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FIG. 15. Results for M, N and A for fixed L = 10, ϒ = 0.5 vs
�	, close to �	 = 20 (top figure) and �	 = 50 (bottom figure). In
each figure, the top plot the values of M (a), N (a), and A(a) at the end
of the outward branch, corresponding to � = �	, while the bottom
plot shows the values of M (b), N (b), and A(b) at the end of the re-
turn branch, corresponding to � = −�	. The comparison of the top
and bottom figures show that the oscillations tend to become more
frequent with increasing �	 (note that the interval of the abscissa is
different). Analogous results are obtained for other values of ϒ .

In this respect, there are notable similarities with the behavior
of two-level model (61) subject to round-trip protocols. We
believe that this issue deserves further investigation, for exam-
ple addressing the possibility of obtaining well defined scaling
behavior after some average procedures over the oscillations
induced by large values of �	, to obtain a well defined large-
�	 limit.

However, we stress that the dynamic scaling behavior is
nicely observed when keeping �	 fixed, even along the return
trajectory. This may be related to fact that, when keeping �	

fixed, the time scaling variable � remains finite, therefore
the time variable is always rescaled consistently with the
timescale of the equilibrium quantum transition, provided by
the inverse gap at the transition, i.e., � ∼ L−z at the critical
point, or � ∼ λ−z in the thermodynamic limit, where λ is the
KZ length scale (45). As a consequence, the interval of values
of w(t ) remains limited within a small interval around the
transition, which becomes smaller and smaller in the large-
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FIG. 16. Behavior of the subtracted particle density ρs, cf.
Eq. (21), and the adiabaticity function A for the Kitaev wire, for fixed
L = 40, ϒ = 0.01 vs �	, close to �	 = 70 (bottom) and �	 = 35
(top). In each figure, the top plot the values of ρ (a)

s and A(a) at the
end of the outward branch, corresponding to � = �	, while the
bottom plot shows the values of ρ (b)

s and A(b) at the end of the return
branch, corresponding to � = −�	. Again, the comparison of the
top and bottom figures show that the oscillations tend to become
more frequent with increasing �	.

size limit, as |w| � L−yw , and the relative quantum phases
behave consistently with the scaling laws.

VIII. CONCLUSIONS

We have studied the out-of-equilibrium behavior of
many-body systems when their time-dependent Hamiltonian
parameters slowly cross phase transition points, where sys-
tems at equilibrium develop critical modes with long-range
correlations. Earlier studies have already shown the emer-
gence of several interesting out-of-equilibrium phenomena,
such as hysteresis, coarsening, KZ defect production, aging,
etc. In this paper, we present an exploratory study of out-
of-equilibrium behaviors arising from round-trip protocols
across classical and quantum phase transitions.

We consider classical and quantum many-body systems
described by the general Hamiltonian (1), and study the
out-of-equilibrium evolution arising from cyclic variations of
the parameter w driving the equilibrium transition, entailing
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multiple crossings of the transition point wc = 0. More pre-
cisely, we consider round-trip protocols where the many-body
system starts from equilibrium conditions at a given value
wi < 0, and the out-of-equilibrium dynamics is driven by
changing the parameter w(t ) in Eq. (1) linearly in time up to
w f > 0, thus crossing the critical point wc = 0, and then by
changing it back to the original value wi < 0, again linearly in
time, which implies a further crossing of the transition point.
The round-trip protocol is characterized by a unique large
timescale ts, see Sec. III B. We limit our study to the cases
where the transition point separates phases with short-range
correlations. The more complicated situations of classical and
quantum transitions between disordered and ordered phases
with ungapped excitations is left to future works.

We address these issues within many-body models un-
dergoing classical and quantum transitions, exploiting a
unified RG framework, where general dynamic scaling laws
are derived in the large-ts and large-L limits, see Secs. V
and VI. In particular, we extend the RG framework already
developed for standard one-way KZ protocols, see, e.g.,
Refs. [19,25].

As paradigmatic models, we consider classical and quan-
tum systems that undergo classical and quantum transitions
belonging to the 2D Ising universality class: (i) classical
2D Ising models undergoing a finite-temperature transition,
supplemented with a purely relaxational dynamics driven
by an external time-dependent magnetic field; (ii) quantum
1D Ising models with an external time-dependent longitu-
dinal field; (iii) quantum 1D Kitaev fermionic wires with a
time-dependent chemical potential. In all cases, we analyze
the out-of-equilibrium behavior arising from round-trip linear
variations of the Hamiltonian parameters, crossing twice the
transition point. We report various numerical analyses of one-
way and round-trip KZ protocols within the above models, see
Sec. VII. They generally support the dynamic FSS behaviors
in the large time-scale (ts) limit, put forward within the RG
frameworks.

However, while the general dynamic scaling picture may
appear similar, there are also important differences between
classical and quantum systems. Indeed, the analogy of the
scaling behaviors for one-way KZ protocols at classical and
quantum transitions is only partially extended to round-trip
KZ protocols. Substantial differences emerge, in particular
when the extreme value w f > 0 of the outward variation of
w(t ) is kept fixed and finite in the large-ts limit. On the one
hand, classical systems show a well-defined dynamic scaling
limit, developing scaling hysteresis-like scenarios, essentially
because the purely relaxational stochastic dynamics leads
eventually to thermalization at fixed model parameters. On the
other hand, in quantum systems the observation of scaling be-
havior along the return way turns out to be more problematic,
due to the persistence of rapidly oscillating relative phases
between the relevant quantum states. They make the return
way extremely sensitive to the parameters of the protocol,
such as the extreme value w f and the size L of the system. This
is essentially related to the quantum nature of the dynamics.
Indeed there are some notable similarities with the behavior
of quantum two-level models subject to round-trip protocols,
analogous the well-known Landau-Zener-Stückelberg prob-
lem [65,67,68], see Appendix. Even in the simple two-level

quantum model some features of the behavior along the return
way turn out not to be smooth. Indeed, they develop ample
oscillations with larger and larger frequencies when increas-
ing the interval of the round-trip variation of the parameters,
showing chaotic-like behaviors due to the extreme sensitivity
to the protocol parameters. We believe that this issue calls
for further investigation, to achieve a better understanding of
these phenomena.

The emerging dynamic scaling scenario put forward for
round-trip KZ protocols across critical points is expected to
hold for generic classical and quantum transitions separating
phases with short-range correlations, in any spatial dimension.
Further investigations are called for round-trip protocols be-
tween disordered and ordered phases, when the ordered phase
has gapless excitations. Round-trip KZ protocols in these sys-
tems may show further interesting features.

In this paper, we have focused on continuous transitions.
Analogous issues may be investigated at first-order classical
and quantum transitions, where dynamic scaling behaviors
emerge as well, although they turn out to significantly de-
pend on the nature of the boundary conditions (see, e.g.,
Refs [3,19,27,90–94] for studies at classical and quantum
transitions). Further interesting issues may concern the effects
of dissipation due to the interaction with an environment,
which are inevitable in realistic quantum devises, and can in-
duce some further relevant effects in the dynamics of systems
subject to round-trip KZ protocols, see, e.g., Refs. [19,33,95–
104].

We remark that round-trip protocols at classical and quan-
tum transitions should also be of experimental relevance.
Indeed they represent a straightforward extension of the one-
way KZ protocols, which have been already investigated
experimentally at both thermal and quantum transitions, as
already mentioned in the introduction.

Our results may turn out to be particularly relevant for
quantum simulations and quantum computing, where impor-
tant experimental advances have been achieved recently, see,
e.g., Refs. [105–110]. In particular, our results imply some
limitations to the observation of a round-trip dynamics across
quantum transitions in many-body models. We also note that
the dynamic scaling behavior put forward in this work have
been observed in numerical simulations of systems of moder-
ately large size. This suggests the possibility that the dynamic
scaling scenario may be accessed by experiments with quan-
tum simulators in laboratories, e.g., by means of trapped
ions [111,112], ultracold atoms [113,114], or superconducting
qubits [115,116].
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APPENDIX: ROUND-TRIP LANDAU-ZENER PROTOCOLS
IN TWO-LEVEL MODELS

In this section, we study time-dependent round-trip pro-
tocols within a paradigmatic two-level model, described by
the Hamiltonian (61). Their quantum evolution is ruled by the
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Schrödinger equation

i ∂t�(t ) = H2�(t )�(t ),

H2�(t ) = −β(t )σ (3) + �

2
σ (1). (A1)

The parameter � corresponds to the energy difference of the
Hamiltonian eigenstates at β(t ) = 0. To describe the states
�(t ) of the system, we consider the diabatic basis provided
by the eigenvectors |+〉 and |−〉 of σ (3), with eigenvalues 1
and −1, respectively. Therefore we may write

�(t ) = φ1(t )|+〉 + φ2(t )|−〉, (A2)

and define �(t ) ≡ [φ1(t ), φ2(t )]. It is convenient to define

η(t ) = 2β(t )

�
, (A3)

so that

H2�(t ) = �

2
H̃2�(t ), H̃2�(t ) = −η(t )σ (3) + σ (1). (A4)

Adiabatic time evolutions, i.e., for sufficiently slow changes
of the Hamiltonian parameter η(t ), pass through the stationary
eigenstates of H2� at fixed η(t ) = η, which are given by

|�0, η〉 = N0(η)[(−η −
√

1 + η2)|+〉 + |−〉],

E0 = −�

2

√
1 + η2, (A5)

|�1, η〉 = N1(η)[(−η +
√

1 + η2)|+〉 + |−〉],

E1 = �

2

√
1 + η2, (A6)

where Ni(η) are appropriate normalizations so that 〈0|0〉 =
〈1|1〉 = 1.

In the following, we consider a linear time dependence of
the Hamiltonian parameter β(t ), and round-trip linear proto-
cols. We start at ti = −t	 from the ground state |�0, ηi〉 ≡
[φ(0)

1 , φ
(0)
2 ] of the system for β(ti ). Then the system evolves

according to the Schrödinger equation (A1) with β(t ) given
by the Eq. (62), i.e., β(t ) = T (t )/ts for ti = −t	 � t � 3t	,
where T (t ) = t	 − |t − t	| is the triangular function going
linearly from T (−t	) = −t	 to T (t	) = t	, and then back to
T (3t	) = −t	. The parameter ts represents the timescale of
the variation. The parameter t	 > 0 controls the extension
(i.e., the starting and final times) of the protocols, from ti =
−t	 to t f = 3t	, and also the interval of variation of β(t ),
from β(ti ) = −t	/ts to β(t	) = t	/ts. An analogous cyclic
time dependence is considered in the so-called Landau-Zener-
Stückelberg problem, see, e.g., Refs. [67,68] and references
therein.

To solve this problem, it is convenient to introduce the
variables

τ = T (t )√
ts

, τ	 = t	√
ts

, υ = ts�
2, (A7)

κ = 2τ√
υ

= 2β(t )

�
, κ	 = 2τ	√

υ
. (A8)

Then the time evolution can be straightforwardly determined
using the results of Ref. [66], in terms of parabolic cylinder

functions Dν (x) [117]. Along the first branch from −t	 to t	,
we write

φ
(1)
i (τ ) = Ui j (τ, τi )φ

(0)
j , (A9)

where τ = t/
√

ts with −t	 � t � t	, τi = −τ	, and the evolu-
tion matrix elements are [66]

U11(τ, τi ) = �(1 − iυ/8)√
2π

× [Diυ/8(
√

2e−iπ/4τ ) D−1+iυ/8(
√

2ei3π/4τi )

+ Diυ/8(
√

2ei3π/4τ ) D−1+iυ/8(
√

2e−iπ/4τi )],

U12(τ, τi ) = 2�(1 − iυ/8)eiπ/4

√
πυ

× [−Diυ/8(
√

2e−iπ/4τ ) Diυ/8(
√

2ei3π/4τi )

+ Diυ/8(
√

2ei3π/4τ ) Diυ/8(
√

2e−iπ/4τi )],

U21 = −U ∗
12, U22 = U ∗

11. (A10)

Using the properties of the evolution matrix U under the
transformation η(t ) → −η(t ) [66], we can write the evolution
for t > t	 as

φ
(2)
i (τ ) = Vi j (τb, τi )φ

(1)
j (τ	), (A11)

where τ is defined as in Eq. (A7), thus it is decreasing from
τ	 to −τ	, again τi = −t	/

√
ts, τb = tb/

√
ts with tb = t − 2t	,

and the functions Vi j are closely related to Ui j [66]:

V11 = U ∗
11, V12 = −U ∗

12,

V22 = U ∗
22, V21 = −U ∗

21. (A12)

Note that these expressions are consistent with those used
for the Landau-Zener-Stückelberg problem in the presence of
Hamiltonian parameters with cyclic time dependence as in
Eq. (A1), see, e.g., Refs. [67,68].

Since the scaling variable τ related to time takes the same
values in the intervals −t	 � t � t	 and t	 � t � 3t	, we sep-
arate the time dependence in two parts: (a) for the first part
where β(t ) and τ increases and (b) where β(t ) and τ de-
creases. We monitor the dynamic evolution along the protocol
defined above by the expectation values of the operators σ (k),
i.e.,

S(a/b)
3 (υ, τ, τ	) = 〈�(t )|σ (3)|�(t )〉, (A13)

S(a/b)
1 (υ, τ, τ	) = 〈�(t )|σ (1)|�(t )〉, (A14)

and the adiabaticity function

A(a/b)(υ, τ, τ	) = |〈�0, η(t ) | �(t ) 〉|. (A15)

Again, the superscripts (a) and (b) refer to the outward and
return trips, respectively. Note that the adiabatic limit of the
evolution is obtained by sending υ → ∞ keeping fixed κ .
Therefore

lim
υ→∞ A(a/b)(υ, κ

√
υ/2, κ	

√
υ/2) = 1. (A16)

Some results for the magnetization S3 are shown in Fig. 17
along the first and second branches of the protocol, for various
values of υ, υ = 0.1, 1, 10, and τ	 = 10, 20. As expected,
the case of large υ the dynamic tends to be adiabatic, so that
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FIG. 17. Evolution of S3 during the round-trip protocol, for τ	 =
10 (bottom) and 20 (top), and some values of υ.

the values of S3 along the two ways tend to superimpose.
In the case of small υ, the dyamic tends to be frozen to the
initial condition, moving only slightly from the initial value.
More complex behaviors are observed for intermediate values
of υ.

We now analyze the dynamics of the round-trip protocol
in the large-τ	 limit, showing that such limit is problem-
atic for this problem. We consider the values of the above
observables at the end of the first and second part of the
protocol:

S3/1a(υ, τ	) = S(a)
3/1(υ, τ	, τ	),

S3/1b(υ, τ 	) = S(b)
3/1(υ,−τ	, τ	),

Aa(υ, τ	) = A(a)(υ, τ	, τ	),

Ab(υ, τ	) = A(b)(υ,−τ	, τ	). (A17)

Some notable limits can be derived for the first branch
of the protocol using the asymptotic behaviors of the
parabolic cylinder functions Dν (x) [66,68], corresponding to
the standard Landau-Zener problem, see, e.g., Refs. [26,66],

such as

S3a(υ, τ	 → ∞) = 1 − 2 e−πυ/4,

Aa(υ, τ	 → ∞) =
√

1 − e−πυ/4. (A18)

Both S3a and Aa approach their asymptotic behaviors with
oscillating corrections suppressed as O(τ−1

	 ). For example, in
the case of the adiabaticity function, we find

�Aa ≡ Aa(υ, τ	) − Aa(υ,∞)

≈ f (υ )

τ	

cos

[
τ 2
	 − u

4
ln τ	 + g(υ )

]
, (A19)

where f and g are time-independent functions of υ only.
Unlike S3a and Aa, the quantity S1a does not show a regular
large-τ	 limit, but rapid oscillations with diverging frequency
in the large-τ ∗ limit. Indeed, using again the asymptotic be-
haviors of the parabolic cylinder functions Dν (x) [66,68], the
asymptotic large-τ	 behavior of S1,a turns out to be

S1a ≈ B(υ ) cos ϕ(υ, τ	),

B(υ ) = 2 e−πυ/8
√

1 − e−πυ/4 � 1, (A20)

ϕ(υ, τ	) = τ 2
	 + υ

8
ln(2τ 2

	 ) − Arg

[
�

(
i
υ

8

)]
+ 3π

4
.

In particular, B(1) = 0.99611 . . . and

ϕ(1, τ	) = τ 2
	 + 1

4 ln τ	 + 4.08501 . . . (A21)

Unlike S3a and Aa that converge to a large-τ	 limit, the lead-
ing behavior of S1a is characterized by rapid oscillations. Its
oscillatory behavior is essentially related to the relative phase
e−iϕ(u,τ ) of the functions φ1(u, τ ) and φ2(u, τ ), cf. Eq. (A2).
Note that oscillations become faster and faster in the large-τ 	

limit, with a time-dependent frequency ω(τ	) diverging as
ω(τ	) ≈ τ	. Therefore, unlike S3a and Aa whose oscillations
gets suppressed as 1/τ	 approximately, the quantity S1a does
not possess a well defined large-τ	 limit, reflecting the fact that
the relative phase of the φi does not converge in the large-τ	

limit.
This fact has dramatic implications for the behavior of

the system along the backward branch, making all quantities
rapidly oscillating at the return point, with a frequency related
to that of the relative phase at the end of the first branch.
This behavior is clearly shown in Fig. 18, where we report
some results for the quantities defined in Eqs. (A17), at the
end of the outward branch, and along the return branch at
τ = 0 and at the end of the round-trip protocol, at fixed υ = 1
and as a function of the parameter τ	, for a relatively small
interval around τ	 ≈ 100. As shown by the analogous curves
reported in Figs. 19 and 20 for ν = 4 and ν = 10, respectively,
the size of the oscillations depends on the value of ν, and,
as expected, it tends to decreases in the adiabatic limit when
increasing ν.

These results evidentiate the peculiar oscillations in the
large-τ	 limit at finite values of ν, which make predictions on
the return behavior practically impossible without an extreme
precision on the control of the parameters of the protocols.
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FIG. 18. Dependence on τ	 ≡ t	/
√

ts of the magnetizations S1/3

and the adiabaticity function A at the end of the first dynamic branch
where β(t ) is linearly increasing, and then back along the return way,
when τ = 0 (intermediate) and at the end of the round-trip protocol
(bottom), for υ = 1, and τ	 ≈ 100. These results show clearly how
the oscillations of S1,a, and therefore of the relative phase of the two
functions φi(t ) in Eq. (A2), at the end of the first branch are closely
related to the oscillations of all observables along the return way of
the round-trip protocol.
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FIG. 19. Dependence on τ	 ≡ t	/
√

ts of the magnetizations S1/3

and the adiabaticity function A at the end of the first dynamic branch
where β(t ) is linearly increasing, and then along the return way,
when τ = 0 (bottom), for υ = 4, and τ	 ≈ 100.
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FIG. 20. Dependence on τ	 ≡ t	/
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ts of the magnetizations S1/3

and the adiabaticity function A along the return way at τ = 0, for
υ = 10, and τ	 ≈ 100.

235124-19



FRANCESCO TARANTELLI AND ETTORE VICARI PHYSICAL REVIEW B 105, 235124 (2022)

[1] T. W. B. Kibble, Topology of cosmic strings and domains, J.
Phys. A: Math. Gen. 9, 1387 (1976).

[2] T. W. B. Kibble, Some implications of a cosmological phase
transition, Phys. Rep. 67, 183 (1980).

[3] K. Binder, Theory of first-order phase transitions, Rep. Prog.
Phys. 50, 783 (1987).

[4] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Cosmology
in the laboratory: Defect dynamics in liquid crystals, Science
251, 1336 (1991).

[5] M. J. Bowick, L. Chandar, E. A. Schiff, and A. M.
Srivastava, The cosmological kibble mechanism in the labo-
ratory: String formation in liquid crystals, Science 263, 943
(1994).

[6] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43,
357 (1994).

[7] W. H. Zurek, Cosmological experiments in condensed matter
systems, Phys. Rep. 276, 177 (1996).

[8] C. Bäuerle, Yu M. Bunkov, S. N. Fisher, H. Godfrin, and G. R.
Pickett, Laboratory simulation of cosmic string formation in
the early Universe using superfluid 3He, Nature (London) 382,
332 (1996).

[9] P. Calabrese and A. Gambassi, Ageing properties of critical
systems, J. Phys. A: Math. Gen. 38, R133 (2005).

[10] D. Boyanovsky, H. J. de Vega, and D. J. Schwarz, Phase
transitions in the early and the present universe, Annu. Rev.
Nucl. Part. Sci. 56, 441 (2006).

[11] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J.
Davis, and B. P. Anderson, Spontaneous vortices in the forma-
tion of Bose-Einstein condensates, Nature (London) 455, 948
(2008).

[12] J. Dziarmaga, Dynamics of a quantum phase transition and
relaxation to a steady state, Adv. Phys. 59, 1063 (2010).

[13] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[14] S. Ulm, S. J. Roßnagel, G. Jacob, C. Degünther, S. T. Dawkins,
U. G. Poschinger, R. Nigmatullin, A. Retzker, M. B. Plenio,
F. Schmidt-Kaler, and K. Singer, Observation of the Kibble-
Zurek scaling law for defect formation in ion crystals, Nat.
Commun. 4, 2290 (2013).

[15] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T.
Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker, M. B.
Plenio, W. H. Zurek, A. del Campo, and T. E. Mehlstäubler,
Topological defect formation and spontaneous symmetry
breaking in ion Coulomb crystals, Nat. Commun. 4, 2291
(2013).

[16] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic,
Critical dynamics of spontaneous symmetry breaking in a
homogeneous Bose gas, Science 347, 167 (2015).

[17] G. Biroli, Slow relaxations and nonequilibrium dynamics in
classical and quantum systems, in Strongly Interacting Quan-
tum Systems out of Equilibrium: Lecture Notes of the Les
Houches Summer School, Aug. 2012, (Oxford University
Press, Oxford, 2016).

[18] A. Trenkwalder, G. Spagnolli, G. Semeghini, S. Coop, M.
Landini, P. Castilho, L. Pezzè, G. Modugno, M. Inguscio,
A. Smerzi, and M. Fattori, Quantum phase transitions with
parity-symmetry breaking and hysteresis, Nat. Phys. 12, 826
(2016).

[19] D. Rossini and E. Vicari, Coherent and dissipative dynamics
at quantum phase transitions, Phys. Rep. 936, 1 (2021).

[20] A. Polkovnikov, Universal adiabatic dynamics in the vicin-
ity of a quantum critical point, Phys. Rev. B 72, 161201(R)
(2005).

[21] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum
Phase Transition, Phys. Rev. Lett. 95, 105701 (2005).

[22] J. Dziarmaga, Dynamics of a Quantum Phase Transition: Ex-
act Solution of the Quantum Ising Model, Phys. Rev. Lett. 95,
245701 (2005).

[23] C. De Grandi, V. Gritsev, and A. Polkovnikov, Quench dy-
namics near a quantum critical point, Phys. Rev. B 81, 012303
(2010).

[24] S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling
via linear driving, New J. Phys. 12, 043036 (2010).

[25] A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi, Kibble-
Zurek problem: Universality and the scaling limit, Phys. Rev.
B 86, 064304 (2012).

[26] A. Pelissetto, D. Rossini, and E. Vicari, Out-of-equilibrium
dynamics driven by localized time-dependent perturbations
at quantum phase transitions, Phys. Rev. B 97, 094414
(2018).

[27] A. Pelissetto, D. Rossini, and E. Vicari, Dynamic finite-size
scaling after a quench at quantum transitions, Phys. Rev. E 97,
052148 (2018).

[28] D. Rossini and E. Vicari, Scaling of decoherence and energy
flow in interacting quantum spin systems, Phys. Rev. A 99,
052113 (2019).

[29] W. H. Zurek, Cosmological experiments in superfluid helium?
Nature (London) 317, 505 (1985).

[30] A. Polkovnikov and V. Gritsev, Breakdown of the adiabatic
limit in low-dimensional gapless systems, Nat. Phys. 4, 477
(2008).

[31] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.
Rosenbaum, and D. Sen, Quantum Phase Transitions in Trans-
verse Field Spin Models: From Statistical Physics to Quantum
Information (Cambridge University Press, Cambridge, 2015).

[32] A. Pelissetto and E. Vicari, Off-equilibrium scaling behaviors
driven by time-dependent external fields in three-dimensional
O(N) vector models, Phys. Rev. E 93, 032141 (2016).

[33] D. Rossini and E. Vicari, Dynamic Kibble-Zurek scaling
framework for open dissipative many-body systems crossing
quantum transitions, Phys. Rev. Res. 2, 023211 (2020).

[34] B. Damski, The Simplest Quantum Model Supporting the
Kibble-Zurek Mechanism of Topological Defect Production:
Landau-Zener Transitions from a New Perspective, Phys. Rev.
Lett. 95, 035701 (2005).

[35] M. Uhlmann, R. Schützhold, and U. R. Fischer, Vortex Quan-
tum Creation and Winding Number Scaling in a Quenched
Spinor Bose Gas, Phys. Rev. Lett. 99, 120407 (2007).

[36] M. Uhlmann, R. Schützhold, and U. R. Fischer, System size
scaling of topological defect creation in a second-order dy-
namical quantum phase transition, New J. Phys. 12, 095020
(2010).

[37] T. Nag, A. Dutta, and A. Patra, Quench dynamics and quantum
information, Int. J. Mod. Phys. B 27, 1345036 (2013).

[38] A. del Campo and W. H. Zurek, Universality of phase transi-
tion dynamics: Topological defects from symmetry breaking,
Int. J. Mod. Phys. A 29, 1430018 (2014).

235124-20

https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1088/0034-4885/50/7/001
https://doi.org/10.1126/science.251.4999.1336
https://doi.org/10.1126/science.263.5149.943
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1038/382332a0
https://doi.org/10.1088/0305-4470/38/18/R01
https://doi.org/10.1146/annurev.nucl.56.080805.140539
https://doi.org/10.1038/nature07334
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/ncomms3290
https://doi.org/10.1038/ncomms3291
https://doi.org/10.1126/science.1258676
https://doi.org/10.1038/nphys3743
https://doi.org/10.1016/j.physrep.2021.08.003
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevB.81.012303
https://doi.org/10.1088/1367-2630/12/4/043036
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.97.094414
https://doi.org/10.1103/PhysRevE.97.052148
https://doi.org/10.1103/PhysRevA.99.052113
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/nphys963
https://doi.org/10.1103/PhysRevE.93.032141
https://doi.org/10.1103/PhysRevResearch.2.023211
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.99.120407
https://doi.org/10.1088/1367-2630/12/9/095020
https://doi.org/10.1142/S0217979213450367
https://doi.org/10.1142/S0217751X1430018X


OUT-OF-EQUILIBRIUM DYNAMICS ARISING FROM SLOW … PHYSICAL REVIEW B 105, 235124 (2022)

[39] M. M. Rams, J. Dziarmaga, and W. H. Zurek, Symmetry
Breaking Bias and the Dynamics of a Quantum Phase Tran-
sition, Phys. Rev. Lett. 123, 130603 (2019).

[40] J. Rysti, J. T. Maäkinen, S. Autti, T. Kamppinen, G. E.
Volovik, and V. B. Eltsov, Suppressing the Kibble-Zurek
Mechanism by a Symmetry-Violating Bias, Phys. Rev. Lett.
127, 115702 (2021).

[41] S. Ducci, P. L. Ramazza, W. Gonzáles-Viñas, and F. T.
Arecchi, Order Parameter Fragmentation after a Symmetry-
Breaking Transition, Phys. Rev. Lett. 83, 5210 (1999).

[42] R. Monaco, J. Mygind, M. Aaroe, R. J. Rivers, and V. P.
Koshelets, Zurek-Kibble Mechanism for the Spontaneous Vor-
tex Formation in Nb-Al/Alox/Nb Josephson Tunnel Junctions:
New Theory and Experiment, Phys. Rev. Lett. 96, 180604
(2006).

[43] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore,
and D. M. Stamper-Kurn, Spontaneous symmetry breaking in
a quenched ferromagnetic spinor Bose-Einstein condensate,
Nature (London) 443, 312 (2006).

[44] D. Chen, M. White, C. Borries, and B. DeMarco, Quantum
Quench of an Atomic Mott Insulator, Phys. Rev. Lett. 106,
235304 (2011).

[45] S. M. Griffin, M. Lilienblum, K. T. Delaney, Y. Kumagai,
M. Fiebig, and N. A. Spaldin, Scaling Behavior and Beyond
Equilibrium in the Hexagonal Manganites, Phys. Rev. X 2,
041022 (2012).

[46] G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G.
Ferrari, Spontaneous creation of Kibble-Zurek solitons in a
Bose-Einstein condensate, Nat. Phys. 9, 656 (2013).

[47] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P.
Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert, and
U. Schneider, Emergence of coherence and the dynamics of
quantum phase transitions, Proc. Natl. Acad. Sci. USA 112,
3641 (2015).

[48] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C.
Weitenberg, S. Nascimbéne, J. Beugnon, and J. Dalibard,
Emergence of coherence via transverse condensation in a uni-
form quasi-two-dimensional Bose gas, Nat. Commun. 6, 6162
(2015).

[49] J.-M. Cui, Y.-F. Huang, Z. Wang, D.-Y. Cao, J. Wang, W.-M.
Lv, L. Luo, A. del Campo, Y.-J. Han, C.-F. Li, and G.-C. Guo,
Experimental trapped-ion quantum simulation of the Kibble-
Zurek dynamics in momentum space, Sci. Rep. 6, 33381
(2016).

[50] M. Gong, X. Wen, G. Sun, D.-W. Zhang, D. Lan, Y. Zhou,
Y. Fan, Y. Liu, X. Tan, H. Yu, Y. Yu, S.-L. Zhu, S. Han, and
P. Wu, Simulating the Kibble-Zurek mechanism of the Ising
model with a superconducting qubit system, Sci. Rep. 6, 22667
(2016).

[51] M. Anquez, B. A. Robbins, H. M. Bharath, M. Boguslawski,
T. M. Hoang, and M. S. Chapman, Quantum Kibble-Zurek
Mechanism in a Spin-1 Bose-Einstein Condensate, Phys. Rev.
Lett. 116, 155301 (2016).

[52] L. W. Clark, L. Feng, and C. Chin, Universal space-time scal-
ing symmetry in the dynamics of bosons across a quantum
phase transition, Science 354, 606 (2016).

[53] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler,
S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P.
Zoller, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin,
Quantum Kibble-Zurek mechanism and critical dynamics on a

programmable Rydberg simulator, Nature (London) 568, 207
(2019).

[54] S. Sachdev, Quantum Phase Transitions, (Cambridge Univer-
sity, Cambridge, England, 1999).

[55] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[56] S.-k. Ma, Modern Theory of Critical Phenomena, Routledge
Editor (New York, 2001).

[57] R. Folk and G. Moser, Critical dynamics: A field-theoretical
approach, J. Phys. A: Math. Gen. 39, R207 (2006).

[58] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996).

[59] K. G. Wilson and J. Kogut, The renormalization group and the
ε expansion, Phys. Rep. 12, 75 (1974).

[60] M. E. Fisher, The renormalization group in the theory of
critical behavior, Rev. Mod. Phys. 46, 597 (1974).

[61] F. J. Wegner, The critical state, general aspects, in Phase Tran-
sitions and Critical Phenomena, C. Domb and J. L. Lebowitz,
(Academic Press, London, 1976).

[62] G. Parisi, Statistical Field Theory (Addison-Wesley, New
York, 1988).

[63] A. Pelissetto and E. Vicari, Critical phenomena and renormal-
ization group theory, Phys. Rep. 368, 549 (2002).

[64] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Con-
tinuous quantum phase transitions, Rev. Mod. Phys. 69, 315
(1997).

[65] C. Zener, Non-adiabatic crossing of energy levels, Proc. R.
Soc. London A 137, 696 (1932); L. Landau, On the theory
of transfer of energy at collisions II, Phys. Z. Sowjetunion 2,
46 (1932).

[66] N. V. Vitanov and B. M. Garraway, Landau-Zener model:
Effects of finite coupling dynamics, Phys. Rev. A 53, 4288
(1996); J. J. Hope and C. M. Savage, Erratum: Band gaps for
atoms in light-based waveguides, ibid. 54, 5458(E) (1996);
N. V. Vitanov, Transition times in the Landau-Zener model,
ibid. 59, 988 (1999).

[67] S. Shevchenko, S. Ashhab, and F. Nori, Landau-Zener- Stück-
elberg Interferometry, Phys. Rep. 492, 1 (2010).

[68] O. V. Ivashenko, S. N. Shevchenko, and F. Nori, Quantum
control via Launda-Zener-Stückelberg-Majorana transitions,
arXiv:2203.16348.

[69] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[70] S. Katsura, Statistical mechanics of the anisotropic linear
Heisenberg model, Phys. Rev. 127, 1508 (1962); I. M.
Ladenbauer-Bellis, I. L. Preiss, and C. E. Anderson, Excitation
functions for heavy-ion-induced reactions on aluminum-27,
ibid. 129, 2835(E) (1963).

[71] A. Yu. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[72] P. Pfeuty, The one-dimensional Ising model with a transverse
field, Ann. Phys. 57, 79 (1970).

[73] M. Campostrini, A. Pelissetto, and E. Vicari, Finite-size scal-
ing at quantum transitions, Phys. Rev. B 89, 094516 (2014).

[74] L. Onsager, Crystal statistics. I. A two-dimensional model
with an order-disorder transition, Phys. Rev. 65, 117
(1944).

[75] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

235124-21

https://doi.org/10.1103/PhysRevLett.123.130603
https://doi.org/10.1103/PhysRevLett.127.115702
https://doi.org/10.1103/PhysRevLett.83.5210
https://doi.org/10.1103/PhysRevLett.96.180604
https://doi.org/10.1038/nature05094
https://doi.org/10.1103/PhysRevLett.106.235304
https://doi.org/10.1103/PhysRevX.2.041022
https://doi.org/10.1038/nphys2734
https://doi.org/10.1073/pnas.1408861112
https://doi.org/10.1038/ncomms7162
https://doi.org/10.1038/srep33381
https://doi.org/10.1038/srep22667
https://doi.org/10.1103/PhysRevLett.116.155301
https://doi.org/10.1126/science.aaf9657
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1088/0305-4470/39/24/R01
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/RevModPhys.69.315
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1103/PhysRevA.53.4288
https://doi.org/10.1103/PhysRevA.54.5458
https://doi.org/10.1103/PhysRevA.59.988
https://doi.org/10.1016/j.physrep.2010.03.002
http://arxiv.org/abs/arXiv:2203.16348
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRev.127.1508
https://doi.org/10.1103/PhysRev.129.2835
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevB.89.094516
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1063/1.1699114


FRANCESCO TARANTELLI AND ETTORE VICARI PHYSICAL REVIEW B 105, 235124 (2022)

[76] M. P. Nightingale and H. W. J. Blöte, Monte Carlo computa-
tion of correlation times of independent relaxation modes at
criticality, Phys. Rev. B 62, 1089 (2000).

[77] F.-G. Wang and C.-K. Hu, Universality in dynamic critical
phenomena, Phys. Rev. E 56, 2310 (1997).

[78] M. P. Nightingale and H. W. J. Blöte, Dynamic Exponent of the
Two-Dimensional Ising Model and Monte Carlo Computation
of the Subdominant Eigenvalue of the Stochastic Matrix, Phys.
Rev. Lett. 76, 4548 (1996).

[79] P. Grassberger, Damage spreading and critical exponents for
“model A” Ising dynamics, Physica A 214, 547 (1995).

[80] G. Costagliola and E. Vicari, Critical dynamics in trapped
particle systems, J. Stat. Mech. (2011) L08001.

[81] P. Huang, J. Zhou, F. Fang, X. Kong, X. Xu, C. Ju, and J. Du,
Landau-Zener-Stückelberg Interferometry of a Single Elec-
tronic Spin in a Noisy Environment, Phys. Rev. X 1, 011003
(2011).

[82] F. J. Gòmez-Ruiz, O. L. Acevedo, L. Quiroga, F. J. Rodrìguez,
and N. F. Johnson, Quantum hysteresis in coupled light-matter
systems, Entropy 18, 319 (2016).

[83] M. Ohkuwa, H. Nishimori, and D. A. Lidar, Reverse annealing
for the fully connected p-spin model, Phys. Rev. A 98, 022314
(2018).

[84] G. Passarelli, K.-W. Yip, D. A. Lidar, H. Nishimori, and P.
Lucignano, Reverse quantum annealing of the p-spin model
with relaxation, Phys. Rev. A 101, 022331 (2020).

[85] R. Bürkle and J. R. Anglin, Probabilistic hysteresis in an iso-
lated quantum system: The microscopic onset of irreversibility
from a quantum perspective, Phys. Rev. A 101, 042110 (2020).

[86] M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, Irrel-
evant operators in the two-dimensional Ising model, J. Phys.
A: Math. Gen. 35, 4861 (2002).

[87] P. Calabrese, M. Caselle, A. Celi, A. Pelissetto, and E. Vicari,
Nonanalyticity of the Callan-Symanzik β-function of two-
dimensional O(N) models, J. Phys. A: Math. Gen. 33, 8155
(2000).

[88] M. Caselle and M. Hasenbusch, Critical amplitudes and mass
spectrum of the 2D Ising model in a magnetic field, Nucl.
Phys. B 579, 667 (2000).

[89] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Two-
point correlation function of three-dimensional O(N) models:
The critical limit and anisotropy, Phys. Rev. E 57, 184 (1998).

[90] M. Campostrini, J. Nespolo, A. Pelissetto, and E. Vicari,
Finite-Size Scaling at First-Order Quantum Transitions, Phys.
Rev. Lett. 113, 070402 (2014); M. Campostrini, J. Nespolo,
A. Pelissetto, and E. Vicari, Finite-size scaling at first-order
quantum transitions of quantum Potts chains, Phys. Rev. E 91,
052103 (2015).

[91] A. Pelissetto and E. Vicari, Dynamic finite-size scaling at first-
order transitions, Phys. Rev. E 96, 012125 (2017).

[92] A. Pelissetto and E. Vicari, Dynamic Off-Equilibrium Tran-
sition in Systems Slowly Driven across Thermal First-Order
Phase Transitions, Phys. Rev. Lett. 118, 030602 (2017).

[93] A. Pelissetto, D. Rossini, and E. Vicari, Scaling properties of
the dynamics at first-order quantum transitions when boundary
conditions favor one of the two phases, Phys. Rev. E 102,
012143 (2020).

[94] S. Deng, G. Ortiz, and L. Viola, Dynamical non-ergodic
scaling in continuous finite-order quantum phase transitions,
Europhys. Lett. 84, 67008 (2008).

[95] A. Fubini, G. Falci, and A. Osterloh, Robustness of adiabatic
passage through a quantum phase transition, New J. Phys. 9,
134 (2007).

[96] D. Patanè, A. Silva, L. Amico, R. Fazio, and G. E.
Santoro, Adiabatic Dynamics in Open Quantum Criti-
cal Many-Body Systems, Phys. Rev. Lett. 101, 175701
(2008).

[97] D. Patanè, L. Amico, A. Silva, R. Fazio, and G. E. Santoro,
Adiabatic dynamics of a quantum critical system coupled to an
environment: Scaling and kinetic equation approaches, Phys.
Rev. B 80, 024302 (2009).

[98] S. Yin, P. Mai, and F. Zhong, Nonequilibrium quantum crit-
icality in open systems: The dissipation rate as an additional
indispensable scaling variable, Phys. Rev. B 89, 094108
(2014); S. Yin, C.-Y. Lo, and P. Chen, Scaling behavior of
quantum critical relaxation dynamics of a system in a heat
bath, ibid. 93, 184301 (2016).

[99] P. Nalbach, S. Vishveshwara, and A. A. Clerk, Quantum
Kibble-Zurek physics in the presence of spatially correlated
dissipation, Phys. Rev. B 92, 014306 (2015).

[100] M. Keck, S. Montangero, G. E. Santoro, R. Fazio, and D.
Rossini, Dissipation in adiabatic quantum computers: lessons
from an exactly solvable model, New J. Phys. 19, 113029
(2017).

[101] V. N. Smelyanskiy, D. Venturelli, A. Perdomo-Ortiz, S.
Knysh, and M. I. Dykman, Quantum Annealing via
Environment-Mediated Quantum Diffusion, Phys. Rev. Lett.
118, 066802 (2017).

[102] L. Arceci, S. Barbarino, D. Rossini, and G. E. Santoro, Op-
timal working point in dissipative quantum annealing, Phys.
Rev. B 98, 064307 (2018).

[103] D. Nigro, D. Rossini, and E. Vicari, Competing coherent and
dissipative dynamics close to quantum criticality, Phys. Rev.
A 100, 052108 (2019).

[104] D. Rossini and E. Vicari, Scaling behavior of the stationary
states arising from dissipation at continuous quantum transi-
tions, Phys. Rev. B 100, 174303 (2019).

[105] J. I. Cirac and P. Zoller, Goals and opportunities in quantum
simulation, Nat. Phys. 8, 264 (2012).

[106] I. Bloch, J. Dalibard, and S. Nascimbeéne, Quantum sim-
ulations with ultracold quantum gases, Nat. Phys. 8, 267
(2012).

[107] R. Blatt and C. F. Roos, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[108] A. Aspuru-Guzik and P. Walther, Photonic quantum simula-
tors, Nat. Phys. 8, 285 (2012).

[109] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[110] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[111] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J. K.
Freericks, and C. Monroe, Onset of a quantum phase transition
with a trapped ion quantum simulator, Nat. Commun. 2, 377
(2011).

[112] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Demonstration of a small pro-
grammable quantum computer with atomic qubits, Nature
(London) 536, 63 (2016).

235124-22

https://doi.org/10.1103/PhysRevB.62.1089
https://doi.org/10.1103/PhysRevE.56.2310
https://doi.org/10.1103/PhysRevLett.76.4548
https://doi.org/10.1016/0378-4371(94)00285-2
https://doi.org/10.1088/1742-5468/2011/08/L08001
https://doi.org/10.1103/PhysRevX.1.011003
https://doi.org/10.3390/e18090319
https://doi.org/10.1103/PhysRevA.98.022314
https://doi.org/10.1103/PhysRevA.101.022331
https://doi.org/10.1103/PhysRevA.101.042110
https://doi.org/10.1088/0305-4470/35/23/305
https://doi.org/10.1088/0305-4470/33/46/301
https://doi.org/10.1016/S0550-3213(00)00074-2
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevLett.113.070402
https://doi.org/10.1103/PhysRevLett.113.070402
https://doi.org/10.1103/PhysRevE.96.012125
https://doi.org/10.1103/PhysRevLett.118.030602
https://doi.org/10.1103/PhysRevE.102.012143
https://doi.org/10.1209/0295-5075/84/67008
https://doi.org/10.1088/1367-2630/9/5/134
https://doi.org/10.1103/PhysRevLett.101.175701
https://doi.org/10.1103/PhysRevB.80.024302
https://doi.org/10.1103/PhysRevB.89.094108
https://doi.org/10.1103/PhysRevB.93.184301
https://doi.org/10.1103/PhysRevB.92.014306
https://doi.org/10.1088/1367-2630/aa8cef
https://doi.org/10.1103/PhysRevLett.118.066802
https://doi.org/10.1103/PhysRevB.98.064307
https://doi.org/10.1103/PhysRevA.100.052108
https://doi.org/10.1103/PhysRevB.100.174303
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2251
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1038/ncomms1374
https://doi.org/10.1038/nature18648


OUT-OF-EQUILIBRIUM DYNAMICS ARISING FROM SLOW … PHYSICAL REVIEW B 105, 235124 (2022)

[113] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss,
and M. Greiner, Quantum simulation of antiferromagnetic
spin chains in an optical lattice, Nature (London) 472, 307
(2011).

[114] H. Labuhn, D. Barredo, S. Ravets, S. de Leseleuc,
T. Macri, T. Lahaye, and A. Browaeys, Tunable two-
dimensional arrays of single Rydberg atoms for realiz-
ing quantum Ising models, Nature (London) 534, 667
(2016).

[115] Y. Salathe, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers,
A. Potocnik, A. Mezzacapo, U. LasHeras, L. Lamata, E.
Solano, S. Filipp, and A. Wallraff, Digital Quantum Simula-
tion of Spin Models with Circuit Quantum Electrodynamics,
Phys. Rev. X 5, 021027 (2015).

[116] A. Cervera-Lierta, Exact Ising model simulation on a quantum
computer, Quantum 2, 114 (2018).

[117] Handbook of Mathematica Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1964).

235124-23

https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature18274
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.22331/q-2018-12-21-114

