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In this work we get insight into the impact of reduced density matrix functionals on the quality of re-
moval/addition energies obtained using the extended Koopmans’ theorem (EKT). Within the reduced density
matrix functional theory (RDMFT) the EKT approach reduces to a matrix diagonalization, whose ingredients
are the one- and two-body reduced density matrices. A striking feature of the EKT within RDMFT is that it opens
a band gap, although it is too large, in strongly correlated materials, which are a challenge for state-of-the-art
methods such as GW . Using the one-dimensional Hubbard model and the homogeneous electron gas as test cases,
we find that (i) with exact or very accurate density matrices the EKT systematically overestimates the band gap
in the Hubbard model and the bandwidth in the homogeneous electron gas and (ii) with approximate density
matrices, instead, the EKT can benefit from error cancellation. In particular we test a new approximation which
combines random-phase approximation screening with the power functional approximation to the two-body
reduced density matrix introduced by Sharma et al. [Phys. Rev. B 78, 201103 (2008)]. An important feature
of this approximation is that it reduces the EKT band gap in the studied models; it is hence a promising
approximation for correcting the EKT band-gap overestimation in strongly correlated materials.
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I. INTRODUCTION

The extended Koopmans’ theorem (EKT) [1,2] offers an
interesting tool for the calculation of removal/addition en-
ergies from any level of theory [3–6]. In particular within
reduced density matrix functional theory (RDMFT) [7–9], the
EKT approach is based on a matrix diagonalization, whose in-
gredients are the one- and two-body reduced density matrices
(1-RDM and 2-RDM, respectively). This formulation is par-
ticularly appealing because it relies not on the knowledge of
the ground-state many-body wave function of the N-electron
system but on simpler quantities, namely, the natural orbitals
and occupation numbers, i.e., the eigenvectors and eigenval-
ues of the 1-RDM. Within RDMFT, indeed, the one-body
reduced density matrix, thanks to a one-to-one map with the
ground-state many-body wave function, can give access to all
ground-state observables of the system, provided that their
functional expression in terms of the 1-RDM is known. In
particular the total energy is a functional of the 1-RDM, and
its minimization under a set of physical constraints (ensem-
ble N-representable constraints) gives the exact 1-RDM. In
practice the electron-electron interaction energy, which can
be expressed in terms of the 2-RDM, is an unknown func-
tional (more precisely, its correlation part) of the 1-RDM,
and approximations are needed. The EKT offers a path to-
wards the description of photoemission in strongly correlated
materials, which is a challenge for ab initio theories. We
have indeed shown that EKT energies within the so-called
diagonal approximation (DEKT) [10] are equivalent to the en-
ergies obtained within the many-body effective energy theory

(MEET) [11] at its lowest-order approximation in terms of
the 1-RDM and 2-RDM. At this level of approximation and
within RDMFT the MEET gives a qualitatively good descrip-
tion of the photoemission spectra of several paramagnetic
transition-metal oxides, which are insulators, unlike mean-
field theories and the more advanced GW method, which
describe them as metals [11–13]. The band gap, however, is
largely overestimated. There are, indeed, two sources of error
in the EKT. One source is the structure of the EKT equations:
even with exact 1- and 2-RDM an overestimation of the band
gap (small for weakly correlated systems, larger for strongly
correlated systems) is expected. We recently addressed this
issue with the example of bulk Si [10]. The EKT with quantum
Monte Carlo (QMC) density matrices overestimates the band
gap of ≈1 eV. To overcome this error one should go beyond
the EKT equations and include higher-order density matrices,
which makes the approach more expensive. Another option
is to work with an effective 2-RDM which partially includes
the effect of higher-order terms. This work is in progress.
The second source of error is the approximate one- and
two-body density matrices used in the EKT equations. The
band-gap overestimation can be amplified by commonly used
approximations to the two-body density matrix employed in
RDMFT. In particular we used the power functional (PF)
proposed by Sharma et al. [14], which is the only one that,
to the best of our knowledge, has been used in solids, but
similar trends are expected using approximations of the same
type, i.e., the so-called JK functionals, which involve only
Coulomb-like (J ) and exchange-like (K) integrals involving
the natural orbitals [15]. Therefore in this work we propose
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a variation of the PF in which random-phase approximation
(RPA) screening is taken into account, referred to as screened
PF (W -PF) throughout this paper. This is motivated by the fact
that in many-electron systems screening becomes important
and, for example, in the context of many-body perturbation
theory (MBPT) based on Green’s functions the improvement
of the GW approximation over Hartree-Fock is precisely due
to the screening of the Coulomb interaction. We also consider
the corrected Buijse-Baerends (BBC1) functional proposed by
Gritsenko et al. [16], which, as we shall see, shows important
physical features in the correlation energy and the natural
orbital occupation numbers, which can have an impact on
the quality of the EKT removal/addition energies. We test
the quality of these approximations using the one-dimensional
Hubbard model and the homogeneous electron gas (HEG) as
benchmark systems.

This paper is organized as follows. In Sec. II we give
the basic equations of the EKT as well as RDMFT, and we
derive the W -PF. In Sec. III we describe the two models used.
Computational details are discussed in Sec. IV. In Sec. V
we report and discuss our results. In Sec. VI we draw our
conclusions and perspectives.

II. THEORETICAL FRAMEWORK

A. The extended Koopman’s theorem

Within the EKT we consider the following wave functions
for the νth one-particle removal excitations [3]:∣∣�N−1

ν

〉 = Ôν

∣∣�N
0

〉
, (1)

where |�N
0 〉 is the N-particle ground-state wave function, Ôν

is the electron annihilation operator Ôν = ∑
i CR

νiĉi, and {CR
νi}

are a set of coefficients to be determined. Here the indices
i, j, . . . refer to a general basis of spin orbitals; that is, i = Iσ
comprises the orbital index I and the spin σ . The correspond-
ing removal energy is given by

εR
ν = −

〈
�N

0

∣∣Ô†
ν[Ĥ , Ôν]

∣∣�N
0

〉
〈
�N

0

∣∣Ô†
νÔν

∣∣�N
0

〉 . (2)

The stationary condition (with respect to the coefficients
CR

νi) for εR
i leads to the following generalized eigenvalue equa-

tion: (
FR − εR

ν SR
)
CR

ν = 0, (3)

with F R
i j = −〈�N

0 |ĉ†
j [Ĥ , ĉi]|�N

0 〉 and SR being the one-body

reduced density matrix SR
i j = γi j = 〈�N

0 |ĉ†
j ĉi|�N

0 〉. If one
defines the matrix �R = [SR]−1FR in the basis of natural
orbitals, with SR

i j = niδi j , and works out the commutator in

F R
i j using the many-body Hamiltonian Ĥ = ∑

i j hi j ĉ
†
i ĉ j +

1
2

∑
i jkl Vi jkl ĉ

†
i ĉ†

j ĉl ĉk , one arrives at

�R
i j = 1

ni

[
nih ji +

∑
klm

Vjmkl	
(2)
klmi

]
, (4)

where 	
(2)
kl ji = 〈�N

0 |ĉ†
i ĉ†

j ĉl ĉk|�N
0 〉 are the 2-RDM matrix ele-

ments; hi j = ∫
dxφ∗

i (x)h(x)φ j (x) are the matrix elements of
the one-particle noninteracting Hamiltonian h(x) = −∇2/2 +

vext(x), with vext(x) being a static external potential; and
Vi jkl = ∫

dxdx′φ∗
i (x)φ∗

j (x′)v(x, x′)φk (x)φl (x′) are the matrix
elements of the Coulomb interaction v(x, x′). Diagonalization
of �R yields the removal energies εR

ν as eigenvalues [1,5]. The
diagonal elements of �R are referred to in the literature as
the energies of the EKT within the diagonal approximation
(DEKT) [3].

Similar equations hold for the addition energies. We can,
indeed, start from the wave function |�N+1

ν 〉 = Ô†
ν |�N

0 〉, with
Ô†

ν = ∑
i CA

νiĉ
†
i , and write the addition energy εA

ν as

εA
ν =

〈
�N

0

∣∣[Ĥ, Ôν]Ô†
ν

∣∣�N
0

〉
〈
�N

0

∣∣ÔνÔ†
ν

∣∣�N
0

〉 , (5)

and in a way similar to that for εR
ν we arrive at the generalized

eigenvalue equation(
FA − εA

ν SA
)
CA

ν = 0, (6)

where F A
i j = 〈�N

0 |ĉi[Ĥ, ĉ†
j ]|�N

0 〉 and SA is related to the one-
body density matrix as SA

i j = 1 − γi j . Like for the removal
energy problem, using the basis of natural orbitals, we can
work out the commutator in F A

i j and reformulate the problem
in terms of the matrix �A = [SA]−1FA [17], which reads

�A
i j = 1

(1 − ni )

[
(1 − ni )h ji +

∑
k

(Vjkik − Vjkki )nk

× −
∑
klm

Vjmkl	
(2)
klmi

]
. (7)

Diagonalization of �A yields the addition energies εA
ν as

eigenvalues. The EKT approach offers a way to build ap-
proximations for the spectral function, which is linked to the
photoemission spectrum [4,10,18]. In the basis of natural or-
bitals and within the DEKT the approximate spectral function
assumes a particular simple form given by

A(ω) =
∑

i

[
niδ

(
ω − εR

i

) + (1 − ni )δ
(
ω − εA

i

)]
. (8)

B. RDMFT

In RDMFT the ground-state total energy is a unique func-
tional of the 1-RDM,

E [γ ] =
∫

dxdx′δ(x − x′)h(x)γ (x, x′)

+ 1

2

∫
dxdx′v(x, x′)	(2)[γ ](x, x′; x, x′), (9)

where the 2-RDM can be factorized as

	(2)[γ ](x, x′; x, x′) = γ (x, x)γ (x′, x′) − γ (x, x′)γ (x′, x)

+	(2)
c [γ ](x, x′; x, x′). (10)

The first and second terms on the right-hand side of Eq. (10)
give rise to the Hartree and exchange contributions to the total
energy, whereas the last term yields the correlation energy,
which is the only unknown part and which needs to be ap-
proximated. Most of the commonly used approximations are
implicit functionals of the 1-RDM and explicit functionals of
the natural orbitals φi and occupation numbers ni, which are
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the eigenvectors and eigenvalues, respectively, of the 1-RDM
[i.e., γ (x, x′) = ∑

i niφi(x)φ∗
i (x′)]. In particular here we focus

on the JK-only functionals, which, in their simplest form,
read

	(2)[γ ](x, x′; x, x′)

≈
∑

i j

nin jφ
∗
i (x)φ∗

j (x′)φi(x)φ j (x′)

−
∑

i j

f (ni, n j )φ
∗
i (x)φ∗

j (x′)φ j (x)φi(x′); (11)

that is, they have the form of the Hartree-Fock exchange
modified by the function f (ni, n j ) of the occupation numbers.

In this work we will focus on the PF proposed by Sharma
et al. [14,18], which is the only one that, to the best of our
knowledge, has been used in solids, for which f PF(ni, n j ) =
nα

i nα
j , with 0.5 � α � 1. Note that with α = 1 one gets the

Hartree-Fock approximation to 	(2), whereas with α = 0.5
one gets the Müller functional [19]. We will also employ the
BBC1 functional [16] for which one has to distinguish be-
tween strongly and weakly occupied orbitals. This distinction
appears naturally when a subset of the orbitals corresponds
to occupation numbers close to 1 and the rest correspond to
occupation numbers close to 0 (weakly correlated systems).
However, in more general situations this distinction might be
an issue. Here we will use the simplest version of the BBC
functional, BBC1, for which

f BBC1(ni, n j )

=
{−√

nin j if I �= J and i, j weakly occupied,√
nin j otherwise.

(12)

Extension of more advanced functionals used for finite sys-
tems to solids, such as some of the Piris Natural Orbital
functional (PNOF) series [20–22], is not straightforward.

The total energy can then be expressed as a functional of
φi and ni, E [{ni}, {φi}]; functional minimization with respect
to the natural orbitals, under orthonormality constraints, and
occupation numbers, under the ensemble N-representability
constraints (

∑
i ni = N , with N being the total number of elec-

trons, and 0 � ni � 1), leads to the ground-state total energy.

1. Screened power functional

In the expressions for the RDMFT total energy and for the
EKT energies we have terms like∑

klm

Vjmkl	
(2)
klmi. (13)

In the following we exploit the link between 	(2) and the two-
body Green’s function G(2) [23],

	(2)(x1, x2; x′
1, x2) = −G(2)(x1t1, x2t+

1 ; x′
1t+++

1 , x2t++
1 ),

with t+
1 = t1 + δ (δ = 0+), to get an approximation to 	(2)

from approximations to the self-energy  of MBPT. We first
start from the definition of the self-energy in terms of G(2):∫

d2 (12)G(24) = −i
∫

d3v(13)G(2)(13+; 43++), (14)

where 1 ≡ (x1, t1) is a space-spin plus time composite vari-
able. By expressing G and G(2) in a basis set {φi(x)} and by
multiplying and integrating both sides of the equation with∫

dx1dx4φ
∗
m(x1)φl (x4), we arrive at∑

i

∫
dt2mi(t1t2)Gil (t2t4) = −i

∑
i jk

Vmki jG
(2)
i jkl (t1t+

1 ; t4t++
1 ),

(15)
with Gi j (t1t2) = −i〈�0|T [ĉi(t1)ĉ†

j (t2)]|�0〉 and

G(2)
i jkl (t1t2; t3t4) = −〈�0|T [ĉi(t1)ĉ j (t2)ĉ†

k (t4)ĉ†
l (t3)]|�0〉. We

now consider t4 = t+++
1 to get 	(2) on the right-hand side.

Expressing the left-hand side in frequency space, we arrive at∑
i

∫
dω

2π
mi(ω)Gil (ω)eiωη = i

∑
i jk

Vmki j	
(2)
i jkl . (16)

Approximations to the self-energy will give approximations
to the term V 	(2). In particular the frequency dependence of
the self-energy is essential to have fractional occupation num-
bers [24], which in turn are related to the band-gap opening
in strongly correlated systems [11]. However, modeling the
correct frequency dependence is not easy. As a paradigmatic
example we can consider the Hubbard dimer, in which the
well-known GW approximation to the self-energy fails to
open a gap in the strongly correlated limit [11]. We therefore
consider a static self-energy, such as GW with a statically
screened W , which leads to∑

i jk

γk jWm jkiγil = −
∑
i jk

Vmki j	
(2)
xc,i jkl , (17)

where we used the fact that −i
∫

dω/(2π )Gil (ω)eiωη = γil

and where we considered only the exchange-correlation con-
tributions to  and 	(2) since the Hartree contribution to 	(2)

as a functional of the 1-RDM is known. If we work in the basis
of natural orbitals, we get∑

j

Wm j jl n jnl = −
∑
i jk

Vmki j	
(2)
xc,i jkl . (18)

For W = v this is the exchange approximation. Using a static
W corresponds to the screened exchange (SEX) approxi-
mation, which, like Hartree-Fock (HF), leads to occupation
numbers equal to 0 or 1. In order to get fractional occupa-
tion numbers we combine this approximation with the power
functional to get the screened power functional∑

j

Wm j jl n
α
j nα

l = −
∑
i jk

Vmki j	
(2)
xc,i jkl , (19)

where W has to be considered fixed (which, hence, does not
enter into the variational process). The rationale behind this
approximation is that the PF will describe strong correla-
tion (or nondynamic correlation, related to the existence of
quasidegenerate states), whereas a static W will describe weak
correlation (or dynamic correlation, related to electron screen-
ing). Of course, double-counting problems are possible, as
we shall see when discussing the results. In the following we
will refer to this approximations as W -PF. This derivation can
also be extended to the Coulomb hole + screened exchange
(COHSEX) approximation [25–28], which is more commonly
used in many-body perturbation theory. This is shown in
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Appendix A. The final result is similar to Eq. (19) with an
extra term taking into account the Coulomb hole (COH).

III. MODELS

To test the quality of the W -PF we use two well-
known models in condensed-matter physics, namely, the
one-dimensional Hubbard model and the HEG.

A. One-dimensional Hubbard model

In this work we will consider a Hubbard chain with number
of sites L and periodic boundary conditions. The Hamiltonian
of the Hubbard model, in second quantization, reads

Ĥ = − t
∑
〈R,R′〉

∑
σ

ĉ†
Rσ ĉR′σ + U

2

∑
R

∑
σσ ′

ĉ†
Rσ ĉ†

Rσ ′ ĉRσ ′ ĉRσ . (20)

Here ĉ†
Rσ and ĉRσ are the creation and annihilation operators

for an electron at site R with spin σ , U is the on-site (spin-
independent) interaction, −t is the hopping kinetic energy.
The summation

∑
〈R,R′〉 is restricted to the nearest-neighbor

sites. Due to the translational invariance of the system the
natural orbitals have the form φIσ = 1√

L

∑
R eiIRϕRσ , where

ϕRσ are the site spin orbitals, and the total energy is a function
of the occupation numbers alone, which reads [29]

E [{nIσ }] =
∑

I

∑
σ

ε0
I nIσ + U

4

∑
IJ

∑
σσ ′

nIσ nJσ ′

− U

4

∑
IJ

∑
σ

nα
Iσ nα

Jσ , (21)

where ε0
I = −2t cos[2π (I − 1)/L] is the noninteracting en-

ergy associated with the Ith natural orbital [30] and we used
the PF to approximate 	xc, with 0.5 � α � 1 [14]. In this
work we considered only the spin-symmetric case at one-half
filling.

B. HEG

The HEG Hamiltonian in its spin-explicit form is given by
the following expression:

Ĥ =
∑

σ

∑
k

k2

2
ĉ†

k,σ ĉk,σ + 1

2�

∑
σσ ′

∑
k �=0,k1,k2

× 4π

k2
ĉ†

k1+k,σ
ĉ†

k2−k,σ ′ ĉk2,σ ′ ĉk1,σ + Eb, (22)

where k is a plane wave vector and � is the volume of the unit
cell. Note that to guarantee the charge neutrality of the system
a positive background charge has to be included. This results
in the constant term Eb in the Hamiltonian, which contains the
electron-background interactions.

Due to the translational invariance of the HEG, the natural
orbitals can be chosen to be plane waves. The minimiza-
tion procedure reduces then to the search for the optimal
momentum distribution n(k), i.e., the occupation number
corresponding to the plane-wave natural orbital with wave
vector k. We also note that, due to the rotational invariance,
n(k) = n(k), i.e., the momentum distribution depends only on
the magnitude of k.

The total energy functional per unit volume can be ex-
pressed in terms of the momentum distribution as

E

�
=

∫
dk

(2π )3
k2n(k) −

∫
dkdk′

(2π )6
v(k − k′) f (n(k), n(k′)),

(23)

where the first and second terms on the right-hand side
are the kinetic energy and the exchange-correlation en-
ergy per unit of volume, respectively, and v(k) = 4π/|k|2
is the Coulomb potential. Note that the Hartree energy is
not included in Eq. (23) since it is compensated by Eb.
RDMFT functionals have already been applied to the ho-
mogeneous electron gas [31–34]. In particular Lathiotakis
et al. [31] studied the performance of the BBC func-
tionals for the correlation energies and the momentum
distribution. Within the PF approximation to the 2-RDM we
have f PF(n(k), n(k′)) = [n(k)n(k′)]α with 0.5 � α � 1 [14],
while for the BBC1 functional we have f BBC1(n(k), n(k′)) =√

n(k)n(k′)[1 − 2θ (|k| − kF )θ (|k′| − kF )], where θ is the
Heaviside step function. Within the screened power func-
tional approximation, instead, f W -PF(n(k), n(k′)) = W̄ (k −
k′)/v(k − k′)[n(k)n(k′)]α; that is, the Coulomb potential
v(k) in the PF is replaced by the screened interaction W̄ (k).
In the following we will assume that W̄ is the static limit of
the dynamically screened interaction W , given by

W̄ (k) = v(k)

1 − v(k)P0(0, k)
, (24)

with the static RPA polarizability given by the Lindhard for-
mula [35]

P0(0, k) = 2kF

4π2

{
−1 + kF

2k

(
1 − k2

4k2
F

)
ln

[
1 − k/(2kF )

1 + k/(2kF )

]2}
,

(25)

where kF is the Fermi momentum, given by kF =
(9π/4)1/3/rs, and rs is the Wigner radius.

For the HEG, the matrices given in Eqs. (4) and (7) are
diagonal in the basis of natural orbitals, and their diagonal
elements are the EKT removal and addition energies, respec-
tively, given by

εR(k) = k2

2
− 1

n(k)

∫
dk′

(2π )3v
(k − k′) f (n(k), n(k′)) (26)

and

εA(k) = k2

2
− 1

1 − n(k)

∫
dk′

(2π )3
v(k − k′)n(k′)

+ 1

1 − n(k)

∫
dk′

(2π )3
v(k − k′) f (n(k), n(k′)), (27)

where we used the approximation in Eq. (11) for the 2-RDM.

IV. COMPUTATIONAL DETAILS

For the Hubbard model with a finite number of sites we use
the Lanczos method [36] for the calculation of the exact one-
body Green’s function, from which we get all the quantities of
interest for this work. This poses a limit to the number of sites
we can treat, which in our case is L = 12. For the infinite chain

235123-4



INTRODUCING SCREENING IN ONE-BODY DENSITY … PHYSICAL REVIEW B 105, 235123 (2022)

(L → ∞) we use the Bethe ansatz [37]. For the total energy
minimization within the approximate power functional we use
the direct minimization for finite sites using the Mathematica
package [38]. In the case of the infinite chain, instead, we use
the same strategy used for the HEG, which we describe in the
following.

For the HEG, the functional to be minimized can be written
as [31]

F
�

=
∫

dk
(2π )3

(k2 − 2μ)n(k)

−
∫

dkdk′

(2π )6
v(k − k′) f (n(k), n(k′)) + μ, (28)

where μ is the Lagrange multiplier which enforces the condi-
tion

∑
i ni = N . From the stationarity condition

δ(F/�)

δn(k)
= 1

(2π )3
(k2 − 2μ)

−2
∫

dk′

(2π )6
v(k − k′)∂x f (x, n(k′))

∣∣
x=n(k)

= 0, (29)

and using the PF approximation (i.e., f (n(k), n(k′)) =
[n(k)n(k′)]α), we can obtain the following integral equa-
tion [39]:

n(k) =
{∫

dk′/(2π )3v(k − k′)[n(k′)]α

k2/2 − μ

} 1
1−α

. (30)

Similar equations can be obtained using the BBC1 func-
tional and the W -PF. The minimization of the energy
functional is thus transformed into a fixed-point problem that
can be solved iteratively starting from a reasonable guess
for n(k) (e.g., the noninteracting distribution). The Lagrange
multiplier μ is determined through an iterative procedure by
requiring that the momentum-distribution function integrates
to the correct number of electrons. The condition 0 � ni � 1
is enforced at each step. The integral in Eq. (30) and the
evaluation of Eqs. (26) and (27) are performed numerically
using the Mathematica package [38].

V. RESULTS AND DISCUSSION

In this section we will assess the quality of the PF and
W -PF by analyzing the total energies, natural occupation
numbers, and band gaps/bandwidths from the EKT using the
Hubbard model and the HEG.

A. Hubbard model

In Fig. 1 we report the total energy of a 12-site Hubbard
chain, obtained from the direct minimization of the total
energy functional given in Eq. (21), as a function of U/t .
We notice that only the PF with α = 0.5 gives the correct
limit for the large-interaction limit U/t → ∞ [40], while for
larger values of α the result diverges. The value α = 0.5 also
gives the best “global” result. The total energy is hence quite
sensitive to the value of α. This is a general trend that is
independent of the number of sites.

FIG. 1. Total energy as a function of U/t for a 12-site Hubbard
chain. Exact vs PF (α = 0.5, 0.6, and 1).

The occupation numbers which minimize the total energy
functional are reported in Fig. 2 for a 12-site Hubbard chain
at U/t = 4. Their trends closely resemble those of the infinite
chain, also reported in Fig. 2. The PF gives for some states
pinned occupation numbers, i.e., ni = 1. In general there is not

FIG. 2. Occupation numbers (top panel) and removal/addition
energies εi (bottom panel) for a 12-site Hubbard chain and the infinite
Hubbard chain at U/t = 4. Exact results are reported with black
squares for the 12-site Hubbard chain.
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FIG. 3. Fundamental band gap of the one-dimensional Hubbard
chain as a function of the length L for U/t = 4 and 16: exact results,
EKT@exact, and EKT@PF for both α = 0.5 and 0.6.

a large difference between the results obtained with α = 0.5
and α = 0.6, except for the occupation of the top valence
orbital (at εi = −1). However, we notice a significant differ-
ence in the EKT band gap. This is shown in Fig. 3, where
we present the band gap of the one-dimensional Hubbard
model as a function of the number of sites L for U/t = 4
and U/t = 16. Exact results are compared with those obtained
from the EKT using exact RDMs (EKT@exact) and RDMs
obtained from the PF approximation (EKT@PF). For the
Hubbard dimer, exact, EKT@exact, and EKT@PF(α = 0.5)
give the same band gap. For more than two sites (L > 2)
EKT@PF(α = 0.5) shows the same trend as EKT@exact, i.e.,
a systematic overestimation of the exact band gap, whose
magnitude depends on the strength of the electron correlation.
PF(α = 0.6), instead, gives results closer to the exact ones
for U/t = 4, whereas it underestimates the band gaps for
U/t = 16. Overall, these results point to an error cancellation
between the approximate nature of the EKT equations and the
approximation to the 1- and 2-RDMs by tuning the parameter
α. Introducing screening will decrease the gap, as shown
in Fig. 3. For example, for the Hubbard dimer screening in
PF(α = 0.5) has an effect similar to using α = 0.6 in the PF.
In general we observe that the gap shrink induced by the
screening increases with the electron correlation.

FIG. 4. Correlation energy of the HEG as a function of rs calcu-
lated with the PF and W -PF. The Coulomb hole correction to the
W -PF is also reported (W-PF+COH). The quantum Monte Carlo
result (QMC) corresponds to the Perdew-Wang fit [41] of the DMC
data of Ortiz and Ballone [42,43]. The blue dash-dotted line, for
rs < 5.77, is obtained numerically and corresponds to the results
by Csányi and Arias [32] employing the Müller functional. The
continuation for rs > 5.77 is the analytical result of Cioslowski and
Pernal [34].

The BBC1 functional produces results (not reported in
Fig. 3) in between the results obtained with PF(α = 0.5) and
PF(α = 0.6). Of course, one should be careful to extrapolate
these findings to real materials. This model, indeed, is peculiar
because the power functional, which contracts the four-point
two-body density matrix to only two points, i.e., 	

(2)
xc,i jkl =

−nα
i nα

j δikδ jl , is a good approximation due to the topology of
the system; moreover, the basis of natural orbitals is also the
basis which diagonalizes the �R/A matrices. These features
are not generally true in a real system. However, the fact that
the EKT method overestimates the exact band gap seems a
general feature, as pointed out in Ref. [10], and an important
finding. Of course, this also questions its applicability to met-
als, where there is no band gap. We shall investigate this point
with the example of the HEG in the next section.

B. Homogeneous electron gas

We first examine the correlation energy reported in Fig. 4.
Our reference is the Monte Carlo (QMC) correlation energy
from Ref. [41]. We compare the results obtained using the PF
and W -PF. Reference [44] showed that the correlation energy
of the HEG is well reproduced by the PF with values of α

between 0.55 and 0.58 depending on the value of the Wigner-
Seitz radius rs. We find, indeed, that PF(α = 0.55) performs
very well over a wide range of rs, unlike PF(α = 0.5).

For α = 1 the W -PF corresponds to the SEX, and it
gives positive correlation energies for all densities. Consid-
ering α < 1 decreases the correlation energy. Moreover, we
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FIG. 5. Momentum distribution of the HEG for rs = 3: QMC
vs PF and W -PF for α = 0.5 and BBC1. The QMC momentum
distribution is taken from Ref. [45].

note that for α = 0.55 this functional inherits the correct
low-density limit (rs → ∞) of PF(α = 0.55) but the incorrect
high-density limit (rs → 0) of the SEX. A similar scenario
is observed using the Coulomb hole correction in the W -PF
(see Appendix A). Also the correlation energy obtained using
BBC1, reported in Fig. 4 as well, compares well with the
QMC results over a wide range of rs values. In Fig. 5 we
report the momentum distribution n(k) for rs = 3, for which
QMC results (our reference) are available in the literature
[45]. We compare the results for QMC and PF and W -PF
(both with α = 0.5). The PF is not able to describe the char-
acteristic discontinuity of the exact momentum distribution
at the Fermi momentum kF . This is a general feature of the
Müller-like functionals. Reference [34], for example, showed
that for values of rs < 5.77 the Müller functional produces
occupation numbers pinned to 1 for values of k smaller than
a characteristic value kp. For k > kp the occupation decreases
monotonically to zero without discontinuity. As pointed out
in Ref. [31], only the BBC functionals have been reported to
reproduce this feature. This is, indeed, what we find by using
BBC1, which is also reported in Fig. 5. The W -PF improves
the situation in the sense that it enlarges the range 0 < k < kp,
but it cannot reproduce the discontinuity either.

In Fig. 6 we report the quasiparticle (QP) dispersion curve
obtained with the EKT. The first remarkable feature that
we observe is the opening of an unphysical band gap. The
EKT@PF QP dispersion is very close to the HF one for
k < kp. Due to the fact that the PF is not able to well reproduce
the momentum distribution near k = kF the QP dispersion is
strongly deformed near the Fermi momentum (kp < k < kF ).
The range of deformation is, instead, smaller for the W -PF.
Moreover, introducing screening in the PF functional reduces
the overestimation of the band width, which becomes smaller
than the EKT@QMC result. This finding points to an over-
screening in the W -PF. Indeed introducing a parameter that
reduces the screening in the W -PF would bring the results in

line with the EKT@QMC results, as we show in Appendix B.
Nevertheless, the W -PF correctly closes the band gap in the
HEG; it would hence be interesting to apply the EKT@W -PF
to realistic systems and, in particular, to gapped materials.
This study is currently in progress.

Interestingly, the EKT band dispersion obtained using the
BBC1 functional is rather bad, at least for the valence part,
with respect to the QMC results. Although, similar to the
W -PF, BBC1 decreases (but does not close completely) the ar-
tificial band gap that the exact EKT method opens in the HEG,
the BBC1 band dispersion is quite different from the W -PF
dispersion. This is the case also for other values of rs. We com-
pare our results with the QMC quasiparticle energies obtained
from Ref. [47]: W -PF shows a dispersion curvature similar to
that of QMC, whereas BBC1 is very similar to HF. We note
that also increasing α in the PF tends to close the band gap,
with α = 1 showing no gap (see Fig. 7). However, this is the
HF solution, which is not a good approximation of the 1- and
2-RDM.

In Fig. 8 we also compare our results with the method
proposed in Ref. [18] (referred to as the DER method). For
valence QP energies this method gives the same expression
as EKT@W -PF with W replaced by the parameter α of the
PF. The results of the DER method, however, are closer to
those obtained using EKT@PF than to the ones obtained using
EKT@W -PF, showing that screening has a stronger impact
than the α parameter. It would be interesting to explore the
use of a static value of W to fix the parameter α in an ab initio
manner, but that is beyond the scope of the present work.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we explored the influence of the approxi-
mations to the 1-RDM and 2-RDM on the removal/addition
energies calculated using the extended Koopmans’ theorem
within reduced density matrix functional theory. In particular
we have focused on the power functional approximation to
the 2-RDM proposed by Sharma and coworkers, which is
often employed in solids. Using the one-dimensional Hubbard
chain and the HEG as test systems, we explored the sensitivity
of the results to the α parameter of this approximation and
the impact of introducing screening in the PF (W -PF). In
particular we found the following: (i) In the Hubbard chain the
parameter α = 0.5 is the best choice for any number of sites
when looking at the total energy, the natural occupation num-
bers, and the EKT band gap. (ii) The EKT energies obtained
using exact density matrices show a systematic overestimation
of the band gap; for the PF, the larger the interaction is the
smaller (towards 0.5) α should be to get good agreement with
the exact results, which points to an error cancellation. (iii)
Introducing screening reduces the gap in the Hubbard model
and improves the quasiparticle dispersion and the bandwidth
in the HEG. Although the W -PF does not have a rigorous
foundation, our results point to some interesting features for
the description of quasiparticle energies. We have also ex-
plored the performances of the BBC1 functional, which, as
already reported in the literature, well reproduces the corre-
lation energy of the HEG over a wide range of rs and, at the
same time, shows a discontinuity in the occupation number
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FIG. 6. Quasiparticle dispersion ε(k)/k2
F for rs = 3: EKT@W -PF, EKT@PF, and EKT@BBC1 are compared with EKT@QMC results

extracted from Ref. [46] and QMC quasiparticle dispersion from Ref. [47]. The free-electron and Hartree-Fock dispersions are also reported.
In the bottom panels we report the momentum-resolved spectral function A(k, ω). The free-electron dispersion is indicated with a dashed white
line.

distribution at the Fermi level, as in the exact case. The trend
of the EKT removal and addition energies obtained using
BBC1 is similar to the one observed using the W -PF for the
HEG, in particular the fact that the band gap tends to close
compared to the PF. Nevertheless, the band dispersion and
bandwidth are quite poor and very similar to those calculated
using HF, contrary to the W -PF, which performs quite well.
It would be worthwhile to explore the performance of these
two functionals in realistic systems. This work is currently in
progress.
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APPENDIX A: THE COULOMB HOLE PLUS
SCREENED-EXCHANGE PF

Let us consider the correlation part of W , i.e., Wp = W −
v. Within the COHSEX approximation to the self-energy the
correlation contribution of Eq. (15), in the limit t4 = t+++

1 ,
reads∑

i

∫
dt2c,mi(t1t2)Gil (t2 − t4)

= i

2

∑
i jk

∫
dt2Gk j (t1 − t2)Wp,m jki(ω = 0)[δ(t1 − t2 + η)

+ δ(t1 − t2 − η)]Gil (t2 − t4)

= i

2

∑
i jk

[Gk j (−η)Wp,m jkiGil (t1 + η − t4)

+ Gk j (η)Wp,m jkiGil (t1 − η − t4)]
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FIG. 7. Dependence of the EKT@PF and EKT@W -PF QP energy dispersions on the parameter α.

= i

2

∑
i jk

[Gk j (−η)Wp,m jkiGil (−η)

+ Gk j (η)Wp,m jkiGil (−η)]

= i

2

∑
i jk

[Gk j (−η)Wp,m jkiGil (−η)

+ Gk j (−η)Wp,m jkiGil (−η) − iδk jWp,m jkiGil (−η)]

= i

2

∑
i jk

[−2Wp,m jkiγk jγil + δk jWp,m jkiγil ]. (A1)

FIG. 8. Quasiparticle dispersion ε(k)/k2
F for rs = 3: EKT@W -

PF and EKT@PF are compared with the DER@PF.

By adding the exchange contribution to 	(2) and using the
basis of natural orbitals, we arrive at

−
∑

j

Wm j jl n jnl + 1

2

∑
j

Wp,m j jl [n j + nl ]

=
∑
i jk

Vmki j	
(2)
c,i jkl , (A2)

where the first term on the right-hand side is the screened
exchange and the second term is the Coulomb hole. As for the
SEX-like approximation, in order to get fractional occupation
numbers we combine this COHSEX-like approximation with

FIG. 9. Quasiparticle dispersion ε(k)/k2
F for rs = 3: βW -PF is

compared with the W -PF.

235123-9



S. DI SABATINO et al. PHYSICAL REVIEW B 105, 235123 (2022)

the PF. One can add the α exponent only to screened-exchange
term or, to be more consistent, to the Coulomb-hole term.
Here we will consider the α parameter only in the SEX part.

The COHSEX-like approximation is tested in the HEG. In
this case the energy functional to be minimized reads

F
�

=
∫

dk
(2π )3

(k2 − 2μ)n(k)

−
∫

dkdk′

(2π )6
v(k − k′) f (n(k), n(k′))

+1

2

∫
dk′dk
(2π )6

Wp(k′)n(k) + μ. (A3)

We notice that Eq. (A3) differs from Eq. (28) by only a term
which does not depend on n(k) [

∫
dkn(k) is a constant]. This

implies that the addition of the Coulomb hole term does not
affect the optimal momentum distribution n(k).

APPENDIX B: TUNING THE CORRELATION
IN THE HOMOGENEOUS ELECTRON GAS

As discussed in Sec. V B the W -PF suffers by an
overscreening problem, which arises from double counting

between W and the PF. Reducing the screening and the corre-
lation in the PF, one can, indeed, find quasiparticle dispersion
in agreement with the EKT@QMC results. This can be shown
by introducing a parameter β in front of W in the function f
as

f βW −PF(n(k), n(k′)) = β
W̄ (k − k′)
v(k − k′)

[n(k)n(k′)]α. (B1)

For a fixed value of α, the parameter β is determined in such
a way to obtain the QMC correlation energy of the HEG.
The optimal value of α is then determined in such a way to
have the same second derivative of εR(k) at k = 0 obtained
by the EKT@QMC. We find that the optimal values of the
two parameters are α = 0.75 and β = 5.44, which indicate a
strong reduction of the screening. The results are reported in
Fig. 9. One could envisage using (B1) with the parameters β

and α optimized for the HEG also for realistic systems in the
same spirit as the local density approximation employed in
density functional theory.
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