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Curvature-induced quantum spin-Hall effect on a Möbius strip
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The quantum Hall effect has been predicted and discovered in various condensed-matter systems. A promising
quantum material for such topological effects is graphene. We report the numerical observation of a curvature-
induced spin-Hall effect in a monolayer graphene Möbius strip. The solution of the Dirac equation on the
nontrivial and non-Euclidean manifold reveals that despite the absence of a Hall current, a spin-Hall current
is a natural consequence for such a topology, as predicted from symmetry arguments.
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I. INTRODUCTION

The discovery of the quantum Hall effect has triggered
a surge of research in topological states of matter with
a multitude of applications in quantum engineering and
condensed-matter physics [1–3]. The topological invariants
[4] of a system provide simplicity in the implementation, as
well as protection from disorder [5]. Naturally, graphene has
been extensively investigated in this context, carrying over
its remarkable characteristics [6–8] into a topologically pro-
tected system. For example, the honeycomb bipartite lattice of
graphene has been shown to exhibit the quantum Hall and the
quantum spin-Hall effects in the presence of a magnetic field
[9–11]. Nevertheless, a much more promising system would
require breaking of the time invariance in a more intrinsic way
without the need for an external field [12,13].

One such system is the simplest nontrivial fiber bundle,
the famous Möbius strip [14,15]. Theoretical analysis has
already hypothesized that a graphene Möbius strip can ex-
hibit topological insulator properties owing to the zigzag edge
states [16,17]. In this paper we show that a graphene Möbius
strip inherently exhibits a quantum spin-Hall current. The
strains induced in curved graphene are modeled via a non-
Euclidean space description. The result is alluring because a
pure, curved-space formulation of the lower energetic states
of graphene would inevitably create a spin-Hall current and
not a Hall current as theoretically predicted via symmetry ar-
guments [18]. Furthermore, curvature has immense potential
as a novel and straightforward control mechanism in quantum
devices [19,20].

In this paper, we carry out a numerical study of the
quantum spin-Hall effect on the curved-space solution of a
graphene Möbius strip. We simulate Dirac particles and relate
them to graphene through the low-energy approximation of
the band structure. The effect of curvature on transport and the
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energy levels of confined Dirac particles on such a manifold
are investigated. The nonrelativistic quantum mechanics on a
Möbius strip has been studied [21], and nontrivial effects on
the Möbius topology have also been proposed for molecular
devices [22]. It has already been shown that in graphene,
the quantum Hall effect can be realized with careful strain
engineering in the zero-field case [23].

To this end numerical studies were carried out with a solver
of the Dirac equation in curved space [24,25]. The method
is based on the conceptual similarities between the Dirac
and Boltzmann equations and is an extension of the quantum
lattice Boltzmann method [26] to curved space. Through our
simulations we observe a quantum spin-Hall current in the
bulk of a Möbius graphene strip. Additionally, we compare
the result to a simpler curved-space topology, namely, the
torus, and we propose a simple valid current-conserving and
time-reversal-symmetric boundary condition for the method.
Furthermore, a specific illustration of the equivalence be-
tween the Berry and Ricci curvatures is presented analytically
through a traveling wave packet around a Möbius strip.

II. THE DIRAC EQUATION IN CURVED SPACE

By minimally coupling the Dirac equation to curved space
and a vector potential Ai(x), the Dirac Hamiltonian takes the
form

HD = −i
∫

�†σ ae i
a(∂i + �i − iAi )�

√
gd2x (1)

in natural units such that h̄ = c = 1, where h̄ is Planck’s con-
stant and c is the speed of light (here, m is the particle mass,
and μ = 0, 1, 2 for two-dimensional space-time). Here, � =
(�+, �−) = (ψ+

1 , ψ−
2 , ψ−

1 , ψ+
2 ) ∈ C4 denotes the spinor,

and γ μ = γ αe μ
α are the generalized γ matrices, where γ α ∈

C4×4 are the standard γ matrices (in Dirac representation). e μ
α

is the tetrad (first index: flat Minkowski, second index: curved
space-time). Here, the tetrad is defined by eμ

α gμνeν
β = ηαβ ,

where gμν denotes the metric tensor and ηαβ is the Minkowski
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metric. The tetrad basis is chosen such that the standard
Dirac matrices can be utilized with no need to transform
to a new coordinate basis. �μ denotes the spin connection
matrices given by �μ = − i

4ωαβ
μ σαβ, where σαβ = i

2 [γα, γβ]
and ωαβ

μ = eα
ν ∇μeνβ . The Dirac equation in curved space

describes quantum relativistic Dirac particles (e.g., electrons)
moving on arbitrary manifold trajectories.

To model the single-layer carbon atom honeycomb lattice
structure we start from the tight-binding Hamiltonian which
is constructed assuming superposition of local wave func-
tions for isolated atoms on a honeycomb lattice [27]. In the
low-energy limit it has been shown that the tight-binding
Hamiltonian converges to the Dirac Hamiltonian in the contin-
uum limit. Therefore, for graphene the effective Hamiltonian
is [28]

H∗
D = −iv f

∫
�†σ a

(
v∗i

a ∂i + �∗
a − iA∗

a

)
�d2x, (2)

where v∗i
a = δai + uai − βεai is the space-dependent Fermi

velocity, �∗
a = 1

2v f
∂ jv

∗ j
a is a complex gauge vector field

which guarantees the Hermiticity of the Hamiltonian, and
A∗

a is a strain-induced pseudovector potential given by A∗
a =

(A∗
x , A∗

y ) = β

2a (εxx − εyy,−2εxy), with β being the material-
dependent electron Grüneisen parameter, a being the lattice
spacing, and εij = uij + 1

2∂ih∂ jh being the general strain ten-
sor with in-plane (uij ) and out-of-plane (h) deformations.
The term uai in v∗i

a can be interpreted as the deformation
potential and is purely a geometric consequence due to lattice
distortion; it does not depend on the material as long as it
has the same topology. Comparing this to the standard Dirac
Hamiltonian in curved space (1), we can match both Hamil-
tonians HD and H∗

D. The numerical solutions are obtained
with the quantum lattice Boltzmann method as described in
Appendix A and Ref. [29].

III. METHOD AND RESULTS

A. Quantum spin-Hall effect on a Möbius strip

1. Geometry and boundary conditions

The system geometry is initialized to the Möbius strip by
the discrete mapping (or chart)

hα (θ, r) =
⎛
⎝[R + wr cos(ηθ/2)]cos(θ )

[R + wr cos(ηθ/2)]sin(θ )
wr sin(ηθ/2)

⎞
⎠, (3)

with θ ∈ {−π, π}, r ∈ {−Lr/2, Lr/2}, half-width w, a mid-
circle of radius R, and number of turns η at height z = 0. Lr is
the domain size across the radial direction; for simplicity we
set Lr/2 = 1. In the simulations, we consider a square sheet
with reverse periodic boundary conditions in one direction on
a grid of size lθ × lr = 512 × 512 or 100 × 100 nm2, Aa; the
external potential is set to zero.

The metric tensor can be computed from hα (x, y), relating
the positions of the atoms from the three-dimensional flat
space (laboratory frame with the Minkowski metric) to the
curved space by

gi j = ∂hα (θ, r)

∂xi

∂hβ (θ, r)

∂x j
ηαβ. (4)

FIG. 1. The spin connection component on the Möbius strip for
half-width w = 0.1 and a midcircle of radius R = 1.

With this parametrization the metric is cast in a diagonal form,

gi j =
(

G2
11 0
0 G2

22

)
,

where G11 =
√

R + wr cos(ηθ/2) + w2r2/4 and G22 = w.
The reverse periodic boundary at θ = π is implemented
as �(θ = −π, r) = �(θ = π,−r). From Ref. [30] a valid
current-conserving and time-reversal-symmetric boundary
condition for the Dirac equation can be written as

� = (v · τ ) ⊗ (n · σ ), n⊥nB, (5)

where nB is the unit vector in the r-θ plane normal to the
boundary, v and n are three-dimensional unit vectors, and τ

and σ are Pauli matrices. In the case of a massless particle
inside a one-dimensional box, assuming perpendicular reflec-
tion, it is sufficient to set �1,2(r = −1) = �1,2(r = 1) = 0.
This closed boundary condition ensures probability conser-
vation for the decoupled Weyl equations such that ρ(r =
−1) = ρ(r = 1) and Jμ(r = −1) = Jμ(r = 1) = 0. Numer-
ically, for the present simulational timescales, we observe a
small (<1%), resolution-convergent error related to the finite-
size effect of the wave function. The error convergence plot is
shown in Appendix C.

The metric tensor, although diagonal, for the typical choice
of w ∼ 1 imposes some large gradients on the spin connection
�i which introduce numerical instabilities. From the form
of the metric it can be shown that for w � 1, the metric
variation is minimized, resulting in more stability; physically,
this results in a long and thin strip. It should be noted that
this choice of parametrization results in nonzero curvature
across the whole domain, expressed by the Ricci scalar (see
Appendix D). Additionally, θ is intentionally chosen such that
the spin connection is continuous across the reverse periodic
boundary (see Fig. 1). This is not the case for the most
common convention θ ∈ {0, 2π}. The spin connection (or the
Christoffel symbols) is not a gauge-independent quantity, but
the metric and Ricci tensors are. In fact, complete continuity
of the spin connection is achieved only for w � 1; for w ∼ 1
there is still some discrepancy as ω

jk
i is not symmetric in r.
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2. Berry connection and symmetry arguments

Topological currents are traditionally described as being a
consequence of the integral of the phase space connection,
the Berry phase [31]. Analogous to the real-space curvature,
the Berry connection is not gauge independent, but the Berry
phase and the Berry curvature are. The similarities of the Ricci
and Berry curvatures are further investigated here; we show
that a Gaussian wave packet completing a circle around a
Möbius strip will attain a phase π equivalent to a Berry phase.
This is a consequence of the topology and represents a spe-
cific illustration of the relation between Berry and real-space
curvatures [32].

To solve the Dirac equation, minimally coupled to curva-
ture,

(iγ μDμ)� = 0, (6)

where Dμ is the covariant derivative as Dμ� = ∂μ� + �μ�,
we assume that the wave packet has a negligible profile, δr →
0. The connection component of the covariant derivative can
be absorbed into the wave function such that

� → � exp

(
i
∫ rc+δr

rc

�idr
)

, (7)

where rc is the center of mass position and �i is the spin
connection matrix. For a Gaussian wave packet with spread
σ and momentum k

�(r, k) = 1√
2πσ 2

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠ei

∫
�idre− |r|2

4σ2 +ik·r
. (8)

This wave function effectively minimally couples the standard
Dirac equation to curved space through the spin connection.
We define the Berry connection as

Ai
n(R) = i〈�(R)|∂R|�(R)〉 (9)

for some parameter space R and eigenfunction n. The Berry
phase can be calculated from the complete loop integral of the
connection,

γ =
∮ 2π

0
A(R)gi j

RdR. (10)

In a manner similar to the treatment of the Aharonov-Bohm
effect from the Berry connection [31], we define the fast and
slow coordinates as R and r, respectively, such that �(R) →
�(r − R). For the Möbius strip, choosing the real space to be
the parameter of integration and restricting the motion to one
dimension r ∈ 0, 2π , the center of the band, the wave function
takes the form

�r (R − r) = 1√
2πσ 2

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠ei

∫
�r dre− |R−r|2

4σ2 +ik(R−r)
. (11)

From Eq. (9) the explicit form of the wave function implies
that Ai = Tr�i. The implication of this result is that the Berry
connection and curvatures can be directly related to the real-
space affine connection and Ricci curvature tensor under some
conditions.

As a consequence, the phase change of a wave packet
moving around a Möbius strip can be calculated from the
Berry phase. Integrating naively around the band

γ =
∮ 2π

0
Tr〈�r |∂r�r〉g11dr, (12)

where Tr denotes the trace of the resulting matrix and it takes
into account the spinor nature of the Dirac wave function,
yields a trivial result: γ = 0. The caveat is that, in this coordi-
nate basis, for both half-width and half radius equal to unity,
�r simplifies to a diagonal matrix such that

⎛
⎜⎜⎝

1
2 i cos

(
r
2

)
0 0 0

0 − 1
2 i cos

(
r
2

)
0 0

0 0 1
2 i cos

(
r
2

)
0

0 0 0 − 1
2 i cos

(
r
2

)

⎞
⎟⎟⎠.

(13)

�r is discontinuous when θ = 2π → 0. To make the function
single valued we can perform a gauge transformation such that
� → � ′ = �ei r

2 . This implies that γ ′ = γ − ∮
dr/2 = −π .

Therefore, the wave function picks up a phase of π as it
moves around the band. This solutions clarifies the connection
between the phase and real-space curvatures and emphasizes
that a topological current is expected from geometrically non-
trivial manifolds.

In the case of low-energy graphene, the calculated phase
will be equal and opposite between the k < 0 and k > 0 states
for a wave packet on the central line. To observe a nontriv-
ial current for a graphene strip we need to depart from the
center-line approximation, and the edges should be taken into
consideration. Furthermore, since the phase will oscillate, the
total Hall currents are expected to be zero, which is not the
case for the spin-Hall currents, as explained also in Beugeling
et al. [18]. The argument follows from the nonorientability
of the Möbius strip, implying that any pseudovectorial field
cannot be defined globally and smoothly on such a surface.
The obvious consequence of this is the definition of a Chern
number within such a topology. The introduction of spin-
1/2 degrees of freedom creates a unique, orientable manifold
that has an injective map of the original (base) space, i.e.,
an orientable double cover (ODC). Subjecting this ODC to
a Haldane-like flux, by virtue of the geometry alone, two
Haldane fluxes of opposite chirality are expected to develop
for the particle-hole pair. This would be an intrinsic spin-orbit
coupling inducing spin-Hall currents; that is, the two edge
modes will counterpropagate.

3. Simulation

To study the topological properties and observe a Hall-type
effect it is necessary to realize a forward-moving wave func-
tion that explores the complete domain. An electric field is
both experimentally challenging and theoretically inconsistent
across a periodic system such as a Möbius graphene strip.
Additionally, a magnetic field is difficult to keep tangential
to such a manifold and unnecessary, as shown later. Conse-
quently, a wave function with nonzero kθ is initialized in the
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FIG. 2. (a) The time evolution of the radial space-integrated
Dirac current J̄ r for the zero-momentum particle wave function and
nonzero momentum particle and antiparticle wave functions. The
inset shows the time evolution of J̄ r for a particle wave function
for zero and nonzero momenta. (b) The time evolution of the aver-
age particle-hole space-integrated current for zero and two different
nonzero kθ . The inset shows the asymmetry ratio for two different
half-widths w. One simulational time step t is equivalent to 1 ps.

domain for a particle and a hole, respectively,

ψP(k, r) =

⎛
⎜⎜⎝

i sin(kθ θ )
0
0

h̄v f k
E cos(kθ θ )

⎞
⎟⎟⎠, ψH (k, r)=

⎛
⎜⎜⎝

0
h̄v f k

E cos(kθ θ )
i sin(kθ θ )

0

⎞
⎟⎟⎠,

(14)

where h̄ = v f = 1, E = |k|, r = (θ, r), and k =
(kθ , kr ), kr = 0.

In this section the subscript θ is dropped for brevity, kθ →
k. The time evolution of the radial space-integrated Dirac
current

J̄ r =
( ∫ x,y

Jr (x, y)
√

gdxdy

)
(15)

for ψP is shown in Fig. 2(a) for the zero-momentum and k =
2π/lθ cases for both the particle and hole wave functions. The
dashed and dotted lines lie on opposite sides relative to the
kθ = 0 scenario, indicating a net anomalous velocity effect (in
the r direction) as a consequence of θ velocity, i.e., a Hall

current. The time evolution of J̄ r
P and J̄ r

P,k=0 for longer times
is plotted in the inset of Fig. 2(a). The oscillations are a result
of the geometry and the closed boundary condition because
they are also present for J̄ r

P,k=0. There is no obvious nonzero
average J̄ r

P, or quantum Hall current.
The asymmetry ratio AP/AH is plotted in the inset of

Fig. 2(b) for two different half-widths w, defined by

AP

AH
= J̄ r

P − J̄ r
P,k=0

J̄ r
H − J̄ r

H,k=0

, (16)

where J̄ r
P,H denote the particle-hole currents for k = 2π/lθ

and J̄ r
P,H,k=0 denote the particle-hole currents for k = 0. J̄ r

P,k=0

and J̄ r
H,k=0 are equal to each other. The dependence of the

asymmetry ratio on w suggests that the difference between
J̄ r

P and J̄ r
H is a consequence of the curvature of the manifold

and implies, again, a net anomalous velocity effect.
In Fig. 2(b) the time evolution of the average particle-

hole space-integrated current 〈J̄ r
PH 〉 = |J̄ r

P − J̄ r
H | is plotted for

two different nonzero k. The result clearly shows a quantum
spin-Hall current (or particle-antiparticle current), which is
kθ dependent. The effect is a transient result as there is no
constant electric field in order to measure a stationary solu-
tion. Since a Möbius strip has only one boundary, it is easier
to visualize the result when it is projected to a rectangle
(simulational domain), where the current is flowing towards
one direction.

The spin-Hall current is a consequence of the curvature and
topology of the system. The gauge field breaking the symme-
try of the system is the spin connection matrix �i, similar to a
twisting magnetic field. For graphene, these curvature effects
are realized as forces due to the pseudopotential in a strained
sheet [28]. The correspondence between a magnetic field and
curvature is also evident in Sec. III A 2, as the Berry phase is
directly related to the Aharanov-Bohm effect [33].

The space-integrated spin-Hall current is then a result of
the topology, i.e., the twist. This can be understood theoret-
ically as a space-integrated current would not be affected by
the “sharpness” of the twist and any “flat” regions are irrele-
vant. Moreover, assuming geometrical disorder is not stronger
than the cumulative effect of the twist, the bulk current will not
be affected more than a perturbative correction.

Furthermore, it has been established that the quantum lev-
els on the Möbius strip are quantized in kθ for the Schrödinger
equation (see Ref. [21]). Equivalently, this quantization is also
expected for the Dirac equation; indeed, it is evident from the
local density of states (LDOS) as calculated from the energy
spectrum En of the system and its normalized eigenfunctions
φn(x) according to the following relation:

ρLDOS(x, E ) = 1

π

∑
n

|φn(x)|2Im
1

E − En − iδε
. (17)

δε ≈ 0.02 eV is the approximate broadening of the energy
spectrum peaks. The result is plotted in Fig. 3, where the
discrete energy levels of the system are clearly visible. The
current measured here is then quantized with respect to kθ .
Therefore, the response is identified as a quantum spin-Hall
current, which can be used to define the Hall conductiv-
ity. Through symmetry arguments it was proposed that the
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FIG. 3. Local density of states plotted against normalized energy
at θ = r = 0.

quantum Hall effect cannot exist on the Möbius strip but the
quantum spin-Hall effect should be possible [18]. This result
is also confirmed here through this direct simulation.

Experimental realizations of Möbius strips of single crys-
tals of NbSe3 have been reported [34], and recently, a
supramolecular strategy for fabrication was proposed [35].
Graphene Möbius strips could be realized by similar meth-
ods or in combination with graphene shape-engineering tools
such as optical forging [36]. It can be shown that a pulsed
laser beam can forge a graphene sheet into controlled three-
dimensional shapes in the nanoscale; therefore, two halves of
a Möbius ribbon can be forged and further connected together
[37]. Additionally, due to the topological nature of the current
the result will be robust to any possible temperature fluctua-
tion. J̄ r

P,H can be measured across r at a fixed k.

B. Curvature-induced Hall current on a torus

To investigate further the relevance of topology and cur-
vature, a similar, but simpler, shape is also simulated. The
system is initialized to the torus geometry by the discrete
mapping,

h =
⎛
⎝[R + w cos(φ)]cos(θ )

[R + w cos(φ)]sin(θ )
w sin(θ )

⎞
⎠, (18)

with θ, φ ∈ {−π, π}, width w, a midcircle of radius R,
where R,w ∈ R>0 and both boundaries are periodic. In this
parametrization the metric is diagonal and φ dependent, gi j =
diag([R + w cos(φ)]2,w2). In Fig. 4 the time evolution of the
azimuthal current J̄φ is plotted for particle (dotted line) and
hole (dashed line) wave functions as before. The solid line
represents a particle wave function with kθ = 0. Here, it is
evident that an equivalent Hall current develops for both par-
ticles and holes in the presence of a θ velocity. The different
geometry results in a simpler behavior, where a transverse cur-
rent develops as a consequence of curvature. The net current
and spin-Hall currents would be zero on a graphene torus.
This result clarifies that the spin-Hall current observed in the

FIG. 4. The time evolution of the azimuthal current J̄φ for
nonzero momentum particle (dotted line) and hole (dashed line) wave
functions. The solid line represents a particle wave function with
kθ = 0. One simulational time step t is equivalent to 1 ps.

previous section has a topological nature, developing from the
introduction of the nontrivial topology, the Möbius strip.

IV. CONCLUSIONS AND OUTLOOK

We have presented a study of the topological and geo-
metrical transport properties of a Möbius graphene strip. The
challenges and resolutions in simulating such a system were
outlined. The continuity of the spin connection was achieved
by a gauge transformation and limiting the half-width of the
strip.

In the absence of a magnetic field, we measured a quantum
spin-Hall current on the graphene strip originating from topol-
ogy and curvature, whereas a quantum Hall current was not
observed. This result also represents an example of the corre-
spondence between a magnetic field and a curved manifold.
The torus geometry was simulated for comparison, where a
Hall current is measured. Additionally, a concrete illustration
of the equivalence between the Berry and Ricci curvatures was
presented through a wave packet traveling around the Möbius
strip.

Building on these results, higher-order and different types
of topologies can be further investigated in the context of cur-
vature. Without the need for a magnetic or electric field and by
further understanding the properties of topological graphene
sheets, simple and topologically robust quantum devices could
be developed just by exploiting their geometry.
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APPENDIX A: CURVED-SPACE QUANTUM
LATTICE BOLTZMANN

The quantum lattice Boltzmann (QLB) method used for
solving the Dirac equation as minimally coupled to curved
space is an extension of the original method developed by
Succi and Benzi [26]. The method exploits the conceptual
similarities between the Dirac equation and the Boltzmann
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equation on the lattice. We present here the QLB method for
a three-dimensional manifold.

1. The Dirac equation

The Dirac equation can be naturally extended to curved
space described by a metric tensor gμν with a covariant deriva-
tive Dμ as

(iγ μDμ + m)� = 0, (A1)

where γ μ denote the Dirac matrices.
The classical Boltzmann equation for a particle density

distribution function f (xa, va, t ) is given by

∂t f + vi∂xi f = C[ f ] − F a∂va f ; (A2)

the left-hand side describes the advection of the distribution
function, velocity va, whereas the right-hand side describes
the collisions between particles and the effect of external
forces F a. Furthermore, the Dirac equation in curved space
(A1) can be cast into a kinetic theory form,

∂t� + σ a∂a� = C� + Fψ. (A3)

Therefore, similar to the Boltzmann equation, the left-hand
side represents the “free-streaming” step along matrix-valued
“velocities” σ i, while the right-hand side contains a “colli-
sion” and a “forcing” term.

The collision term in Eq. (A3) is represented by

C = −(
imγ 0 + σ aei

a�i
)
, (A4)

where m is the fermion mass. The forcing term is given by

F = −σ a
(
ei

a − δi
a

)
∂i, (A5)

where the symbols have their usual meaning. The partial
derivative of the Dirac equation is distributed between the
streaming part and the forcing term, resulting in a lattice-
compatible classical streaming operator of the form ∂t + va∂a,
where va ∈ Z. The forcing term is a consequence of the gen-
eralized Dirac matrices γ i = e i

aγ
a and captures the bulk of

the curvature effects. The partial derivative in Eq. (A5) is
approximated by a local finite-difference scheme.

2. Diagonal streaming operator

In order to obtain a diagonal streaming operator, the com-
plex σ matrices have to be diagonalized first, which yields
a diagonal velocity matrix with eigenvalues va = ±1. The
diagonalization is achieved by suitable “rotation matrices”:

X †
a σ a Xa =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ = γ 0, a = 0, 1, 2,

where the unitary transformation matrices X1, X2, and X3 are
given by

X1 = 1√
2

⎛
⎜⎝

1 0 −1 0
0 1 0 −1
0 1 0 1
1 0 1 0

⎞
⎟⎠, X2 = 1√

2

⎛
⎜⎝

0 i 0 1
−i 0 i 0
−1 0 −1 0
0 −1 0 −i

⎞
⎟⎠,

X3 = 1√
2

⎛
⎜⎝

1 0 0 −1
0 1 1 0
1 0 0 −1
0 1 1 0

⎞
⎟⎠.

The streaming and collision operations are performed in successive steps using operator splitting since the simultaneous
diagonalization of the three σ matrices is not possible:

�

(
t + �t

D

)
= exp

[
−�tσ 1∂1 + �t

D
(C + F )

]
�(t ),

�

(
t + 2�t

D

)
= exp

[
−�tσ 2∂2 + �t

D
(C + F )

]
�

(
t + �t

D

)
,

�(t + �t ) = exp

[
−�tσ 3∂3 + �t

D
(C + F )

]
�

(
t + 2�t

D

)
,

where D = 3 denotes the spatial dimensions. Each streaming
step can be diagonalized by left multiplying with X †

a ,

X †
a �

(
t + �t

D

)
= exp[−�tσ a∂a + �t (C̃a + F̃a)]�̃a(t ),

(A6)

with the definitions

�̃a := X †
a �, F̃a := 1

2 X †
a FXa, C̃a := 1

2 X †
a CXa

for a = 1, 2, 3 (no Einstein summation is used here). The
exponential is approximated as

exp[−�tσ a∂a + �t (C̃ + F̃ )]

≈ [
I − �tσ a∂a + �t (C̃a + �tF̃a)

+
(

I − �t

2
C̃a

)−1(
I + �t

2
C̃a

)]
.
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The expansion of the collision operator e�t C̃a is unitary and
thus conserves exactly the probability of the wave function.
The streaming e−�tγ 0∂a and forcing e�tF̃a operators are not ex-
panded because this is prohibited by the derivative. A simple
second-order expansion is performed, limiting the probabil-
ity norm to �t2 accuracy. The operator splitting implies an
error of order O(�t2), as e�tX · e�tY = e�t (X+Y )+1/2�t2[X,Y ] =
e�t (X+Y ) + O(�t2).

The manifold is described by a chart h defined in lin-
ear space, discretized on a regular rectangular lattice. The
curved space quantum lattice Boltzmann method evolves the
four-spinor � = (�+, �−) = (�+

1 , �−
2 , �−

1 , �+
2 ) from t to

t + δt . Once the operators are split, the following algorithm
is performed in sequence for each lattice direction na, where
n1 = (1, 0), n2 = (0, 1), and a = 1, 2.

(1) Rotation: The spinor is rotated by Xa,

�̃a(x, t ) = X †
a �(x, t ). (A7)

(2) Collisions and curvature: The collision and force
operators are applied to the rotated spinor,

�̃∗
a (x, t ) =

[
�tF̃a +

(
I − �t

2
C̃a

)−1(
I + �t

2
C̃a

)]
�̃a(x, t ),

where I is the identity matrix and �̃∗
a (x, t ) denotes an auxiliary

field,

C̃a = 1

2
X †

a CXa = − i

D
m(X †

a γ 0Xa) − γ 0ei
a�i, (A8)

F̃a�̃a(x, t ) = (
ei

a − δi
a

)
[�̃a(x ∓ ni�t, t ) − �̃a(x, t )], (A9)

where ni is the lattice direction and C is the collision term,
Eq. (A4). The upper sign applies to the spin-up components
(�+

1 , �+
2 ), and the lower sign applies to the spin-down com-

ponents (�−
1 , �−

2 ).
(3) Streaming: The spinor components are streamed to

the closest grid points along the lattice direction ±na,

�̃a

(
x, t + �t

2

)
= �̃∗

a (x ∓ na�t, t ). (A10)

(4) Inverse rotation: The spinor is rotated back via Xa,

�a

(
x, t + �t

2

)
= Xa�̃a

(
x, t + �t

2

)
. (A11)

(5) Repeat steps 2–4 for the next spatial direction.
The external potentials V (x), a scalar, and A(x), a vector,

are added to the collision operator (A8), such that

C̃a = 1

2
X †

a CXa = − i

D
(m − V )(X †

a γ 0Xa) − γ 0ei
a(�i − iAi ).

(A12)

The simulation for strained graphene is carried out with mod-
ified Eqs. (A8) and (A9), according to the following scheme:

C̃a → √
gC̃a, ei

a → √
gei

a.

The additional factor
√

g originates from the volume element
of the Hamiltonian (2).

APPENDIX B: RIEMANNIAN GEOMETRY

The Latin indices run over the spatial dimensions, and
Einstein summation convection is used for repeated indices.

A D-dimensional curved space is represented by a Rie-
mannian manifold M, which is locally described by a smooth
diffeomorphism h, called the chart. The set of tangential vec-
tors attached to each point y on the manifold is called the
tangent space TyM. In the fluid model, all the vector quantities
are represented as elements of TyM. The derivatives of the
chart h are used to define the standard basis (e1, . . . , eD) =
∂h
∂x1 , . . . ,

∂h
∂xD .

The metric tensor g can be used to measure the length of a
vector or the angle between two vectors. In local coordinates,
the components of the metric tensor are given by

gi j (x) = ei(x) · e j (x) = ∂h
∂xi

· ∂h
∂x j

, (B1)

where the center dot (·) is the standard Euclidean scalar prod-
uct.

For a given metric tensor, the vector v = viei ∈ TyM has a
norm ||v||g = √

vigi jv j and a corresponding dual vector v∗ =
viei ∈ T ∗

y M in the cotangent space, which is spanned by the
differential 1-forms dxi = g(ei, ·). The coefficients vi of the
dual vector are typically denoted by a lower index and are re-
lated to the upper-index coefficients vi by contraction with the
metric tensor vi = gi jv

j , or, equivalently, vi = gi jv j , where
gi j denotes the inverse of the metric tensor. The upper-index
coefficients vi of a vector v are typically called contravariant
components, whereas the lower-index coefficients vi of the
dual vectors v∗ are known as the covariant components.

A necessary feature for the description of objects moving
on the manifold is parallel transport of vectors along the
manifold. The tangent space is equipped with a covariant
derivative ∇ (Levi-Civita connection), which connects the
tangent spaces at different points on the manifold and thus
allows us to transport a tangent vector from one tangent space
to the other along a given curve γ (t ). The covariant derivative
can be viewed as the orthogonal projection of the Euclidean
derivative ∂ onto the tangent space, such that the tangency
of the vectors is preserved during the transport. In local co-
ordinates, the covariant derivative is fully characterized by
its connection coefficients �i

jk (Christoffel symbols), which
are defined by the action of the covariant derivative on the
basis vector, ∇ jek = �i

jk . In the standard basis, ei = ∂h
∂xi , the

Christoffel symbols are related to the metric by

�i
jk = 1

2 gi j (∂ jgkl + ∂kg jl − ∂l g jk ). (B2)

Acting on a general vector v = viei, the covariant derivative
becomes

∇kv = (
∂kv

i + �i
k jv

j
)
ei, (B3)

where the product rule has been applied, using the fact that the
covariant derivative acts as a normal derivative on the scalar
functions vi. Extending to tensors of higher rank, for example,
the second-order tensors T = T i j ,

∇kT = (
∂kT i j + �i

klT
l j + �

j
klT

il
)
ei ⊗ e j, (B4)
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FIG. 5. Error convergence of the proposed quantum lattice Boltz-
mann closed boundary condition. The logarithm of the relative error
of the density ρ is plotted against the normalized logarithmic number
of cells. m denotes the gradient.

in this work the basis vectors ei are generally dropped. The
compatibility of the covariant derivative with the metric tensor
implies that ∇kgi j = ∇kgi j = 0. This property allows us to
commute the covariant derivative with the metric tensor for
the raising or lowering of tensor indices in derivative expres-
sions.

The motion of the particle can be described by the curve
γ (t ), which parametrizes the position of the particle at time t .
The geodesic equation, ∇γ̇ γ̇ = 0, in local coordinates γ (t ) =
γ i(t )ei is defined by

γ̈ i + �i
jk γ̇

j γ̇ k = 0. (B5)

The geodesic equation can be interpreted as the generalization
of Newton’s law of inertia to curved space. The solutions of
Eq. (B5) represent lines of constant kinetic energy on the
manifold, i.e., the geodesics. The Riemann curvature tensor
R can be used to measure curvature, or more precisely, it mea-
sures curvature-induced change in a tangent vector v when
transported along a closed loop,

R(ei, e j )v = ∇i∇ jv − ∇ j∇iv. (B6)

FIG. 6. The Ricci scalar of the Möbius strip for half-width w =
0.1 and a midcircle of radius R = 1.

In a local coordinate basis ei, the coefficients of the Riemann
curvature tensor are given by

Rl
i jk = g(R(ei, e j )ek, el ) (B7)

= ∂ j�
l
ik − ∂k�

l
i j + �l

jm�m
ik − �l

km�m
i j . (B8)

Contraction of Ri
jkl to rank 2 and 1 tensors yields the Ricci

tensor Ri j = Rk
ik j and the Ricci scalar R = gi jRi j , respectively,

which can also be used to quantify curvature.
The gradient is defined as ∇ i f = gi j∂ j f , the divergence

is defined as ∇iv
i = 1√

g∂i(
√

gvi ), and the integration over

curved volume is defined as V = ∫
V QdV , where dV =√

gdx1 · · · dxD =:
√

gdDx denotes the volume element.
√

g
denotes the square root of the determinant of the metric tensor.

It should be clarified that in the simulations there is no time
curvature and gi j denotes the curved-space metric.

APPENDIX C: CONVERGENCE OF THE CLOSED DIRAC
BOUNDARY CONDITIONS

The convergence of the proposed quantum lattice Boltz-
mann boundary condition is shown in Fig. 5.

APPENDIX D: RICCI SCALAR FOR THE MÖBIUS STRIP

The Ricci scalar for the Möbius strip is nonzero across the
whole domain for the specific choice of parameters as shown
in Fig. 6.
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