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Excitonic fractional quantum Hall hierarchy in moiré heterostructures
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We consider fractional quantum Hall states in systems where two flat Chern number C = ±1 bands are labeled
by an approximately conserved valley index and interchanged by time reversal symmetry. At filling factor ν = 1
this setting admits an unusual hierarchy of correlated phases of excitons, neutral particle-hole pair excitations
of a fully valley-polarized orbital ferromagnet parent state where all electrons occupy a single valley. Excitons
experience an effective magnetic field due to the Chern numbers of the underlying bands. This obstructs their
condensation in favor of a variety of crystalline orders and gapped and gapless liquid states. All these have
the same quantized charge Hall response and are electrically incompressible, but differ in their edge structure,
orbital magnetization, and hence valley and thermal responses. We explore the relevance of this scenario for
moiré heterostructures of bilayer graphene on a hexagonal boron nitride substrate.
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The observation of gate-tunable superconductivity and
correlated insulating behavior in twisted bilayer graphene
(TBG) in the magic angle regime [1,2] has stimulated in-
tense investigation of two-dimensional (2D) van der Waals
heterostructures. While the precise mechanism behind the
high superconducting transition temperatures (relative to the
low carrier density) remains hotly debated, intrinsic to this
setting is the enhancement of correlations when the electronic
dispersion is reconstructed by the interlayer moiré pattern
corresponding to a small twist angle. After accounting for
spin and valley degeneracies, substrate-free TBG hosts eight
flattened central bands that are interlinked by Dirac points and
energetically separated from remote bands. This quenching of
the single-particle kinetic energy bears a family resemblance
to the formation of Landau levels (LLs) by 2D electron gases
in magnetic fields. The analogy is sharpened if one or more of
the graphene layers are aligned with the encapsulating hexag-
onal boron nitride (hBN) substrate: this opens topological
gaps at the Dirac points, pushing four bands above (below) the
neutrality point while assigning each band a nonzero Chern
number (C = ±1) in a manner that preserves overall time-
reversal symmetry (TRS) [3–5].

Flat Chern bands with |C| = 1 are similar to LLs: when
fully filled, they show a quantized anomalous Hall (QAH)
response [6–8], the lattice analog of the integer quantum Hall
(QH) effect [9]. At commensurate partial fillings, interactions
can stabilize incompressible fractional Chern insulators (CIs)
[10,11]. However, most realizations of CIs, e.g., in magnetic
topological insulators [12] or cold atomic gases [13] have sig-
nificant single-particle dispersion and hence relatively weak
correlations.

The observation of a QAH response in hBN-TBG devices
at filling ν = +3 relative to charge neutrality in the absence
of an external magnetic field [14] points to the breaking
of TRS by interactions [3,5,15–18], leading to selection of
a spin- and valley-polarized insulating state corresponding

to fully filling a single Chern band. While reminiscent of
quantum Hall ferromagnetism (QHFM) in LLs, an important
distinction in hBN-TBG is that TRS is broken spontaneously,
lifting the degeneracy between two valleys with equal and
opposite Chern number. These systems are robust and tunable
platforms to study correlated Chern insulators and proximate
phases [19–21].

Here, we propose that systems such as hBN-TBG and
related heterostructures [22], where two nearly-flat degener-
ate Chern bands have equal and opposite Chern number, are
unique settings for an unconventional excitonic quantum Hall
hierarchy. The excitons we consider are stable neutral gapped
intervalley excitations of the fully-valley-polarized insulator,
that are bound states of a hole in a filled Chern band and a
particle in an empty band with the opposite Chern number.
Tightly bound excitons can be viewed — in a sense we make
precise in a companion paper [23] — as neutral bosons in
a Chern band. As in TBG we take the bands to correspond
to different valleys; assuming valley conservation we may
then meaningfully view the excitons as filling a Chern band.
The exciton filling tracks the change in valley polarization
relative to the fully polarized parent state. We show using
a simplified LL model [3] that the fully valley polarized
phase is proximate to a rich hierarchy of correlated phases
that emerge when interactions between excitons lead them to
form incompressible bosonic fractional quantum Hall (FQH)
liquid states, a variety of Wigner crystal or stripe/bubble
phases with broken translational symmetry, or compressible
Fermi-liquid-like states (CFLs). All the incompressible states
(and some of the compressible ones) have identical charge re-
sponse, namely a quantized Hall conductivity σxy = e2/h and
vanishing longitudinal conductivity σxx = 0, but differ in their
valley and thermal Hall responses. We suggest experimental
probes to distinguish the various excitonic phases. Finally,
we discuss how the delicate balance of energy scales from
interactions, gate screening, and the residual band dispersion
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FIG. 1. (a) Schematic of eight central bands and Chern num-
bers in hBN-TBG; our model focuses on a pair of these (dashed
box). (b) Exciton-exciton interaction profile as competition of
inter/intravalley interactions is tuned by d .

could stabilize this excitonic FQH hierarchy within the phase
diagram of hBN-TBG or other moiré systems.

I. MODEL AND FULLY VALLEY-POLARIZED
PARENT STATE

We are ultimately interested in the eight central bands
of TBG at fillings ν = ±3,±1. Here, ν = 0 corresponds to
charge neutrality, and ν = −4(+4) corresponds to the case
where all these eight bands are empty (filled) [Fig. 1(a)].
The hBN substrate opens a single-particle gap at neutral-
ity resulting in bands with Chern numbers C>

K,σ = −C<
K,σ =

−C>
K̄,σ

= C<
K̄,σ

= 1 where > (<) labels bands above (below)
neutrality and we have introduced valley τ = K, K̄ and spin
σ =↑,↓ labels [3,5,15]. Throughout, we ignore spin-orbit
coupling and elevate approximate valley conservation to an
exact U (1)v symmetry. The noninteracting band structure thus
has SU (2)s × U (1)v × U (1)c symmetry (where c, v, s refer
to charge, valley, and spin), and preserves TRS which inter-
changes the valleys and flips the sign of C.

In order to study interaction effects at odd integer filling we
introduce several simplifications. First, we work with a model
interaction projected to the relevant bands and ignore mixing
between bands split at the single-particle level. Second, we
suppress the spin degree of freedom and restrict our attention
to the partially filled doublet of degenerate valleys K, K̄ with
equal and opposite Chern numbers [Fig. 1(a)]. Finally, in line
with previous studies [3] we replace the Chern bands with LLs
where valleys K, K̄ see equal and opposite magnetic fields.
We note that these are reasonable approximations appropri-
ate to the flat-band limit of interest that nevertheless capture
the underlying topological band structure. The single-particle
Hamiltonian in valley τ = ± (henceforth we use valley index
and Chern number interchangeably as they are tied together
in the two-valley subspace) takes the form H± = (p∓eA)2

2m with
∇×A = B. We assume each valley is in its N�-fold degen-
erate lowest LL; here N� = A/2π�2

B counts the number of
flux quanta threading sample area A, and �B = (h̄/eB)1/2 is
the magnetic length (which plays the role of the moiré scale
in TBG). We fix the filling factor of this pair of LLs at
ν = ν+ + ν− = 1, where ν± = N±/N� is the filling factor in
each valley. The effective Hamiltonian consists of interactions

projected onto the degenerate LLs,

Hint = 1

2N�

∑
q,τ,τ ′

Vττ ′ (q) : ρ̄τ (q)ρ̄τ ′ (−q) : . (1)

Here, we have introduced the projected density operators

ρ̄±(q) = F (q)
∑

ky

e±iqxky�
2
B c†

ky− qy
2 ,±c

ky+ qy
2 ,±, (2)

where F (q) = e−q2�2
B/4 and c†

ky,± is the creation operator of
a Landau-gauge single-particle lowest-LL state φky,±(x) =
eikyye−(x∓ky�2

B )2/2�2
B√

Ly�B
√

π
. We choose a phenomenological interaction

that only includes density-density terms, Vτ,τ (q) = v(q) =
2πe2

|q| , Vτ,−τ (q) = vd (q) = v(q)e−|q|d , where d tunes the com-
petition of inter- and intravalley interactions. Other intervalley
terms are o(a0/�B) where a0 is a lattice scale tied to the
separation of valleys in the microscopic BZ.

Equation (1) is essentially the LL limit of a minimal model
for TBG introduced in Ref. [3], absent a periodic potential and
with slightly modified interactions. There, within a Hartree-
Fock (HF) analysis it was argued that the ground state of
(1) is a fully-valley-polarized insulator (FVPI) that with ν+ =
1, ν− = 0. This state has a QAH response linked to the spon-
taneous breaking of TRS. The FVPI was argued to be stable
against both the inclusion of a weak nonzero single-particle
dispersion, as well as allowing d > 0. Although the former is
also true for conventional QHFMs where all bands have C =
1, the latter is unexpected: arguing in analogy with bilayer QH
systems, we would anticipate that softening the intervalley
interactions in this way would stabilize intervalley-coherent
states with ν+ = ν− = 1

2 . However when C+ = −C−, even for
d → 0 the symmetry is reduced relative to the C+ = C− [3]
case. This is evident, e.g., in the gap to “valley-flip” excita-
tions of the FVPI, that persists in more microscopic models of
TBG [23,24].

II. EXCITON TOPOLOGY AND INTERACTIONS

A more striking consequence of the reversal of Chern num-
bers between the valleys lies in the topological structure of
intervalley excitations. Consider a single inter-valley particle-
hole pair excitation of the FVPI. Up to an overall constant
loss of exchange energy in creating a single hole, in the LL
limit the Hamiltonian is that of an electron and a hole in
equal and opposite magnetic fields ∓B, with attractive inter-
valley interactions, Hex = (pe+eA)2

2m + (ph+eA)2

2m − vd (r), where

vd (r) = ∫ dq
(2π2 ) e

−iq·rvd (q). The applicability of this effective
Hamiltonian to the physics in the single particle-hole subspace
is numerically verified in Ref. [23]. This decouples in terms
of relative r = rh − re and center-of-mass R = rh+re

2 coordi-
nates, yielding Hex = HR + Hr, with

HR = (PCM + 2eA)2

4m
, Hr =

(
prel + e

2 A
)2

m
− vd (r). (3)

Accordingly, each discrete excitonic bound-state solution of
Hr has a 2N�-fold degeneracy corresponding to the LL de-
generacy of HR. Explicitly, if ze, zh are complex coordinates
for the electron and hole respectively, defining z = ze+zh

2 and
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u = zh − ze and freezing the relative coordinate u in the lowest
excitonic bound state φ0 yields

ψexc(z, u)= f̃ (z)e−|z|2/2φ0(u) with φ0(u)≡e−|u|2/8, (4)

where f̃ is analytic and we take �B = 1 [25]. Note that z
(u) sees an effectively doubled (halved) field, consistent with
(3). Exciton structure is more complicated in realistic models
that include the dispersion and Berry curvature fluctuations
of the underlying bands, and both the form of the envelope
function φ0 and its coupling to center-of-mass motion can
influence exciton topology. Nevertheless, the lowest exciton
band has C 	= 0 for a range of parameters even in realistic
models of hBN-TBG [23]. Even beyond this regime, exciton
bands have substantial Berry curvature, which can influence
phase structure even if the Chern number (its integral over the
BZ of allowed exciton momenta [23]) vanishes.

Each exciton also carries a unit of U (1)v valley polariza-
tion. Since the latter is conserved it is meaningful to consider
partial valley-polarized states corresponding to a finite density
of excitons. For instance, intervalley-coherent exciton con-
densate HF trial states with ν+ = ν− = 1

2 are energetically
uncompetitive in much of the phase diagram because exciton
topology forces them to host a vortex lattice analogous to
Type-II superconductors in a magnetic field [3]. Evidently, as
bosons in a magnetic field the excitons can form various other
many-body states inaccessible to a HF analysis, depending
on the effective exciton-exciton interaction Vexc(R). For our
choice of v(r) we estimate Vexc(R) by considering appropri-
ately antisymmetrized variational wave functions for a pair
of tightly bound excitons at separation R [25]; representative
results are sketched in Fig. 1(b). Short-range interactions are
repulsive (attractive) if d/�B � 1 (�). For any d > 0 excitons
experience an asymptotic R−3 repulsion that vanishes for d =
0. (A power-law tail is generically expected, but its exponent
may depend on the choice of v(r).) A second subtlety in
considering many-body exciton phases is that single-exciton
states are not all independent [26].

While this is unimportant in the dilute limit ν− = 1 −
ν+ 
 1, we will be interested in fillings ν− = 1/m where m is
not necessarily large. Below we will ignore this subtlety and
consider the excitons as bona fide bosons.

III. EXCITON FQH HIERARCHY

With these preliminaries, we now turn to possible excitonic
phases. We consider fillings (ν+, ν−) = (1 − νv, νv ) with 0 <

νv < 1
2 , corresponding to adding νvN� intervalley excitons

to the FVPI resulting in valley polarization Iz
v = 1

2 − νv per
electron. Since all terms have characteristic scale ∼e2/�B the
phase structure hinges on microscopic details of the inter-
actions. For now we assume that exciton binding sets the
dominant scale and that the interexciton interaction Vexc is
always repulsive and short ranged. (We comment on other
cases below.) In this regime, it is reasonable to assume that
the exciton is a stable bound state. Since each exciton behaves
as though it occupies a 2N�-fold degenerate LL, the effective
filling factor is νb = νv/2. For νv = 1/m with m an integer,
the tightly bound excitons can form a νb = 1/2m bosonic
Laughlin state. A trial wave function that captures this is given

by

�2m({ze, zh}) = Pexc[�m({ze})�m({zh})]

=
∑
σ∈SN

sgn σ

[
�m({zi,σ (i)})2

∏
j

φ0(u jσ ( j) )

]
.

(5)

Here, �m({z}) = ∏
i< j (zi − z j )me− ∑

i
|zi |2

4 and Pexc projects
electron-hole pairs into the excitonic ground state φ0 (4). This
antisymmetrizes over permutations σ ∈ SN corresponding to
different pairings of the N = N�/m electrons i and holes σ (i)
to form excitons centered at ziσ (i) = 1

2 (ze
i + zh

σ (i) ) at separation
uiσ (i) = zh

i − ze
σ (i) and then projects the latter into φ0 [25].

�2m({ze, zh}) is a many-particle state of electrons in valley
‘−’ and holes in valley ‘+’, built on top of the FVPI parent
state vacuum. Particle-hole (PH) transforming Eq. (5) only in
the ‘+’ valley yields a purely electronic wave function.

An alternative picture of the excitonic phase structure is
obtained by viewing the problem (after PH transformation
to holes in valley ‘+’) as a two-valley system where each
component sees the same magnetic field and is at filling ν =
1/m, and where inter (intra) valley interactions are attractive
(repulsive) [27]. This gives distinct pictures for odd and even
m. (In each case, the electronic state is obtained after undoing
the PH transformation.)

For even m, we can attach m quanta of flux to each valley
separately, yielding an equal density of composite fermions
(CFs) in each valley. For weak intervalley attraction we an-
ticipate that these are stable against pairing [28], yielding
a compressible state. For increasing attraction, we expect a
transition into an intervalley paired state of CFs, schematically
given by

�CF
2m ∼ PL

∏
i< j

(
ze

i − ze
j

)m ∏
k<l

(
zh

k − zh
l

)m
det

[
g
(
ze

i − zh
j

)]
, (6)

where the determinant describes pairing with wave function
g(z), PL projects to the lowest LL and we have omitted Gaus-
sian factors. For s-wave or strong-coupling higher-angular
momentum pairing we expect g(z) ∼ e−z/ξ as z → ∞, where
ξ ∼ o(�B) is the pair size. Qualitatively, this pairs electrons
and holes into tightly bound bosons that then form a νb =
1/2m Laughlin state. This is consistent with our picture of
Eq. (5), so we conclude that the two approaches describe sim-
ilar physics. In non-s-wave cases, strong- and weak-pairing
regimes are separated by a phase transition. For px + ipy-
pairing where g(z) ∼ 1/z, this would be a transition between
state (5) and the (m − 1, m − 1, 1) Halperin state which also
has ν = 1/m in each valley. [The equivalence of Eq. (6) with
px + ipy pairing to the Halperin state follows via the Cauchy
identity [29,30].] For m = 4, preliminary exact diagonaliza-
tion studies [25] find a unique ground state in this valley
polarization sector for N = 4, 6, 8, 10 particles on the sphere
[31] at a shift [32] appropriate to Eq. (5) for certain short-
range interactions. This suggests that the excitonic Laughlin
state is energetically competitive as there is no other obvious
incompressible candidate at this shift. (Note that this is not
necessarily the global ground state across all valley sectors.)
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For m odd and zero intervalley interactions each com-
ponent forms an independent ν = 1/m fermionic Laughlin
state. Intervalley attraction locks these together, suppressing
fluctuations where a particle in one valley is far from a hole
in the other. However, as each valley is independently incom-
pressible, numerical observation of a unique ground state is
less strong evidence for Eq. (5).

Other unconventional phases are also possible. For exam-
ple, if νv = 2/q with q odd, the exciton filling is νb = 1/q
ruling out bosonic Laughlin states. In this limit, attaching q
quanta of U (1)v valley flux to each exciton gives rise to a
compressible excitonic composite Fermi liquid (e-CFL). This
does not obviously decouple into separate flux attachments
to constituent electrons/holes. The e-CFL has intervalley
binding but no valley coherence, and is hence distinct from
interlayer coherent CFLs [33] proposed in QH bilayers. A
more exotic possibility is that the e-CFL in turn can undergo
p-wave pairing to form a non-Abelian QH state. The states
considered here are specific examples of a rich hierarchy of
FQH states of excitons, whose detailed analysis we defer to
future work.

IV. EDGE STRUCTURE AND RESPONSE

We now discuss transport properties and bulk response of
the states considered above. Since the excitonic Laughlin state
(5) is a bosonic FQH state, we expect a quantized response
in the charge carried by this state, which (translating back
into the underlying electrons) leads to a fractional quantized

valley Hall (QVH) response, σ v
xx = 0, σ v

xy = −νb
q2

v

h = − 1
2m

q2
v

h ,
where qv = 1 is the valley charge of a single exciton. We can
understand this also from an edge-state perspective. Before
implementing exciton projection, in terms of the underlying
electrons we can view the edge of Eq. (5) as built out of (i)
a chiral ν+ = 1 chiral mode of electrons in a filled LL; (ii) a
ν+ = 1/m chiral edge mode of holes in valley ‘+’; and (iii)
a chiral ν− = 1/m edge of electrons in valley ‘−’. Owing
to the opposite charge of holes and the opposite sign of B
in the two valleys (ii) and (iii) counter-propagate relative to
(i) and copropagate relative to each other. The exciton pro-
jection can then be viewed as binding the two copropagating
fermionic FQH edge modes due to the attractive electron-hole
interactions, leading to a single bosonic νb = 1/2m mode
propagating upstream of the charge mode.

Other cases are more complicated. For νv = 1/m with
m even and weak intervalley interactions, we find decou-
pled CFL-like states [27] in which the charge QH response
breaks down in favor of metallic transport. In contrast, for
νv = 2/q with q odd, since the exciton binding dominates,
both compressible and incompressible phases have a charge
QH response. In the compressible e-CFL state this coexists
with metallic valley response from the exciton Fermi surface
whereas the incompressible paired descendants of the e-CFL
have a QVH response.

Experimentally, it is challenging to distinguish different
exciton phases via electrical measurements, since nearly all of
them have identical σxy = e2/h charge QH response. While it
is difficult to directly measure the QVH response, upstream
modes can be detected by measuring thermal conductance
KH [34]. If the upstream and downstream modes are fully

thermally equilibrated, KH = 0, whereas if they are out of
equilibrium we expect a doubled response relative to the in-
teger QH case. Phases with QVH response show plateaus in
valley polarization quantized at a rational fraction of its value
in the FVP that if measured, would be another diagnostic.

Crystalline Phases. So far we have ignored the long-
range tail of Vexc(R). While this is unlikely to destabilize
FQH liquids favored by short-range repulsive interactions,
the competition between short-range attraction and long-range
repulsion [35] can drive the formation of vortex lattices and
bubble and stripe phases [36,37]. Similarly at lower density,
Wigner-crystal like phases of excitons can be formed [38].
These states, whose study we defer to the future, all have
broken translational symmetry, and (if pinned by the moiré
potential or disorder) can also show a charge QH response.

V. DISCUSSION

We have proposed a class of FQH state formed by the bind-
ing of electron-hole pairs in bands with equal and opposite
Chern number. In closing, we return to our original goal of
linking this to the physics of TBG, which has several key
ingredients — flipped Chern numbers, flat bands, and inter-
actions — that were pertinent to our analysis. However, our
model leaves out other features such as band dispersion and
Berry curvature fluctuations. Another concern is that numerics
indicate that incompressible excitonic states are more stable if
intravalley interactions are larger than intervalley couplings,
whereas the leading long-range density-density interactions in
TBG have the same magnitude independent of valley. Since
the valley dependence of the short-range component of in-
teractions is difficult to precisely determine, it is reasonable
to explore a wider parameter regime allowing for asymmetry
of intra- and intervalley couplings. HF studies [3] in a sim-
ilar regime indicate that this competition can combine with
nonzero dispersion to stabilize partially valley-polarized met-
als against the FVPI. It seems possible that the incompressible
partially valley polarized excitonic FQH insulator studied
here may be energetically competitive to these. Tuning valley
occupation and band structure via perpendicular or parallel
magnetic fields [3,39] could also stabilize excitonic phases.
Another notable omission is electron spin, whose influence
on interexciton interactions may further enrich the phase di-
agram. Looking beyond TBG, capacitive charging effects in
multilayer moiré heterostructures may favor excitonic states,
and intertwine valley and layer degrees of freedom so as to
make the QVH response accessible. In the future, it will be
interesting to apply similar ideas to other moiré and flat-band
systems or strained graphene [40] and clarify their connection
to fractional excitonic insulators proposed to form near topo-
logical band inversions far from the flat band limit [41].

Note added. After a preprint of this manuscript was made
available on the arXiv, another work [42] has appeared that
studies similar questions. Our results are in agreement where
they overlap.
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