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Realization of fractonic quantum phases in the breathing pyrochlore lattice
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Fractonic phases of matter are novel quantum ground states supporting subdimensional emergent excitations
with mobility restrictions. Due to a subextensive ground state degeneracy that is dependent on the geometry
of the underlying lattice, fractonic phases are considered as models for quantum memory or quantum glass.
While there exist a number of exactly solvable models with interactions between multiple particles/spins, the
realization of such models in real materials is extremely challenging. In this work, we provide a realistic quantum
model of quadratic spin interactions on the breathing pyrochlore lattice of existing materials. We show that
the emergent “cluster charge” excitations arise as vacuum fluctuations residing on the boundary of membrane
objects, and move in a subdimensional space. Using the membrane operators, we demonstrate the existence of
a subextensive ground state degeneracy explicitly depending on the lattice geometry, which is a useful resource
for novel quantum memory.
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I. INTRODUCTION

From the Landau quasiparticle of Fermi liquid theory to
the Majorana fermions in the Kitaev model, emergent quasi-
particles provide deep insight into the nature of strongly
interacting many-body systems. Despite the variety of set-
tings in which they may arise, the common feature that all
known quasiparticles typically share is their ability to (freely)
move. Fractonic phases of matter are a rare example that fails
to conform with this conventional wisdom [1–9]. With an
underlying ground state degeneracy that is subextensive in
system size [3–7,10–14], their emergent quasiparticles come
in two varieties: (i) subdimensional excitations such as lineons
or planeons [1,4,5,15–17], where the respective particles are
restricted to move along particular lines or planes in a three-
dimensional system, and (ii) immobile excitations, known as
fractons [3,18]. The immobility of fractonic excitations is
intimately linked to the notion that attempting to move them
results in “bursts” of additional particles being created; in the
absence of a constant input of energy to accommodate these
additional particles, fractonic excitations are thus transfixed
in space. Though these single excitations may be forbidden to
propagate seamlessly, composites formed from these elemen-
tary excitations may be free and mobile through the system.

Fracton models have recently come under intense investi-
gation in quantum error-correcting codes, such as the X-cube
model and Haah’s code [3,5]. The X-cube model is composed
of qubits residing on the edges of a cubic lattice [5], with a
Hamiltonian composed of a cube operator (product of Pauli X
operators residing on the twelve edges of a cube) and a cross
operator (product of four Pauli Z operators in the plane touch-
ing a vertex of the cube); here the Pauli operators act on the
qubit basis states. This model supports a subextensive ground
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state degeneracy [log2(GSD) ∼ 2(Lx + Ly + Lz ) − 3, where
Lx,y,z are the system dimensions], as well as subdimensional
and fractonic excitations [5,10,12]. Haah’s code is also de-
fined on a cubic lattice with two qubits on every vertex of the
lattice [3]; the Hamiltonian is composed of a product of a pair
of Pauli operators on each vertex of the cube. This model also
possesses a subextensive ground state degeneracy [3,19], and
only possesses immobile fractonic excitations. Importantly,
the ground state degeneracy of such models is not solely
dependent on the topology of the underlying manifold, but
on the geometry of the lattice on which it is defined. Fracton
models have also been naturally discussed in the context of
higher-rank gauge theories [20–33], where the conservation
laws associated with the modified Gauss law constraints lead
to restricted motions of quasiparticles as well as immobile
fractonic excitations. In particular, in symmetric vector rank-2
U(1) gauge theories, where the electric and magnetic potential
are rank-2 tensorial objects with an associated vector charge
�ρ, the conservation of “linear momentum” ( �Q = ∫

�ρ) and “an-
gular momentum” ( �M = ∫

�ρ × �x) leads to lineon excitations
where particles are only permitted to move along the direction
of the vector charge [20,21].

Despite the elegant nature of the corresponding low-energy
descriptions and their novel properties, at the microscopic
level the aforementioned lattice models [4,5,12,14,32,32–38]
possess complicated multispin interactions that provide a
challenging task to realize in a concrete experimental setting.
Indeed, to make further theoretical progress, it would also be
beneficial to have a situation wherein fractonic and subdi-
mensional excitations naturally emerge due to the geometry
constraints of the system as well as the interacting nature
of the microscopic objects. Previous works have included
coupled spin chain systems [39] and Kitaev-type interactions
on the hyper-honeycomb model [40]. Recently it was shown
that a classical spin liquid on the breathing pyrochlore lattice
[41], where interactions among classical spins reside on the
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vertices of two unequal corner-sharing tetrahedra, possesses
a low-energy manifold described by an underlying classical
rank-2 vector gauge theory. Specifically, the rank-2 electric
field tensor is populated by linear combinations of spins on
the four sublattices of a tetrahedron (i.e., the “light” normal
modes of the Td point group tetrahedron, whose fluctuations
are energetically inexpensive), with a corresponding Gauss
law constraint due to the suppression of energetically costly
“heavy modes” [41]. The subsequent classical ground state
has been shown to exhibit fourfold pinch point singularities
in certain correlation functions that may be resolved under
neutron scattering experiments [41,42].

In this work, motivated by this classical study, we demon-
strate that a quantum model on the breathing pyrochlore
lattice can support a fractonic phase of matter. In the limit
of particular energy penalties associated with normal mode
fluctuations, we show that the corresponding quantum theory
leads to spinor charges with mobility restrictions. We also
discuss lack of local operators, except for a membrane op-
erator where only the corners of the membrane occupied by
the spinor charges are permitted to move. We numerically
discover that the ground state degeneracy is not extensive in
volume, and is strongly dependent on the lattice geometry.
We further argue that a local magnetic field, which would
allow the quantum system to tunnel in between the degenerate
ground states, is prohibited in this geometry in the thermody-
namic limit. Indeed, magnetic field terms are only permitted
under perturbations that extend to the boundary of the system,
and are thus suppressed in the thermodynamic limit. The
lack of mobile excitations and a nonextensive (yet geometry
dependent) ground state degeneracy strongly suggests that
the breathing pyrochlore lattice supports a quantum fractonic
phase of matter.

The remainder of the paper is organized as follows. In
Sec. II we provide an overview of the important aspects of
higher-rank U(1) gauge theories, and we recap the classical
breathing pyrochlore model within the framework of rank-2
vector gauge theory in Sec. III. We then present the quantum
breathing pyrochlore lattice model in Sec. IV and elucidate the
quantum ground state degeneracy, the variety of perturbative
terms, and the excitations in terms of spinor charge degrees
of freedom. We also emphasize the occurrence of a ther-
modynamically large membrane operator that permits these
spinor excitations to be moved to the boundary of the system,
and argue the prohibition of local magnetic field terms (or
perturbative terms that connect the various degenerate ground
states) due to the complicated geometrical configuration of
our setting. Finally, in Sec. V we discuss the broad implica-
tions of our work and propose future directions of exploration.

II. HIGHER-RANK U(1) GAUGE THEORIES

The interacting classical and quantum spin models on the
breathing pyrochlore lattice have an underlying higher-rank
gauge theory structure that emerges in the low-energy limit
[41]. To specify our notation and terminology, we present
a succinct overview of rank-2 U(1) gauge theories in this
section.

The classical theory of electromagnetism is described in
terms of a rank-1 gauge theory, wherein the electric field

(Ei) and magnetic vector potential (Ai) transform as vectors
under spatial rotations. Associated with this familiar Maxwell
theory is a source-free Gauss law constraint for the electric
field, ∂iEi = 0, and a U(1) gauge transformation, Ai(x) →
Ai(x) + ∂iλ(x), for a charge density ρ and an arbitrary func-
tion λ(x); we note that repeated indices are summed over.
This gauge transformation can be simply obtained by acting
the source-free Gauss law on a state vector/wave-function.
At higher energies, this source-free condition can be relaxed
to ∂iEi = ρ �= 0, which allows the creation of charges of the
electric field; for a compact gauge theory (where Ai is defined
to modulo 2π ) one necessarily admits the creation of magnetic
monopoles that violate the source-free Gauss law constraint
for the magnetic field, ∂iBi = 0. We will henceforth focus
on the electric charges and refer to the electric Gauss law
constraint as merely the Gauss law for brevity. The Gauss law
constraint imposes a conservation law, where

∫
ρ = ∫

∂iEi =
0, as we integrate a total derivative over the entire volume
and the fields are taken to vanish on the boundary. Physically,
this ensures that charges must be created from the vacuum so
that the total charge is zero, i.e., an equal number of positive
and negative charges. The classical theory can be quantized by
imposing that the electric field and vector potential are canon-
ically conjugate, [Ai(x), Ej (y)] = iδi jδ(x − y), which leads to
a low-energy description with an emergent photon of disper-
sion ω ∝ k.

A natural extension of the conventional rank-1 gauge
theory is a rank-2 theory, wherein the electric field and
magnetic potential are now promoted to symmetric rank-2
tensors Ei j and Ai j , respectively [20,21,43]. Unlike in the
rank-1 theory, the electric field has the possibility of satisfying
distinct source-free Gauss law constraints: (i) ∂iEi j = 0 and
(ii) ∂i∂ jEi j = 0, where the corresponding theories are re-
ferred to as vector and scalar charge theories, respectively.
These theories may be further constrained by imposing that
Ei j is traceless. Just as in the case of rank-1 gauge theory,
these distinct Gauss law constraints lead to distinct gauge
transformations for Ai j : (i) Ai j → Ai j + ∂iλ j (x) + ∂ jλi(x) and
(ii) Ai j → Ai j + ∂i∂ jφ(x) for arbitrary functions λi(x), φ(x).
The distinct Gauss laws impose a variety of possible conser-
vation laws. Focusing on the vector charge theory, as will be
pertinent for our work, the Gauss law constraint can be relaxed
to lead to permit the creation of vector charges, ∂iEi j = ρ j �=
0. Associated with this are a conservation of total vector
charge (“linear momentum”)

∫
ρ = 0, and “angular momen-

tum”
∫

x × ρ = 0 [20,21]. These conservation laws place
strong constraints on the number of charges that may be cre-
ated from the vacuum and how they may be allowed to move.
In particular, they lead to subdimensional excitations, where
the vector charges are restricted to move along certain lines or
planes, and fractonic excitations, where particles cannot only
move unless extra particles are created. In the absence of a
constant energy input to facilitate the constant creation of ex-
tra particles, these fractonic excitations thus remain immobile.
Just as the rank-1 theory, this theory can also be quantized by
taking the electric and magnetic tensor potentials to be canon-
ically conjugate, [Ai j (x), Ekl (y)] = i(δikδ jl + δilδ jk )δ(x − y),
which leads to a low-energy description with an emergent
photon of dispersion ω ∝ k2 [21,22,28,43]. Importantly, in the
quantum theory, the electric field components commute with
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FIG. 1. Breathing pyrochlore lattice. (a) The green and yellow
tetrahedra stand for the A and B tetrahedra, respectively. (b) Unit cell
of the face-centered cubic lattice of A tetrahedron (Lx = Ly = Lz =
1). Each A and B tetrahedra form the face-centered cubic lattices.
The green and yellow circles stand for the centers of the A and B
tetrahedra, respectively. Note that we have two planes (that contain
A sites) in each direction per one unit cell.

themselves. We direct the reader to Refs. [20,21,28,43] for a
comprehensive description of the other rank-2 gauge theories
alluded to above.

III. CLASSICAL BREATHING PYROCHLORE
LATTICE MODEL

The breathing pyrochlore lattice is composed of corner-
sharing tetrahedra of two different sizes A/B, with interactions
between neighboring spins residing on the vertices of the
tetrahedra as seen in Fig. 1. The microscopic interactions
between the spins may involve antiferromagnetic Heisen-
berg (JA/B) and bond-dependent Dzyaloshinskii-Moriya (DM;
DA/B) interactions [41], as well as Kitaev and Gamma interac-
tions (see Appendix A). The classical Hamiltonian describing
the interactions between the neighboring spins can be cap-
tured in terms of the irreducible representation formed by the
spins belonging to each of the tetrahedra [41,44–46],

H = 1

2

∑
A,	

aA,	m2
A,	 + 1

2

∑
B,	

aB,	m2
B,	, (1)

where 	 = {A2, E, T2, T1+, T1−} is over the Td irreps for a
given tetrahedron (A or B), aA/B,	 are the interaction coef-
ficients, and mA/B,	 denotes the pseudospin corresponding
to different irreps on the A/B tetrahedron. Microscopically
(as presented in Appendix A), one can minimally take anti-
ferromagnetic JA, JB > 0, while taking DA < 0 and DB = 0.
With this choice, on the B tetrahedron, aB,T1+ > 0, while the
remaining modes are negative [41]. As a consequence, at
low energies, the fluctuations of the TB,1+ mode are ener-
getically costly leading to mB,T1+ = 0. Analogously, for the
A tetrahedron, the DM interaction leads to having small (and
negative) interaction coefficients for a number of interaction
coefficients. However, since still aA,T1+ > 0, it energetically
leads to mA,T1+ = 0, as shown in Appendix A.

This constraint on m(A,B),T1+ can be rewritten in terms of
the normal modes of the surrounding four A tetrahedra, as
seen in Fig. 2. Performing a gradient expansion of the A
normal modes about the central B-site location (as described

FIG. 2. The location of the A tetrahedra surrounding the B tetra-
hedron. Here, the yellow circle stands for the B tetrahedron and the
green circles stand for the A tetrahedra surrounding B tetrahedron.

in Appendix B), we arrive at the continuity equation,

2√
3

⎛
⎜⎝

∂xm1
A,E

− 1
2∂ym1

A,E +
√

3
2 ∂ym2

A,E

− 1
2∂zm1

A,E −
√

3
2 ∂zm2

A,E

⎞
⎟⎠ +

⎛
⎝∂ymz

A,T1−
+ ∂zm

y
A,T1−

∂xmz
A,T1−

+ ∂zmx
A,T1−

∂xmy
A,T1−

+ ∂ymx
A,T1−

⎞
⎠

−
√

2

3
∇mA,A2 − ∇ × mA,T2 = 0. (2)

The combination of the normal modes of a single A tetra-
hedron can be expressed in terms of a rank-2 tensor, EA =
Esym

A + Eantisym
A + Etrace

A , where we have suggestively decom-
posed into a symmetric tensor,

Esym
A

=

⎛
⎜⎝

2√
3
m1

A,E mz
A,T1−

my
A,T1−

mz
A,T1−

− 1√
3
m1

A,E + m2
A,E mx

A,T1−
my

A,T1−
mx

A,T1− − 1√
3
m1

A,E − m2
A,E

⎞
⎟⎠,

(3)

antisymmetric tensor, (Eantisym
A )i j = −εi jkmk

A,T2
, and a traceful

tensor (Etrace
A )i j = −δi j

√
2
3 mA,A2 . The formulation of the nor-

mal modes in terms of the rank-2 electric field tensor allows
one to notice that the electric field tensor satisfies the Gauss
law for rank-2 vector gauge theory, ∇ · EA = 0 [40].

Evidently, the continuity equation involves a number of
A-tetrahedron irreps in nontrivial combinations. To shine light
on the underlying structure, we recall that though the interac-
tion coefficients may involve the aforementioned microscopic
coupling parameters, from group-theoretic methods the inter-
action coefficients are merely known to be (in general) distinct
from each other a priori. Indeed, one would naturally expect
that including further neighbor interactions, for instance, may
renormalize these interaction coefficients. To that end, we
consider the case where aA2 = aE < 0 on the A tetrahedron,
and take the remaining A modes to be energetically positive
and costly (we explicitly show such a microscopic construc-
tion in Appendix A). In a similar fashion to the B-tetrahedron
normal modes, this leads to only mA,A2 , mA,E �= 0 on the A
tetrahedron. As will be seen in the next section, the simple
choice of the interaction coefficients is necessary to ensure a
closed algebra for the normal modes in the quantum breathing
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pyrochlore model. Using the defined electric field tensors,
the equation ∇ · (Esym

A + Eantisym
A + Etrace

A ) = 0 then takes an
elegant form,

∂i
[
Esym

A + Etrace
A

]
ii = 0, ∀i ∈ {x, y, z}, (4)

which is identical to the Gauss law constraint for a rank-2
gauge theory for a vector charge density ρ = 0. Evidently, the
classical (microscopic) breathing pyrochlore lattice model has
an emergent classical rank-2 vector gauge theory description.
We note that Eq. (4) holds even with nonvanishing mA,T1−
normal mode. We henceforth define (EA)i j = −√

2(Esym
A +

Etrace
A )i j (where we multiply it by −√

2 for later convenience),
and the source-free Gauss law constraint becomes ∂i(EA)ii =
0 ∀i ∈ {x, y, z}.

IV. QUANTUM BREATHING PYROCHLORE
LATTICE MODEL

The quantum breathing pyrochlore model involving the A2

and E irrep normal modes can be written as H = H0 + H ′,
where

H0 = −4|aA|
∑

A

(
m2

A,E + m2
A,A2

)
, (5)

with aA,A2 = aA,E = −8|aA|, and

H ′ = 1

2

∑
B,	

aB,	m2
B,	. (6)

In the quantum model, the electric field components satisfy
a canonically normalized SU(2) Lie algebra, [EA,i,EA′, j] =
iδA,A′εi jkEA,k , where {i, j, k} ∈ {xx, yy, zz} (see Appendix A).
Note that the electric field variables do not commute. With
these electric field variables, H0 takes the simple form

H0 = −|aA|
∑

A

(
E2

A,xx + E2
A,yy + E2

A,zz

)
= −|aA|

∑
A

�E2
A, (7)

as mA,A2 and mA,E can be written in terms of the diagonal
components of the electric field tensor as mentioned in the
previous section (also see Appendix A). To make progress,
we make a choice for the remaining B-tetrahedron normal
mode interaction coefficients. In particular, we take the aB,	

coefficients to be perturbatively small as compared to the
A-tetrahedron coefficients. Such a choice is certainly permit-
ted as the A and B tetrahedra possess their own microscopic
interactions, and permits a controlled study of the low-energy
description of the quantum model. Indeed, in the quantum spin
ice model on the pyrochlore lattice [47,48], the quantum flip
terms J±S+S− were taken to be perturbatively weaker than the
Ising interaction Jzz between neighboring spins. Such a choice
enabled a controlled emergence of the underlying U(1) gauge
structure of the model.

Diagonalizing this Hamiltonian over each (decoupled) A
tetrahedron results in an eigen-spectrum of −6 with fivefold
degeneracy, −2 with ninefold degeneracy, and 0 with twofold
degeneracy. Drawing inspiration from the fact that Eq. (7) is
the form of a spin Hamiltonian ∼Ŝ2 which has a spectrum
of S(S + 1) and corresponding degeneracy of 2S + 1, we are

able to identify the −6 eigenvalue state as corresponding to a
pseudospin S = 2 manifold of states, the −2 eigenvalue state
as corresponding to three sets of pseudospin S = 1 manifolds
of states, and the 0 eigenvalue state as corresponding to two
sets of pseudospin S = 0 manifolds of states. Importantly,
due to [E2

A,EA,zz] = 0, just as in typical spin algebra, we
can label the states on each A tetrahedron as |S, Sz〉, where
S(S + 1) ≡ E2

A. Hence, the ground state manifold of the A-
tetrahedron network can be described by an S = 2 multiplet
in the low-energy limit.

Relaxing the Gauss law constraint in Eq. (4) to permit the
existence of charges allows the electric charge density about a
B-tetrahedron center to be similarly defined as

ρk
B =

3∑
A=0

ck
AEA,kk, (8)

where ck
A is a site-dependent phase factor vector:

cx
A = (−1,−1, 1, 1), cy

A = (−1, 1,−1, 1), and cz
A =

(−1, 1, 1,−1). The components of the vector charge density
also satisfy a canonically normalized SU(2) Lie algebra,
[ρ i

B, ρ
j
B] = iεk

i jρ
k
B, and as such a given state can at most be

associated as the eigenstate of one of the components; we
take the ρz

B eigenvalue as the label. We note that there is not
an inherently special reason for choosing the z component
to label the states; one can alternatively choose the x or y
components, just as one may do so when labeling spin states
in typical spin-1/2 problems. In that sense, a given charge
configuration is not represented by the value of all of its ρx,y,z

components, which is unlike the classical rank-2 U(1) gauge
theory described in Sec. II. Thus, these charges should be
considered as spinor charges. We emphasize that the electric
field variables exist on the center of the A tetrahedra, while
the electric charges reside on the center of the B tetrahedra.
Note that ρz

B have integer eigenvalues from −8 to +8 because
the allowed eigenvalue of Ezz is from −2 to +2 and ρz

B is the
linear combination of Ezz on the surrounding A tetrahedra.

The creation of a ρz
B charge from the vacuum is energeti-

cally costly. This penalty is accounted for by the mz
T1+

term in
Eq. (6),

1

2

∑
B

aB,T1+
(
mz

B,T1+

)2 = 1

128

∑
B

aB,T1+
(
ρz

B

)2
, (9)

where aB,T1+ > 0. This penalty cost lifts the degeneracy of
states formed by taking combinations of the pseudospin S = 2
states on all the A tetrahedra, and permits the ground state to
be categorized with ρz

B = 0 on every B tetrahedron.

A. Ground states: Degenerate manifold

The charge-neutral configuration is a description of the
ground states. As an illustrative example, for a given charge-
neutral B tetrahedron, the states of the surrounding four
A tetrahedra must conspire in a manner that satisfies the
Gauss law constraint; this can be considered as a single
Gauss law unit. Considering the state (ψ) of the surrounding
A tetrahedra and imposing the charge-neutral configuration
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FIG. 3. (a) The charge configuration when we increase Ezz. The
red upward and blue downward arrows stand for ±1 z charges,
respectively. The green circles stand the A tetrahedra. (b) The top-
down view of the charge configuration when we increase Ezz on
the A tetrahedron. The red and blue circles stand for ±1 z charges,
respectively.

requires

|ψ〉 =
∑

a,b,c,d

Fa,b,c,d |2, a〉0 |2, b〉1 |2, c〉2 |2, d〉3 (10)

⇒〈ψ ′| (ρz
B

)2 |ψ〉 ∝ δψ,ψ ′ |Fa,b,c,d |2(a − b − c + d )2 = 0,

(11)

where Fa,b,c,d is a complex coefficient, the subscript on the ket
labels the A tetrahedron, and {a, b, c, d} ∈ {±2,±1, 0}. The
sign structure of Eq. (11) comes from cz

A = (−1, 1, 1,−1) in
Eq. (8). The charge-neutral configuration thus corresponds to
85 possible states (listed in Appendix C) for a single Gauss
law unit, thus providing a manifold of ground states.

B. Variety of perturbation terms acting on degenerate
ground state manifold

The charge-neutral configuration corresponds to a large de-
generate manifold of ground states. The collection of normal
modes in Eq. (6) can act as a series of raising and lowering
operators of E±

A,zz = (EA,xx ± iEA,yy)/2, that satisfy the al-
gebra [EA,zz,E

±
A,zz] = ±E±

A,zz, and importantly [ρz
B,E±

A,zz] =
±cz

AE
±
A,zz. The second commutator results in raising and low-

ering the ρz eigenvalue of the state of the system. Figure 3
depicts the operation of the raising operator on the vacuum.
Since we take the form of the interaction coefficients in Eq. (6)
to be a priori independent, we focus on the types of terms that
may occur: (i) EA,zzE

±
A′,zz, (ii) E±

A,zzE
±
A′,zz, and (iii) E±

A,zzE
∓
A′,zz.

Here, A and A′ may be on the same or different A-tetrahedron
locations. The perturbative terms can thus be rewritten in
terms of these raising/lowering operators,

H ′ =
∑
A,A′

aAA′EA,zzEA′,zz +
∑
A,A′

(bAA′E+
A,zzE

−
A′,zz + H.c.)

+
∑
A,A′

(cAA′EA,zzE
+
A′,zz + H.c.)

+
∑
A,A′

(dAA′E+
A,zzE

+
A′,zz + H.c.), (12)

where A, A′ = 0, 1, 2, 3 represents the location of the A tetra-
hedron relative to B tetrahedron on which the operator acts

TABLE I. The planes in which Ea
A,zzE

b
A′,zz (a, b = ±, 1) acts de-

pending on A, A′. For example, for (A, A′) = (1, 2), Ea
1,zzE

b
2,zz acts on

xy plane.

(A,A′) Plane

(0,3),(1,2) xy
(0,2),(1,3) xz
(0,1),(2,3) yz

(Fig. 2), and we use the generalized variables aAA′ , bAA′ , cAA′

and dAA′ that are functions of microscopic variables. As
an example, consider the mA2,B that can be expressed as
mA2,B = 1

4

∑3
A=0 mA,A2 = 1

8
√

3

∑
A(EA,xx + EA,yy + EA,zz ) =

1
8
√

3

∑
A[

√
2(p+E−

A,zz + p−E+
A,zz ) + EA,zz] with p± = e± iπ

4 .
The subsequent square of the aforementioned normal mode is

m2
A2,B = 1

192

∑
A,A′

[
√

2(p+E−
A,zz + p−E+

A,zz ) + EA,zz]

× [
√

2(p+E−
A′,zz + p−E+

A′,zz ) + EA′,zz]

= 1

96

∑
A,A′

(E+
A,zzE

−
A′,zz + H.c.)

+ 1

96

∑
A,A′

(iE−
A,zzE

−
A′,zz + H.c.)

+ 1

192

∑
A,A′

EA,zzEA′,zz

+ 1

96
√

2

∑
A,A′

(p−EA,zzE
+
A′,zz + H.c.)

+ 1

96
√

2

∑
A,A′

(p−E+
A,zzEA′,zz + H.c.). (13)

The details about representing the normal modes on the B
tetrahedron in terms of the normal modes on the surrounding
A tetrahedra can be found in Appendix D. Note that Ea

A,zzE
b
A′,zz

(a, b = ±, 1) acts on different planes, depending on the loca-
tions of A, A′, as shown in Table I.

C. Membrane operators from perturbation

The perturbative terms permit the construction of a mem-
brane operator that allows charges created from the vacuum
to be brought to the boundaries of the system. As an illustra-
tive example, we focus on E+

1,zzE
−
2,zz, and perform degenerate

perturbation theory on the ground states on the same xy plane.
At first-order in perturbation, this results in a state that has
the charge configuration presented in Fig. 4. This is in fact an
excited state, due to the presence of nontrivial charges, and as
such there is no overlap with the underlying (charge-neutral)
ground state manifold. At second order in perturbation on the
same xy plane, the leading contribution arises from the charge
combinations presented in Fig. 5(a). In this case, the charges
residing on the overlapping regions between the successive
E+

1,zzE
−
2,zz operations are canceled out, leaving behind a charge

on the “edge.” Repeating the application of the perturbative
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FIG. 4. The top-down view of charge configuration for E+
1,zzE

−
2,zz.

Here, the gray and white squares represent the positions of the
charges located on z = 1/4 and z = −1/4, respectively. The green
circles indicate the location of the A tetrahedra on the same xy plane,
z = 0.

E+
1,zzE

−
2,zz term on the same xy plane, one obtains (at higher

orders in perturbation) a leading order contribution of charges
that resemble a membrane. Importantly, there is no charge
inside the membrane, due to the aforementioned cancellation,
and the remaining charges reside on the edge [Fig. 5(b)]; as
such this is still an excited state. However, by imposing the
appropriate periodic boundary conditions, these edge charges
may be canceled out. For example, in Fig. 6, by identify-
ing green and yellow lines as the adjoining boundaries, the
positive and negative edge charges are promptly canceled
out. We have thus returned back to the charge-neutral vac-
uum, which is distinct from the original charge-neutral ground
state due to the application of the raising/lowering operators
that have given different electric field quantum numbers on
A-tetrahedron sites. In this sense, the application of the mem-
brane operator, in conjunction with the appropriate boundary
condition, makes the quantum system to be able to tunnel
between its manifold of ground states.

Similarly, we may be able to construct membrane operators
on each of the cubic planes of the system. The membrane
operators on the xy plane are generated by E±

1,zzE
∓
2,zz and

E±
0,zzE

∓
3,zz, the membrane operators on the xz plane are gener-

ated by E±
0,zzE

±
2,zz and E±

1,zzE
±
3,zz, and the membrane operators

on the yz plane are generated by E±
0,zzE

±
1,zz and E±

2,zzE
±
3,zz,

respectively. For example, by using E+
2,zzE

+
3,zz we can make

perturbation on the yz plane shown in Fig. 7, and taking
periodic boundary conditions in the y and z directions, we can
return back to the charge-neutral vacuum (Fig. 8).

We note that if we were to use a different set of op-
erators such as E±

1,zzE
±
2,zz instead of E±

1,zzE
∓
2,zz, we would

need to apply it on all the A-tetrahedron sites in the en-
tire lattice, not just on the plane, in order to return back
to the charge-less vacuum (having imposed the appropriate
periodic boundary conditions) as discussed in Appendix E.
However, the action of these stacked operators can be repli-
cated by taking combinations of the membrane operators
consisting of E±

0,zzE
±
2,zz and E±

1,zzE
±
3,zz on the xz planes, or

E±
0,zzE

±
1,zz and E±

2,zzE
±
3,zz on the yz planes; this is discussed

in more depth in Appendix E. Thus, the aforementioned

membrane operators are the fundamental operators on the
breathing pyrochlore lattice.

Here, we have some remarks. First, we discussed the mem-
brane operators from E±

i,zzE
±
j,zz and E±

i,zzE
∓
j,zz above. However,

from Eq. (12), we recall that there exist other terms in the
perturbative Hamiltonian, namely Ei,zzE j,zz and Ei,zzE

±
j,zz. Im-

portantly, these other operators do not yield any nontrivial
results. For instance, when we act Ei,zzE j,zz, we are in the
same ground state because it does not change the given state,
while Ei,zzE

±
j,zz does yield chargeful excited states. If we allow

the operators to act on the same sites twice, we can make
the membrane operators by using Ei,zzE

±
j,zz. This however

requires a higher order of perturbation than the membrane
operators discussed above. Second, when we constructed the
membrane operators, we apply the same perturbative opera-
tors on the site on the plane. If we used a mixture of the
several types of perturbative operators in Eq. (12), we may
get the chargeful excited states, and even if we apply peri-
odic boundary conditions, we are unable to return back to
the charge-neutral ground states. We provide an illustrative
example and discussion in Appendix F.

1. Subsystem symmetry of membrane operators

The application of the membrane operator results in the
creation of charges that obey certain conservation laws on the
planes on which the operator is acting on. Indeed, the charges
are independently conserved on each of the planes. This arises
due to the charge configuration created when we increase
or decrease the electric fields on the A tetrahedron (Fig. 3).
Thus the creation of the charges on the various planes is a
consequence of not only conserving the total charge, but also
the charge within a plane as well. This emergent subsystem
symmetry can be interpreted as the conservation “first mo-
ment” of the charge in the plane

∑
i yiρz = 0 and

∑
i xiρz = 0,

while
∑

i ziρz �= 0, where (x, y, z)i is the (x, y, z) coordinate of
the location of the charge. As such, one can say the membrane
operator is protected by the subsystem symmetries.

2. Ground state degeneracy

The ground state degeneracy of the quantum breathing
pyrochlore model can be obtained by using the membrane
operators. The membrane operators allow tunneling between
the various ground states, and as such we can generate a
particular ground state from a given ground state by applying
membrane operators. We tabulate the numerically computed
ground state degeneracy in Table II for different finite-size
clusters specified by (Lx, Ly, Lz ). We note that there are two
procedures of determining the states satisfying the Gauss law
constraint: (i) a “naive” methodology where one enumerates
over all the possible states to find those that satisfy Eq. (11),
and (ii) employment of the aforementioned membrane opera-
tors, which allow tunneling between the various states in the
ground state manifold. We have explicitly verified that these
methods agree for cases LxLyLz � 4; for ease of numerical
computation, it is advantageous to implement the membrane
operator approach.

The computed ground state degeneracies shed a remark-
able insight into the nontrivial nature of the quantum ground
states. Unlike the X-cube model [5], where the (logarithm of
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FIG. 5. Depiction of the perturbation by E+
1,zzE

−
2,zz. (a) is for the second-order perturbation, and (b) is for the fourth-order perturbation. The

charges in the overlapped region are canceled out, but there are still remaining charges on the edge.

the) ground state degeneracy only depends on the perimeter,
Lx + Ly + Lz [5,10–12,14], in our model, the ground state
degeneracy can differ even with the same perimeter or same
volume. It is more complicated and depends on the lattice
geometry.

FIG. 6. The periodic boundary condition to cancel out the
charges on the edge of the membrane operators. By identifying green
lines, the charges on the left side of the green lines are canceled out.
Similarly, by identifying yellow lines, the charges above the yellow
lines are canceled out. As a result, we can get another charge-neutral
state.

We classify the cases as follows: (i) Li � 2 and Lj = Lk =
1, (ii) Li, Lj � 2 and Lk = 1, and (iii) Li � 2 for all i = x, y, z.
In case (i), the ground state degeneracy monotonically in-
creases as a function of the length of the system, Li. In cases
(ii) and (iii), the ground state degeneracy does not monotoni-
cally increase as volume and perimeter increase, as mentioned
previously. In each of the cases (ii) and (iii), the configuration
having a larger perimeter has a larger ground state degeneracy
than the configuration having a smaller perimeter, regardless
of the volume. This is because the number of times the mem-
brane operators can be applied on the system depends on
the perimeter; we recall that since we construct the ground
states by applying the membrane operators, the ground state
degeneracy is thus dependent on how many times we can
apply the membrane operators. Since the membrane operators
act on the planes in the system, the number of times they may
be applied thus also depends on the number of planes in the
system. The face-centered cubic geometry formed by the A
tetrahedra has 2Li number of planes in each i direction; in
each direction, an Li number of planes consist of A-tetrahedra
sites on the vertex of the cube, and the remaining Li number
of planes consist of A-tetrahedron sites on the center of the
faces of the cube [Fig. 1(b)]. As such, the total number of
the planes in a given geometry is 2(Lx + Ly + Lz ), i.e., double
the perimeter. This subsequently implies that the number of
the operation depends on the perimeter. Therefore, having a
large perimeter leads to the large number of the ground state
degeneracy. Furthermore, we find that the ground state degen-
eracy monotonically decreases as the volume increases for a
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FIG. 7. Depiction of the fourth-order perturbation by E+
2,zzE

+
3,zz on yz plane. When we assume that E+

2,zzE
+
3,zz acts on yz plane at x = 0,

the gray and white squares represent the positions of the charges located on x = 1/4 and x = −1/4. The charges in the overlapped region are
canceled out, but there are still remaining charges on the edge.

fixed perimeter. This is because the number of independent
constraints for the ground states (which are Gauss law con-
straints) depends on the volume. The numbers of independent
Gauss law constraints is found to be 2LxLyLz − 1 for case (i),
and 4LxLyLz for cases (ii) and (iii), respectively. The reason
why the number of independent Gauss law constraints of case
(i) is less than cases (ii) and (iii) is due to the finite-size effect
arising from the periodic boundary condition. We recall that
we can find four units of Gauss law constraints per one unit
cell of fcc lattices [Fig. 1(b)], but due to the periodic boundary
conditions, case (i) has two independent units of Gauss law
constraints in one unit cell. As such, when they have the same
perimeter, if we have case (ii) or (iii) rather than case (i), if
we have a larger volume, then we have a smaller ground state
degeneracy because there are a large number of independent
constraints.

FIG. 8. The periodic boundary condition to cancel out the
charges on the edge of the membrane operators consisting of
E+

2,zzE
+
3,zz on yz plane. By identifying green lines, the charges on the

left side of the green lines are canceled out. Similarly, by identifying
yellow lines, the charges above the yellow lines are canceled out. As
a result, we can get another charge-neutral state.

As a result, the ground state degeneracy of the system
is nonextensive with volume and depends on the geometry
of the system. This tendency is similar to previous frac-
tonic phases of matter which show subextensive ground state
degeneracy [3,5–7,10,11]. This suggests that the nonextensive

TABLE II. Table for the ground state degeneracy constructed
by applying the membrane operators in terms of (Lx, Ly, Lz ). The
first block is the ground state degeneracy for Lx = Ly = Lz = 1,
the second block is for Li � 2 and Lj = Lk = 1, the third block is
for Li, Lj � 2 and Lk = 1, and the last block is for Li � 2 for all
i = x, y, z. If the volume, LxLyLz, and the perimeter, Lx + Ly + Lz,
are the same, then we have the same number of the ground state
degeneracy. In the same block, if the perimeter is large and the
volume is small, we may have a large number of the ground state
degeneracy.

Lx Ly Lz Volume Perimeter GSD Constraints

1 1 1 1 3 85 1

2 1 1 2 4 1 333 3
3 1 1 3 5 25 405 5
4 1 1 4 6 535 333 7
5 1 1 5 7 11 982 925 9
6 1 1 6 8 278 766 133 11

2 2 1 4 5 10 213 16
3 2 1 6 6 116 653 24
4 2 1 8 7 1 664 533 32
3 3 1 9 7 889 525 36
5 2 1 10 8 27 510 973 40
4 3 1 12 8 9 103 453 48

2 2 2 8 6 49 541 32
3 2 2 12 7 392 365 48
4 2 2 16 8 4 201 589 64
3 3 2 18 8 2 258 486 72
5 2 2 20 9 55 306 813 80
4 3 2 24 9 18 470 173 96
3 3 3 27 9 9 912 253 108
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behavior of the ground state degeneracy of our system is an
indication that our system is indeed fractonic.

We now return back to the “possible” diagonal-Ei,zzE j,zz

terms in H ′; we recall that our above analysis focused on
“nondiagonal” perturbative terms in order to understand the
delicacy of the ground state manifold and the possibility to
tunnel between the multitude of states. Since such terms do
not change the Ezz quantum number, they do not introduce
charged excitations nor do they change the structure of the
described boundary charges. To understand the role of such
terms, we draw a comparison to quantum spin ice, where a
[111] magnetic field does not destabilize the quantum spin
ice phase for small field strengths (i.e., the quantum spin ice
remains self-consistently stable) [49]. It is certainly possible
that the above diagonal terms may play a similar role and leave
the fractonic phase stable for particular parameter choices. In-
deed, understanding the ultimate role of this delicate interplay
between all the perturbative terms would require extensive
numerical simulations that we reserve for future work. We
can, nonetheless, glean the effects of such a diagonal term
by simply considering the possible energy shift it may have
on the ground state manifold within first-order perturbation
theory. As we demonstrate in Appendix G, in the thermody-
namic limit, the ground state degeneracy, though reduced, still
remains dependent on lattice geometry, exponentially grows
with system size, and is subextensive in system volume, all
of which suggests the retention of fractonic properties. For
example, the remnant ground state degeneracy for K > 0
(within first-order perturbation theory) is GSDK>0 = 22Lz . We
nevertheless note that in an experimentally realizable finite-
temperature setting, where the temperature is comparable to
or larger than this split gap, such a splitting of the ground
state degeneracy would manifest as a quasidegeneracy where
the conclusions established above in Table II hold.

D. Absence of magnetic field from finite order
of perturbation theory

The membrane operators require the system-size-
dependent order of operation to return back to the
ground state manifold (with the appropriate boundary
conditions). In the thermodynamic limit, the coefficient for
such a perturbative process, or the membrane operator, is
proportional to (t/aB,T1+ )L2

, which is system-size-dependent,
where t � aB,T1+ is the coefficient of the perturbation
Hamiltonian containing the raising and lowering operators.
Drawing an analogy with the Hamiltonian for the
electromagnetism, H = ε

2 E2 + 1
2μ

B2, since the membrane

operator generating the terms corresponds to B2, we may
regard the corresponding permeability 1/μ ∝ (t/aB,T1+ )L2

,
i.e., 1/μ → 0, in large system size. This suggests that the
corresponding “speed of light” is similarly suppressed to
zero, as c ∼ 1/

√
μ ∝ (t/aB,T1+ )L2/2 → 0 in large system size.

This allows us to interpret that the photon in the breathing
pyrochlore lattice as being extremely “slow.” Indeed, this
interpretation is reminiscent of the physics of quantum
glassiness where the tunneling between two different ground
states requires an exponentially long time, leading to glassy
behavior [1–3]. Analogously, we may regard our system

as similarly requiring a long time to tunnel between two
different ground states, tchar ∼ t0e(L2/2) ln(aB,T1+ /t ), where t0 is a
microscopic timescale.

The disappearance of the perturbative magnetic field term
in the thermodynamic limit is in stark comparison to the mag-
netic field term that is generated at finite-order perturbation
theory in quantum spin ice [47,48] and previous higher-
rank gauge theory constructions [20–22,50,51]. Indeed it is
the complicated three-dimensional geometry of the breathing
pyrochlore lattice that prohibits a finite-order perturbative pro-
cess that allows tunneling between the degenerate ground state
manifold. We recall that the application of a raising/lowering
operator leads to charges being created in a three-dimensional
volume as seen in Fig. 3. This is unlike the case of cre-
ating gauge charges along a line or a plane [20–22,50,51],
where a perturbative pathway may be considered along a
two-dimensional plane or a three-dimensional volume (re-
spectively) that allows the charges to be “wrapped around”
and eventually cancel each other. We provide a simple exam-
ple of such a process for gauge charges created in one and
two dimensions in Appendix H. In either case the “corner
charges” (end of a line for one-dimensional line charges or
corners of a plane for two-dimensional plane charges) are
eliminated by appealing to a higher dimension than that of the
charges, i.e., moving the one-dimensional line charges around
a two-dimensional plane, and two-dimensional planar charges
in a three-dimensional volume. By extending the ideas of
eliminating lower-dimensional charge configurations, it sug-
gests that an additional (and not achievable in this setting)
fourth dimension may be required to eliminate the corner
charge on the breathing pyrochlore lattice. We reemphasize
that the complicated geometry of the breathing pyrochlore
lattice resulted in charges being created in three-dimensional
volume space in the quantum model. We note that even in
these previous rank-2 U(1) models, this required higher-order
perturbation processes in order to generate the magnetic field.
For example, it required the eighth order in perturbation for
the scenario of traceful magnetic fields, while in the trace-
less case a colossal thirty-second order of perturbation was
needed [50,51]. We note that in previous higher-rank gauge
theory constructions, it was that fact of having diagonal and
off-diagonal electric field components reside on inequivalent
lattice sites that allowed a finite-order perturbative process to
connect the different ground states [20–22,50,51]. In our case,
since diagonal and off-diagonal electric field components re-
side on the equivalent sites, lowering/raising operators of the
electric field component leads to charges being created in a
three-dimensional (tetragonal) volume regardless of whether
it is a diagonal or off-diagonal component. As such, this
suggests that we may not find such finite-order perturbation
processes, even if we have all the electric field components.
Note that the only operator that allows tunneling between the
ground states is the membrane operator. At the finite-order
perturbation theory in the thermodynamic limit, the afore-
described diagonal perturbative terms lead to a small energy
shift among the ground states. It would be an interesting
direction of future work to study the mixture of the diagonal
terms with off-diagonal terms, and whether they may compete
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or cooperate with each other (with respect to how they may
change the ground state).

V. DISCUSSION

In this work, we provide a concrete model for frac-
tonic quantum phases on the breathing pyrochlore lattice.
In contrast to recently studied exactly solvable fractonic
models that involve interactions between a large number of
particles/spins, the quantum model we consider involves bi-
linear interactions between spin-1/2 moments residing on the
vertices of the corner-sharing tetrahedra. As such, this pro-
vides a more natural and realistic setting to realize such exotic
quantum phases of matter.

Though the previously studied classical model on the
breathing pyrochlore lattice is captured within the framework
of a rank-2 vector gauge theory [41], we find that the quantum
model has some sharp distinctions. In particular, the electric
field components do not commute [and satisfy an SU(2) al-
gebra], and the conserved charge degree of freedom is the
z component of the vector charge, ρz, with the remaining
components completing the SU(2) spinor algebra, [ρx, ρy] =
iρz. These corresponding elementary spinor excitations are
created in a quartet in three-dimensional space such that at-
tempting to move a single particle results in a “burst” of
collective quartet of spinor charges. Furthermore, the ground
state is found to have a degeneracy that is nonextensive with
volume, yet strongly dependent on the geometrical configu-
ration. The immobility of the excitations compounded with a
nonextensive (yet geometry dependent) ground state degener-
acy is highly indicative of a fractonic phase of matter [3,5–
7,10,11]. Intriguingly, the quantum model we consider also
lacks a local magnetic field term that connects the various
quantum states of the degenerate manifold at finite order in
perturbation theory. This salient feature heralds the demise of
any propagating photonic excitation, and the birth of glassy
dynamics [1–3], which is in sharp contrast with conventional
graviton excitations in rank-2 gauge theories [50,51].

In the classical limit of rank-2 vector gauge theory, we
have the conservations of the total vector charge,

∫
ρ = 0,

and angular momentum,
∫

x × ρ = 0 [20,21], but it is not
immediately apparent that there is a restriction for move-
ment of z charge along the z direction. In fact, the z charge
can move along the z direction, as was demonstrated in a
microscopic model of rank-2 vector gauge theory on a sim-
ple cubic lattice [20]. However, in our microscopic model,
due to the complicated three-dimensional orientation of the
breathing pyrochlore lattice, as shown in Fig. 3, increasing
or decreasing the electric fields on the A tetrahedron leads to
charges being created in a three-dimensional volume. There-
fore, there is no such hopping term that allows the z charge to
solely move along the z direction. This is from the distinction
between the microscopic quantum model and the classical
limit.

The model we consider is in the limit of particular en-
ergy scales that allows us to consider solely the diagonal
components of the electric field, i.e., the focusing on the corre-
sponding classical “light” A2, E, T1− modes. Indeed, relaxing
this condition may allow the introduction of off-diagonal
electric field components (namely T1+, T2 modes) into the

quantum model. The virtue of our consideration is a clean
closure of the corresponding algebra. It would be intriguing
to explore whether the above properties of the breathing py-
rochlore model survive with this relaxation of the coupling
constant values.
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APPENDIX A: NORMAL MODE REPRESENTATION OF
THE MICROSCOPIC INTERACTIONS BETWEEN SPINS

ON THE BREATHING PYROCHLORE LATTICE

A generalized nearest-neighbor spin model on the breath-
ing pyrochlore lattice involving antiferromagnetic Heisen-
berg, bond-dependent Dzyaloshinskii-Moriya (DM), Kitaev,
and Gamma interactions is of the form given in Eq. (A1),

H =
∑

〈i j〉∈A

[
JASi · S j + DAd̂i j · (Si × S j )

+ Kα
A,i jS

α
i Sα

j + 	
γδ
A,i j

(
Sγ

i Sδ
j + Sδ

i Sγ
j

) + EA,0
]

+
∑

〈i j〉∈B

[
JBSi · S j + DBd̂i j · (Si × S j )

+ Kα
B,i jS

α
i Sα

j + 	
γδ

B,i j

(
Sγ

i Sδ
j + Sδ

i Sγ

j

) + EB,0
]

(A1)

= 1

2

∑
A,	

aA,	m2
A,	 + 1

2

∑
B,	

aB,	m2
B,	, (A2)

where J(A,B), D(A,B) are the interaction coefficients of the
Heisenberg and DM interaction, and E(A,B),0 is the constant
energy shift on the A (B) tetrahedron, respectively, and d̂i j are
the bond-dependent vectors defined in Ref. [41]. For clarity,
we note that

K(A,B),01 = K(A,B),23 = K(A,B)(1, 0, 0), (A3)

K(A,B),02 = K(A,B),13 = K(A,B)(0, 1, 0), (A4)

K(A,B),03 = K(A,B),12 = K(A,B)(0, 0, 1), (A5)

	(A,B),01 = −	(A,B),23 = 	A

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, (A6)

	(A,B),02 = −	(A,B),13 = 	A

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, (A7)

	(A,B),03 = −	(A,B),12 = 	A

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, (A8)

with K(A,B) and 	(A,B) denoting the interaction coefficients of
the bond-dependent Kitaev and Gamma interactions, respec-
tively.
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TABLE III. The definition of the normal modes on the A and B tetrahedra in terms of the spin degrees of freedom.

Normal mode Definition

mA2
1

2
√

3
[(Sx

0 + Sy
0 + Sz

0) + (Sx
1 − Sy

1 − Sz
1) + (−Sx

2 + Sy
2 − Sz

2) + (−Sx
3 − Sy

3 + Sz
3)]

mE

( 1
2
√

6
[(−2Sx

0 + Sy
0 + Sz

0 ) + (−2Sx
1 − Sy

1 − Sy
1 ) + (2Sx

2 + Sy
2 − Sz

2) + (2Sx
3 − Sy

3 + Sz
3)]

1
2
√

2
[(−Sy

0 + Sz
0) + (Sy

1 − Sz
1) + (−Sy

2 − Sz
2) + (Sy

3 + Sz
3)]

)

mT2

⎛
⎜⎝

1
2
√

2
[(−Sy

0 + Sz
0 ) + (Sy

1 − Sz
1) + (Sy

2 + Sz
2) + (−Sy

3 − Sz
3)]

1
2
√

2
[(Sx

0 − Sz
0) + (−Sx

1 − Sz
1) + (−Sx

2 + Sz
2) + (Sx

3 + Sz
3)]

1
2
√

2
[(−Sx

0 + Sy
0 ) + (Sx

1 + Sy
1 ) + (−Sx

2 − Sy
2 ) + (Sx

3 − Sy
3 )]

⎞
⎟⎠

mT1+

⎛
⎝ 1

2 [Sx
0 + Sx

1 + Sx
2 + Sx

3]
1
2 [Sy

0 + Sy
1 + Sy

2 + Sy
3]

1
2 [Sz

0 + Sz
1 + Sz

2 + Sz
3]

⎞
⎠

mT1−

⎛
⎜⎝

−1
2
√

2
[(Sy

0 + Sz
0) + (−Sy

1 − Sz
1) + (−Sy

2 + Sz
2) + (Sy

3 − Sz
3)]

−1
2
√

2
[(Sx

0 + Sz
0) + (−Sx

1 + Sz
1) + (−Sx

2 − Sz
2) + (Sx

3 − Sz
3)]

−1
2
√

2
[(Sx

0 + Sy
0 ) + (−Sx

1 + Sy
1 ) + (Sx

2 − Sy
2 ) + (−Sx

3 − Sy
3 )]

⎞
⎟⎠

The interacting Hamiltonian can be recast into a normal
mode representation, as given in Eq. (A2). The correspond-
ing normal mode interaction coefficients are related to the
microscopic interaction parameters via [44] (dropping the A-
and B-tetrahedron labels for brevity)

aA2 = 2E0

3
− J − 4D√

2
+ K − 4	, (A9)

aE = 2E0

3
− J + 2D√

2
+ K + 2	, (A10)

aT1− = 2E0

3
− J + 2D√

2
− K − 2	, (A11)

aT2 = 2E0

3
− J − 2D√

2
− K + 2	, (A12)

aT1+ = 2E0

3
+ 3J + K. (A13)

We note that if J(A,B) is positive and larger than the other
coefficients (i.e., a(A,B),T1+ > 0 is the largest coefficient), then
we can take m(A,B),T1+ = 0.

The generic interacting spin model in Eq. (A1) reduces to
the microscopic spin model considered in Ref. [41] by setting
K , 	, and E0 to zero. In particular, the coefficients reduce to

aA2 = −J − 4D√
2
, (A14)

aE = aT1− = −J + 2D√
2
, (A15)

aT2 = −J − 2D√
2
, (A16)

aT1+ = 3J. (A17)

In the main text, we consider aA,A2 = aA,E and the hi-
erarchy aA,A2 = aA,E < aA,T1− < aA,T2 < aA,T1+ , which give
us the light normal modes mA,A2 and mA,E, and heavy
normal modes mA,T1± and mA,T2 . These conditions can be
easily achieved from the microscopic interactions of the
generic spin model. For instance, for aA,A2 = aA,E, one
can take 	A = −DA/

√
2. And, to satisfy the aforemen-

tioned hierarchy of energies, one can take DA = −|DA| < 0,
KA = −|KA| < −√

2|DA| < 0, 	A = |DA|/√2 > 0, and JA >

(
√

2|DA| + |KA|)/2 > 0. These lead to

aA,A2 = aA,E = −JA − |KA|, (A18)

aA,T1− = −JA − 4|DA|√
2

+ |KA|, (A19)

aA,T2 = −JA + 4|DA|√
2

+ |KA|, (A20)

aA,T1+ = 3JA − |KA|, (A21)

where we also set E0 = 0, to thus recover the aforementioned
hierarchy of energies.

APPENDIX B: DERIVATION OF GAUSS LAWS

The classical Gauss law constraint arises from taking
m(A,B),T1+ = 0. Using Table III, the B normal mode can be
rewritten in terms of the normal modes of the surrounding four
A tetrahedra surrounding a given B tetrahedron,

mx
B,T1+ = 1

4

3∑
α=0

[
mx

α,T1+ + cz,α√
2

(
my

α,T1−
− my

α,T2

) + cy,α√
2

(
mz

α,T1− + mz
α,T2

) − cx,α

(
1√
3

mα,A2 −
√

2

3
m1

α,E

)]

≈ mx
A,T1+ (0) + ad

4
√

2
∂z

(
my

A,T1−
− my

A,T2

) + ad

4
√

2
∂y

(
mz

A,T1− + mz
A,T2

) − ad

4
∂x

(
1√
3

mA,A2 −
√

2

3
m1

A,E

)
, (B1)

my
B,T1+

= 1

4

3∑
α=0

[
my

α,T1+
+ cx,α√

2

(
mz

α,T1− − mz
α,T2

) + cz,α√
2

(
mx

α,T1− + mx
α,T2

) − cy,α

(
1√
3

mα,A2 + 1√
6

m1
α,E − 1√

2
m2

α,E

)]
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≈ my
A,T1+

(0) + ad

4
√

2
∂x

(
mz

A,T1− − mz
A,T2

) + ad

4
√

2
∂z

(
mx

A,T1− + mx
A,T2

) − ad

4
∂y

(
1√
3

mA,A2 + 1√
6

m1
A,E − 1√

2
m2

A,E

)
, (B2)

mz
B,T1+ = 1

4

3∑
α=0

[
mz

α,T1+ + cy,α√
2

(
mx

α,T1− − mx
α,T2

) + cx,α√
2

(
my

α,T1−
+ my

α,T2

) − cz,α

(
1√
3

mα,A2 + 1√
6

m1
α,E + 1√

2
m2

α,E

)]

≈ mz
A,T1+ (0) + ad

4
√

2
∂y

(
mx

A,T1− − mx
A,T2

) + ad

4
√

2
∂x

(
my

A,T1−
+ my

A,T2

) − ad

4
∂z

(
1√
3

mA,A2 + 1√
6

m1
A,E + 1√

2
m2

A,E

)
, (B3)

where on the right side of the equalities the subscript α = 0, 1, 2, 3 indicates the A tetrahedron sharing a 0,1,2,3 site on the
B tetrahedron (Fig. 2 in the main text) so we summed over the sublattice sites, cx,α = (−1,−1, 1, 1), cy,α = (−1, 1,−1, 1),
cz,α = (−1, 1, 1,−1), ad is the lattice spacing constant, and mi

A,T1+ (0) means mi
A,T1+ at the origin of the gradient expansion. In

Eqs. (B1)–(B3), we take a continuum limit. In the continuum limit, if we take m(A,B),T1+ = 0 and multiply them by 4
√

2, we
have

− ∂x

(√
2

3
mA,A2 − 2√

3
m1

A,E

)
+ ∂y

(
mz

A,T1− + mz
A,T2

) + ∂z
(
my

A,T1−
− my

A,T2

) = 0, (B4)

∂x
(
mz

A,T1− + mz
A,T2

) − ∂y

(√
2

3
mA,A2 + 1√

3
m1

A,E − m2
A,E

)
+ ∂z

(
mx

A,T1− − mx
A,T2

) = 0, (B5)

∂x
(
my

A,T1−
+ my

A,T2

) + ∂y
(
mx

A,T1− − mx
A,T2

) − ∂z

(√
2

3
mA,A2 + 1√

3
m1

A,E + m2
A,E

)
= 0, (B6)

and we can rewrite them as follows:

2√
3

⎛
⎜⎜⎝

∂xm1
A,E

− 1
2∂ym1

A,E +
√

3
2 ∂ym2

A,E

− 1
2∂zm1

A,E −
√

3
2 ∂zm2

A,E

⎞
⎟⎟⎠ +

⎛
⎜⎝

∂ymz
A,T1−

+ ∂zm
y
A,T1−

∂zmx
A,T1− + ∂xmz

A,T1−
∂xmy

A,T1−
+ ∂ymx

A,T1−

⎞
⎟⎠ −

√
2

3
∇mA,A2 − ∇ × mA,T2 (B7)

= ∇ · (Etrace
A + Esym

A + Eantisym
A

) = 0, (B8)

where

(
Etrace

A

)
i j = −

√
2

3
mA,A2δi j,

(
Eantisym

A

)
i j = −εi jkmk

A,T2
, Esym

A =

⎛
⎜⎝

2√
3
m1

A,E mz
A,T1−

my
A,T1−

mz
A,T1−

− 1√
3
m1

A,E + m2
A,E mx

A,T1−
my

A,T1−
mx

A,T1− − 1√
3
m1

A,E − m2
A,E

⎞
⎟⎠. (B9)

The traceful electric fields defined in main text are defined as

EA,xx = 2√
3

mA,A2 − 2

√
2

3
m1

A,E, EA,yy = 2√
3

mA,A2 +
√

2

3
m1

A,E −
√

2m2
A,E, EA,zz = 2√

3
mA,A2 +

√
2

3
m1

A,E +
√

2m2
A,E,

(B10)

EA,xy = −
√

2mz
A,T1− , EA,yz = −

√
2mx

A,T1− , EA,zx = −
√

2my
A,T1−

. (B11)

Here, the diagonal components satisfy the SU(2) algebra,

[EA,iEA′, j] = iδAA′εi jkEA,k, {i, j, k} ∈ {xx, yy, zz}, (B12)

because EA,i = −∑3
α=0 ci,aSi

a, where a is the site index of spins on the A tetrahedron.

APPENDIX C: CHARGE-NEUTRAL QUANTUM GROUND STATE CONFIGURATIONS

In this section, we show 85 charge-neutral configurations for the ground states which satisfy (a − b − c + d ) = 0 [Eq. (11)]
for (Lx, Ly, Lz ) = (1, 1, 1), where a, b, c, d ∈ {±2,±1, 0} are the quantum numbers of the electric fields on each A tetrahedron.
The result is shown in Table IV.

APPENDIX D: NORMAL MODES ON B TETRAHEDRON IN TERMS OF NORMAL MODES ON A TETRAHEDRA

The normal modes on the B tetrahedron in terms of normal modes on the A tetrahedra are as follows [where cx,α =
(−1,−1, 1, 1), cy,α = (−1, 1,−1, 1), and cz,α = (−1, 1, 1,−1)]:

mB,A2 = 1

4

3∑
α=0

[
mα,A2 +

√
2

3

(
cx,αmx

α,T1− + cy,αmy
α,T1−

+ cz,αmz
α,T1−

) − 1√
3

(
cx,αmx

α,T1+ + cy,αmy
α,T1+

+ cz,αmz
α,T1+

)]
, (D1)
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TABLE IV. The 85 charge-neutral configurations of the ground states satisfying Eq. (11), (a − b − c + d ) = 0. a, b, c, d are the electric
field quantum numbers with a, b, c, d ∈ {±2, ±1, 0} on 0th, 1st, 2nd, 3rd A tetrahedra (Fig. 2 in the main text), respectively.

a b c d a b c d a b c d

±2 ±2 ±2 ±2 ±2 ∓2 ±2 ∓2 ±1 ∓2 ±2 0
±2 ±2 ±1 ±1 ±1 ±2 ±1 ±2 ±1 ∓1 ±1 ∓1
±2 ±2 0 0 ±1 ±2 0 ±1 ±1 ∓1 0 ∓2
±2 ±2 ∓1 ∓1 ±1 ±2 ∓1 0 ±1 ∓2 ±2 ∓1
±2 ±2 ∓2 ∓2 ±1 ±2 ∓2 ∓1 ±1 ∓2 ±1 ∓2
±2 ±1 ±2 ±1 ±1 ±1 ±2 ±2 0 ±2 0 ±2
±2 ±1 ±1 0 ±1 ±1 ±1 ±1 0 ±2 ∓1 ±1
±2 ±1 0 ∓1 ±1 ±1 0 0 0 ±2 ∓2 0
±2 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 0 ±1 ±1 ±2
±2 0 ±2 0 ±1 ±1 ∓2 ∓2 0 ±1 0 ±1
±2 0 ±1 ∓1 ±1 0 ±2 ±1 0 ±1 ∓1 0
±2 0 0 ∓2 ±1 0 ±1 0 0 ±1 ∓2 ∓1
±2 ∓1 ±2 ∓1 ±1 0 0 ∓1 0 0 ±2 ±2
±2 ∓1 ±1 ∓2 ±1 0 ∓1 ∓2 0 0 ±1 ±1

0 0 0 0

m1
B,E = 1

4

3∑
α=0

[
m1

α,E + 1

2
√

3

(
2cx,αmx

α,T1− − cy,αmy
α,T1−

− cz,αmz
α,T1−

) + 1√
6

(
2cx,αmx

α,T1+ − cy,αmy
α,T1+

− cz,αmz
α,T1+

)

+
√

3

2

(
cy,αmy

α,T2
− cz,αmz

α,T2

)]
, (D2)

m2
B,E = 1

4

3∑
α=0

[
m2

E + 1

2

(
cy,αmy

T1−
− cz,αmz

T1−

) + 1√
2

(
my

T1+
− cz,αmz

T1+

) − (
2cx,αmx

T2
− cy,αmy

T2
− cz,αmz

T2

)]
, (D3)

mx
B,T1− = 1

4

3∑
α=0

[
mx

α,T1− − cz,α

2

(
my

α,T2
+ my

α,T1−
−

√
2my

α,T1+

) + cy,α

2

(
mz

α,T2
− mz

α,T1− +
√

2mz
α,T1+

)

+ cx,α

(√
2

3
mα,A2 + 1√

3
m1

α,E

)]
, (D4)

my
B,T1−

= 1

4

3∑
α=0

[
my

α,T1−
− cx,α

2

(
mz

α,T2
+ mz

α,T1− −
√

2mz
α,T1+

) + cz,α

2

(
mx

α,T2
− mx

α,T1− +
√

2mx
α,T1+

)

+ cy,α

(√
2

3
mα,A2 − 1

2
√

3
m1

α,E + 1

2
m2

α,E

)]
, (D5)

mz
B,T1− = 1

4

3∑
α=0

[
mz

α,T1− − cy,α

2

(
mx

α,T2
+ mx

α,T1− −
√

2mx
α,T1+

) + cx,α

2

(
my

α,T2
− my

α,T1−
+

√
2my

α,T1+

)

+ cz,α

(√
2

3
mα,A2 − 1

2
√

3
m1

α,E − 1

2
m2

α,E

)]
, (D6)

mx
B,T2

= 1

4

3∑
α=0

[
mx

α,T2
+ cz,α

2

(
my

α,T2
+ my

α,T1−
+

√
2my

α,T1+

) + cy,α

2

(
mz

α,T2
− mz

α,T1− −
√

2mz
α,T1+

) − cx,αm2
α,E

]
, (D7)

my
B,T2

= 1

4

3∑
α=0

[
my

α,T2
+ cx,α

2

(
mz

α,T2
+ mz

α,T1− +
√

2mz
α,T1+

) + cz,α

2

(
mx

α,T2
− mx

α,T1− −
√

2mx
α,T1+

)

− cy,α

(
−

√
3

2
m1

α,E − 1

2
m2

α,E

)]
, (D8)
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mz
B,T2

= 1

4

3∑
α=0

[
mz

α,T2
+ cy,α

2

(
mx

α,T2
+ mx

α,T1− +
√

2mx
α,T1+

) + cx,α

2

(
my

α,T2
− my

α,T1−
−

√
2my

α,T1+

)

− cz,α

(√
3

2
m1

α,E − 1

2
m2

α,E

)]
, (D9)

mx
B,T1+ = 1

4

3∑
α=0

[
mx

α,T1+ + cz,α√
2

(
my

α,T1−
− my

α,T2

) + cy,α√
2

(
mz

α,T1− + mz
α,T2

) − cx,α

(
1√
3

mα,A2 −
√

2

3
m1

α,E

)]
, (D10)

my
B,T1+

= 1

4

3∑
α=0

[
my

α,T1+
+ cx,α√

2

(
mz

α,T1− − mz
α,T2

) + cz,α√
2

(
mx

α,T1− + mx
α,T2

) − cy,α

(
1√
3

mα,A2 + 1√
6

m1
α,E − 1√

2
m2

α,E

)]
, (D11)

mz
B,T1+ = 1

4

3∑
α=0

[
mz

α,T1+ + cy,α√
2

(
mx

α,T1− − mx
α,T2

) + cx,α√
2

(
my

α,T1−
+ my

α,T2

) − cz,α

(
1√
3

mα,A2 + 1√
6

m1
α,E + 1√

2
m2

α,E

)]
, (D12)

where on the right side of the equalities the subscript α = 0, 1, 2, 3 indicates the A tetrahedron sharing a 0,1,2,3 site on the B
tetrahedron (Fig. 2 in the main text).

When we ignore the heavy modes, in other words, we take mA,T±1 = mA,T2 = 0 on the A tetrahedron, we can represent them
in terns of Eα,zz and E±

α,zz as follows:

mB,A2 = 1

4

3∑
α=0

mα,A2 = 1

8
√

3

3∑
α=0

(Eα,xx + Eα,yy + Eα,zz ) = 1

8
√

3

3∑
α=0

[
√

2(p−E+
α,zz + p+E−

α,zz ) + Eα,zz], (D13)

m1
B,E = 1

4

3∑
α=0

m1
α,E = −1

8
√

6

3∑
α=0

(2Eα,xx − Eα,yy − Eα,zz ) = 1

8
√

6

3∑
α=0

[−
√

5(p+
θ E

+
α,zz + p−

θ E
−
α,zz ) + Eα,zz], (D14)

m2
B,E = 1

4

3∑
α=0

m2
α,E = −1

8
√

2

3∑
α=0

(Eα,yy − Eα,zz ) = 1

8
√

2

3∑
α=0

[i(E+
α,zz − E−

α,zz ) + Eα,zz], (D15)

where p± = e± iπ
4 and p±

θ = e±θ with θ = tan−1(1/2), and

mx
B,T1− = 1

8

3∑
α=0

[
2cx,α

(√
2

3
mα,A2 + 1√

3
m1

α,E

)]
= 1

8
√

2

3∑
α=0

cx,α[Eα,yy + Eα,zz]

= 1

8
√

2

3∑
α=0

cx,α[Eα,zz + i(E−
α,zz − E+

α,zz )], (D16)

my
B,T1−

= 1

8

3∑
α=0

[
2cy,α

(√
2

3
mα,A2 − 1

2
√

3
m1

α,E + 1

2
m2

α,E

)]
= 1

8
√

2

3∑
α=0

cx,α[Eα,xx + Eα,zz]

= 1

8
√

2

3∑
α=0

cy,α[Eα,zz + (E−
α,zz + E+

α,zz )], (D17)

mz
B,T1− = 1

8

3∑
α=0

[
2cz,α

(√
2

3
mα,A2 − 1

2
√

3
m1

α,E − 1

2
m2

α,E

)]
= 1

8
√

2

3∑
α=0

cx,α[Eα,xx + Eα,yy]

= 1

8

3∑
α=0

cz,α[p+E−
α,zz + p−E+

α,zz], (D18)

mx
B,T2

= 1

8

3∑
α=0

[ − 2cx,αm2
α,E

] = 1

8
√

2

3∑
α=0

cx,α[Eα,yy − Eα,zz] = 1

8
√

2

3∑
α=0

cx,α[−Eα,zz + i(E−
α,zz − E+

α,zz )], (D19)

my
B,T2

= 1

8

3∑
α=0

[
− 2cy,α

(
−

√
3

2
m1

α,E − 1

2
m2

α,E

)]
= 1

8
√

2

3∑
α=0

cy,α[Eα,zz − Eα,xx] = 1

8
√

2

3∑
α=0

cy,α[Eα,zz − (E−
α,zz + E+

α,zz )],

(D20)

mz
B,T2

= 1

8

3∑
α=0

[
− 2cz,α

(√
3

2
m1

α,E − 1

2
m2

α,E

)]
= 1

8
√

2

3∑
α=0

cx,α[Eα,xx − Eα,yy] = 1

8

3∑
α=0

cz,α[p−E−
α,zz + p+E+

α,zz], (D21)
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mx
B,T1+ = −1

8

3∑
α=0

cx,α

[
2

(
1√
3

mα,A2 −
√

2

3
m1

α,E

)]
= −1

8

3∑
α=0

cx,αEα,xx = −1

8

3∑
α=0

cx,α (E−
α,zz + E+

α,zz ), (D22)

my
B,T1+

= −1

8

3∑
α=0

cy,α

[
2

(
1√
3

mα,A2 + 1√
6

m1
α,E − 1√

2
m2

α,E

)]
= −1

8

3∑
α=0

cy,αEα,yy = −1

8

3∑
α=0

icy,α (E−
α,zz − E+

α,zz ), (D23)

mz
B,T1+ = −1

8

3∑
α=0

cz,α

[
2

(
1√
3

mα,A2 + 1√
6

m1
α,E + 1√

2
m2

α,E

)]
= −1

8

3∑
α=0

cz,αEα,zz. (D24)

APPENDIX E: BOUNDARY CHARGES FROM OTHER
PERTURBATIVE TERMS

Here, we will discuss the possible perturbations from the
other perturbation terms, described in the main text. For il-
lustration, let us consider the same example from the main
text, which is E+

1,zzE
+
2,zz on the xy plane. At the first-order

perturbation, it results in a state that has the charge con-
figuration presented in Fig. 9. In contrast with the case of
E+

1,zzE
−
2,zz, the charge on the overlapped region (represented

by green square in Fig. 9) between the charge configurations
created by E+

1,zz and E+
2,zz is not canceled out, but piled up,

so there is a +2 z charge represented by a big red circle
with a + sign. If we try to perform the higher-order pertur-
bation by using E+

1,zzE
+
2,zz on the xy plane in a way similar

to the membrane operator composed of E+
1,zzE

−
2,zz in the main

text, the charges on the overlapped region are not canceled,
but they are accumulated. As a result, the resulting state
has ±2 z charges inside of it (Fig. 10). Even if we take
the periodic boundary condition on the x and y directions,
the plane is covered by ±2 z charges. As such, we cannot
return back to the charge-neutral ground state by using the
membrane operator of E+

1,zzE
+
2,zz, unlike the membrane op-

erator of E+
1,zzE

−
2,zz. However, there is a way to return back

to the charge-neutral vacuum as follows. We need to apply
the membrane operator consisting of E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz

FIG. 9. The top-down view of charge configuration for E+
1,zzE

+
2,zz.

Here, the gray and white squares represent the positions of the
charges located on z = 1/4 and z = −1/4, respectively. The green
circles indicate the location of the A tetrahedra on the same xy plane,
z = 0. In contrast with E−

1,zzE
+
2,zz, the charge on the overlapped region

(green square) between the charge configurations created by E+
1,zz

and E+
2,zz is not canceled out, but piled up, so there is +2 z charge

represented by a big red circle with + sign.

on all the other (stacked) planes (Fig. 11). For example, let
us consider the charge configurations (a) and (b) in Fig. 11
created by applying the membrane operators consisting of
E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz on the xy planes located at z = 0

and z = 1/2, respectively. Then, the charges located at the
overlapped regions (yellow squares located at z = 1/4) be-
tween two charge configurations are canceled out, and there
remain alternative ±1 z charges at the corners. If we keep
repeating this on the other planes in the z direction, we can
cancel out the bulk charges inside of it [Fig. 12(a)]. As a
result, we will get the remaining boundary charges on the
bottom and top surfaces, and hinges (corners). If we take
the periodic boundary condition on the z direction, we can
cancel out the boundary charges on the bottom and top
surfaces, and we have the remaining charges at the corner
(hinges). These charges on the hinges can be canceled out
by taking the periodic boundary conditions on the x or y
directions. For example, in Fig. 12(a), we stack the charge
configurations in Fig. 11 generated by the membrane oper-
ators consisting of E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz, so we have the

boundary charges on the bottom (z = −1/4) and top (z =
7/4) surfaces, and hinges. If we identify the blue (z = 0)
and red (z = 2) planes, the charges below the blue and the
red planes are canceled out, and there remain the charges at
the corners [Fig. 12(b)]. So we have the charges at the cor-
ners (hinges) located at z = 3/4 and z = 7/4 (z = 7/4 is the
same with z = −1/4 because we now identify z = 0 and z =
2). As a result, E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz generate the afore-

mentioned perturbations to return back to the charge-neutral
vacuum.

Note that these stacked operators can be replaced by the
other membrane operators introduced in the main text. For the
above example, the stacked operators increase Ezz quantum
numbers by 1 at all the A tetrahedra. This means that the
stacked operator consisting of E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz can

be replaced by the combinations of the membrane opera-
tors consisting of E+

0,zzE
+
2,zz and E+

1,zzE
+
3,zz on the xz planes,

or E+
0,zzE

+
1,zz and E+

2,zzE
+
3,zz on the yz planes, which are in-

troduced in the main text, respectively. It is the same for
all other combinations of the operators that do not make
use of the membrane operators in the main text. Thus, all
the perturbations that tunnel between the ground states can
be expressed in terms of the membrane operators which
are introduced in the main text, and as such the membrane
operators can be regarded as the fundamental operators on
the breathing pyrochlore lattice. We present the summary
for the stacked operators and their membrane replacements
in Table V.
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FIG. 10. Depiction of the fourth-order perturbation by the membrane operators consisting of E+
1,zzE

+
2,zz. The red circle with + sign and

blue circle with − sign stand for the ±1 z charges, and the big red circle with + sign stands for +2 z charge, respectively. The charges in the
overlapped region are piled up, so ±2 z charges are inside of it and ±1 z charges on the edge.

APPENDIX F: MIXTURE OF PERTURBATIVE TERMS

In the main text, we briefly discussed that a mixture of the
perturbative operators prohibits a tunneling process between
the ground states. Here, we will present an illustrative example
about it. Consider Fig. 13, where we replace one E+

1,zzE
−
2,zz

by E+
1,zzE

+
2,zz in Fig. 5(b). After taking periodic boundary

conditions, we arrive at a cluster of charges on the top left-
hand corner. Since this charge configuration is centered at the
A-tetrahedron site, we cannot easily cancel it out by creating
charge configurations at the adjacent xy planes because the
A-tetrahedron sites on the adjacent planes are not located
directly above in the face-centered cubic lattice. Due to this
geometric mismatch, charges on adjacent planes are unable to

be canceled out in the manner of Appendix E. As we discussed
in Sec. IV D of the main text, in our lattice geometry, since the
charges are created tetragonally in three dimensions, the best
ways to cancel out the charges are the membrane operators or
stacked operators of Appendix E. For that reason, the mixture
of the operators cannot tunnel between the ground states, but
can make chargeful excited states.

APPENDIX G: ROLE OF DIAGONAL PERTURBATIVE
TERMS

In the main text, we discussed in detail the role of possible
perturbative terms that allow the system to tunnel between

FIG. 11. Depiction of stacking of the perturbations for different sets of operators for Lx = Ly = Lz = 2. (a)–(d) The charge configurations
when we apply the membrane operators consisting of E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz on xy planes at z = 0, 1/2, 1, and 3/2, respectively. In other

words, we apply the raising operators E+
zz on the A-tetrahedron sites on the xy planes at z = 0, 1/2, 1, and 3/2, respectively. At this time,

z charges are created above and below the plane. The white, yellow, red-diagonal, and blue-diagonal grid squares stand for the positions at
which the z charges are created when we apply the membrane operators, and they are located on z = −1/4, 1/4, 3/4, and 5/4, respectively.
The red circle with + sign and blue circle with − sign stand for the ±1 z charge, and the big red circle with + sign and big blue circle with
− sign stand for the ±2 z charge, respectively. For example, if we apply the membrane operator on xy plane at z = 0 [charge configuration
in (a)], −2 z charges are created at z = 1/4 [yellow squares in (a)] and +2 z charges are created at z = −1/4 [white squares in (a)]. The
charges on overlapped regions between adjacent xy planes are canceled out. For example, in (a) and (b), the yellow squares are overlapped
because they are located at the same z = 1/4 position, and the charges on the overlapped region are canceled out because the charges from
each configuration have opposite sign. Still remaining are the charges on the corners. As a result, by stacking the charge configurations by the
membrane operators consisting of E+

1,zzE
+
2,zz and E+

0,zzE
+
3,zz on xy planes, we can get the boundary charges on the bottom (z = −1/4) and top

(z = 7/4) surfaces, and the hinges (corners). The right bar legend stand for the locations at which the membrane operators (E+
zz) are applied

and ±2 charges are created in terms of z positions.
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FIG. 12. The stacking and periodic boundary conditions of the resulting charge configuration by the membrane operators consisting of
E+

1,zzE
+
2,zz when Lx = Ly = 2. The light gray, gray, and dark gray cubics represent the positions of the charges located at z = −1/4, 3/4, and

7/4, respectively. (a) The stacking of the charge configuration by the membrane operators consisting of E+
1,zzE

+
2,zz when Lx = Ly = 2. The

red upward and blue downward arrows mean ±1 z charges, respectively. The bundles of two red or two blue arrows stand for ±2 z charges,
respectively By stacking the charge configurations in Fig. 11, we get the boundary charges on bottom (z = −1/4) and top (z = 7/4) surfaces,
and hinges (z = 3/4), respectively. The red and blue planes are located at z = 0 and z = 2, respectively. By identifying the red and blue planes,
the charges on the overlapped region between bottom and top surfaces are canceled out, and the hinge charges on corners at z = 3/4 and
z = 7/4 remain. (b) The top-down view of the hinge (corner) charge configuration after taking the periodic boundary condition on z direction.
By identifying the green and yellow lines, the hinge (corner) charges are canceled out; we can get the charge-neutral vacuum.

the various ground state manifolds. This was motivated by
earlier works in quantum spin ice, where transverse coupling
terms allowed the tunneling between the largely degenerate
two-in, two-out ice states, which manifested a ring-exchange
magnetic vector potential. Though understanding the delicate
stability of the proposed quantum fractonic ground state (in
particular, whether it may survive when considered along with
the charge-creating perturbative terms) requires a more elab-
orate numerical study, we can nonetheless glean the effects of
such a term by simply considering the possible energy shift
it may have on our ground state manifold within first-order
perturbation theory.

Let us consider the expectation value for EA,zzEA′,zz in
terms of the ground states. The expectation value is given by

〈∑
A,A′

aAA′ÊA,zzÊA′,zz

〉
ψ

= 〈ψ |
∑
A,A′

aAA′ÊA,zzÊA′,zz|ψ〉

= − (JB − KB)

64

∑
B

( ∑
Bα

EBα,zz

)2

− (JB + KB)

64

∑
B

(∑
Bα

cx,Bα
EBα,zz

)2

− (JB + KB)

64

∑
B

(∑
Bα

cy,Bα
EBα,zz

)2

, (G1)

where ψ stands for a given ground state, and Êα,zz and Eα,zz

are the electric field quantum number operator and eigen-
value at α, respectively. Bα stands for the αth A tetrahedron
surrounding the B tetrahedron. The coefficients aAA′ are de-
termined by Eqs. (D13)–(D24) in Appendix D. As is evident,
the energy shift due to this term depends on the Heisenberg JB

and KB from sublattice B.
In our work, motivated by concrete material examples such

as Ba3Yb2Zn5O11 [52,53], we take J as positive on both of
the A and B sublattices. As such, the fate of the ground state

TABLE V. The stacked operators and their replacements by the combination of the membrane operators. For example, if we apply the
membrane operators consisting of E±

1,zzE
±
2,zz and E±

0,zzE
±
3,zz on all xy planes, we can get the stacked operators. And the stacked operators can be

replaced by the combinations of the membrane operators consisting of E±
0,zzE

±
2,zz and E±

1,zzE
±
3,zz on xz planes, or E±

0,zzE
±
1,zz and E±

2,zzE
±
3,zz on yz

planes.

Planes Stacked operators Membrane replacements

xy E±
1,zzE

±
2,zz and E±

0,zzE
±
3,zz E±

0,zzE
±
2,zz and E±

1,zzE
±
3,zz on xz planes/E±

0,zzE
±
1,zz and E±

2,zzE
±
3,zz on yz planes

xz E±
0,zzE

∓
2,zz and E±

1,zzE
∓
3,zz E±

1,zzE
∓
2,zz and E±

0,zzE
∓
3,zz on xy planes/E±

0,zzE
±
1,zz and E∓

2,zzE
∓
3,zz on yz planes

yz E±
0,zzE

∓
1,zz and E±

2,zzE
∓
3,zz E∓

1,zzE
±
2,zz and E±

0,zzE
∓
3,zz on xy planes/E±

0,zzE
±
2,zz and E∓

1,zzE
∓
3,zz on xz planes
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FIG. 13. The depiction of the mixture of the operators. We can get the figure on the left panel if we replace one E+
1,zzE

−
2,zz by E+

1,zzE
−
2,zz in

Fig. 5(b). If we take the perturbation on the left panel, we can get the charge configuration on the middle panel. In the overlapped regions, the
charges have the opposite sign; then they are canceled out. However, if they have the same sign, they are piled up. The red circle with + sign
and blue circle with − sign stand for the ±1 z charge, and the big red circle with + sign and big blue circle with − sign stand for the ±2 z
charge, respectively. On the middle panel, by taking the periodic boundary condition on the x and y directions, we get a cluster of the charges
on the top left-hand corner (right panel). The green and yellow lines are identified, respectively.

degeneracy due to the above perturbative term rests on KB.
When KB = 0, the electric field quantum number configu-
rations of the remnant ground states consist of |EA,zz| = 2
at each A tetrahedron. When KB > 0, the second and third
terms in Eq. (G1) will play a dominant role. In this case,
on each xy plane, the electric field quantum numbers on the
line along the y direction are the same, while the adjacent
lines have opposite signs [see Fig. 14(a)]. So, for each xy
plane, we have two possibilities, and since we have a 2Lz

number of xy planes, the resulting remnant ground state de-
generacy is GSDKB>0 = (2 × 2) × · · · × (2 × 2) = 22Lz . On

the other hand, when KB < 0, the first term in Eq. (G1)
will play a dominant role. Indeed, it is accomplished by
configurations where all the electric field quantum num-
bers are equal to +2 or −2 at all of the A tetrahedra (see
Fig. 14). For example, in the (1,1,1) geometry, these states
correspond to the (E0,zz,E1,zz,E2,zz,E3,zz ) = (2, 2, 2, 2) and
(−2,−2,−2,−2) configurations. We list the remnant ground
state degeneracies for a number of geometries in Table VI.

Generalizing the results from Table VI, we find that the
remnant GSD with KB = 0 for a given lattice geometry is
given by the simple analytic form GSDKB=0 = 22L1 + 2 +

FIG. 14. The electric field quantum number configurations of the remnant ground states for (a) K > 0 and (b) K < 0.
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TABLE VI. Table for the ground state degeneracy. GSD and
GSD

K�0
stand for the ground state degeneracies in the absence and

presence of EA,zzEA′,zz, respectively.

Lx Ly Lz GSD GSDK=0 GSDK>0 GSDK<0

1 1 1 85 6 4 2

2 1 1 1 333 18 4 2
1 1 2 1 333 18 16 2

3 1 1 25 405 66 4 2
1 1 3 25 405 66 64 2

4 1 1 535 333 258 4 2
1 1 4 535 333 258 256 2

2 2 1 10 213 30 4 2
1 2 2 10 213 30 16 2

2 2 2 49 541 42 16 2

3 2 1 116 653 78 4 2
1 3 2 116 653 78 16 2
1 2 3 116 653 78 64 2

12(L2 − 1) + 12(L3 − 1) = 22L1 + 12(L2 + L3) + 22, where
L1 is a maximum value among Lx, Ly, and Lz, and L2 and L3

are second and third highest values, respectively. The remnant
GSD with KB > 0 is 22Lz , while the remnant GSD KB < 0 is 2,
as mentioned before. This implies that in the thermodynamic
limit, Lx,y,z → ∞, the ground state degeneracy for KB � 0
is dependent on lattice geometry, exponentially grows with
system size, and is subextensive in system volume. As such,
even with the inclusion of such a term, we are led to find that
the phase of matter still possesses characteristics of quantum
fractonic ground states.

APPENDIX H: GEOMETRICAL RESTRICTIONS
PROHIBITING FINITE-ORDER PERTURBATIVE

PROCESSES

The primary source of difficulty in the generation of
a finite-order magnetic field is the complicated three-
dimensional geometry of the breathing pyrochlore lattice. The
application of a raising/lowering operator leads to charges
being created in a three-dimensional volume as seen in Fig. 3.
This is unlike the case of creating charges in a (lower-
dimensional) line or plane where a finite-order perturbation
can be more easily realized. Consider the scenario where
charges are created along a one-dimensional line, as seen in
Fig. 15(a) by acting a raising/lowering operator of a link
connecting two sites. Applying raising/lowering operators
parallel to the line results in edges being created at the ends
of the line. To circumvent this “corner edge” problem, one
can consider applying the operator along a perpendicular
direction (to the line of charge) that allows the charges to
be “wrapped around” and eventually cancel each other [as
shown in Fig. 15(b)]; in this example, each site has an equal
number of positive (red) and negative (blue) charges. As
such, by employing a higher dimension, one can imagine
the generation of a magnetic field at finite order in perturba-
tion. This one-dimensional “line of charge” construction is a

FIG. 15. Degree of complexity of eliminating corner edge
charges in different dimensions on a simple cubic lattice. (a),
(b) One-dimensional corner charge elimination by utilizing two-
dimensional pathway. (c), (d) Two-dimensional corner charge
elimination by utilizing three-dimensional pathway. (e), (f) Inability
to eliminate three-dimensional corner charges using any three-
dimensional pathways.

simple way to understand why a finite-order perturbation was
permitted in the quantum spin ice setting (in that case the
charges are wrapped around a hexagon [47]). Next consider
charges created in a two-dimensional plane of a cubic lattice
in Fig. 15(c) by acting as a raising/lowering operator at the
center of a square face. Once again, corner charges on a plane
are created if the raising/lowering operators are continuously
applied parallel to the plane of charges. The charges can be
eliminated by once again accessing a higher dimension—in
this example, perpendicular to the plane of charges as seen
in Fig. 15(d) such that each site has an equal number of
positive (red) and negative (blue) charges. Through these
lower-dimensional examples, one can appreciate the difficulty
in eliminating the charges at finite order in perturbation as
seen in a simple three-dimensional example of Fig. 15(e) and
15(f). Even in this depicted “simpler” geometry of a simple
cubic lattice the corner charges cannot be easily eliminated by
raising/lowering operators acting at the center of the cubes;
as seen, each site has an unequal number of positive (red)
and negative (blue) charges. Indeed, by extending the ideas of
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eliminating lower-dimensional charge configurations, it sug-
gests that an additional (and not achievable in this setting)

fourth dimension may be required to eliminate the corner
charge on the breathing pyrochlore lattice.
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