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Predictions of localized Majorana modes, and ideas for manipulating these degrees of freedom, are the two key
ingredients in proposals for physical platforms for Majorana quantum computation. Several proposals envisage
a scalable network of such Majorana modes coupled bilinearly to each other by quantum-mechanical mixing
amplitudes. Here, we develop a theoretical framework for characterizing collective topologically protected zero-
energy Majorana fermion excitations of such networks of localized Majorana modes. A key ingredient in our
work is the Gallai-Edmonds decomposition of a general graph, which we use to obtain an alternate “local” proof
of a “global” result of Lovász and Anderson on the dimension of the topologically protected null space of real
skew-symmetric (or pure-imaginary Hermitian) adjacency matrices of general graphs. Our approach to Lovász
and Anderson’s result constructs a maximally localized basis for the said null space from the Gallai-Edmonds
decomposition of the graph. Applied to the graph of the Majorana network in question, this gives a method
for characterizing basis-independent properties of these collective topologically protected Majorana fermion
excitations, and relating these properties to the correlation function of monomers in the ensemble of maximum
matchings (maximally packed dimer covers) of the corresponding network graph. Our approach can also be
used to identify signatures of zero-energy excitations in systems modeled by a free-fermion Hamiltonian with a
hopping matrix of this type; an interesting example is provided by vacancy-induced Curie tails in generalizations
(on nonbipartite lattices) of Kitaev’s honeycomb model.

DOI: 10.1103/PhysRevB.105.235118

I. INTRODUCTION

Predictions for the existence of localized Majorana fermion
modes, and ideas for addressing and manipulating these de-
grees of freedom, are the two key ingredients in proposals
for physical platforms for Majorana quantum computa-
tion. Several proposals envisage a scalable network of such
Majorana modes coupled bilinearly to each other by quantum-
mechanical mixing amplitudes. A key motivation for such
proposals is the expectation that such a network will not
be susceptible to local perturbations that can cause decoher-
ence and degrade the performance of a quantum computer.
Very roughly speaking, the idea is that a localized Ma-
jorana mode is “one half of a canonical fermion,” and
is therefore robust to local perturbations which do not
act of the “other half” that is spatially separated from
it [1,2].

Such a localized and topologically protected Majorana
mode has been predicted [3,4] to exist in the core of vor-
tices in a two-dimensional p + ip superconductor. In a sample
with 2n vortices, each vortex hosts a single localized Ma-
jorana mode, resulting in a system of 2n modes that mix
weakly with each other if the intervortex separations are
large. A vortex-lattice state of such superconductors is thus
expected to provide a natural realization of a network of
Majorana modes coupled by weak mixing amplitudes that can
have interesting modulations in their values [5]. The Pfaf-
fian state at filling fraction ν = 5/2 in fractional quantum

Hall samples is also expected [3,4] to host such Majorana
modes.

Superconducting wires with strong spin-orbit coupling are
expected to provide another realization of Majorana modes at
the ends of the wire [6,7], including in the case with multiple
channels [8]. These modes are expected to be relatively ro-
bust to disorder [9], although strong enough disorder leads to
Griffiths effects that complicate the low-energy physics [10].
Motivated by these expectations, proposals for creating net-
works of coupled wires hosting such modes have also been
explored [11]. The effect of interactions and bond disorder
(disorder in the mixing amplitudes) in such networks has also
been explored in some specific cases [12–14].

Here, we develop a theoretical framework for characteriz-
ing collective topologically protected zero-energy Majorana
fermion excitations of such Majorana networks in the pres-
ence of both bond disorder in the mixing amplitudes and
site disorder (deleted nodes). The random deletion of nodes
models local imperfections of the physical platform, which
leads to a particular localized Majorana mode being ab-
sent, while the disorder in the mixing amplitudes models
variations in the relative positions of the localized Majo-
rana modes that make up the network. In this particular
context, what we mean by “topologically protected” zero-
energy Majorana excitations is simply that their existence
only depends on the pattern of nonzero mixing ampli-
tudes in the network, but not on their specific nonzero
values.
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A key ingredient in our work is the Gallai-Edmonds de-
composition [15–17] of a general graph, which we use to
give an alternate “local” proof of a “global” result of Lovász
and Anderson [18,19] which equates the dimension of the
topologically protected null space of a real, skew-symmetric
(or pure-imaginary Hermitian) matrix to the number of
monomers in any maximum matching (maximally packed
dimer configuration) of the associated graph [20,21]. Our
proof of this result uses the Gallai-Edmonds decomposition
of the associated graph to construct a maximally localized
basis for the said null space [22–24]. A key aspect of our
construction is that the topologically protected zero modes
obtained in this way depend only on the pattern of the nonzero
connections in the network, and are determined without any
reference whatsoever to the other nonzero eigenvalues that
make up the rest of the spectrum.

This construction, which is an essential part of our proof
of the Lovász-Anderson result, can be viewed as a natural
generalization of the local argument given in Ref. [25] for
the corresponding results of Longuet-Higgins [26] on bipartite
Hermitian matrices (without any requirement of skew symme-
try). Indeed, Ref. [25] drew on an earlier proposal [27] for the
origin of such topologically protected zero-energy eigenstates
in the tight-binding model for diluted graphene and used the
bipartite version of the Gallai-Edmonds decomposition (the
Dulmage-Mendelsohn decomposition [17,28,29]) to construct
a maximally localized basis for such topologically protected
zero modes of bipartite Hermitian matrices. Our construction
here generalizes this analysis to Hermitian skew-symmetric
matrices without any requirement of a bipartite structure.

Thus, Ref. [25] characterizes topologically protected zero
modes of hopping Hamiltonians in which the hopping am-
plitudes can be arbitrary complex numbers, but the hopping
only connects nearest-neighbor sites of a bipartite lattice. In
contrast, the present analysis characterizes such topologically
protected zero modes of hopping Hamiltonians in which the
hopping amplitudes are purely imaginary, but the hopping
can connect any two vertices of a completely general graph;
this includes for instance examples such as the honeycomb
and square lattices with arbitrary further neighbor hopping, so
long as all hopping amplitudes are purely imaginary.

Applied to the Majorana network Hamiltonian, this gives a
method for characterizing basis-independent properties of col-
lective topologically protected zero-energy Majorana fermion
excitations of the network, and relating these properties to the
correlation function of monomers in the maximally packed
dimer model on the corresponding network graph. In par-
ticular, it provides convenient access to basis-independent
localization properties of the zero-energy on-shell Green’s
function of the network. This is clearly of significance in
the context of various proposals for physical platforms for
Majorana computation, since these collective topologically
protected Majorana excitations of the network as a whole
can serve as qubits in a Majorana quantum computer even
when the original Majorana qubits of the network are de-
stroyed by strong mixing amplitudes. Our approach can also
be used to identify signatures of zero-energy excitations in
other systems modeled by a free-fermion Hamiltonian with
a hopping matrix of this type. In particular, it can be used to
understand vacancy-induced Curie tails in Kitaev-type models

of Majorana spin liquids and mean-field theories for such a
spin-liquid state [30–38].

The remainder of this paper is organized as follows: In
Sec. II, we introduce the Majorana network Hamiltonian of
interest to us, summarize the classical results of Tutte, Lovász,
and Anderson on the dimension of the null space of real skew-
symmetric (equivalently, pure-imaginary Hermitian) matrices,
and review how they determine the number of topologically
protected zero-energy Majorana excitations of the network
as a whole. Section III is devoted to our construction of a
basis of maximally localized wave functions for the collective
topologically protected Majorana fermion excitations of the
network. In Sec. IV, we discuss some algorithmic issues that
are important in the limit of very large Majorana networks.
In Sec. V we discuss the applicability of our approach to
quadratic canonical fermion systems, outline its connection to
earlier results, give some simple examples of our construction
at work, and sketch some possibilities for further work.

II. COUNTING ZERO-ENERGY EIGENSTATES
OF A MAJORANA NETWORK

As envisaged in various proposals for Majorana quantum
computation, we consider a system of localized Majorana
modes labeled by their position r, with corresponding Ma-
jorana fermion operators ηr satisfying the anticommutation
relations

{ηr, ηr′ } = 2δrr′ . (1)

These modes are coupled bilinearly by quantum-mechanical
mixing amplitudes, leading to a many-body Hamiltonian of
the form

HMajorana = i

4

∑

rr′
arr′ηrηr′ , (2)

where arr′ = −ar′r are real-valued amplitudes that couple
modes at sites r and r′, and the factor of 4 is merely a matter
of convention. As already noted, the quadratic Hamiltonian
HMajorana is also of interest in the context of various generaliza-
tions of Kitaev’s honeycomb model to other three-coordinated
lattices [30–38].

A. Basic formalism

The excitation spectrum of HMajorana follows immediately
from the eigenspectrum of the 2L × 2L skew-symmetric Her-
mitian matrix iarr′ in the usual way, which we recap here
for completeness. The nonzero eigenvalues of iarr′ come in
pairs that have a common magnitude, with the eigenvectors
being complex conjugates of each other. Denote these pairs
as (εp,−εp) where p = 1, 2, . . . , N (N � L) and εp > 0 by
definition, and let [ψp(r), ψ∗

p (r)] be the corresponding eigen-
vectors. In addition, the eigenvalue ε = 0 can occur with an
even multiplicity 2Z (with Z = L − N). We denote the cor-
responding null eigenvectors by φq(r) with q = 1, 2, . . . , 2Z;
note that the wave-function amplitudes φq(r) can be chosen
to be purely real, unlike the wave functions ψp(r) which are
complex valued in general.
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With this in hand, we define N canonical fermion operators

fp = 1√
2

∑

r

ψ∗
p (r)ηr for (p = 1, 2, . . . , N ), (3)

and the 2Z Majorana operators

γq =
∑

r

φq(r)ηr for (q = 1, 2, . . . , 2Z ). (4)

As will be clear presently, these correspond to the 2Z zero-
energy Majorana fermion excitations of HMajorana. Using the
orthonormality of the eigenvectors of the skew-symmetric
Hermitian matrix iarr′ , it is easy to verify that the 2Z Majorana
operators and the N canonical fermions obey the standard
anticommutation relations

{ fp, f †
p′ } = δpp′ , {γq, γq′ } = 2δqq′ , (5)

with all other anticommutators being identically zero. If
we form (arbitrarily chosen) pairs (γq, γq̄), say with q =
1, 2, . . . , Z and q̄ = q + Z , we can also define Z canonical
fermion operators and complex wave functions based on this
pairing,

gq = 1
2 (γq + iγq̄) for (q = 1, 2, . . . Z ),

ζq(r) = φq(r) − iφq̄(r). (6)

This is sometimes convenient for representing the zero-mode
contribution to various quantities.

Using the resolution of identity

δrr′ =
2Z∑

q=1

φq(r)φq(r′) +
N∑

p=1

[ψ∗
p (r)ψp(r′) + H.c.], (7)

we can express all the ηr in terms of terms of fp and gq as

ηr =
Z∑

q=1

[ζq(r)gq + ζ ∗
q (r)g†

q]

+
√

2
N∑

p=1

[ψp(r) fp + ψ∗
p (r) f †

p ]. (8)

Upon using this expression for ηr , we find

HMajorana =
N∑

p=1

εp( f †
p fp − 1/2). (9)

Thus, the canonical fermions fp correspond to the nonzero-
energy excitations of the Majorana network, while the
Majorana operators γq determine the ground-state degeneracy
of HMajorana (since the occupation state of the canonical or-
bitals gq constructed from pairs of these Majorana operators
do not enter the expression for the energy).

For the purposes of this paper, the basic message from the
elementary analysis reviewed here is that the wave functions
φq(r) of the null vectors of the skew-symmetric Hermitian
matrix iarr′ determine the spatial structure of the collective
zero-energy Majorana excitations of the network as a whole.
With this background, our goal in what follows is to develop
a general construction of a maximally localized basis for the
topologically protected null space of iarr′ .

FIG. 1. (a) A pair of adjacent vertices matched to each other, i.e.,
connected by a dimer on the link between them. (b) An unmatched
vertex hosting a monomer, i.e., not connected by a dimer to any of
its neighbors. (c) A segment of an alternating path starting from a
monomer. (d) An augmenting path, i.e., an alternating path that starts
and ends at a monomer. (e) An alternating cycle. See Sec. II for a
detailed discussion.

B. Matchings and Tutte’s theorem

A key result of Tutte [39,40] on the absence topologically
protected null vectors of arr′ is based on viewing arr′ as the
real-valued skew-symmetric adjacency matrix of an associ-
ated graph. Since Tutte’s argument involves the combinatorial
problem of maximum matchings on this graph, we begin
with a quick digression that reviews the relevant concepts
and terminology (see Fig. 1 for a pictorial summary); this
will also come in handy in our subsequent discussion of the
Gallai-Edmonds decomposition of a general graph in Sec. III.

1. Matchings

A matching of a graph pairs up each vertex of the graph
with an adjacent vertex, with the constraint that two distinct
vertices do not have the same partner. If we put dimers (hard
rods) down on each edge (nearest-neighbor link) that connects
a vertex with its partner, we can represent a matching as a
configuration of a lattice gas of dimers that obey a hard-core
constraint (no two dimers can touch at a vertex). If all vertices
are matched, one has a perfect matching, or a fully packed
dimer cover. As a result of the hard-core constraint, a perfect
matching may not be possible and some minimum number of
vertices may have to be left unmatched; these are said to host
monomers of the corresponding dimer cover. In such cases,
it is interesting to consider maximum matchings (maximally
packed dimer covers), i.e., matchings that match the maximum
possible number of vertices of a graph and have the largest
possible number of dimers.

Given a particular matching of a graph, an alternating
path is defined as a path that starts at some vertex and goes
alternately along matched and unmatched edges of the graph,
with no vertex repeated and no edges traversed twice. If an
alternating path returns to the starting vertex, it is an alter-
nating cycle. Thus, in an alternating cycle, each vertex has
one matched and one unmatched edge of the cycle incident
upon it. With this terminology in hand, it is easy to see that
a matching is a maximum matching if and only if there are
no alternating paths of odd length (odd number of edges)
connecting two unmatched sites.
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2. Tutte’s theorem

We can now state Tutte’s theorem using this terminol-
ogy: A graph has a perfect matching (fully packed dimer
cover) if and only if its skew-symmetric adjacency matrix
has no topologically protected null vectors. An elementary
proof, relying only on the definition of a determinant and
the cycle decomposition of permutations, goes as follows.
Consider the determinant of arr′ defined as a sum over
permutations,

det(a) =
∑

P

sgn(P)
2N∏

r=1

ar P(r), (10)

and decompose P into its cycles. If P has a one-cycle, i.e., it
leaves any r fixed, then the corresponding product in Eq. (10)
has a diagonal element as one factor, and must be zero by
skew symmetry of arr′ . Next, consider a permutation P that
has some cycles of odd length greater than one (involving
three or more distinct vertices) in its decomposition. For each
such cycle c involving an odd number of elements, there
is another permutation P̃c that differs from P only by the
replacement of c by c−1; all other cycles of P remain un-
changed in going from P to P̃c. By the skew symmetry of
arr′ , the contributions of P and P̃c cancel each other in the
expansion of the determinant. This is because the product
associated with P̃c in Eq. (10) contains an odd number of
matrix elements whose sign has been reversed relative to the
corresponding factors in the product associated with P (due to
the skew symmetry of arr′ ), while sgn(P) = sgn(P̃c). There-
fore, due to such cancellations, det(a) for a skew-symmetric
matrix can be written as a restricted sum over permuta-
tions that have no cycles with an odd number of distinct
vertices,

det(a) =
∑̃

P

sgn(P)
2L∏

r=1

ar P(r), (11)

where the tilde on the sum reminds us that it is taken over
permutations whose cycle decomposition only has cycles in-
volving an even number of elements.

Next, notice that any term in the restricted expansion
[Eq. (11)] of the determinant corresponds to 2lP different
perfect matchings of the associated graph, where lP is the
number of independent cycles of four or more elements in
the decomposition of the permutation P. This is because each
even cycle in P corresponds to a simple nonintersecting loop
of even length on the associated graph, and such even length
loops can always be perfectly matched. In fact, any such loop
of length four or more can be perfectly matched by dimers in
two different ways, while a length two loop involving just two
vertices is just a “doubled” edge (traversed in both directions),
which has a unique perfect matching obtained by placing a
dimer on this edge.

Therefore, if det(a) does not vanish identically, i.e., does
not vanish as an algebraic expression written in terms of
matrix elements treated as independent variables, the associ-
ated graph must admit a perfect matching. Conversely, if the
associated graph has a perfect matching, then the expansion
of det(a) has at least one term that is not identically zero.
Thus, a perfect matching exists if and only if det(a) does

not vanish identically. Now, note that arr′ has a topologically
protected null vector if and only if det(a) vanishes identically
as an algebraic expression written in terms of matrix elements
treated as independent variables. Therefore, we have proved
Tutte’s result: that det(a) is nonzero if and only if arr′ has no
topologically protected null vectors.

C. Lovász and Anderson’s generalization of Tutte’s theorem

Since Tutte’s theorem relates the absence of any topo-
logically protected null vectors of arr′ to the existence of a
perfect matching of the associated graph, it is natural to ask
if the dimension of the topologically protected null space of
a real skew-symmetric matrix arr′ is related in a simple way
to the number of monomers in any maximum matching of the
associated graph. Lovász [18] and Anderson [19] proved that
the two are indeed precisely equal to each other. Here, we
follow the exposition of Rabin and Vazirani [21] and sketch
a version of the proof which relies on a classical result of
Frobenius on antisymmetric matrices [41].

Consider the graph corresponding to a 2L × 2L skew-
symmetric real matrix arr′ . Let 2Z be the number of
topologically protected null vectors of arr′ , and let N ≡ L − Z
as before. Let any maximum matching of the associated graph
have 2M monomers in it, i.e., it leaves 2M vertices of this
graph uncovered. Consider any one maximum matching of
this graph, and consider the subgraph defined by the matched
vertices of this maximum matching and edges between them.
Since this subgraph is perfectly matched, Tutte’s theorem tells
us that the corresponding submatrix of arr′ has no topologi-
cally protected null vectors. Equivalently, its determinant does
not vanish identically, i.e., there is at least one choice of values
of the nonzero matrix elements that makes its rank equal to
2L − 2M.

This implies 2Z � 2M. To see why, assume that this is not
true, and 2Z > 2M. Then, by the rank-nullity theorem, any
submatrix of arr′ of size greater than 2L − 2Z must have a
determinant that vanishes identically. Since we have produced
a submatrix of size 2L − 2M which has a determinant that
does not vanish identically, we must have 2L − 2M � 2L −
2Z , implying

Z � M. (12)

To establish the reverse inequality, consider a specific as-
signment of values to the nonzero elements of arr′ which
ensures that the resulting matrix has exactly 2Z null vectors.
By the rank-nullity theorem, there is exists a 2N × 2N non-
singular submatrix Aαβ of arr′ such that the row indices of
elements of this submatrix form the subset α of 2N distinct
indices drawn from (1, 2, . . . , 2L), while the column indices
of elements of this submatrix form another subset β of 2N dis-
tinct indices drawn from (1, 2, . . . , 2L). These two subsets α

and β are identical only if the submatrix Aαβ is symmetrically
located, which is not guaranteed in general.

However, for our skew-symmetric matrix arr′ , one can
appeal to a theorem of Frobenius [41], which guarantees
that det(Aαα ) det(Aββ ) = (−1)2N det(Aαβ ) (using the notation
introduced above). Since det(Aαβ ) is nonzero, this guaran-
tees the existence of a symmetrically located nonsingular
2N × 2N submatrix Aαα with nonzero determinant. This sym-
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metrically located submatrix Aαα of arr′ can be viewed as the
skew-symmetric adjacency matrix of the subgraph consist-
ing of the subset α of vertices, with edges corresponding to
nonzero elements of Aαα . Since Aαα has a nonzero determi-
nant, this subgraph has a perfect matching by Tutte’s theorem.
Therefore, the size 2L − 2M of the maximum matching of the
original graph must satisfy 2L − 2M � 2N , i.e., 2L − 2M �
2L − 2Z . In other words,

Z � M. (13)

Combining these two inequalities (12) and (13), we have
proved Z = M.

III. “LOCAL” VERSION OF THE LOVÁSZ-ANDERSON
RESULT

We now present a “local” argument that proves Z = M
and constructs a maximally localized basis of wave functions
for the topologically protected zero-energy eigenstates of a
general Majorana network. The local aspect of our argument
is this: We show that the entire graph associated with the real
skew-symmetric matrix arr′ can be broken up into nonover-
lapping connected “R-type” regions Rμ (μ = 1, 2, . . . , NR),
such that the number of monomers Iμ that must exist in any
one such region Rμ in any maximum matching equals the
number of linearly independent null vectors that are guaran-
teed to have all their nonzero amplitudes confined entirely
within this region Rμ. Importantly, this remains true even
when the graph as a whole forms a single connected compo-
nent, i.e., each of these regions Rμ remains connected to the
rest of the graph. The fact that one can always construct a ba-
sis whose wave functions remain localized within individual
R-type regions in this generic case is thus a nontrivial prop-
erty of the zero-mode subspace.

A. The Gallai-Edmonds decomposition

The Gallai-Edmonds decomposition [15–17] of an arbi-
trary graph starts with any one maximum matching of the
graph and partitions all the vertices of the graph into three cat-
egories, even, odd, and unreachable (see Fig. 2 for a schematic
depiction). Even (e-type) vertices are those vertices that can
be reached by at least one alternating path (consisting alter-
nately of unmatched and matched edges) of even length (i.e.,
with the total number of edges traversed being even) starting
from some monomer of the maximum matching. Thus, un-
matched vertices are themselves e-type, being reachable by a
zero-length alternating path. Unreachable (u-type) vertices are
ones that cannot be reached by any alternating path from any
monomer of the maximum matching. All other vertices that
do not fall into either of these two categories are labeled odd.

Although this partitioning is obtained by starting with any
one maximum matching of the graph, it is actually unique, and
represents a basic structural property of the graph itself [17].
For the analysis presented here, the actual procedure for ob-
taining the e-type, o-type, or u-type label of each vertex is not
important. It is enough to note that one can use efficient and
well-studied combinatorial algorithms [17,24] for finding one
maximum matching and labeling the vertices in this manner.

FIG. 2. A schematic of the Gallai-Edmonds decomposition of an
arbitrary graph: Black vertices are the unreachable (u-type) vertices
of the Gallai-Edmonds decomposition. They are always matched to
an adjacent u-type vertex in any maximum matching. Brown vertices
are the odd (o-type) vertices of the Gallai-Edmonds decomposition
(labeled O). Links between two u-type vertices and between a u-type
vertex and an o-type vertex are colored black. Links between two
o-type vertices are colored brown. Blue vertices are the even (e-type)
vertices of the Gallai-Edmonds decomposition. Links between two
e-type vertices and between an e-type vertex and an o-type vertex
are colored blue. In any maximum matching, an e-type vertex is
either matched with an adjacent vertex or remains unmatched, i.e.,
hosts a monomer. Each o-type vertex is always matched with an
adjacent e-type vertex in any maximum matching. Note that an e-type
vertex can never be adjacent to a u-type vertex. Upon deleting the
links between the e-type and o-type vertices, the e-type vertices
split up into connected factor-critical components (labeled C); each
factor critical component has a perfect matching if any one of its
vertices is deleted. Consequently, it hosts at most one monomer in
any maximum matching of the whole graph, and this monomer can
be on any of its vertices. Any o-type vertex always has links to more
than one of these factor critical components. The total number of
monomers in any maximum matching equals the difference between
the number of factor critical components and the number of o-type
vertices. See Sec. III for a detailed discussion.

Indeed, as we see below, the importance of this labeling lies
in the structural information it provides.

For instance, it is not hard to see that there can be no edges
of the graph between e-type and u-type vertices [17]. Further,
the subgraph Ge of e-type vertices and their mutual edges
(obtained by deleting all u-type and o-type vertices and edges
connecting them to the e-type vertices) splits into Nc disjoint
connected components Ci (i = 1, 2, . . . , Nc). Each such Ci has
an odd number Bi of e-type vertices [17], and is factor critical,
i.e., if any one vertex of Ci is deleted, the resulting smaller
subgraph with Bi − 1 vertices has a perfect matching [17].

Equivalently, maximum matchings of any such connected
component Ci have exactly one monomer, and this monomer
can be on any vertex of Ci. Additionally, each o-type vertex
is connected to more than one factor critical component by
edges of the graph (if any o-type vertex was connected to
only one factor critical component, all vertices of this factor
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critical component would always be matched in any maximum
matching, contradicting the fact that these vertices are e-type).

Turning to maximum matchings of the full graph, any max-
imum matching matches each u-type vertex with some other
u-type vertex, while each o-type vertex is always matched to
some e-type vertex in one of the factor critical components
Ci [17]. Two different o-type vertices are always matched to
e-type vertices in distinct factor critical components. In any
maximum matching, a given e-type vertex can either host
a monomer, or be matched to another e-type vertex, or be
matched to an o-type vertex [17]. Each of the factor critical
components Ci hosts at most one monomer in any maximum
matching of the full graph.

Further, for any given factor critical component Ci, one can
find a maximum matching that places a single monomer on
this component, which, by the definition of factor criticality,
can be on any vertex of this component. Finally, the total num-
ber of monomers in a maximum matching of the full graph is
2M = Nc − No, where No is the number of odd vertices of the
full graph [17].

Finally, it is worth emphasizing that all these properties
can be established by a sequence of elementary but somewhat
involved combinatorial arguments [15–17] that do not need
to invoke any results from linear algebra; for a particularly
illuminating exposition along these lines, the reader is referred
to the classic textbook of Lovasz and Plummer [17].

B. Construction of maximally localized basis of zero modes

As before, let 2Z be the number of topologically protected
null vectors of the 2L × 2L real skew-symmetric matrix arr′ ,
let 2M be the number of monomers in any maximum matching
of the associated graph G, and let N ≡ L − Z . The subgraph
consisting of matched vertices (of any particular maximum
matching) and all edges connecting any two of the matched
vertices has a perfect matching, and therefore, by Tutte’s
theorem, the submatrix of arr′ associated with this subgraph
has no topologically protected null vectors. Following the first
part of the standard argument reproduced earlier, this implies
the inequality (12): 2Z � 2M. We now give a prescription for
constructing 2M linearly independent topologically protected
null vectors of arr′ . This construction, in conjunction with
the inequality 2Z � 2M, constitutes our proof of Lovász and
Anderson’s result Z = M.

Consider first the matrix a(Ci )
rr′ , which is defined as the

restriction of the original skew-symmetric adjacency matrix
arr′ to the vertices of Ci. We begin with the observation that
a(Ci )

rr′ has exactly one topologically protected zero mode. To
see this, recall from the previous section that any maximum
matching of Ci has exactly one monomer, which can be at any
site of Ci. Therefore, if we remove any one site of Ci, we are
left with a subgraph with Bi − 1 vertices which has a perfect
matching. This implies that a(Ci )

rr′ has a submatrix of size Bi − 1
whose determinant does not vanish identically. Therefore the
number zi of topologically protected null vectors of a(Ci )

rr′

must satisfy zi � 1 by our earlier argument. Since a(Ci )
rr′ is a

real skew-symmetric matrix, its nonzero eigenvalues come in
pure-imaginary pairs (iλ,−iλ). Since Bi, the dimension of
a(Ci )

rr′ , is odd, this immediately implies that zi � 1. Therefore
zi = 1 for each of the Nc factor critical components Ci. We

denote the corresponding normalized real-valued null vector
by ρ (i)(r), where r ranges over all vertices of Ci.

We now construct 2M linearly independent superpositions
of these Nc wave functions ρ (i)(r) (note that ρ (i) and ρ ( j) have
nonoverlapping supports whenever i �= j). To this end, we
start by defining an auxiliary bipartite graph G′′ as follows:
Start with the original graph and replace each factor critical
component Ci by a single vertex ci, delete all edges connecting
o-type vertices to each other, and delete all u-type vertices
as well as edges incident on them. If a given o-type vertex
ok has at least one edge connecting it to some vertex r ∈ Ci

in the original graph, ok has a single edge connecting it to
the corresponding vertex ci of G′′. Thus, all the edges which
connect any of the vertices of a given Ci to a given o-type
vertex in the original graph are “collapsed” in the bipartite
graph G′′ into a single edge connecting the corresponding
vertex ci to this o-type vertex.

We define the skew-symmetric bipartite adjacency matrix
ã, whose nonzero elements correspond to these edges of G′′,
as follows:

ãok ci =
∑

r∈Ci

aokrρ
(i)
r , ãciok = −ãokci , (14)

where the sum over r ∈ Ci receives contributions from all
vertices of Ci that had a link to the o-type vertex ok in the
original graph.

Clearly, the bipartition of G′′ assigns all Nc vertices ci to
one sublattice (which we declare to be the A sublattice) and
the No o-type vertices of the original graph to the opposite
sublattice, which we label the B sublattice. Any matching of
G′′ must therefore have a minimum of Nc − No monomers,
since there are Nc A-sublattice sites and No < Nc B-sublattice
sites. To obtain a maximum matching of G′′ that has exactly
Nc − No monomers, we can start with a maximum matching
of the original graph and make the following construction:
Match each B-sublattice vertex ok of G′′ to the A-sublattice
site c j chosen to correspond to the factor critical component
Cj into which ok is matched by the maximum matching of
the original graph. This gives us a maximum matching of G′′
which matches all B-sublattice sites and has exactly Nc − No

monomers living on A-sublattice sites. For any particular fac-
tor critical component Ci, the Gallai-Edmonds decomposition
guarantees that there exists a maximum matching of the full
graph which places a single monomer on this Ci. Our con-
struction maps this to a maximum matching of G′′ which
places a monomer on the corresponding A-sublattice site ci.

In the Dulmage-Mendelsohn decomposition of G′′ (which
is just the bipartite version of the Gallai-Edmonds decompo-
sition, in which the role of the factor critical components is
played by single e-type sites), all A-sublattice sites of G′′ are
thus seen to be e-type, all B-sublattice sites of G′′ are o-type,
and there are no u-type sites. Since G′′ has no u-type sites,
and no edges between any two o-type sites, the arguments of
Ref. [25] imply that it must be made up of NR � 1 disjoint
connected components, each of which has more A-sublattice
sites than B-sublattice sites. This is of course trivially true
if NR = 1, since G′′ as a whole does have more A sites
than B sites; the key point is that this is guaranteed to be
true “locally,” at the level of individual connected components
of G′′.
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Following the terminology of Ref. [25], we denote these
components R(μ)

A (μ = 1, 2, . . . , NR). The excess of A sites
over B sites in R(μ)

A is referred to as the imbalance Iμ; thus,
there are m(μ)

A A-sublattice sites and m(μ)
B B-sublattice sites in

R(μ)
A , with Iμ = m(μ)

A − m(μ)
B . In the language of Ref. [25],

these are the RA-type regions of G′′. Indeed, unlike the general
bipartite case discussed in Ref. [25], G′′, by virtue of the
particulars of its construction, only has RA-type regions; in
the language of Ref. [25], it has no RB-type regions or P-type
regions.

Each R(μ)
A hosts exactly Iμ monomers on its A-sublattice

sites in any maximum matching of G′′. The total number of
monomers in any maximum matching of G′′ is thus

∑NR
μ=1 Iμ.

From the definition of Iμ, we see that this sum equals Nc −
No, which, by the Gallai-Edmonds decomposition, gives the
number of monomers 2M in any maximum matching of the
original graph, as it of course must. Thus we have

2M =
NR∑

μ=1

Iμ. (15)

Each R(μ)
A corresponds in a natural way to a subgraph Rμ

of the original graph. To obtain this from R(μ)
A , we expand

out each ci ∈ R(μ)
A to recover all the e-type vertices of the

corresponding factor critical component Ci and the edges inci-
dent on these e-type vertices. In addition, we reinstate all the
edges of the original graph between any two o-type sites that
both belong to Rμ

A . Clearly, each such Rμ hosts exactly Iμ

monomers in any maximum matching of the original graph.
Next, we note that a RA-type region R(μ)

A hosts exactly
Iμ topologically protected zero modes of ãokci , which have
nonzero amplitude only on the A-sublattice sites of R(μ)

A .
To see this, note that the any such zero mode has to sat-
isfy m(B)

μ equations in m(A)
μ variables, leading to Iμ = m(A)

μ −
m(B)

μ topologically protected zero-mode solutions. Thus, ã
has

∑
μ Iμ = 2M topologically protected zero modes, with

Iμ such linearly independent modes coexisting in region
R(μ)

A . Let us denote these null vectors of ã by v(μ)
α with

α = 1, 2, . . . , Iμ, so that the component of v(μ)
α on some

A-sublattice site ci ∈ R(μ)
A is denoted as v(μ)

α (ci ).
It only remains to use this result to obtain the correspond-

ing zero-mode wave functions of the original skew-symmetric
adjacency matrix arr′ . This is done as follows: For each of
the factor critical components Ci that correspond to ci ∈ R(μ)

A ,
we recall that we have at our disposal the normalized zero-
mode wave functions ρ (Ci )(r) of a(Ci )

rr′ , the restriction of arr′

to the factor critical component Ci. Each of these ρ (Ci )(r)
are nonzero only on sites r ∈ Ci. Using these, we form Iμ

linearly independent wave functions defined on e-type vertices
r ∈ Rμ:

φ(μ)
α (r) =

∑

ci∈R(μ)
A

v(μ)
α (ci )ρ

(i)(r) (with α = 1, 2, . . . , Iμ).

(16)

Since each φ(μ)
α (r) is zero on all o-type sites of the original

graph, and since u-type sites only have edges connecting
them to o-type sites in the original graph, the eigenvalue
equation for zero modes of arr′ is trivially satisfied by each

φ(μ)
α (r) (for α = 1, 2, . . . , Iμ for each μ = 1, 2, . . . , NR) on

all u-type sites of the original graph. On all o-type sites,
the zero-energy eigenvalue equation for arr′ is satisfied by
virtue of the fact that the v(μ)

α are null vectors of ãokci , whose
matrix elements depend on ρ (i) in a way that ensures that
these eigenvalue equations are automatically satisfied. And
crucially, the zero-mode eigenvalue equation for arr′ is also
seen to be satisfied on all e-type sites sites of the graph by
virtue of the fact that ρ (i) is a topologically protected zero
mode of a(Ci )

rr′ .
We have thus constructed Iμ linearly independent zero

modes of arr′ that have nonzero amplitudes only on the e-
type sites in the region Rμ of the original graph (for each
μ = 1, 2, . . . , NR). Since

∑
μ Iμ = 2M (where 2M is the

number of monomers in any maximum matching of the
graph associated with arr′ ), and we have already argued that
2Z � 2M (where 2Z is the number of topologically protected
zero modes of arr′ ), this linearly independent set forms a basis
for the topologically protected null space of arr′ .

Notice that our basis is maximally localized in the follow-
ing sense: Each basis vector is supported entirely on e-type
sites within one particular region Rμ. This is independent
of the actual values of the nonzero matrix elements of arr′ .
Additionally, these nonoverlapping regions Rμ are also inde-
pendent of these actual values of the nonzero matrix elements.
An easy consequence is that the basis-independent on-shell
zero-energy Green’s function G(r, r′), defined as

G(r, r′) ≡
NR∑

μ=1

Iμ∑

α=1

φ(μ)
α (r)φ(μ)

α (r′), (17)

is guaranteed to be zero unless r and r′ both belong to any
one region Rμ, and this property is independent of the actual
numerical values of the nonzero matrix elements of arr′ . This
is clearly the strongest topologically protected statement one
can make about the localization properties of the zero-energy
Green’s function, and it follows directly from the localization
properties of our basis. In this sense, our construction yields
a maximally localized basis of topologically protected Majo-
rana fermion excitations of the network as a whole.

IV. ALGORITHMIC CONSIDERATIONS

We now discuss some algorithmic issues of stability and
accuracy that are likely to arise when using our local version
of the Lovász-Anderson result to obtain a maximally local-
ized basis of zero modes for large random networks. These
issues have their origin in the bipartite nature of the graph G′′
used in our construction. As is well understood from previous
studies of random-hopping models with bond disorder and site
dilution [27,37,42,43], the corresponding bipartite adjacency
matrix ã is expected to have a large pileup of eigenstates near
the center of the band in the two-dimensional case. When the
size of the problem is large, as is the case when individual
R(μ)

A regions in our construction are large and host a large
number of zero modes, this is expected to lead to stability is-
sues when it comes to constructing the topologically protected
zero modes that are tied to the band center itself.

This effect also makes the study of zero-mode wave func-
tions challenging on slightly diluted bipartite lattices. Our
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proposed solution to this potential problem relies on a simple
but useful observation [44]: Consider any one region R(μ)

A
hosting Iμ zero modes in any maximum matching of the bi-
partite graph G′′. Choose any particular maximum matching,
with monomers located on sites ck (k = 1, 2, . . . ,Iμ). If we
delete all the ck except one, say c j , it is clear that all other R(ν)

A
with ν �= μ remain unchanged in the Dulmage-Mendelsohn
decomposition of the truncated graph G′′

j . On the other hand,

R(μ)
A splits in general into a truncated R-type region R j

A that
hosts exactly one monomer in any maximum matching of G′′

j ,
and one or more P-type regions that are perfectly matched in
any such maximum matching.

This observation suggests the following “divide-and-
conquer” algorithm which has also been explored in the con-
text of the bipartite quantum percolation problem [44]: Start
with a particular maximum matching of R(μ)

A as described
above, with Iμ monomers on sites ck (k = 1, 2, . . . , Iμ) in
region R(μ)

A . For each j = 1, 2, . . . ,Iμ, we implement the
following procedure: Delete all sites ck �= c j and obtain the
truncated R-type region R j

A with N ( j)
μ A-sublattice sites and

N ( j)
μ − 1 B-sublattice sites. To obtain the unique (up to an

overall scale) zero mode supported on the truncated R-type
region R j

A. we set the wave-function amplitude at c j to unity.
With this in hand, compute the N ( j)

μ − 1 other components
of the wave function by solving the system of N ( j)

μ − 1
Schrödinger equations for these N ( j)

μ − 1 variables using some
stabilized version of Gaussian elimination.

When the iteration over j = 1, 2, . . . ,Iμ is complete, this
procedure gives Iμ zero modes confined to the region R(μ)

A ,
as required. Note that this algorithm guarantees that these
Iμ wave functions are linearly independent to arbitrary accu-
racy because only one of them has nonzero amplitude at any
particular ck .

V. DISCUSSION

Given that the foregoing approach leads to such robust
conclusions regarding vacancy effects in Majorana networks,
it is of some interest to ask what conclusions (if any) can
be drawn from such arguments about free-fermion systems
modeled by a tight-binding model of canonical fermions on
a general lattice. In addition, with our construction now in
hand, it is interesting to revisit the original proof of Ref. [19]
and contrast our approach with that of Ref. [19]. Further, it
is also useful to illustrate the ideas developed here with some
particularly simple examples in which the veracity of our con-
clusions may be directly verified “by hand.” The discussion
below addresses each of these in turn, and then concludes by
sketching a heuristic argument that relates the R-type regions
of a slightly diluted nonbipartite lattice to various components
of the Dulmage-Mendelsohn decomposition of a “parent” bi-
partite lattice.

A. Vacancy effects in tight-binding models of canonical fermions

Consider a tight-binding model for free canonical
fermions, with a canonical fermion orbital of energy Vr at each
surviving vertex r of a general graph (in which some vertices

have been removed to model the effects of vacancies), and
complex hopping amplitudes t〈rr′〉 defined on links 〈rr′〉 that
connect surviving vertices of the graph. The Hamiltonian for
the canonical fermions can be written as

Hcanonical =
∑

r,r′
Trr′ f †

r fr′ , (18)

where Trr′ = t〈rr′〉 + δrr′Vr/2 and Tr′r = T ∗
rr′ .

Defining fr = (ar + ibr )/2, where ar and br are Majorana
fermion operators, this can be rewritten as a Majorana network
Hamiltonian for a bilayer version of the original graph

Hcanonical = i

4

∑

α,β

ηrα
(
Irr′ ⊗ 1αβ + Rrr′ ⊗ iσ y

αβ

)
ηr′β, (19)

where α and β take on values a, b in the summation over these
layer indices, and we define ηra = ar , ηrb = br . Here, 1 and
iσ y respectively are the 2 × 2 identity and Pauli matrices act-
ing in the layer space, Irr′ is an antisymmetric matrix defined
by Irr′ = Im(Trr′ ), and Rrr′ is a symmetric matrix defined by
Rrr′ = Re(Trr′ ).

From this expression, it is evident that the tight-binding
model for canonical fermions on a general graph with one
orbital on each vertex of the graph reduces to two independent
copies of a Majorana network Hamiltonian on the same graph
if and only if there are no on-site energy terms and the hopping
amplitudes are purely imaginary. In this case, our arguments
go through and give us a detailed characterization of the topo-
logically protected zero-energy states that are tied to the Fermi
energy of Hcanonical. Following the approach outlined above,
this can be generalized slightly to include pure-imaginary
pairing amplitudes as well.

However, we caution that the general case requires us
to directly analyze the bilayer graph. In the general case
with arbitrary complex t〈rr′〉 and a nonzero site energy Vr ,
a missing site in the original tight-binding model maps to
a pair of deleted vertices in a bilayer graph in which both
layers are nontrivially coupled to each other. In this case,
it is not clear if pair dilution can lead to any topologically
protected localized modes of the type we have discussed
here.

The only exceptions are topologically protected zero
modes in particle-hole symmetric tight-binding models with
arbitrary complex hopping amplitudes, i.e., tight-binding
models on bipartite lattices with Vr = 0. The origin of these
modes has been discussed extensively in earlier work [25],
and we learn nothing new by reformulating that discussion
using the approach developed here.

B. Revisiting Anderson’s approach

Reference [19] starts with any one arbitrarily chosen max-
imum matching of the associated graph, with monomers at
vertices rl , with l ∈ (1, 2, . . . , 2M ). For any one vertex rk cho-
sen arbitrarily from these unmatched vertices {rl}, Ref. [19]
proves that there must exist a null vector of iarr′ , which has
nonzero amplitude at rk and amplitude equal to zero at all
other unmatched vertices. Since this is true independently
for each such rk , this establishes the presence of 2M linearly
independent null vectors.
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In contrast, our local approach uses the fact that R-type
regions can be identified directly from the Gallai-Edmonds
decomposition of the associated graph, without the need for
any numerical calculation, and goes on to establish the ex-
istence of a certain number of null vectors that live entirely
within each R-type region. Thus, it incorporates at the very
outset the topologically protected localization properties of
the zero-energy on-shell Green’s function G(r, r′) [which fol-
low from the fact that G(r, r′), when evaluated using the basis
constructed by our approach, is obviously zero unless r and
r′ lie in the same R-type region]. If the R-type regions are
small in extent, this immediately provides a strict and useful
upper bound on the localization length ξG of G, which must
be bounded above by the linear dimension of the largest
R-type region. Unlike in our construction, these properties
do not emerge explicitly in any straightforward way from the
arguments of Ref. [19]; in that approach, they would therefore
need to be discovered separately by explicit numerical com-
putation.

C. Simple illustrative examples

The local nature of our approach, which distinguishes it
from earlier work, is best illustrated by some simple exam-
ples involving small R-type regions, in which we can work
everything out “by hand.” It is interesting to do this first on
the site-diluted triangular lattice, since a triangular lattice of
localized Majorana modes [14] serves as a model for the Ma-
jorana network associated with a vortex lattice in time-reversal
symmetry breaking p-wave superconductors [3–5].

Figure 3 shows a simple R-type region consisting of 24
sites, formed due to a clustering of vacancies. This region
of the triangular lattice has seven factor critical components,
six of them with three e-type vertices each, and one of them
being made up of just a single e-type vertex. These factor
critical components are connected to five o-type vertices, four
of which connect this R-type region to the rest of the lattice.
Independent of the configuration of dimers in the rest of the
lattice, this R-type region necessarily hosts two monomers
in any maximum matching of the full lattice. Our construc-
tion shows that it also hosts two topologically protected zero
modes that have nonzero amplitudes on the e-type sites of this
region. Although the existence of these zero modes follows
from purely local considerations, nonzero-energy excitations
cannot be determined by purely local considerations since the
local Majorana modes within this R-type region remain con-
nected to the rest of the Majorana network by nonzero mixing
amplitudes.

A Hamiltonian of the form Eq. (2) also describes the
low-energy physics of Kitaev-type models of Majorana
spin liquids and mean-field theories for Majorana spin liq-
uids [30–38]. Motivated by this, Fig. 4 displays another
example of an R-type region, this time of relevance to the ef-
fect of vacancies in the Kitaev-like model on the star-triangle
lattice or wine glass lattice [35]. In this case, the R-type region
shown is formed by the clustering of 14 vacancies. It has 16
factor critical components, ten of them consisting of three
vertices that form a triangle, and four of them being single
e-type sites. These factor critical components are connected
to 14 o-type sites, four of which connect this region to the rest

FIG. 3. A fragment of the triangular lattice, with dashed lines
denoting links that connect it to the rest of the triangular lat-
tice. Red denotes vacancies or deleted vertices, corresponding to
missing Majorana modes. Other colors, labels, and figure elements
follow the conventions of Fig. 2. Any maximum matching of the
entire triangular graph (such a maximum matching is of course free
to use the links connecting this fragment to the rest of the graph) is
forced to leave two of the blue vertices unmatched and match each of
the brown vertices with one of its blue neighbors, independent of the
dimer configuration anywhere else in the lattice. Thus, any maximum
matching has two monomers confined to the blue vertices of the
R-type region comprising the brown and blue vertices. Conse-
quently, there are two linearly independent topologically protected
collective Majorana excitations of HMajorana [Eq. (2)] that are guar-
anteed to live entirely within this R-type region, with support only
on the blue vertices. If any one of the three circled vacancies are
removed, i.e., the corresponding localized Majorana mode reinstated,
then the R-type region will host exactly one monomer in any maxi-
mum matching, and there will be exactly one topologically protected
Majorana excitation of HMajorana supported on the blue vertices of the
R-type region. See Sec. III for a detailed discussion.

of the lattice. Again, independent of the dimer configuration
on the rest of the lattice, this R-type region must host two
monomers in any maximum matching of the full lattice, and
there are correspondingly two zero modes with amplitudes on
the e-type sites of the region.

D. Outlook

Finally, it is worth emphasizing that these examples,
which were chosen for their simplicity, symmetry, and
ease of visualization, are very unlikely to be typical of
R-type regions that actually arise in large random Majo-
rana networks. Understanding the random geometry of such
typical regions is clearly an interesting problem its own
right. Although this computationally intensive problem is
outside the scope of the present study, we close our dis-
cussion by outlining a simple heuristic picture that may
serve as additional motivation for future work along these
lines.

The basis for our heuristic picture is the linear stability
analysis of Ref. [25], which identifies topologically protected
collective Majorana zero modes of bipartite Majorana net-
works that are perturbatively stable to additional next-nearest-
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FIG. 4. A fragment of the star-triangle lattice studied in Ref. [35]
in the context of a Kitaev-type model that exhibits a chiral spin-liquid
phase. Dashed links denote connections to the rest of the network
graph. Red denotes vacancies or deleted vertices, corresponding to
missing Majorana modes. Other colors, labels, and figure elements
follow the conventions of Fig. 2. Any maximum matching of the
entire graph (such a maximum matching is of course free to use
the links connecting this fragment to the rest of the graph) is forced
to leave two of the blue vertices unmatched. Thus, any maximum
matching has two monomers confined to the blue vertices of the
R-type region comprising blue and brown vertices. Consequently,
there are two linearly independent topologically protected collective
Majorana excitations of HMajorana [Eq. (2)] that are guaranteed to live
entirely within this R-type region, with support only on the blue
vertices.

neighbor couplings whose inclusion destroys the bipartiteness
of the original network. The key ingredient in this analysis is
the Dulmage-Mendelsohn decomposition of the parent bipar-
tite network into RA-type, RB-type, and P-type regions [25],
with each R-type region hosting a nonzero number I of topo-
logically protected collective Majorana modes of the bipartite
network. Here, I is the sublattice imbalance within the R-type
region, i.e., the modulus of the difference between the number
of A-sublattice sites and the number of B-sublattice sites in the
region.

Within leading-order perturbation theory in the additional
nonbipartite couplings [25] that couple next-nearest neigh-
bors on the “parent” bipartite lattice, the argument given in
Ref. [25] shows that R-type regions with odd I host a sin-
gle topologically protected collective Majorana mode of the
modified network, while R-type regions with even I have no
Majorana modes that survive the inclusion of these additional
nonbipartite couplings.

With this background in hand, we now sketch our heuristic
picture for the R-type regions of site-diluted nonbipartite
lattices. For concreteness, we focus our discussion below on
the case of a site-diluted triangular lattice, which we view in
this context as a square lattice with additional next-nearest-
neighbor couplings along one diagonal of the parent square
lattice. The perturbative stability argument given in Ref. [25]
then suggests that the collective Majorana modes of the di-
luted triangular lattice can be ascribed to R-type regions with
odd I in the parent square lattice. At low dilution, R-type
regions of the diluted square lattice become very big [25],
with their linear size scaling roughly as n−5

vac [25], where nvac is
the site-dilution probability (density of vacancies); this is as-
sociated with an incipient Dulmage-Mendelsohn percolation
phenomenon in the nvac → 0 limit [25].

In a large sample of the diluted square lattice in this
low-nvac regime, there are typically two dominant R-type
regions: One of them is an RA-type region, while the other
is an RB-type region [25]. Each of these two largest R-type
regions have an odd imbalance I with probability close to
0.5 [25], and will therefore survive as an R-type region of
the triangular lattice with probability close to 0.5 within this
leading-order treatment of the additional couplings. This al-
ready suggests that the actual R-type regions obtained from
the Gallai-Edmonds decomposition of the triangular lattice
(using the procedure given in this work) will have a nonzero
probability for being very large in size in the low-dilution
limit.

Going beyond this leading-order picture, we see that
the additional nonbipartite couplings can also have other
effects that are not captured at leading order: An RA-
type region with odd I on the parent square lattice and
another neighboring RB-type region with odd I on the par-
ent square lattice can annihilate pairwise, forming a larger
P-type region of the triangular lattice. Another possibility
is that two neighboring R-type regions of the square lat-
tice, one with odd imbalance I and the other with an even
I, merge to form a bigger R-type region of the triangular
lattice.

The actual statistical properties of R-type regions of a
slightly diluted triangular lattice are thus expected to be de-
termined by a combination of these processes of annihilation,
merging, and pairwise annihilation of R-type regions of the
parent square lattice. Clearly this heuristic picture falls short
of making precise predictions for these statistical properties.
But it does suggest that the random geometry of these R-type
regions on the triangular lattice is likely to be very interesting
in the low-dilution limit.
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