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Felix Spathelf ,1,2,* Benoît Fauqué,2 and Kamran Behnia1

1LPEM (CNRS-Sorbonne University), ESPCI Paris, PSL University, 75005 Paris, France
2JEIP, USR 3573 CNRS, Collège de France, PSL University, 75231 Paris Cedex 05, France

(Received 18 March 2022; revised 9 May 2022; accepted 17 May 2022; published 14 June 2022)

Thermoelectricity was discovered almost two centuries ago in bismuth. The large and negative Seebeck
coefficient of this semimetal remains almost flat between 300 K and 100 K. This striking feature can be
understood by considering the ratio of electron and hole mobilities and the evolution of their equal densities
with temperature. The large and anisotropic magneto-Seebeck effect in bismuth, on the other hand, has not been
understood up to the present day. Here, we report on a systematic study of the thermopower of bismuth from
room temperature down to 20 K upon application of a magnetic field of 13.8 T in the binary-bisectrix plane. The
amplitude of the Seebeck coefficient depends on the orientation of the magnetic field and the anisotropy changes
sign with decreasing temperature. The magneto-Seebeck effect becomes nonmonotonic at low temperatures.
When the magnetic field is oriented along the binary axis, the Seebeck coefficient is not the same for positive
and negative fields. This so-called Umkehr effect arises because the high symmetry axes of the Fermi surface
ellipsoids are neither parallel to each other nor to the high symmetry axes of the lattice. The complex evolution
of thermopower can be accounted for in a large part of the (T, B, �) space by a model based on semiclassical
transport theory and incorporating Landau quantization. The employed energy dependence of the scattering
time is compatible with electron-acoustic phonon scattering. We find that the transverse Nernst response plays
an important role in setting the amplitude of the longitudinal magneto-Seebeck effect. Furthermore, Landau
quantization significantly affects thermoelectricity up to temperatures as high as 120 K.
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I. INTRODUCTION

Thermoelectricity is both of fundamental interest and tech-
nologically promising, because it allows waste heat to be
converted into useful electric power without moving parts.
It was observed for the first time almost two centuries ago
by Seebeck in bismuth [1]. The room temperature Seebeck
coefficient is smaller in bismuth than in germanium or sil-
icon. But, along the trigonal axis, it is as large as S ≈
100 μV K−1, which combined with an electrical resistiv-
ity of ρ ≈ 135 μ� cm and a thermal conductivity of κ ≈
6 W K−1 m−1 [2] leads to a thermoelectric figure of merit
ZT = S2T

κρ
≈ 0.37, the largest in the Periodic Table. Bi-Sb

alloys have the largest known thermoelectric figure of merit
of any solid at cryogenic temperatures and applying a small
magnetic field allows one to significantly increase ZT further
[3]. Despite many investigations over a long period of time
[1–15], the Seebeck effect of bismuth, especially in the pres-
ence of a finite magnetic field, is far from being understood
up to the present day.

Bismuth has extraordinary electronic properties, which
give rise to the large, negative, and anisotropic Seebeck coef-
ficient. It is a semimetal, i.e., the electron density n equals the
hole density p. At low temperatures, they amount only to n =
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p = 3.0 × 10−17 cm−3 [16], being equivalent to one carrier
of each sign per 105 atoms as well as a very small Fermi en-
ergy. The very large magnetoresistance reflects the extremely
high mobility of the charge carriers, which are ballistic at
low temperatures [17,18]. The Fermi surface consists of one
hole pocket with parabolic dispersion and three cigar-shaped
electron pockets containing Dirac fermions with an extremely
anisotropic band structure, the lowest effective mass being
equivalent to approximately 10−3 bare electron masses [19].
The valley degeneracy of the three electron pockets can be
lifted by a magnetic field [20]. High fields even dry up one or
two Fermi seas [21].

During the past two centuries, the Seebeck effect of
bismuth has been studied intensively [2–7,9]. However, sur-
prisingly, no systematic experimental investigation of the
Seebeck effect in magnetic field can be found in literature and
the highest magnetic field reported amounts only to 5.5 T [7].

Here, we report on a systematic study of the magneto-
Seebeck effect of bismuth from room temperature down to
20 K under a magnetic field of up to 13.8 T in the binary-
bisectrix plane. We find that the Seebeck coefficient displays a
nontrivial evolution with temperature, magnetic field, and the
orientation of the magnetic field. To explain the experimental
results, we developed a model based on semiclassical trans-
port theory. In doing so, we approximated the well established
band structure [22] by the Lax model [23] to account for
the nonparabolicity of the electron bands. The scattering time
was treated as in Ref. [12], implying an energy dependence
compatible with electron-phonon scattering. Phonon drag was
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not included, since it is relevant only at temperatures below
10 K, which is out of the scope of this work [12,24,25].
Because of the very low Fermi energy, Landau quantization
is important in bismuth already at comparably low magnetic
fields [19]. Therefore, the semiclassical model was extended
as to include the effects of Landau quantization. The goal of
our theoretical work was to identify the physical mechanisms
playing an important role with regard to the magneto-Seebeck
effect of bismuth. This is why we aimed at a model, which is
as simple as possible and contains as few unknown parameters
as possible, instead of perfect agreement with experimental
data. Nevertheless, the model reproduces well the observed
behavior in a large part of the (T, B,�) space.

We identify two mechanisms which contribute unexpect-
edly strongly to the magneto-Seebeck effect of bismuth. First,
the transverse Nernst response gives rise to a longitudinal
Seebeck voltage via the Hall effect. Secondly, Landau quan-
tization significantly affects the thermopower of bismuth up
to temperatures as high as 120 K. These effects could also be
relevant to other materials with low carrier concentration.

Our experimental and theoretical results are to be com-
pared with previous theoretical studies of the magneto-
Seebeck effect in bismuth [10–15]. Our experimental results
disagree with the predictions of Ref. [14]. In contrast, for low
magnetic fields, our work confirms the formalism of Mikhail
et al. [12], which is based on a theoretical framework devel-
oped by Heremans and Hansen [11].

II. THEORY

A. General

An electric current j can be generated not only by an
electric field E, but also by a thermal gradient ∇T . This is
expressed by

j = σ̂E − α̂∇T, (1)

where σ̂ and α̂ are the electrical and the thermoelectric con-
ductivities, respectively [26]. For zero current and diagonal
conductivity tensors, Eq. (1) leads to

Szz = Ez

∂zT
= αzz

σzz
, (2)

where the first equation is the definition of the Seebeck coef-
ficient Szz. In general, however, the tensorial nature of σ̂ and
α̂ has to be taken into account:

Ŝ = σ̂−1α̂ = ρ̂α̂, (3)

where ρ̂ denotes the electrical resistivity tensor. For a mag-
netic field B parallel to the x axis, one obtains

Szz = ρzzαzz + ρzyαyz. (4)

Note that the off-diagonal component of the thermoelectric
conductivity αyz is commonly associated with the Nernst ef-
fect. In the following, we will refer to the first summand of
Eq. (4) as diagonal or longitudinal, whereas the product of the
Hall resistivity ρzy and αyz will be called an off-diagonal or
transversal contribution.

Time reversal symmetry implies σ̂ (B) = σ̂ T(−B) and
α̂(B) = α̂T(−B) [26]. Therefore, the diagonal entries of σ̂ , α̂,

and ρ̂ are symmetric functions of B. However, time reversal
symmetry is not violated by

σi j (B) �= −σi j (−B) (i �= j). (5)

The same is true for αi j and ρi j [27]. Hence, in Eq. (4),
the term ρzzαzz is symmetric in B, whereas there are no
restrictions on the symmetry of the term ρzyαyz. Therefore, de-
pending on the crystal symmetry, it can happen that Szz(B) �=
Szz(−B). This behavior is dubbed the Umkehr effect [27].

B. The case of bismuth

In order to calculate the Seebeck coefficient Szz, the con-
ductivity tensors σ̂ and α̂ have to be determined. In the case
of bismuth, several subtleties of this material have to be con-
sidered. In the following, we will focus on the description
of these subtleties, whereas a more detailed derivation of the
model can be found in the Supplemental Material [29].

The starting point is the band structure (see Fig. 1). The
Fermi surface of bismuth consists of one hole pocket at the
T point, which is symmetric with respect to the trigonal axis
(z axis), and three equivalent electron pockets at the L points
of the Brillouin zone. The electron pockets are perpendicular
to the binary axis (x axis) and tilted by about 6◦ with regard
to the bisectrix axis (y axis) [28]. The Fermi surface shows
threefold symmetry with the trigonal axis as symmetry axis.
This means that there are three binary and three bisectrix axes
in the binary-bisectrix (i.e., trigonal) plane.

The hole band at the T point has an ordinary parabolic
dispersion. In contrast, the dispersion of the electron bands
is mostly linear, because at the L points, there is only a
very small energy gap εg between the conduction and valence
bands [see Fig. 1(b)]. An appropriate way to describe these
Dirac electrons is the Lax model [23]:

ε(k) = ± 1
2

(
ε2

g + 2εgh̄2kTm̂−1
be k

)1/2 − 1
2εg. (6)

In this context, it is useful to define the quantity γ and its
derivative with respect to energy [11]:

γ (ε) = ε

(
1 + ε

εg

)
= h̄2

2
kTm̂−1

be k, (7)

γ ′(ε) = ∂γ

∂ε
= 1 + 2

ε

εg
. (8)

In the limit εg → ∞, Eq. (6) reduces to a quadratic dispersion
and can therefore be used to describe the hole band at the T
point. In this case, γ equals the energy ε and γ ′ = 1.

The inverse mass tensor at the band edge reads

m̂−1
be,L = m−1

0

⎛
⎝806 0 0

0 7.95 37.6
0 37.6 349

⎞
⎠ (9)

for one of the electron pockets and has to be rotated by 120◦
and 240◦, respectively, around the trigonal axis (z axis) for the
other two pockets [19]. m0 denotes the bare electron mass.
Note the presence of off-diagonal components in the mass
tensor, which is a consequence of the tilt of each electron
pocket off the trigonal plane of the crystal [30]. This tilt is
at the origin of the Umkehr effect in bismuth [27].
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FIG. 1. Fermi surface and band structure of bismuth. (a) The Fermi surface of bismuth consists of one hole pocket at the T point of the
Brillouin zone and three electron pockets at the L points which are tilted by about 6◦ out of the binary-bisectrix plane. The Fermi surface is
very small as there are only one free electron and one hole per 105 atoms. The Fermi surface is enlarged for better visibility. Adapted from
Ref. [28]. (b) Dispersion relation of bismuth at 0 K according to the Lax model [23]. The valence band at the T point is parabolic, whereas the
electrons at the L points have a Dirac-like dispersion due to the energy gap of only 13.6 meV (at zero temperature). Note the very small Fermi
energy εF .

According to Ref. [19], the inverse mass of the holes at the
T point amounts to

m̂−1
be,T = m−1

0

⎛
⎝14.75 0 0

0 14.75 0
0 0 1.387

⎞
⎠. (10)

The density of states D(ε) follows from Eq. (6):

D(ε) =
√

2

det m̂−1
be

1

π2h̄3

√
γ (ε)γ ′(ε). (11)

Unlike other semimetals, the carrier density of bismuth
is not constant, but changes by more than a factor of eight
between zero and room temperature [see Fig. 2(a)] [25,31].
This is due to two reasons. First, the thermal broadening of
the Fermi-Dirac distribution has a large impact because of the
small Fermi energy. Secondly, the band structure is strongly
temperature dependent [see Fig. 2(b)]. For example, the en-
ergy gap at the L point almost triples upon heating from 4 K
to room temperature [33,34].

In general, the scattering time τ constitutes the most un-
certain ingredient in the description of transport phenomena,
because, apart from some proportionalities, it can be directly
determined neither theoretically nor experimentally. Here, we
assume that it can be described as a product of an energy-
dependent scalar b(ε), a temperature-dependent scalar c(T ),
and a second-order tensor âp capturing the anisotropy, where
the index p refers to the T and L points (i.e., holes and
electrons), respectively:

τ̂p(ε, T ) = âpb(ε)c(T ). (12)

Concerning the energy dependence of the relaxation time,
we follow Refs. [11,12,35,36]. Assuming acoustic electron-
phonon (and hole-phonon) scattering, one finds Fermi’s
golden rule

1

τ
∝ D(ε)W 2(ε), (13)

where

W 2(ε) ∝ γ ′−2(ε) (14)

holds for the squared scattering matrix element W 2. Inserting
these proportionalities into Eq. (12) leads to

τ̂p(ε, T ) = âp
γ ′(ε)√
γ (ε)

c(T ). (15)

This energy dependence of τ is equivalent to an energy-
independent mean free path l as predicted for scattering on
acoustic phonons1 [37]. For εg → ∞, i.e., parabolic bands,
the energy dependence reduces as expected to τ ∝ ε−1/2 [38].
Figure 2(c) depicts the scattering time as a function of en-
ergy. Once b(ε) is determined, c(T ) can be calculated from
zero-field resistivity measurements.2 The resulting tempera-
ture dependence of the scattering time is shown in Fig. 2(d).

The scattering time τ̂p in Eq. (12) is a tensor. In order to
keep time reversal symmetry, it has to be chosen such that
m̂−1

be,pτ̂p is a symmetric tensor [12]. The five independent vari-
ables3 in âT and âL were the only arbitrary parameters used to
adjust the model to all experimental results [Seebeck effect,
resistivity, and Hall data in the whole accessible (T, B,�)
space]. The best set of parameters found is

âL =
⎛
⎝0.538 0 0

0 0.610 −2.64
0 −0.0180 1

⎞
⎠, (16)

âT =
⎛
⎝2.21 0 0

0 2.21 0
0 0 8.04

⎞
⎠. (17)

Due to computation time limitations, these values were not
determined by an automatic fitting procedure, but by means

1l = vτ = h̄−1 ∂ε

∂k τ ∝ ∂ε

∂γ

∂γ

∂k
γ ′ (ε)√
γ (ε) ∝ 1

γ ′ (ε)

√
γ (ε) γ ′ (ε)√

γ (ε) ∝ ε0.
2Note that c has the dimension M1/2L and could be rewritten, e.g.,

as c(T ) = τ0(kBT )1/2c̃(T ), where c̃(T ) is a dimensionless function
of T and τ0 a constant with the dimension of time.

3The eight nonzero parameters shown in Eqs. (16) and (17) reduce
to five independent parameters, because aT,xx = aT,yy for symmetry
reasons, m̂−1

be,L τ̂L symmetric to keep time reversal symmetry, and
aL,zz = 1 as the anisotropy of τ̂p is not changed by a factor applied to
both âT and âL .
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FIG. 2. (a) Carrier density n = p vs temperature as derived from experimental data in Ref. [31]. (b) Temperature dependence of the
chemical potential μ and the bottom and top of the electron and hole bands, respectively. (c) Scattering time τzz vs energy at T = 60 K. The
divergence at the band edge does not strongly influence the observables, because the density of states is close to zero at these energies.
(d) Scattering time τzz at the chemical potential vs temperature as determined from zero-field resistivity measurements and used for all
calculations. For comparison, the dotted lines depict the values found by Hartman [32].

of a manual heuristic approach with few iterations. Thus it
is very likely that a better agreement between theoretical and
experimental curves could be achieved by refining the values
of âL and âT . Note that the off-diagonal entries âL,23 and

âL,32 have to be nonzero in order to fulfill the requirement
m̂−1

be,L τ̂L = (m̂−1
be,L τ̂L )T.

In the framework described above, the conductivity tensors
of bismuth are given by

σ̂ =
∑

pockets

−
√

2

det m̂−1
be

2e

3π2h̄3

∫
γ 3/2(ε)

[(
e

γ ′(ε)
m̂−1

be τ̂ (ε, T )

)−1

− B̂

]−1
∂ f 0

∂ε
dε, (18)

α̂ =
∑

pockets

−
√

2

det m̂−1
be

2

3π2h̄3

∫
ε − μ

T
γ 3/2(ε)

[(
e

γ ′(ε)
m̂−1

be τ̂ (ε, T )

)−1

− B̂

]−1
∂ f 0

∂ε
dε, (19)

where the sum is taken over the hole pocket at the T point and the three electron pockets at the L points. It was checked that
the holes at the L points only contribute negligibly to σ̂ and α̂. f 0 and μ denote the Fermi-Dirac distribution and the chemical
potential, respectively. From Eqs. (18) and (19), the zero-field and low-field Seebeck coefficient Szz is determined via Eq. (3).
This formalism is equivalent to the one used by Mikhail et al. [12]. We extended this work by including Landau quantization
into the model. In order to do so, the dispersion relation (6) has to be replaced by

ε( j, k‖) = ±1

2

[
ε2

g + 4εg

(
jh̄ωc + h̄2k2

‖
2mbe,‖

)]1/2

− 1

2
εg + g′μBsB. (20)

This equation contains the quantum number j = n + s + 1/2, where n ∈ N and s = ±1/2 is the spin quantum number [39], and
the cyclotron frequency ωc = eB/mc. The term g′μBsB accounts for the effect of the outside bands on spin splitting [40]. The
cyclotron mass mc and the longitudinal effective mass mbe,‖ are calculated from the effective mass tensors according to Ref. [19],
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from where the values of g′ were also taken. Note that the nonparabolicity of the energy band leads to unequal spacing of the
Landau levels.

From Eq. (20), the density of states follows as

D(ε) =
∑

s=±1/2

∞∑
n=0

|eB|(2mbe,‖)1/2

4π2 h̄2

γ ′(ε∗)

[γ (ε∗) − jh̄ωc]1/2
. (21)

Here, we use ε∗ = ε − g′μBsB for better readability. As will be shown in Sec. IVB5, there is an accumulation of electrons in
the lowest Landau level leading to a significant change of the carrier density of both electrons and holes in order to keep charge
compensation [19,21].

When considering Landau quantization, the conductivity tensors read

σ̂ =
∑

pockets

(2mbe,‖)1/2|eB|e
2π2h̄2

∑
s=±1/2

∞∑
n=0

∫
[γ (ε∗) − jh̄ωc]1/2

[(
e

γ ′(ε∗)
m̂−1

be τ̂ (ε, T )

)−1

− B̂

]−1
∂ f 0

∂ε
dε, (22)

α̂ =
∑

pockets

(2mbe,‖)1/2|eB|
2π2h̄2

∑
s=±1/2

∞∑
n=0

∫
ε − μ

T
[γ (ε∗) − jh̄ωc]1/2

[(
e

γ ′(ε∗)
m̂−1

be τ̂ (ε, T )

)−1

− B̂

]−1
∂ f 0

∂ε
dε. (23)

Refer to the Supplemental Material for a more detailed deriva-
tion and a discussion of the scattering time in the presence of
Landau quantization [29].

III. EXPERIMENTAL DETAILS

The Seebeck coefficient Szz was measured with a home-
made sample holder in a Quantum Design PPMS. As shown
in Fig. 3, a thermal gradient was applied along the trigonal
axis using a RuO2 heater and a cold finger made out of copper.
The resulting temperature difference �T was determined with
a type E thermocouple. The voltage contacts, which were
made out of silver paste, were connected to the sample holder
with manganin wires. Therefore, the resulting Seebeck co-
efficient S = −VS/�T was corrected for the contribution of
manganin according to Ref. [41]. The bismuth sample of pu-
rity 99.999% (5N) with a length of 4 mm and a cross sectional

VS

Vth

�T

cold
finger
(Cu)

heater

sample

thermocouple

B

FIG. 3. Experimental setup. A thermal gradient was applied
along the trigonal axis and measured with a thermocouple. The See-
beck effect leads to a voltage VS parallel to the thermal gradient. The
Seebeck coefficient is given by S = −VS/�T . The magnetic field
was oriented parallel to the binary-bisectrix plane, i.e., perpendicular
to the thermal gradient.

area of 6.9 mm2 was obtained commercially through MaTecK
GmbH. This single crystal is of very high quality, which is
reflected by a residual resistance ratio R(300 K)/R(2 K) =
576, corresponding to an average mobility of 〈μe + μh〉 =
9.8 × 107 cm2 V−1 s−1 at very low temperatures. For angle
dependent measurements, the rotator option of the PPMS was
used. The sample was rotated such that the magnetic field was
always lying in the binary-bisectrix plane (i.e., perpendicular
to the thermal gradient) and the angle � is defined such that
� = 0◦ for B ‖ binary.

IV. RESULTS

A. Zero-field Seebeck effect

The Seebeck coefficient Szz of bismuth is depicted in
Fig. 4(a) as a function of temperature T . It is negative, at
T < 80 K almost proportional to the temperature, and shows a
plateaulike behavior upon further heating. In this temperature
range, Szz amounts to approximately −100 μV K−1, which is
a very large absolute value for a conducting material.

How can these striking features of the zero-field Seebeck
effect be understood? First, the contributions of the different
pockets have to be separated. The three electron pockets can
be treated together, because, regarding Szz, they are equivalent
when no magnetic field is applied. This is done theoretically
in Fig. 4(b). As can be seen there, Szz is dominated by the
electrons, which results in the negative sign of the Seebeck
coefficient. The reason behind this is the mobility, which is
much higher for the electrons than for the holes. Accordingly,
the smaller difference of the mobilities in the binary-bisectrix
plane leads to a less pronounced domination of the electrons
and therefore to a lower absolute value of Sxx. Secondly, a
qualitative understanding of the temperature dependence and
the order of magnitude of the Seebeck coefficient can be
reached by considering the Mott formula

Sp
zz = π2k2

B

3e
T

∂ ln
(
σ

p
zz
)

∂ε

∣∣∣∣
ε=εF

∝ T

T p
F

, (24)

even though the condition kBT � εF is not fulfilled here
[26]. The low Fermi temperatures T p

F of bismuth lead to its
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FIG. 4. Zero-field Seebeck coefficient vs temperature. (a) Seebeck coefficient parallel to the trigonal axis (Szz) and in the binary-bisectrix
plane as a function of temperature at zero magnetic field. At low temperatures, the amplitude of the Seebeck effect is increasing linearly with
temperature. Starting from ≈80 K, it saturates to a very large value of Szz ≈ −100 μV K−1. The theoretical curve is in very good agreement
with the experimental data. Additional data is taken from Gallo et al. [2], Yim et al. [3], and Collaudin [9]. (b) Contributions of holes and
electrons to the zero-field thermoelectricity. It is dominated by the electrons due to their higher mobility.

large Seebeck effect. Moreover, from the change of the band
structure with temperature shown in Fig. 2(b) follows that
T/T p

F is almost constant between 100 K and 300 K for both
electrons and holes. This explains why S(T ) is almost flat in
this temperature range.

B. Magneto-Seebeck effect

1. General behavior, Umkehr effect

Figure 5(a) shows the Seebeck coefficient Szz at T = 60 K
as a function of the magnetic field applied parallel to a binary
axis. The magnetic field strongly influences the Seebeck ef-
fect, e.g., a field of B = −3 T leads to a fivefold increase of
Szz. Furthermore, there is a large difference between positive
and negative magnetic fields. At B = +10 T, the Seebeck
coefficient amounts to +191 μV K−1, whereas, at B = −10 T,
its value is −277 μV K−1.

At this point one could argue that the difference between
positive and negative fields is due to a misalignment of the
voltage contacts, which would then lead to a contamination
of the signal by the extremely large Nernst effect [42–44].

However, Fig. 5(b) indicates that this is not the case. When
the magnetic field is applied along a bisectrix axis, the dif-
ference between Szz(B) and Szz(−B) is much smaller than for
B ‖ binary.

As explained in Sec. II A, the Seebeck effect can show
an Umkehr effect if the crystal symmetry is sufficiently low.
This is possible for B ‖ binary, whereas, for B ‖ bisectrix, the
Umkehr effect is forbidden due to the crystal symmetry of
bismuth [5,27]. The fact that the measured difference between
Szz(B) and Szz(−B) is much smaller for B ‖ bisectrix than for
B ‖ binary therefore strongly suggests that this unexpected
behavior can be explained by the Umkehr effect. Moreover,
the good theoretical description of the observed Umkehr effect
also indicates that this effect is real. In this case, the difference
between Szz(B) and Szz(−B) is given by the part of the off-
diagonal contribution to Eq. (4), which is odd in B. Hence it
becomes obvious from Fig. 5(a) that the transversal contribu-
tion to the magneto-Seebeck effect is of great importance, at
least for B ‖ binary.

For the small difference between the two experimental
curves in Fig. 5(b), there are three conceivable reasons: a

FIG. 5. Umkehr effect. (a) Seebeck coefficient vs absolute magnetic field for B ‖ binary at T = 60 K. A huge Umkehr effect can be
observed, i.e., the Seebeck coefficient is not the same for positive and negative fields. (b) As expected from symmetry considerations, the
Umkehr effect is absent for B ‖ bisectrix.
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FIG. 6. Symmetrized Seebeck coefficient Ssym as a function of the magnetic field for 20 K � T � 180 K (upper panels) and 200 K � T �
300 K (lower panels). Measurements for B ‖ binary and B ‖ bisectrix are shown on the left and on the right, respectively.

slight misalignment of the contacts, a small misalignment
of the magnetic field and the bisectrix axis or an intrinsic
Umkehr effect due to lifting of the twofold symmetry by
magnetostriction [45]. In the following, we will only show
data on and discuss the symmetrized Seebeck coefficient

Ssym(B) = Szz(B) + Szz(−B)

2
(25)

in order to facilitate the comparison of the two field directions
and to minimize the effect of a potential small misalignment
of the voltage contacts.

2. Symmetrized Seebeck coefficient

Figure 6 shows the full data set on Ssym(B) for B < 13.8 T
oriented along the binary and bisectrix directions at 20 K �
T � 300 K. At temperatures above 200 K [panels (c) and
(d)], the symmetrized Seebeck coefficient gets monotonically
more negative with increasing magnetic field. Moreover, the
absolute value increases when lowering the temperature. Be-
low 200 K [panels (a) and (b)], on the other hand, lower
temperatures lead to higher values of Ssym and Ssym is no
longer a monotonic function of the magnetic field. As we will
see below, this nonmonotonic behavior is a consequence of
Landau quantization. In general, the field dependence of the
symmetrized Seebeck coefficient is more pronounced when
the field is aligned with a bisectrix axis as when it is parallel
to a binary axis. Note that this statement only holds true for

Ssym, but not for the actual Seebeck coefficient Szz including
the Umkehr effect (cf. Fig. 5).

3. Longitudinal and transversal contribution

The symmetrized Seebeck coefficient at low magnetic
fields is depicted in Fig. 7 for both field orientations and
two temperatures (60 K and 120 K). It exhibits a nontrivial
behavior: Ssym is flat in a very narrow field window around
0 T, then the absolute value increases and, at slightly higher
fields, it starts to flatten again. In the case of B ‖ binary at
60 K, there is even a plateau in between (around B = 60 mT).
Increasing the temperature leads to a less pronounced re-
sponse to the magnetic field. All of these features are captured
by the calculations. To reach a better understanding of the
underlying physics, the diagonal and off-diagonal components
of the theoretical result are also plotted in Fig. 7 [cf. Eq. (4)].
When the magnetic field is applied along a bisectrix axis,
the transversal contribution is clearly dominating as it sets
the sign of the slope and at higher fields also the sign of
the Seebeck coefficient itself. For B ‖ binary, the absolute
value of the transversal contribution to Ssym is lower than
the one of the longitudinal contribution, but it sets its slope
at very low fields and is needed to explain the plateau close
to B = 60 mT. Taking into account the relevance of the off-
diagonal component for the Umkehr effect, it becomes clear
that the off-diagonal component, which is commonly ascribed
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FIG. 7. Symmetrized Seebeck coefficient as a function of the magnetic field for B < 0.5 T. Experimental data is depicted in black. Colored
lines show the theoretical prediction (red) as well as its two components: the ordinary longitudinal component (blue) and the transversal
contribution (green). The latter is important for both field orientations and even dominating for B ‖ bisectrix.

to the Nernst and Hall effects, is indispensable to explain the
magneto-Seebeck effect for both field orientations.

4. Angular dependence

Having understood the low field magneto-Seebeck effect in
the cases when the magnetic field is oriented parallel to a main
crystallographic axis, it is straightforward to compute the an-
gular dependence of the Seebeck coefficient by choosing the
tensor B̂ in Eqs. (18) and (19) accordingly. The result, which
is depicted in Fig. 8(b), reproduces well the experimental data
displayed in Fig. 8(a). The symmetrized Seebeck coefficient
shows sixfold symmetry as expected from the symmetry of the
Fermi surface. For B = 1 T, at low temperatures, it is minimal

for B ‖ binary. Upon heating, the maxima and minima get
inverted at 80 K (theory: 130 K) and the angular dependence
is most pronounced roughly around 200 K. Further heating
reduces the difference between peaks and dips, but Ssym(�)
still shows maxima for B ‖ binary.

5. Landau quantization

So far, we focused on the Seebeck effect in low magnetic
fields up to 1 T. But what happens if the field strength is
raised further? As shown in Fig. 9, Ssym approaches zero at
high magnetic fields and even becomes slightly positive above
7.2 T for B ‖ bisectrix at 60 K. The minimum of the Seebeck
coefficient is located at lower fields for B ‖ bisectrix than for

FIG. 8. Angle-dependent magneto-Seebeck effect. (a) Symmetrized Seebeck coefficient Ssym along the trigonal axis vs orientation of the
magnetic field (B = 1 T). Note that, at high temperatures, Ssym is maximal for B ‖ binary (� = 0◦) and minimal for B ‖ bisectrix (� = 30◦).
This disagrees with the prediction of Ref. [14]. (b) Corresponding theoretical curves.
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FIG. 9. Symmetrized Seebeck coefficient as a function of the magnetic field for B < 13.8 T. Experimental data is depicted in black (B ‖
binary) and red (B ‖ bisectrix). Blue and green lines show the theoretical prediction. Dashed lines correspond to the purely semiclassical theory
without Landau quantization, whereas solid lines include it. The magneto-Seebeck effect of bismuth is clearly affected by Landau quantization
at both 60 K and 120 K.

B ‖ binary and shifts for both orientations to higher fields
upon heating. Moreover, Ssym is larger for B ‖ bisectrix than
for B ‖ binary at high magnetic fields, whereas it is the other
way around at low fields.

The results of the purely semiclassical model are indicated
by dashed lines in Fig. 9. They are obviously not appropriate
to describe the experimental data both at 60 K and 120 K as
they quickly saturate at strongly negative values.

In contrast, if Landau quantization is taken into account,
the theory qualitatively captures the features described above
(see solid lines in Fig. 9). The quantitative differences between
model and theory are smaller at 60 K than at 120 K, but in both
cases Landau quantization is essential to reproduce the exper-
imentally observed nonmonotonic behavior. This shows that
Landau quantization significantly affects the Seebeck effect
at both temperatures. At first glance, it is very surprising that
a transport property is strongly influenced by Landau quanti-
zation at temperatures as high as 120 K, because generally it
only plays a role at much lower temperatures. Let us see in
the following why this is the case for the Seebeck effect in
bismuth.

Because of the extremely low carrier density and the strong
anisotropy of the electron pockets in bismuth, the quantum
limit of electrons is unusually small. This means that a mag-
netic field of only 1.3 T and 1.6 T along the bisectrix and
binary direction, respectively, is sufficient to confine all elec-
trons of at least one pocket to the lowest Landau level [see
Eq. (20) and Ref. [19]]. Further increasing the magnetic field
above the quantum limit leads to an accumulation of electrons
in the lowest Landau level. In order to keep charge compen-
sation, the chemical potential decreases (see upper panels of
Fig. 10). This change of about 15 meV (from 0 T to 14 T)
affects the carrier density of all pockets and not only of the
one which has reached the quantum limit (see lower panels
of Fig. 10). The Mott formula (24) gives a qualitative account
of the impact on the hole pocket’s contribution to thermoelec-
tricity: As TF increases at constant T , its Seebeck coefficient
decreases.

For the electrons in the quantum limit, another mechanism
is crucial. In general, the Seebeck effect measures the dif-
ference between the density of states above and below the
chemical potential [26]. Roughly speaking, the thermoelectric
counductivity α̂ (and hence the Seebeck coefficient) is given

by the integral over the kernel − (ε−μ)
kBT

∂ f 0

∂ε
times the density of

states [see Fig. 11 and Eqs. (19) and (23)]. Now, the density
of states is fundamentally changed by Landau quantization:
electrons are moved from above the chemical potential to
the lowest Landau level (far below the chemical potential).
Therefore, in the vicinity of the chemical potential μ, the
difference between D(ε) for ε > μ and for ε < μ essentially
disappears and thus the contribution to the Seebeck effect of
the respective pocket almost vanishes. This still holds true at
T = 120 K even though the term ∂ f 0

∂ε
is thermally broadened,

because the sign change of the term ε − μ at the chemical
potential μ and thus the shape of the curve depicting the kernel
in Fig. 11 is independent of temperature. Since the Seebeck
effect is dominated by the electrons, the measured Seebeck
coefficient also approaches zero.

V. DISCUSSION

The experimental data on the zero-field Seebeck effect is
in very good agreement with the values reported by Gallo
et al. [2] and Collaudin [9]. A small systematic error could
be introduced by a misalignment of voltage and temperature
contacts or by a slightly inhomogeneous heat flow.

In a large part of the (T, B,�) space, the theory developed
in Sec. II is in good overall agreement with the experimental
results presented in Sec. IV. This is also true for the angular
dependence of magnetoresistance and the Hall effect as
shown in the Supplemental Material [29]. For the zero-field
Seebeck effect, the theoretically obtained values perfectly
agree with the measurements of Szz and also match well
the temperature dependence of Sxx observed by Yim et al.
[3] and Gallo et al. [2]. In magnetic fields, the model
works well above 50 K except for high magnetic fields
at temperatures above 200 K (not shown). The agreement
between experiment and theory is not as perfect as at zero
field, but this would be rather mysterious given the choice we
made in developing the model: we aimed at an understanding
of the physical mechanisms via a model which is as simple as
possible instead of perfectly reproducing experimental data
by introducing a lot of adjustable parameters.

One potential reason for the mismatch between theory
and experiment at high magnetic fields above 200 K is
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the fact that it is not clear to what extent the Lax model
[cf. Eq. (6)] is appropriate to approximate the band struc-
ture at high temperatures. Tight-binding calculations [22,46]
suggest that the electron band bends within an energy
window which could be relevant to the magneto-Seebeck
effect at room temperature. We checked that taking Lan-
dau quantization out of the model does not solve this
problem.

At temperatures below 50 K, the main problem seems to
be to get correct values for the Hall conductivities σi j (i �= j)
which contribute to the Seebeck effect via the transversal
component [cf. Eq. (4)]. In general, it is quite difficult to
predict the Hall effect of bismuth, because due to compen-
sation the total Hall conductivity is the tiny difference of
two very large values (for holes and electrons). For example,
according to our model, at 60 K and 14 T, the total Hall
conductivity amounts to less than 5 × 10−5 of the value for
one carrier type. Hence the predicted Hall conductivity is very
susceptible to any changes to the model. Nevertheless, we
achieve a good match between theory and the measured Hall
effect above 50 K [29]. At lower temperatures, one problem
of our theory could be that we consider only electron-phonon
scattering, but not electron-electron scattering. Furthermore,
there is a recent report on a difference between bulk and
surface conductance at low temperatures in bismuth [18],
which is out of the scope of the theory developed here. Lastly,
phonon drag is important to the thermoelectricity of bis-

muth at very low temperatures [12,24,25], but not taken into
account here.

As mentioned above, the Hall conductivity is very sus-
ceptible to changes to the model. This is particularly true
for deviations from compensation. It was checked that tiny
differences between the hole and the electron density affect
the outcome of the calculations enormously. Therefore, our re-
sults strongly suggest that bismuth is a perfectly compensated
material. This implies that, contrary to what is sometimes
assumed [47], absence of compensation is not a prerequisite
for a large Seebeck effect.

We note that Popescu and Woods [14] calculated the angle-
dependent magneto-Seebeck effect of bismuth for 100 K <

T < 300 K and B < 2 T. They predicted the Seebeck co-
efficient to be minimal for B ‖ binary and to increase with
increasing magnetic field. Both these features are in contra-
diction with what was observed here. In addition, they failed
to predict the Umkehr effect. From our point of view, the
main reason why the model of Popescu and Woods conflicts
with the experimental observations is the fact that they did not
take into account the transversal contribution to the magneto-
Seebeck effect.

This transversal contribution was already implicitly in-
cluded in the theory of Mikhail et al. [12]. The present work
confirms their results for low magnetic fields. However, we
explicitly point out the importance of the transversal con-
tribution to the magneto-Seebeck effect: an applied thermal
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FIG. 11. Vanishing of the Seebeck effect in the quantum limit.
Density of states (black) in (a) zero magnetic field and (b) a field
of 6 T along the bisectrix axis. The red curves depict the kernel
− (ε−μ)

kBT
∂ f 0

∂ε
of the integral used to determine the thermoelectric con-

ductivity α̂ [cf. Eqs. (19) and (23)] for T = 60 K. Put simply, the
Seebeck effect measures the integral of the product of this kernel and
the density of states, i.e., the difference between the density of states
above and below the chemical potential μ indicated by the dotted
line [26]. In the quantum limit, the Seebeck effect vanishes upon
increasing the magnetic field, because all Landau levels except the
lowest Landau level (LLL) move to higher energies and the integral
therefore approaches zero.

gradient gives rise to a transversal electric current. But, due
to the boundary conditions, this current cannot flow and, in-
stead, an electric field develops both in the transversal and
the longitudinal direction. The one mentioned second, which
is caused by the Hall resistivity, significantly impacts the
measured Seebeck voltage and hence the value of the Seebeck
coefficient. Since the transversal contribution increases the
absolute value of the Seebeck coefficient, it is responsible
for the strong increase of the thermoelectric figure of merit
ZT at low magnetic fields. This explanation probably also
holds true for the doubling of ZT under magnetic fields of
a few hundred mT in Bi-Sb alloys, which have the largest

known thermoelectric figure of merit of any solid at cryogenic
temperatures [3].

Furthermore, this work presents correct theoretical results
on the angular dependence and the high-field behavior of the
magneto-Seebeck effect of bismuth. The latter is achieved by
including Landau quantization into the semiclassical transport
theory, mainly by changing the dispersion relation and using
the appropriate density of states. A priori, it was not clear if
this procedure is allowed, but a posteriori, our results strongly
suggest that it is a valid approach.

Lastly, let us highlight the conceptual importance of the
Umkehr effect. We observed a huge Umkehr effect for mag-
netic fields along the binary axis and were able to explain it
theoretically. Although the Umkehr effect has been known in
principle for decades [5,6,27], it seems to us that this knowl-
edge has got lost in parts of the community. Feng and Skinner
recently wrote that because of Onsager reciprocity “the value
of the Seebeck coefficient is independent of the sign of the
magnetic field” [47]. As we saw above, this is not the case here
and in perfect agreement with Onsager reciprocity. This also
means that extracting the value of the magneto-Seebeck effect
by symmetrizing with respect to field inversion [48–49] is
only justified when there is no uncertainty about the alignment
of the symmetry axes of the electron fluid and the underlying
lattice.

VI. SUMMARY

We reported on a systematic study on the magneto-Seebeck
effect of bismuth. In order to understand our experimental
results, we developed a model based on semiclassical trans-
port theory to which we added Landau quantization. In a
large part of the (T, B,�) space, the calculations are in good
agreement with experimental data on the zero-field Seebeck
effect, the magneto-Seebeck effect, magnetoresistance, and
the Hall effect.

We found that the large difference between the mobilities
of electrons and holes as well as the temperature dependence
of the band structure are essential to explain the zero-field
Seebeck effect of bismuth. In magnetic fields, the tranverse
contribution, which is composed of conductivity tensor entries
that are commonly ascribed to the Nernst and Hall effects,
plays an important role in setting the amplitude of the lon-
gitudinal Seebeck effect. It also gives rise to a large Umkehr
effect, i.e., an odd-in-B component of the magneto-Seebeck
effect. At high magnetic fields, the Seebeck effect of bismuth
is strongly affected by Landau quantization up to temperatures
as high as 120 K.
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