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Discrete Lehmann representation of imaginary time Green’s functions
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We present an efficient basis for imaginary time Green’s functions based on a low-rank decomposition of
the spectral Lehmann representation. The basis functions are simply a set of well-chosen exponentials, so
the corresponding expansion may be thought of as a discrete form of the Lehmann representation using an
effective spectral density which is a sum of δ functions. The basis is determined only by an upper bound on
the product βωmax, with β the inverse temperature and ωmax an energy cutoff, and a user-defined error tolerance
ε. The number r of basis functions scales as O(log(βωmax) log(1/ε)). The discrete Lehmann representation of
a particular imaginary time Green’s function can be recovered by interpolation at a set of r imaginary time
nodes. Both the basis functions and the interpolation nodes can be obtained rapidly using standard numerical
linear algebra routines. Due to the simple form of the basis, the discrete Lehmann representation of a Green’s
function can be explicitly transformed to the Matsubara frequency domain, or obtained directly by interpolation
on a Matsubara frequency grid. We benchmark the efficiency of the representation on simple cases, and with a
high-precision solution of the Sachdev-Ye-Kitaev equation at low temperature. We compare our approach with
the related intermediate representation method, and introduce an improved algorithm to build the intermediate
representation basis and a corresponding sampling grid.
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I. INTRODUCTION

Quantum many-body physics is entering a new era, with
the rise of high-precision algorithms capable of obtaining
controlled solutions in the strongly interacting regime. A
large family of approaches concentrates on computing finite-
temperature correlation functions. Indeed, the imaginary time
formalism in thermal equilibrium is well suited to describe
both the thermodynamic and many of the equilibrium proper-
ties of a system [1]. It is widely used, for example, by quantum
Monte Carlo algorithms, which are formulated in imaginary
time.

For many applications, generic methods of representing
one- and two-particle imaginary time Green’s functions may
be insufficient to obtain the required precision given computa-
tional cost and memory constraints. Examples include (i) the
storage of one-body Green’s functions with a large number of
orbitals, as in quantum chemistry applications (see Ref. [2]
and the references therein), or on a lattice with complex mo-
mentum dependence; (ii) the high-precision solution of the
Dyson equation for such Green’s functions; (iii) computations
in which highly accurate representations of Green’s functions
are required, as for the bare propagator in some high-order
perturbative expansions [3]; and (iv) the storage of two-body
Green’s functions, which depend on three time arguments
[4,5].

*jkaye@flatironinstitute.org

The simplest approach is to represent a Green’s function G
on a uniform grid of m points in imaginary time τ , and by a
truncated Fourier series of m modes in Matsubara frequency
iνn. While this method offers some practical advantages,
including the ability to transform between the imaginary
time and Matsubara frequency domains by means of the fast
Fourier transform, it is a poor choice from the point of view
of efficiency, particularly when the inverse temperature β is
large. First, m = O(β ) grid points are required in imaginary
time to resolve sharp features caused by high-energy scales.
Second, since the Green’s functions are discontinuous at the
end points τ = 0 and β of the imaginary time interval, their
Fourier coefficients decay as O(1/m), so that the representa-
tion converges with low-order accuracy.

Representing G(τ ) by an orthogonal polynomial (Cheby-
shev or Legendre) expansion of degree m yields a significant
improvement [6]. Indeed, since G(τ ) is smooth on [0, β],
such a representation converges with spectral accuracy [2,6–
8]; see also Ref. [9] for a thorough overview of the theory
of orthogonal polynomial approximation. However, resolving
the Green’s function still requires an expansion of degree
m = O(

√
β ) [10].

A third idea is the “power grid” method, which uses a
grid exponentially clustered towards τ = 0 and β. In this
approach, an adaptive sequence of panels is constructed, and
a polynomial interpolant used on each panel, leading to a
representation requiring only O(log β ) degrees of freedom
[7,11,12]. However, the power grid method has been imple-
mented using uniform grid interpolation on each panel, which
can lead to numerical instability for high-order interpolants.
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A more stable method, using spectral grids on each panel, is
incorporated as an intermediate step in our framework, but
ultimately further compression of the representation can be
achieved.

A newer approach is to construct highly compact repre-
sentations by taking advantage of the specific structure of
imaginary time Green’s functions, which satisfy the spectral
Lehmann representation

G(τ ) = −
∫ ∞

−∞
K (τ, ω)ρ(ω) dω (1)

for τ ∈ [0, β]. Here ρ is the spectral density, ω is a real
frequency variable, and the kernel K is given in the fermionic
case by

K (τ, ω) = e−ωτ

1 + e−βω
. (2)

In our discussion, we assume that the support of ρ is contained
in [−ωmax, ωmax], for ωmax a high-energy cutoff; this always
holds to high accuracy for sufficiently large ωmax. For con-
venience, we also define a dimensionless high-energy cutoff
	 ≡ βωmax.

The key observation is that the fermionic kernel K can
be approximated to high accuracy by a low-rank decompo-
sition [13]. The most well-known manifestation of this fact
is the severe ill-conditioning of analytic continuation from
the imaginary to the real-time axis. However, one can take
advantage of this low-rank structure to obtain a compact rep-
resentation of G(τ ). In Refs. [10,13], orthogonal bases for
imaginary time Green’s functions containing only O(log 	)
basis functions are constructed from the left singular vectors
in the singular value decomposition (SVD) of a discretization
of K . This method, called the intermediate representation
(IR), has been used successfully in a variety of applications,
including those involving two-particle quantities [4,5,14–18];
see also Ref. [19] for a useful review and further references.
A related approach is the minimax isometry method, which
uses similar ideas to construct optimal quadrature rules for
Matsubara summation in GW applications [20].

In this paper, we present a method which is related to
the IR, but uses a different low-rank decomposition of K ,
called the interpolative decomposition (ID) [21,22]. It leads
to a discrete Lehmann representation (DLR) of any imaginary
time Green’s function G(τ ) as a linear combination of r expo-
nentials e−ωkτ with a set of frequencies ωk which depend only
on 	 and ε. Like the IR basis, the DLR basis is universal in the
sense that given any 	 and ε, it is sufficient to represent any
imaginary time Green’s function obeying the energy cutoff
	 to within accuracy ε. The number of basis functions is
observed to scale as r = O(log(	) log(1/ε)), and is nearly
the same as the number of IR basis functions with the same
choice of 	 and error tolerance ε.

Our construction begins with a discretization of K on a
composite Chebyshev grid, designed to resolve the range of
energy scales present in Green’s functions up to a given cutoff
	. Then, instead of applying the SVD to the resulting matrix
as in the IR method, we use the ID to select a set of r repre-
sentative frequencies ωk such that the functions K (τ, ωk ) form
the basis of exponentials. The ID also yields a set of r interpo-
lation nodes, such that the DLR of a given Green’s function G

can be recovered from samples at those nodes. The DLR can
be explicitly transformed to the Matsubara frequency domain,
where it takes the form of a linear combination of r poles
(iνn + ωk )−1. As in the imaginary time domain, the DLR can
also be recovered by interpolation at r nodes on the Matsubara
frequency axis.

Compared with the IR approach, the DLR basis ex-
changes orthogonality for a simple, explicit form of the basis
functions. However, we show that orthogonality is not re-
quired for numerically stable recovery of the representation.
On the other hand, using an explicit basis of exponen-
tials has many advantages. In particular, it avoids the cost
and complexity of working with the IR basis functions,
which are themselves represented on a fine adaptive grid,
and evaluated using corresponding interpolation procedures.
Many standard computational tasks, such as transforming be-
tween the imaginary time and Matsubara frequency domains,
and performing convolutions, are reduced to simple explicit
formulas.

The algorithms which we use in the context of the DLR
also carry over to the IR method, and offer two main im-
provements over previously established algorithms. First, the
numerical tools we describe can be used to construct an ef-
ficient sampling grid for the IR basis in a more systematic
manner than the sparse sampling method, which is typically
used. Sparse sampling provides a method of obtaining com-
pact grids in imaginary time and Matsubara frequency, from
which one can recover the IR coefficients [23]. The sparse
sampling grid is analogous to the interpolation grid used
for the DLR. However, whereas the sparse sampling method
selects a grid based on a heuristic, we use a purely linear
algebraic method with robust accuracy guarantees, which is
also applicable to the IR.

Second, existing methods to build the IR basis functions
are computationally intensive, requiring hours of computation
time for large values of 	. Furthermore, the basis functions
themselves are represented using a somewhat complicated
adaptive data structure. Of course, basis functions for a given
choice of 	 need only be computed once and stored, and to fa-
cilitate the process, an open source software package has been
released which contains tabulated basis functions for several
fixed values of 	, as well as routines to work with them
[24]. However, in some cases, the situation is cumbersome,
for example, if one wishes to converge a calculation with
respect to 	. By contrast, we present a simple discretization
of K (τ, ω), which allows us to construct either the DLR or
IR basis functions from a single call to the pivoted QR and
SVD algorithms, respectively, with matrices of modest size.
This yields the basis functions and associated imaginary time
interpolation nodes in less than a second on a laptop for 	

as large as 106 and ε near the double machine precision. The
resulting DLR basis functions are characterized by a list of r
frequency nodes ωk , and the IR basis functions are represented
using a simple data structure.

In addition to describing efficient algorithms to implement
the DLR, we present mathematical theorems which provide
error bounds and control inequalities. We illustrate the DLR
approach on several simple examples, as well as on a high-
precision, low-temperature solution of the Sachdev-Ye-Kitaev
(SYK) model [25,26].
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Open source Fortran and Python implementations of the
DLR are available in the library LIBDLR [27]. We refer the
reader to Ref. [28] for a detailed description.

This paper is structured as follows. In Sec. II, we present
a short overview of the DLR with an example, leaving aside
technical details. In Sec. III, we introduce the mathematical
tools required in the rest of the paper, namely, composite
Chebyshev interpolation and the interpolative decomposition.
In Sec. IV, we develop the DLR, describe our algorithm, and
show some benchmarks. In Sec. V, we derive the IR, describe
its relationship with the DLR, and present efficient algorithms
to construct the IR basis functions and associated grid. We
show how to solve the Dyson equation efficiently using the
DLR in Sec. VI, and demonstrate the method by solving the
SYK equation in Sec. VII. Section VIII contains a concluding
discussion.

II. OVERVIEW

We develop our method using the fermionic kernel K ; we
show in Appendix A that in fact this kernel can also be used
for bosonic Green’s functions. To simplify the notation, we
also restrict our discussion to scalar-valued Green’s functions,
as the extension to the matrix-valued case is straightforward.

We assume the spectral density ρ, which may in general be
a distribution, is integrable and supported in [−ωmax, ωmax].
It is convenient to further nondimensionalize (1) by perform-
ing the change of variables τ ← τ/β and ω ← βω. In these
variables, we have τ ∈ [0, 1], and the support of ρ(ω) is con-
tained in [−	,	], with 	 = βωmax. 	 is a user-determined
parameter. An estimate of ωmax, and therefore of 	, can often
be obtained on physical grounds, but in general 	 is used as
an accuracy parameter and is increased until convergence is
reached. Then, assuming 	 is taken sufficiently large, (1) is
equivalent to the truncated Lehmann representation

G(τ ) = −
∫ 	

−	

K (τ, ω)ρ(ω) dω, (3)

for K given by (2) with β = 1.
As for the IR, we exploit the low numerical rank of an

appropriate discretization of K to obtain a compact represen-
tation of G. We simply use the ID, rather than the SVD, after
discretizing K on a carefully constructed grid. We will show
that G(τ ) can be approximated to any fixed accuracy ε by a
discrete sum with r terms,

G(τ ) ≈ GDLR(τ ) ≡
r∑

k=1

K (τ, ωk )̂gk . (4)

Here {ωk (	, ε)}r
k=1 is a collection of selected frequencies,

and the spectral density ρ has been replaced by a discrete
set of coefficients ĝk . A minus sign has been absorbed into
the coefficients to simplify expressions. The basis functions
of this representation are simply exponentials,

GDLR(τ ) =
r∑

k=1

e−ωkτ

1 + e−ωk
ĝk =

r∑
k=1

g̃ke−ωkτ , (5)

a feature which simplifies many calculations. We refer to (4)
as a discrete Lehmann representation of G.

(a)

(c) (d)

(b)

FIG. 1. (a) Spectral density ρ(ω) = 2
π

√
1 − ω2 θ (1 − ω2).

(b) Corresponding imaginary time Green’s function G(τ ) with
β = 104. (c) ‖G − GDLR‖∞ as a function of the number of basis
functions r for ε = 10−6, 10−10, 10−14. The values of r = r(	, ε)
correspond to 	 = 0.2 × 104, 0.4 × 104, . . . , 1.2 × 104. (d)
Representation of the DLR coefficients ĝk as an effective spectral
density which is a sum of δ functions, as in (6).

We emphasize that given a user-specified error tolerance ε

and a choice of 	, the r selected frequencies ωk are universal,
that is, independent of G. Furthermore, r, which we refer to
as the DLR rank, is close to the ε rank of K (τ, ω), which is
the number of IR basis functions for the same choice of 	

and ε, so the DLR also requires at most O(log(	) log(1/ε))
degrees of freedom. The high-energy cutoff 	 plays an im-
portant role in this representation, as it controls the regularity
of G(τ ), allowing a representation by a finite combination
of exponentials. We will prove the existence of a represen-
tation (4) with error tightly controlled by ε, and describe a
method to construct such a representation by interpolation
of G at r selected nodes in imaginary time or Matsubara
frequency.

A first example is presented in Fig. 1. We take β = 104,
and consider a particle-hole symmetric fermionic Green’s
function G(τ ) defined by the spectral density ρ(ω) =
2
π

√
1 − ω2 θ (1 − ω2), with θ the Heaviside function, as

shown in Figs. 1(a) and 1(b). Figure 1(c) shows the er-
ror of the DLR [Eq. (4)] as a function of r for fixed ε =
10−6, 10−10, 10−14. Here, we vary 	 near the known sufficient
value of 104 (β = 104 and ρ is supported in [−1, 1]) and
plot the error here versus r(	), instead of 	, to emphasize
the number of basis functions. The error decays superexpo-
nentially at first, and reaches ε when 	 ≈ 104. The value
of r at which convergence is reached depends on ε so that,
in practice, to obtain the smallest possible basis for a given
accuracy, one should first choose ε and then increase 	 until
convergence.
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The DLR can be formally interpreted as a spectral repre-
sentation with an effective spectral density ρDLR which is a
sum of δ functions:

ρDLR(ω) = −
r∑

k=1

ĝkδ(ω − ωk ). (6)

Such a representation is made possible by the ill-conditioning
of the integral operator defining the Lehmann representation;
up to a fixed precision ε, the spectral density corresponding to
a given imaginary time Green’s function is highly nonunique.
Thus, we simply pick one such spectral density with a par-
ticularly simple form, rather than attempting to reconstruct
the original spectral density. Figure 1(d) shows a graphical
representation of ρDLR and hence of the coefficients ĝk and
the selected frequencies ωk .

III. MATHEMATICAL PRELIMINARIES

This section will review our two main numerical tools:
composite Chebyshev interpolation, which will be used to
obtain an accurate initial discretization of the kernel K (τ, ω),
and the interpolative decomposition, which will be used for
low-rank compression.

A. Composite Chebyshev interpolation

Polynomial interpolation at Chebyshev nodes is a well-
conditioned method for the approximation of a smooth
function f on an interval [9]. If f can be analytically contin-
ued to a neighborhood of [a, b], the error of the interpolant in
the supremum norm decreases geometrically with its degree,
and if f can be analytically continued to the entire complex
plane, the convergence is supergeometric [see Ref. [9] (The-
orem 8.2)]. There are fast and stable algorithms to evaluate
Chebyshev interpolants, such as the method of barycentric
Lagrange interpolation [29,30].

For functions with sharp features or variation at multi-
ple length scales, using a single polynomial interpolant on
[a, b] is inefficient. A better alternative is to construct a
piecewise polynomial interpolant by the method of composite
Chebyshev interpolation at fixed order. To be precise, let
[a1, b1], [a2, b2], . . . , [an, bn] with a = a1 < b1 = a2 < b2 =
· · · = an < bn = b be a collection of subintervals partitioning
[a, b]. Let {xi j}p

i=1 be the p Chebyshev nodes on [a j, b j]. Then
{xi j}p,n

i, j=1 is called a composite Chebyshev grid. Let �i j (x) be
the Lagrange polynomial corresponding to the ith grid point
on the jth panel; this is the polynomial of degree p − 1 which
satisfies

�i j (x) =
{

1 if x = xi j,

0 if x = xk j, k 	= i.

Let χ j (x) be the characteristic function on the interval [a j, b j].
Then the degree p − 1 composite Chebyshev interpolant of a
function f on [a, b] corresponding to the above partition is
given by

f̂ (x) =
n∑

j=1

χ j (x)
p∑

i=1

�i j (x) f (xi j ). (7)

Evidently, we have f (xi j ) = f̂ (xi j ) for each i = 1, . . . , p and
j = 1, . . . , n. The partition of [a, b] should be chosen to re-
solve local features of f , and the degree p should be chosen
sufficiently large so that the rapidly converging Chebyshev
interpolants of f on each subinterval [aj, b j] are accurate.

To simplify expressions, we define the truncated Lagrange
polynomial on the interval [a j, b j] by �i j ≡ �i jχ j . It will
also sometimes be convenient to cast the double index i =
1, . . . , p, j = 1, . . . , n for the composite grid points to a
single index i = 1, . . . , p × n, with xi ← xi j , �i ← �i j , and
�i ← �i j . In this notation, (7) becomes

f̂ (x) =
p×n∑
i=1

�i(x) f (xi). (8)

B. Interpolative decomposition

We say an m × n matrix A is numerically low rank or,
more specifically, has low ε rank, if A has only r 
 min(m, n)
singular values larger than ε. The best rank r approximation
of A in the spectral norm is given by its SVD truncated to
the first r singular values, and its error in that norm is the
next singular value σr+1 [see Ref. [31] (Sec. 2, Theorem 2)].
Thus, the truncated SVD (TSVD) yields an approximation
with error ε in the spectral norm for a matrix with ε rank r.

The interpolative decomposition is an alternative to the
TSVD for compressing numerically low-rank matrices. It has
the advantage that the column space is represented by selected
columns of A, rather than an orthogonalization of the columns
of A, as in the TSVD. The price is a mild and controlled loss
of optimality compared with the TSVD. The ID and related
algorithms are described in Refs. [21,22,32]; in particular, we
make use of the form of the ID and the theoretical results
summarized in Ref. [22].

Given A ∈ Cm×n, the rank r ID is given by

A ≈ BP

with B ∈ Cm×r a matrix containing r selected columns of
A, and P ∈ Cr×n, the so-called projection matrix, containing
the coefficients required to approximately recover all of the
columns of A from the r selected columns. The error of the
decomposition is given by

‖A − BP‖2 �
√

r(n − r) + 1 σr+1, (9)

so the ID gives a rank r approximation of A which is at most
a factor of

√
r(n − r) + 1 less accurate than the TSVD. The

numerical stability of the ID as a representation of A can also
be guaranteed; in particular, we have

‖P‖2 �
√

r(n − r) + 1. (10)

The references given above contain detailed statements of the
relevant results which we have quoted here, along with the
accompanying analysis.

Numerical algorithms are available which construct such
a decomposition with bounds typically within a small fac-
tor of those stated above. The standard algorithm, described
in Ref. [21], proceeds in two steps. First, the pivoted QR
process is applied to A, yielding a collection of r columns
of A, corresponding to the pivot indices, which are in
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a certain sense as close as possible to being mutually or-
thogonal. These r columns comprise the matrix B in the ID.
Next, a linear system is solved to determine the coefficients
of the remaining columns of A in the basis determined by B.
These coefficients are stored in the matrix P. The cost of this
algorithm is O(rmn). If the rank r is not known a priori, it
is straightforward to apply this algorithm in a rank-revealing
manner, so that given an input ε it yields an estimated ε rank r
and a rank r ID with ‖A − BP‖2 � ε. Of course, the returned
ε rank may be larger than the true ε rank, consistent with
the suboptimality of the estimate (9) and the behavior of the
singular values of A.

We remark that for several of the algorithms presented in
this paper, in particular for all the algorithms involving the
DLR, we only ever need to perform the pivoted QR step of
the ID to identify k selected columns of a matrix, and in
particular do not need to construct the full ID. Nevertheless,
the presentation in terms of the ID is both conceptually and
theoretically useful, and helps to unify our discussions of the
DLR and the IR, so we adopt that language throughout. Our
descriptions of algorithms in the text will make this point
clear.

The Fortran library ID provides an implementation of the
ID algorithm [33,34]. A Python interface is available in SCIPY

[35]. For our numerical experiments, we use the implementa-
tion of the rank-revealing pivoted QR algorithm contained in
the Fortran version of the library.

IV. DISCRETE LEHMANN REPRESENTATION

The DLR basis functions are built by a two-step proce-
dure. First, we discretize K (τ, ω) on a composite Chebyshev
fine grid {(τ f

i , ω
f
j )}M,N

i=1, j=1, obtaining a matrix with entries

K (τ f
i , ω

f
j ). Then, we obtain a small subset {ωl}r

l=1 of the fine
grid points in ω from the ID of this matrix, such that

K (τ, ω) ≈
r∑

l=1

K (τ, ωl )πl (ω) (11)

holds to high accuracy uniformly in τ , for some coefficients
πl (ω). The functions {K (τ, ωl )}r

l=1 are referred to as the
DLR basis functions. Inserting (11) into the Lehmann rep-
resentation (1) will establish the existence of the DLR. The
discretization of K will be discussed in Sec. IV A, and the
construction of the DLR basis in Sec. IV B. In Secs. IV C
and IV D, we will describe a stable method of constructing
the DLR of a Green’s function G from samples of G at only
r selected imaginary time and Matsubara frequency nodes,
respectively. In Sec. IV E we will give a practical summary
of the various procedures, and we will demonstrate the DLR
with a few simple examples in Sec. IV F. Throughout the dis-
cussion, except when describing specific physical examples,
we will work in the nondimensionalized variables described
at the beginning of Sec. II, with τ ∈ [0, 1], ω ∈ [−	,	], and
K (τ, ω) = e−τω/(1 + e−ω ).

A. Discretization of K(τ, ω)

We discretize K (τ, ω) by finding grids sufficient to re-
solve K (τ, ω0) on τ ∈ [0, 1] for all fixed ω0 ∈ [−	,	], and

K (τ0, ω) on ω ∈ [−	,	] for all fixed τ0 ∈ [0, 1]. A closely
related problem was considered in Ref. [36], in which it
is shown (Lemma 4.4) that all exponentials in the family
{e−ωτ }ω∈[1,	] can be represented to error uniformly less than
ε on τ � 0 in a basis of O( log(	) log(1/ε)) exponentials
chosen from the family. As in their proof, we will make use
of dyadically refined composite Chebyshev grids. A minor
modification of their proof is sufficient to give a rigorous
justification of our method, though we do not discuss the
details here.

We begin with the first case, for ω0 ∈ [0,	], which gives
K (τ, ω0) = ce−ω0τ for a constant c: a family of decaying
exponentials. Consider the composite Chebyshev grid on τ ∈
[0, 1] dyadically refined towards the origin; that is, with inter-
vals given by a1 = 0, ai = bi−1 = 2−(m−i+1) for i = 2, . . . , m,
and bm = 1. We take m ∼ log2 	 to resolve the smallest
length scale in the family of exponentials, which appears
for ω0 = 	. With this choice, the degree parameter p can
be chosen sufficiently large so that the resulting compos-
ite Chebyshev interpolant is uniformly accurate for any 	.
Double-precision machine accuracy εmach can be achieved
with a moderate choice of p since the Chebyshev interpolants
of the exponentials converge rapidly with p. The accuracy
of the interpolants can be checked directly, and p refined to
convergence.

For ω0 ∈ [−	, 0], we observe that K (τ, ω0) = ceω0(1−τ ),
revealing a symmetry in K about τ = 1

2 . We therefore split
the last interval [ 1

2 , 1] in our partition into a set of subinter-
vals dyadically refined towards τ = 1, in the same manner as
above. The resulting composite Chebyshev grid is sufficient to
resolve K (τ, ω0) for all ω0 ∈ [−	,	], and contains O(log 	)
points. An example of such a grid is shown in Fig. 2(a).

We refer to the nodes of this composite Chebyshev grid as
the set of fine grid points in τ , and denote them by {τ f

j }M
j=1, us-

ing the single-index notation for a composite Chebyshev grid.
Here, M = p × m, where m is the total number of subintervals
in the partition of [0,1]. Thus we can ensure that for each fixed
ω ∈ [−	,	], the composite Chebyshev interpolant on the
fine grid in τ is uniformly accurate to εmach; using the notation
defined in Sec. III A, we have

∥∥∥∥∥K (τ, ω) −
M∑

i=1

�i(τ )K
(
τ

f
i , ω

)∥∥∥∥∥
∞

< εmach (12)

with M = O(log 	).
We next consider fixed τ0 ∈ [0, 1], for which we have

K (τ0, ω) = e−τ0ω/(1 + e−ω ). This is again a family of func-
tions which are sharply peaked near the origin, and we
discretize [−	,	] by a composite Chebyshev grid with in-
tervals dyadically refined towards the origin from the positive
and negative direction until the smallest panels are of unit
size, which again requires n ∼ log2 	. A similar choice of
p is again sufficient to obtain accuracy εmach for any 	. An
example of this grid is shown in Fig. 2(b).

The resulting fine grid points in ω are denoted by {ω f
j }N

k=1,
and give a composite Chebyshev interpolant of K (τ, ω) on
ω ∈ [−	,	] for each τ which is uniformly accurate to εmach;
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FIG. 2. (a) Fine grid points τ
f

i for p = 8 and n = 5. Subinterval
end points are indicated by the dashed lines. (b) Fine grid points ω

f
k

for p = 8 and n = 5. (c) The 21 imaginary time DLR nodes selected
from the fine grid in (a) for 	 = 100 and ε = 10−6. For readability,
we have used a smaller value of p here than we do in practice. (d) The
21 DLR frequencies selected from the fine grid in (b).

that is, ∥∥∥∥∥K (τ, ω) −
N∑

j=1

K
(
τ, ω

f
j

)
� j (ω)

∥∥∥∥∥
∞

< εmach (13)

with N = O(log 	). We note an abuse of notation: �i(τ ) refers
to the truncated Lagrange polynomials for the fine grid in τ ,
whereas � j (ω) refers to those for the fine grid in ω. Combining
(12) and (13), and possibly increasing p, we obtain∥∥∥∥∥K (τ, ω) −

M∑
i=1

N∑
j=1

�i(τ )K
(
τ

f
i , ω

f
j

)
� j (ω)

∥∥∥∥∥
∞

< εmach.

(14)

We summarize as follows. The kernel K (τ, ω) may be
represented by composite Chebyshev interpolants of M and
N terms in τ and ω, respectively, with subintervals chosen
by dyadically subdivision. These representations can be con-
structed at a negligible cost, and directly checked for accuracy.
We have M = pm and N = pn; in practice, we find m = n =
max(log2 	, 1) and p = 24 to be sufficient to ensure double-
precision machine accuracy.

For simplicity of exposition, we will assume in the remain-
der of the paper that the interpolation errors in (12)–(14) are
identically zero. Indeed, given these estimates, K (τ, ω) is in-
distinguishable from its interpolants to the machine precision,
and we can just as well take the interpolants as our definition
of K .

(a) (b)

FIG. 3. (a) Singular values σk of the matrix Ai j = K (τ f
i , ω

f
j ), for

various 	. (b) ε rank of A against 	 for various ε (blue), and the
DLR rank (number of DLR basis functions) for the same choice of ε

(orange).

B. DLR basis

Define A ∈ RM×N with entries given by Ai j = K (τ f
i , ω

f
j ).

Figure 3(a) shows the singular values of A for a few choices
of 	. Evidently, the singular values decay at least expo-
nentially, so that for each fixed 	, the ε rank of A is
O( log(1/ε)). Figure 3(b) shows that the rate of exponential
decay is proportional to log(	). It follows that the ε rank is
O( log(	) log(1/ε)). A derivation and analysis of this bound
will be given in a forthcoming publication [37].

Since the column space of A characterizes the subspace
of imaginary time Green’s functions defined by (3), the low
numerical rank of A shows that this subspace is finite dimen-
sional to a good approximation. An equivalent observation is
made in Ref. [13], where it justifies using the left singular
vectors of a discretization of K (τ, ω) as a compressed repre-
sentation of imaginary time Green’s functions. This is the IR
basis, which we discuss in detail in Sec. V.

Here, we use the ID to build a basis for the column space of
A. Let ε be a user-provided error tolerance. We can construct
a rank r ID of A,

A = BP + E , (15)

for B ∈ RM×r , P ∈ Rr×N , and E ∈ RM×N an error matrix with

‖E‖2 � ε.

It follows from (9) and the rapid decay of the singular values
of A that r will be at worst only slightly larger than the true
ε rank of A. The discrepancy is shown in Fig. 3(b), with the
blue points showing the true ε rank r against 	 for several ε,
and the orange points showing r as obtained by the ID with
the same choices of ε, which we refer to as the DLR rank.
This is a useful figure to refer to, as it shows the number of
DLR basis functions required to represent any imaginary time
Green’s function obeying a high-energy cutoff 	 to a given ε

accuracy.
Writing (15) entrywise gives

K
(
τ

f
i , ω

f
j

) =
r∑

l=1

K
(
τ

f
i , ωl

)
Pl j + Ei j

for a subset {ωl}r
l=1 of {ω f

j }N
j=1. This subset corresponds to the

selected columns in the ID, and we refer to it as the collection
of DLR frequencies. Summing both sides against �i(τ ) and
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� j (ω) gives

K (τ, ω) =
r∑

l=1

K (τ, ωl )πl (ω) + E (τ, ω)

with πl (ω) = ∑n
j=1 Pl j� j (ω) and E (τ, ω) = ∑M

i=1

∑N
j=1

�i(τ )Ei j� j (ω). Inserting this into (3), we obtain

G(τ ) = −
r∑

l=1

K (τ, ωl )
∫ 	

−	

πl (ω)ρ(ω) dω

−
∫ 	

−	

E (τ, ω)ρ(ω) dω. (16)

Letting ĝl = − ∫ 	

−	
πl (ω)ρ(ω) dω gives our first main result.

The bound on the error term is proven in Appendix B.

Theorem 1. Suppose G is given by its truncated Lehmann
representation (3). Then there exist coefficients {̂gl}r

l=1 such
that

G(τ ) =
r∑

l=1

K (τ, ωl )̂gl + e(τ ) (17)

with {ωl}r
l=1 chosen corresponding to the selected columns of

the ID (15). The error term e(τ ) satisfies

‖e‖∞ � cε‖ρ‖1

for a constant c which depends only on p, the Chebyshev
degree parameter defined above.

The constant c is mild and computable; for p = 24, it is
less than 10. The r functions K (τ, ωl ) are referred to as the
DLR basis functions, and are characterized solely by the DLR
frequencies ωl selected in the ID. An example of a set of DLR
frequencies, selected from the fine grid shown in Fig. 2(b)
with 	 = 100 and ε = 10−6, is shown in Fig. 2(d).

We note that in practice, it is not necessary to form the
full ID in order to obtain the DLR basis since we do not use
the projection matrix P. Rather, we only need to identify the
DLR frequencies {ωl}r

l=1. The selection of the DLR frequen-
cies takes place in the pivoted QR step of the ID algorithm.
Thus, to construct the DLR basis, we simply apply the rank-
revealing pivoted QR algorithm to the columns of A with a
tolerance ε.

C. Imaginary time DLR grid

In general, the spectral density ρ is not known a priori,
so we cannot find the coefficients ĝl in (17) using the con-
struction above. Rather, we will identify a set of r imaginary
time interpolation nodes τk so that expansion coefficients
can be recovered from the values gk = G(τk ) by solving an
interpolation problem using the basis functions K (τ, ωl ).

Consider the matrix B ∈ RM×r introduced above, with en-
tries Bil = K (τ f

i , ωl ). Forming the ID of BT gives

B = RK, (18)

with K ∈ Rr×r consisting of selected rows of B, and R ∈ RM×r

the associated projection matrix. The r selected rows of B
correspond to a subset {τk}r

k=1 of the fine grid points {τ f
i }M

i=1 in

imaginary time, which we refer to as the imaginary time DLR
grid. We have

Kkl = K (τk, ωl ). (19)

Writing (18) entrywise and summing over the truncated La-
grange polynomials in τ , we obtain

K (τ, ωl ) =
r∑

k=1

γk (τ )K (τk, ωl ) ≡
r∑

k=1

γk (τ )Kkl (20)

with γk (τ ) = ∑M
i=1 �i(τ )Rik . Equation (20) tells us that the

DLR basis functions can be recovered from their values at
the imaginary time DLR grid points. It will follow that a
Green’s function can similarly be recovered from its values
on this grid. An example of an imaginary time DLR grid,
selected from the fine grid shown in Fig. 2(a) with 	 = 100
and ε = 10−6, is shown in Fig. 2(c).

The recovery may be carried out in practice by computing
the values gk = G(τk ) for k = 1, . . . , r, solving the interpola-
tion problem

g = Kĝ (21)

for DLR coefficients ĝk , and using

GDLR(τ ) =
r∑

l=1

K (τ, ωl ) ĝk (22)

as an approximation of G. Here, g, ĝ ∈ Rr . Although it is
tempting to compare (22) with (17) and assume GDLR ≈ G
holds to high accuracy, this is not guaranteed a priori. Indeed,
if the interpolation nodes τk were not selected carefully, this
would not be the case. However, the following stability result,
proven in Appendix C, leads to an accuracy guarantee.

Lemma 1. Suppose GDLR and HDLR are given by

GDLR(τ ) =
r∑

l=1

K (τ, ωl )̂gl

and

HDLR(τ ) =
r∑

l=1

K (τ, ωl )̂hl ,

respectively, with {ωl}r
l=1 chosen as above. Let g, h ∈ Rr be

given by gk = GDLR(τk ), hk = HDLR(τk ), with {τk}r
k=1 the

imaginary time DLR grid determined by the selected rows of
the ID (18). Then

‖GDLR − HDLR‖∞ �
√

2‖R‖2‖g − h‖2.

The ID guarantees that ‖R‖2 is controlled; in particular, we
have the estimate (10). Since M = O(log 	) and r is small,
this factor in the estimate is small in practice. With Lemma
1 in hand, we consider the following practical question: if a
Green’s function G is sampled at the DLR grid points with
some error, how accurate is the approximation GDLR given by
(22), with the coefficients ρl obtained by solving the interpo-
lation problem (21)?

Theorem 2. Let G be a Green’s function given by a trun-
cated Lehmann representation (3). Let g ∈ Rr be a vector of
samples of G at the imaginary time DLR grid points τk , up
to an error η ∈ Rr : gk = G(τk ) + ηk . Suppose ĝ ∈ Rr solves
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the corresponding interpolation problem (21) up to a residual
error α: Kĝ − g = α, with α ∈ Rr . Let GDLR be given by

GDLR(τ ) =
r∑

l=1

K (τ, ωl )̂gl .

Then

‖G − GDLR‖∞ � c(1 +
√

2r‖R‖2)‖ρ‖1ε

+
√

2‖R‖2(‖η‖2 + ‖α‖2)

with c the constant from Theorem 1.
Proof. Theorem 1 guarantees that

G(τ ) = HDLR(τ ) + e(τ )

for HDLR a DLR expansion and e a controlled error. We also
have that

GDLR(τk ) = gk + αk = G(τk ) + ηk + αk .

These expressions, and Lemma 1, give

‖G − GDLR‖∞ = ‖e + HDLR − GDLR‖∞

� ‖e‖∞ +
√

2‖R‖2

∥∥{e(τk )}r
k=1 + η + α

∥∥
2

� (1 +
√

2r‖R‖2)‖e‖∞

+
√

2‖R‖2(‖η‖2 + ‖α‖2).

The result follows from the bound on ‖e‖∞ given in
Theorem 1. �

It is expected, and our numerical experiments confirm,
that typically ‖α‖2 ≈ ‖η‖2. Thus, the accuracy of the ap-
proximation (22) is indeed determined by the user-input error
tolerance ε, and is limited only by the accuracy to which G
can be evaluated. We remark that this holds true despite the
fact that the matrix K is ill conditioned, and therefore that the
computed DLR coefficients ĝl are not expected to be close to
those appearing in (17). Indeed, this ill-conditioning reflects
a fundamental nonuniqueness in ĝl . However, it will not pre-
vent a standard linear solver from identifying a solution with
small residual, and therefore does not imply any difficulty in
accurately representing G.

D. DLR in the Matsubara frequency domain

A DLR can be transformed to the Matsubara frequency
domain analytically. Indeed, we have

K (iνn, ω) =
∫ 1

0
K (τ, ω)e−iνnτ dτ = (ω + iνn)−1, (23)

with Matsubara frequency points

iνn =
{

i(2n + 1)π for fermionic Green’s functions,
i2nπ for bosonic Green’s functions.

A DLR expansion G(τ ) = ∑r
l=1 K (τ, ωl )̂gl therefore trans-

forms to the Matsubara frequency domain as

G(iνn) =
r∑

l=1

K (iνn, ωl )̂gl .

We can construct a set of Matsubara frequency interpo-
lation nodes using the ID. As in the previous section, we

simply apply the ID to the rows of the matrix with entries
K (iνn, ωl ), for n = −nmax, . . . , nmax, and l = 1, . . . , r. Here
nmax is a chosen Matsubara frequency cutoff. This process
returns r selected Matsubara frequency interpolation nodes
iνnk . As before, it is not necessary to form the full ID, but
only to use the pivoted QR algorithm to identify the selected
nodes. The DLR coefficients can be recovered by solving the
interpolation problem

G
(
iνnk

) =
r∑

l=1

K
(
iνnk , ωl

)̂
gl , (24)

for k = 1, . . . , r, which is analogous to (21). One must ensure
that the Matsubara frequency nodes have been converged with
respect to nmax, and in practice we find nmax ∼ 	 is usually a
sufficient cutoff.

This procedure requires carrying out the pivoted QR al-
gorithm on the rows of a 2nmax + 1 × r matrix, and typically
nmax = O(	). It is more expensive than the procedure to select
the imaginary time DLR grid points, which uses the pivoted
QR algorithm on an M × r matrix, with M = O(log 	). How-
ever, it is still quite fast in practice for moderate values of 	.
If it were to become a bottleneck, one could design a more ef-
ficient scheme to select the Matsubara frequency interpolation
nodes from a smaller subset of the full Matsubara frequency
grid −nmax � n � nmax.

E. Summary of DLR algorithms

We pause to summarize the practical procedures we have
described to build and work with the DLR.

a. Construction of the DLR basis. To construct the DLR
basis for a given choice of 	 and ε, we first discretize the
kernel K (τ, ω) on a composite Chebyshev grid to obtain the
matrix with entries Ai j = K (τ f

i , ω
f
j ). We then apply the piv-

oted QR algorithm, with an error tolerance ε, to the columns
of A. The pivots correspond to a set of r DLR frequencies
ωl , where r, the so-called DLR rank, is the number of basis
functions required to represent the full subspace characterized
by the truncated Lehmann integral operator to an accuracy
approximately ε. The DLR basis functions are simply given
by {K (τ, ωl )}r

l=1.
b. DLR from imaginary time values. To obtain the r imagi-

nary time interpolation nodes τk , we simply apply the pivoted
QR algorithm to the rows of the matrix with entries Bil =
K (τ f

i , ωl ). The pivots correspond to the interpolation nodes.
To obtain the DLR coefficients ĝl of a Green’s function G(τ ),
we compute the r values gk = G(τk ) and solve the r × r
interpolation problem (21).

c. DLR from Matsubara frequency values. To obtain the r
Matsubara frequency interpolation nodes iνnk , we apply the
pivoted QR algorithm in the same manner to the rows of
the matrix with entries K (iνn, ωl ), where −nmax � n � nmax

for some choice of nmax. In practice, we find nmax = 	 to
be sufficient in most cases, but nmax can be increased until
the selected Matsubara frequency nodes no longer change.
To obtain the DLR expansion coefficients ĝl of a Green’s
function G(iνn) in the Matsubara frequency domain, we solve
the interpolation problem (24).
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(a) (b) (c)

FIG. 4. L∞ error of the DLR approximation of G(τ ) = − 2
π

∫ 1
−1 K (τ, ω)

√
1 − ω2 dω obtained using imaginary time sampling for β = 102

and several choices of ε. (a) G(τ ). (b) Error versus r, the number of basis functions. (c) Error versus 	.

d. Transforming between imaginary time and Matsubara
frequency domains. The DLR coefficients for the represen-
tation of a given Green’s function in the imaginary time
and Matsubara frequency domains are the same; one sim-
ply takes the Fourier transform of the DLR in imaginary
time explicitly using (23) to obtain the DLR in Matsubara
frequency, and inverts the transform explicitly to go in the op-
posite direction. Thus, having obtained DLR coefficients for a
Green’s function, the representation can be evaluated in either
domain.

e. A remark on the selection of 	 and ε. In our frame-
work, both 	 and ε are user-determined parameters which
control the accuracy of a given representation, and each choice
of 	 and ε yields some basis of r functions which should
then all be used. This is different from many typical meth-
ods, like orthogonal polynomial approximation, in which one
simply converges a given calculation with respect to the num-
ber m of basis functions directly. The inclusion of such a
user-determined accuracy parameter ε is a desirable feature
of many modern algorithms used in scientific computing,
which enables automatic data compression with an accuracy
guarantee.

In practice, to obtain a desired accuracy with the small-
est possible number of basis functions, one should choose
ε according to that desired accuracy, and not smaller. One
should then converge with respect to 	, which describes the
frequency content of the problem, and is therefore more analo-
gous to the parameter m in the Legendre polynomial method.
This process is illustrated, for example, by Fig. 4, which is
discussed in the next subsection.

F. Numerical examples

We can test the algorithms described above by evaluating
a known Green’s function on the imaginary time or Mat-
subara frequency DLR grids, recovering the corresponding
DLR coefficients, and measuring the accuracy of the resulting
DLR expansion by computing its error against G(τ ). We use
fermionic Green’s functions for all examples.

We first test the imaginary time sampling approach using
the Green’s function corresponding to the spectral density
ρ(ω) = 2

π

√
1 − ω2θ (1 − ω2). We fix ε, and measure the L∞

error of the computed DLR for several choices of 	. Results
for β = 104 were already presented in Fig. 1(c), in which we
plot error against the number r of basis functions obtained

using 	 = 0.2 × 104, 0.4 × 104, . . . , 1.2 × 104, for
ε = 10−6, 10−10, and 10−14. We observe rapid convergence
with r to error ε in each case.

In Figs. 4 and 5, respectively, we present similar plots for
β = 102 and β = 106. In Figs. 4(c) and 5(c), we plot the error
against 	 directly. These plots demonstrate the method as it
is used in practice; ε and 	, not r, are chosen directly by the
user in our framework. It can be seen from Figs. 4(b) and 5(b)
that choosing ε to be smaller than the actual desired accuracy
simply yields a larger basis than is needed, as was discussed
in Sec. IV E e.

We next repeat the experiment using ρ(ω) =
[δ(−1/3) + δ(1)]/2 for β = 100. The Green’s function
is shown in Fig. 6(a), and the error versus r in Fig. 6(b).
The results are similar to those for the previous example.
We note that the same experiments with β = 104 and
106, and 	 adjusted accordingly, give the expected
results.

To test the Matsubara frequency sampling approach, we
repeat the same experiments, except that we recover the
DLR coefficients from samples of the Green’s function on
the Matsubara frequency DLR grid. As before, we measure
the error in the imaginary time domain. Results for ρ(ω) =
2
π

√
1 − ω2θ (1 − ω2) with β = 104 are shown in Fig. 7. These

can be compared with Fig. 1(c). We observe only a mild
loss of accuracy compared with the results obtained using
imaginary time sampling, and we still achieve accuracy near
ε when 	 is increased beyond the known cutoff. Results
for ρ(ω) = [δ(−1/3) + δ(1)]/2 with β = 100 are shown in
Figs. 6(c) and 6(d). We have tested other choices of β for both
examples, up to β = 106, with similar results.

V. INTERMEDIATE REPRESENTATION

In this section, we rederive the intermediate representation
(IR) presented in Ref. [13] using the tools we have introduced
to construct the DLR. The IR uses an orthonormal basis
obtained from the SVD of an appropriate discretization of
the kernel K (τ, ω). It represents the same space as DLR, but
has the advantage of orthogonality, at the cost of using more
complicated basis functions. Our presentation of the IR differs
from Refs. [10,13,19,24] in two ways.

First, we show that discretizing K on a composite grid like
that introduced in Sec. IV A leads to an efficient construction
of the IR basis. By contrast, in Ref. [10], an automatic adap-
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(a)

(b)

(c)

FIG. 5. The same as in Fig. 4, with β = 106.

tive algorithm is used. The authors report in Ref. [24] that this
algorithm takes on the order of hours to build the IR basis
for 	 = 104. To address this problem, the library IRBASIS

contains precomputed basis functions for several values of 	,
and codes to work with them [24]. While this is a sufficient
solution for many cases, it may be restrictive in others, for ex-
ample, in converging the IR with respect to 	, or selecting 	

to achieve a given accuracy with the smallest possible number
of basis functions. Our approach, presented in Sec. V A, does
not require an expensive automatic adaptive algorithm. The
IR basis is obtained by discretizing K on a well-chosen grid,
as before, and computing a single SVD of a matrix whose
dimension grows logarithmically with 	, and for 	 up to 106

is less than 1000. As an illustration, Fig. 8 contains plots of a
few IR and DLR basis functions for 	 = 104 and ε = 10−14.
Building each basis takes less than a second, despite the high
resolution required.

Second, we show in Sec. V B that the interpolative de-
composition of a matrix containing the r IR basis functions
naturally yields a set of r sampling nodes for the IR, analogous
to the interpolation grid for the DLR, and a transformation
from values of a Green’s function at these nodes to its IR
coefficients. In previous works, the sparse sampling method
was used to provide such a sampling grid for the IR [23].
The sparse sampling nodes are chosen based on a heuristic,
which is motivated by the relationship between orthogonal
polynomials and their associated interpolation grids. While
this heuristic appears to lead to a numerically stable algorithm,
the procedure we have used to construct the DLR and Matsub-

ara frequency grids is automatic and offers robust accuracy
guarantees.

A. IR basis

The first step in constructing the IR basis is again to finely
discretize K (τ, ω). Here, to ensure that we obtain a basis
which is orthogonal in the L2 inner product, we use composite
Legendre grids rather than composite Chebyshev grids. The
discussion in Sec. IV A holds equally well for composite
Legendre grids, with Gauss-Legendre nodes used in place of
Chebyshev nodes.

In particular, let {τ f
i }M

i=1 and {ω f
j }N

j=1 be the nodes of the
composite Legendre fine grids in τ and ω, respectively, and
let A ∈ RM×N be the matrix with entries Ai j = K (τ f

i , ω
f
j ).

Let W ∈ RM×M be a diagonal matrix with entries Wii =
w

f
i , the quadrature weights associated with the composite

Legendre grid points τ
f

i . The quadrature weights {w f
i }M

i=1
are obtained from the ordinary Gauss-Legendre quadrature
weights at p Legendre nodes, rescaled to account for the panel
length.

Consider the SVD
√

W A = U�V T of the reweighted ma-
trix. Truncating the SVD at rank r gives√

w
f
i K

(
τ

f
i , ω

f
j

) =
r∑

l=1

σl (ul )i(vl ) j + Ei j,

where σl , {ul}r
l=1, and {vl}r

l=1 are the first r singular values, left
singular vectors, and right singular vectors, respectively, and

(a)

(b)

(c)

(d)

FIG. 6. L∞ error of the DLR approximation of G(τ ) = − 1
2

∫ 1
−1 K (τ, ω)[δ(−1/3) + δ(1)] dω for β = 100 and several choices of ε. (a)

G(τ ). (b) Error versus r for imaginary time sampling. (c) G(iνn); real part in blue, and imaginary part in orange. (d) Error versus r for
Matsubara frequency sampling.
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(a)

(b) (c)

FIG. 7. L∞ error of the DLR approximation of G(τ ) = − 2
π

∫ 1
−1 K (τ, ω)

√
1 − ω2 dω obtained using Matsubara frequency sampling for

β = 104 and several choices of ε. (a) Im G(iνn); note that Re G(iνn) = 0 by symmetry. (b) Error versus r. (c) Error versus 	.

E is an error matrix. As before, we choose r so that ‖E‖2 < ε,
implying r is the ε rank of

√
W A.

Note that the entries of each left singular vector ul can
be interpreted as samples of a function on the fine grid in τ

and, similarly, the entries of vl as samples of a function on the
fine grid in ω. Summing against the corresponding truncated
Lagrange polynomials, we find

K (τ, ω) =
r∑

l=1

σl

⎛⎝ M∑
i=1

�i(τ )
(ul )i√

w
f
i

⎞⎠(
N∑

j=1

� j (ω)(vl ) j

)

+ E (τ, ω),

(a)

(c) (d)

(b)

FIG. 8. IR and DLR basis functions for 	 = 104 and ε = 10−14.
(a) The first five IR basis functions. (b) The highest-degree (91st)
IR basis function for the given parameters. (c) Several DLR basis
functions for smaller ωl ; we have ordered ωl so that increasing l
corresponds to larger exponential rates. (d) The DLR basis func-
tion (96th) with the largest exponential decay rate for the given
parameters.

with E (τ, ω) = ∑M
i=1

∑N
j=1

�i (τ )√
w

f
i

Ei j� j (ω). Inserting this

into the truncated Lehmann representation (3), we
obtain

G(τ ) = −
r∑

l=1

σl

⎛⎝ M∑
i=1

�i(τ )
(ul )i√

w
f
i

⎞⎠
×

∫ 	

−	

(
N∑

j=1

� j (ω)(vl ) j

)
ρ(ω) dω

−
∫ 	

−	

E (τ, ω)ρ(ω) dω.

This establishes the validity of the representation

G(τ ) =
r∑

l=1

ĝlϕl (τ ) + e(τ )

for

ϕl (τ ) =
M∑

i=1

�i(τ )
(ul )i√

w
f
i

,

and e(τ ) an error term, analogous to the result in Theorem 1.
We do not give an explicit bound on e(τ ) here, but evidently
it is similar to that for the DLR case.

The orthonormality of the collection {ϕl}r
l=1 follows from

that of the left singular vectors {ul}r
l=1:∫ 1

0
ϕk (τ )ϕl (τ ) dτ =

M∑
i=1

ϕk
(
τ

f
i

)
ϕl

(
τ

f
i

)
w

f
i

=
M∑

i=1

(uk )i(ul )i = δkl . (25)

Here, the first equality holds because the functions {ϕl}r
l=1

are piecewise polynomials of degree p − 1, so the Gauss-
Legendre quadrature rule is exact, and the second follows
from the definition of ϕl and the truncated Lagrange polyno-
mials. We define the IR basis as {ϕl}r

l=1.
The functions ϕl are represented using the singular vectors

{ul}r
l=1 of

√
W A, so constructing them only requires forming

and computing the SVD of this M × N matrix, with M, N =
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O(log 	), truncated to include only singular values larger than
some desired accuracy ε.

Operations involving the IR basis functions are straightfor-
wardly carried out by working with the piecewise polynomial
representation. For example, to evaluate ϕl at a point τ , we
first find the subinterval in the composite Legendre grid con-
taining τ , and then evaluate a Legendre expansion on that
subinterval at τ . It follows from the orthonormality of the
IR basis, and the exactness of Gauss-Legendre quadrature on
polynomials of degree 2p − 1, that the IR coefficients of a
Green’s function

G(τ ) =
r∑

l=1

ĝlϕl (τ ) (26)

are given by

ĝl =
∫ 1

0
ϕl (τ )G(τ ) dτ

=
M∑

i=1

ϕl
(
τ

f
i

)
G

(
τ

f
i

)
w

f
i =

M∑
i=1

(ul )i G
(
τ

f
i

) √
w

f
i . (27)

B. Imaginary time IR grid and transform matrix

Computing the IR coefficients using (27) requires sampling
G(τ ) at M � r grid points. As for the imaginary time DLR
grid, we show how to obtain r imaginary time IR grid points
{τi}r

i=1 and an r × r transform matrix T so that given a Green’s
function (26), we have ĝl ≈ ∑r

k=1 Tlk G(τk ) to high accuracy.
We note that since the IR basis is orthogonal, it is natural to
use projection rather than interpolation to obtain the expan-
sion coefficients, so the procedure here is different than that
for the DLR basis.

Let � be the matrix containing the IR basis functions on the

fine grid, �i j = ϕ j (τ
f

i ) = (u j )i/

√
w

f
i . The ID of �T gives

� = Rφ

with φ ∈ Rr×r consisting of selected rows of �, and R ∈ RM×r

the projection matrix. We take {τk}r
k=1 to be the subset of the

fine grid points {τ f
i }M

i=1 corresponding to the selected rows of
�, and define an r × r matrix

T = �T W R. (28)

Suppose G is given by (26), and let g, ĝ ∈ Rr with gk =
G(τk ). In particular, we have φĝ = g. Then

T g = �T W Rg = �T W Rφĝ = �T W �ĝ = ĝ

since �T W � = I from (25). Thus, the imaginary time IR grid
points and transform matrix can be computed directly from the
ID of �, and can be used to recover the IR coefficients from
the values of a Green’s function on the IR grid.

We note that since the IR basis is orthogonal, issues of
stability are more straightforward than in the DLR case, and
we do not give a detailed analysis here.

C. IR in the Matsubara frequency domain

One can construct a Matsubara frequency grid for the IR
basis using similar techniques to those presented in Sec. IV D.

In this case, however, we do not have simple analytical expres-
sions for the Fourier transforms of the IR basis functions, and
these have to be computed by numerical integration using the
piecewise polynomial representations. This process is cum-
bersome compared with the analogous method for the DLR
basis, and we will not describe it in detail.

As an alternative, to recover the IR coefficients from sam-
ples of a Green’s function in the Matsubara frequency domain,
one could simply evaluate the Green’s function on the Mat-
subara frequency DLR grid, recover the DLR coefficients,
evaluate the resulting DLR expansion on the IR grid, and
apply the transform T .

VI. DYSON EQUATION IN THE DLR BASIS

We consider the Dyson equation relating a Matsubara
Green’s function and self-energy,

G−1(iνn) = G−1
0 (iνn) − �(iνn), (29)

where G0 is a given Matsubara Green’s function. Al-
though it is diagonal in the Matsubara frequency domain,
it can also be written in the time domain as an integral
equation,

G(τ )−
∫ β

0
dτ ′G0(τ −τ ′)

∫ β

0
dτ ′′�(τ ′−τ ′′)G(τ ′′) = G0(τ ).

(30)

The functions G, G0, and � can be extended to (−β, 0)
using the β-antiperiodicity property f (−τ ) = − f (β − τ ) or
the β-periodicity property f (−τ ) = f (β − τ ) for fermionic
and bosonic Green’s functions, respectively. Since G(τ ) is an
imaginary time Green’s function, it has a Lehmann spectral
representation (1), and can therefore be approximated by a
DLR. We assume the same is true of the self-energy �, and
of the intermediate convolutions in (30); this can be shown
in many typical cases of physical interest. For simplicity, we
assume in this section that all quantities are fermionic, but
our discussion is straightforwardly extended to the bosonic
case.

Since � in general depends on G, the Dyson equation must
be solved self-consistently by nonlinear iteration: see, for
example, (39) in the next section for the SYK self-energy.
The standard method is to compute � in the imaginary time
domain, where it is typically simpler, and to solve the Dyson
Eq. (29) in the Matsubara frequency domain where it is diag-
onal. This procedure can be carried out efficiently using the
DLR: (i) given G on the imaginary time DLR grid computed
from a previous iterate, � is computed on the imaginary
time DLR grid; (ii) the DLR coefficients of � are recovered;
(iii) � is evaluated on the Matsubara frequency grid; (iv)
(29) is solved to obtain G on the Matsubara frequency grid;
(v) the DLR coefficients of G are recovered; and (vi) G is
evaluated on the imaginary time DLR grid to prepare for
the next iterate. Reference [23] describes and demonstrates
a similar procedure using the sparse sampling method for
the IR.

In this section, we show how to solve the Dyson equa-
tion directly in imaginary time using the DLR basis. We note
that much of the discussion holds equally well for the IR basis,
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or any other basis, including an orthogonal polynomial basis
[2]; however, certain quantities which must be computed by
numerical integration in that case are given analytically for
the DLR basis. We will work with the integral form (30),
and assume � is given, as is the case within a single step of
nonlinear iteration.

Let G be a Green’s function given by a DLR

G(τ ) =
r∑

l=1

K (τ, ωl )̂gl

and let gk = G(τk ). We will use similar notation for other
quantities. We define the convolution between � and G by

F (τ ) ≡
∫ 1

0
�(τ − τ ′)G(τ ′) dτ ′. (31)

Let � ∈ Rr×r denote the matrix discretizing this convolution,
so that

f = �g (32)

with fk = F (τk ). � can be constructed by a linear transfor-
mation of the values σk = �(τk ); there is a tensor Ci jk with

�i j =
r∑

k=1

Ci jkσk . (33)

As we will see, it may be simpler to form � from its DLR
coefficients σ̂l , and there is a tensor Ĉi jl with

�i j =
r∑

l=1

Ĉi jl σ̂l . (34)

Using this notation, the discretization of (30) in the DLR
basis is given by

(I − G0�)g = g0, (35)

where G0 can be obtained as in (33) or (34). This is simply
an r × r linear system. Thus, given �, � can be obtained
using (33) or (34), and then (35) can be solved to obtain G
on the imaginary time DLR grid. It remains only to discuss
the construction of the tensors C and Ĉ.

We begin by discretizing the convolution (31) on the imag-
inary time DLR grid:

fk = F (τk ) =
∫ 1

0
�(τk − τ ′)G(τ ′)dτ ′

=
r∑

l=1

(∫ 1

0
�(τk − τ ′)K (τ ′, ωl ) dτ ′

)̂
gl ≡

r∑
l=1

�̂kl ĝl .

Here we have defined �̂ as the matrix of convolution by �,
which takes the DLR coefficients ĝl to the values fl of the
convolution at the imaginary time DLR grid points. Recall the
matrix K defined by (19), which gives g = Kĝ. Precomposing
�̂ with K−1, we obtain the matrix

� = �̂K−1

yielding (32). We can define the matrix G0 of convolution by
G0 similarly.

To construct �̂, we take �(τ ) = ∑r
k=1 K (τ, ω j )σ̂k and

write

�̂i j =
∫ 1

0
�(τi − τ ′)K (τ ′, ω j ) dτ ′

=
∫ τi

0
�(τi − τ ′)K (τ ′, ω j ) dτ ′

−
∫ 1

τi

�(1 + τi − τ ′)K (τ ′, ω j ) dτ ′

=
r∑

k=1

σ̂k

(∫ τi

0
K (τi − τ ′, ωk )K (τ ′, ω j ) dτ ′

−
∫ 1

τi

K (1 + τi − τ ′, ωk )K (τ ′, ω j ) dτ ′
)

=
r∑

k=1

C̃i jk σ̂k, (36)

where we have used the antiperiodicity property. A straight-
forward calculation shows that C̃i jk is given explicitly by

C̃i jk =
{K (τi,ω j )−K (τi,ωk )

ωk−ω j
if j 	= k,

[τi − K (1, ω j )]K (τi, ω j ) if j = k.

The matrix � is then given by

�i j =
r∑

k=1

�̂ikK−1
k j =

r∑
k,l=1

C̃ikl σ̂lK−1
k j .

Defining

Ĉi jl ≡
r∑

k=1

C̃iklK−1
k j (37)

gives (34). We remark that in practice K−1 should be applied
in a numerically stable manner, such as by LU factorization
and back substitution, rather than formed explicitly.

Inserting σ̂ = K−1σ into (34), we obtain (33) with

Ci jk ≡
r∑

l=1

Ĉi jlK−1
lk . (38)

However, if this computation is not done carefully, rounding
error will lead to a significant loss of precision. In order to
maintain full double-precision accuracy using (33), C̃ and K
must be formed in quadruple precision. This is of course
straightforward since the entries of these arrays are given
explicitly. Then (37) and (38), must be computed in quadruple
precision. Once C has been obtained, all subsequent calcula-
tions, in particular (33), can be carried out in double precision.
Describing this phenomenon requires an analysis of floating
point errors which is beyond this scope of this paper. Alter-
natively, one can simply obtain σ̂ from σ first, and use (34)
instead of (33); then, no such issue arises, and all arrays may
be formed using double-precision arithmetic.

We make a brief remark on the computational complexity
of solving the Dyson equation using the DLR. The more
standard method, using (29), scales as O(r2), due to the cost
of transforming between the imaginary time and Matsubara
frequency DLR grid representations of G and �. The sparse
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sampling method is similar, and has roughly the same cost
[23]. By contrast, the imaginary time domain method we have
described scales as O(r3), due to the cost of forming � [the
system (35) can typically be solved at an O(r2) cost using
an iterative linear solver]. Methods of reducing this cost may
exist, and will be explored in the future. However, since r is
typically small, the discrepancy may or may not be significant
in practice, and the pure imaginary time domain method may
be more convenient or robust in certain applications.

VII. EXAMPLE: THE SYK EQUATION

To demonstrate the method described in the previous sec-
tion, we consider the Sachdev-Ye-Kitaev (SYK) equations,
given by [25,26]{

G−1(iνn) = iνn + μ − �(iνn),
�(τ ) = J2G2(τ )G(β − τ ),

(39)

where μ is the chemical potential, J is a coupling constant,
and G is a fermionic Matsubara Green’s function. We fix
J = 1.

The SYK model exhibits remarkable properties, and is the
subject of a large literature [38]. Here, our motivation is to
illustrate the efficiency of the DLR approach in solving a
nonlinear Dyson equation. In the β → ∞ limit, it is known
that solutions develop a 1/

√
ω non-Fermi-liquid singularity

at low frequencies, or equivalently 1/
√

τ decay at large imag-
inary times [25]. The DLR expansion captures this behavior
with excellent accuracy. Although guaranteed by our analysis,
this result may appear counterintuitive, but there is in fact a
significant literature on the approximation of functions with
power-law decay by sums of a small number of exponentials
[39–41].

We solve (39) in the DLR basis using the imaginary time
domain method described in Sec. VI. Nonlinear iteration is
carried out using a weighted fixed-point iteration

�(n+1) = �[w G(n) + (1 − w) G(n−1)],

with the weight w chosen to ensure convergence. We ter-
minate the iteration when the values of G(n) and G(n−1) on
the imaginary time DLR grid match pointwise to within a
fixed-point tolerance εfp.

We first solve (39) with μ = 0 and β = 104, using G(τ ) =
− 1

2 as the initial guess for the weighted fixed-point iteration.
We take ε = 10−14, 	 = 5β, εfp = 10−12, and w = 0.15. The
calculation involves systems of only 117 degrees of freedom,
and takes less than a second on a laptop. G(τ ) is plotted in
Fig. 9(a), along with the conformal asymptotic solution Gc(τ )
given by [26,42]

Gc(τ ) = − π1/4

√
2β

[
sin

(
πτ

β

)]−1/2

. (40)

In Fig. 9(b), we plot the difference G(τ ) − Gc(τ ) for τ ∈
[0, β/2]. We observe the expected O(τ−3/2) asymptotic cor-
rection to (40). In Fig. 9(c), we plot the error of G(τ ) as
compared with a standard Legendre polynomial-based solver
[2], which operates according to the description in Sec. VI
with the DLR basis and nodes replaced by a Legendre poly-
nomial basis and Legendre nodes.

(a)

(b)

(c)

FIG. 9. (a) Solution G(τ ) of the SYK equation with J = 1,
μ = 0, and β = 104, along with the conformal solution Gc(τ ).
(b) Pointwise difference G − Gc, showing the form of the higher-
order correction. (c) Pointwise error of computed G measured against
a reference solution Gref obtained using Legendre polynomial-based
solver.

We next carry out a high-precision calculation of the com-
pressibility in the SYK model in the zero-temperature limit,
following the results of Ref. [26] (Sec. 4.2). We define the
charge Q (conventionally vanishing at half-filling) as

Q(β,μ) ≡ [Gβ,μ(β ) − Gβ,μ(0)]/2, (41)

where Gβ,μ is the solution of (39) for fixed β and μ > 0. The
compressibility K is defined as

K (T ) = ∂Q(β,μ)

∂μ

∣∣∣∣
μ=0+

= lim
μ→0+

Q(β,μ)

μ
(42)

with T = β−1.
Our goal is to calculate K (0) = limT →0+ K (T ). G(β,μ)

is shown for β = 50 and μ = 0.2, 0.1, 0.02 in Fig. 10(a). As
expected, Q(β,μ) is positive for μ > 0 and decreases to zero
as μ → 0.

In order to calculate K (T ) for each fixed T , we could
simply compute Q(β,μ)/μ for a small value of μ. However,
this strategy suffers from rounding error due to catastrophic
cancellation. To obtain a better approximation of K (T ), we
compute Q by solving the SYK equation for μ = μ0/2 j , with
j = 1, . . . , n, and some choice of μ0 and n. We then use
Richardson extrapolation on the resulting values of Q/μ to
obtain the limiting value K (T ); see Ref. [43] (Sec. 3.4.6) for
a description of Richardson extrapolation.

We note that some care must be taken in the nonlinear
iteration to avoid convergence to a spurious exponentially
decaying solution. An effective strategy is to compute
the solution for a sequence of values of μ: μ = jμ∗/n,
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j = 0, . . . , n, where μ∗ is the desired value, and n is chosen
sufficiently large. For μ = 0, we use the initial guess G(τ ) =
− 1

2 in the nonlinear iteration, as above. For μ = jμ∗/n with
j > 0, we use the solution for μ = ( j − 1)μ∗/n as an initial
guess. In many cases, taking n = 1 is sufficient.

We carry out this procedure for β = 50, 100,

200, . . . , 6400 with ε = 10−14, εfp = 10−12, and w taken
sufficiently small to ensure convergence of the nonlinear
iteration. We take 	 = 10β, and have verified that all
calculations are converged with respect to this parameter. The
computations involve linear systems of at most 121 degrees
of freedom.

The computed values of K (T ) are shown in Fig. 10(b).
From these values, we use Richardson extrapolation to esti-
mate K (0):

K (0) ≈ 1.046 699 8.

VIII. CONCLUSION

We have presented an efficient discrete Lehmann repre-
sentation of imaginary time Green’s functions based on the
interpolative decomposition. In the low-temperature regime,
it requires far fewer degrees of freedom than standard dis-
cretizations, and a similar number to the recently introduced
intermediate representation. The DLR basis functions are ex-
plicit; they are exponentials, carefully chosen to ensure stable
and accurate approximation. This feature simplifies standard
operations. We have introduced algorithms which use stan-
dard numerical linear algebra tools to efficiently build the
DLR basis and corresponding imaginary time and Matsub-
ara frequency grids. These algorithms also carry over to the
intermediate representation method. We have demonstrated
the DLR by solving the SYK equation to high precision at
low temperatures, with calculations taking on the order of
seconds on a laptop. Fortran and Python implementations of
the algorithms described in this paper are available in the
library LIBDLR [27,28].
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APPENDIX A: DLR FOR BOSONIC GREEN’S FUNCTIONS

In this Appendix, we argue that the DLR, derived using
the fermionic kernel K (τ, ω) given by (2), can also be applied
directly to bosonic Green’s functions. The truncated Lehmann
representation for a bosonic Green’s function is given by

GB(τ ) = −
∫ 	

−	

KB(τ, ω)ρB(ω) dω, (A1)

where the bosonic kernel is given in nondimensionalized vari-
ables by

KB(τ, ω) = e−ωτ

1 − e−ω
. (A2)

Although KB is singular at ω = 0, for systems in which
the U(1) symmetry 〈â〉 = 0 and 〈â†〉 = 0 (for â† and â the

creation and anniliation operators) is not spontaneously bro-
ken, the singularity will be exactly canceled out by a spectral
density vanishing to the appropriate order as ω → 0. Indeed,
in this case, the physical spectral density of a bosonic system
has an explicit expression

ρB(ω) = (1 − e−ω )
2π

Z

×
∑
m,n

|〈n|â†|m〉|2e−Emδ(En − Em − ω), (A3)

where |n〉 and |m〉 are eigenstates of the many-body Hamilto-
nian with energies En and Em, respectively, and Z = ∑

n e−En

is the partition sum.
To handle this case, we simply rewrite (A1) as

GB(τ ) = −
∫ 	

−	

K (τ, ω)ρ̃B(ω) dω,

where K (τ, ω) is the fermionic kernel, and

ρ̃B(ω) = 1 + e−ω

1 − e−ω
ρB(ω). (A4)

The singularity in the factor 1+e−ω

1−e−ω is canceled by the factor
1 − e−ω in ρB from (A3); otherwise, it is smooth and well be-
haved. Thus, ρ̃B is integrable, and GB has the same Lehmann
representation as a fermionic Green’s function, but with a
modified spectral density. The DLR method developed for
fermionic Green’s functions can therefore be applied without
modification.

APPENDIX B: PROOF OF THEOREM 1

The theorem follows from (16), once we give a bound on
the error term. We have

|e(τ )| =
∣∣∣∣∫ 	

−	

E (τ, ω)ρ(ω) dω

∣∣∣∣
=

∣∣∣∣∣
M∑

i=1

�i(τ )
N∑

j=1

Ei j

∫ 	

−	

� j (ω)ρ(ω) dω

∣∣∣∣∣
� ‖E‖2

√√√√ M∑
i=1

�
2
i (τ )

√√√√ N∑
j=1

(∫ 	

−	

� j (ω)ρ(ω) dω

)2

from the Cauchy-Schwarz inequality.

From the definition of �i, we have ‖∑M
i=1 �

2
i (τ )‖∞ =

‖∑p
k=1 �2

k (x)‖∞, where �k (x) are the Lagrange polynomials
at p Chebyshev nodes on [−1, 1]. It follows from Lemma 2,
proven in Appendix D, that

p∑
k=1

�2
k (x) � 2.

For the last factor, we have

N∑
j=1

(∫ 	

−	

� j (ω)ρ(ω) dω

)2

� ‖ρ‖2
1

p∑
j=1

(
max

x∈[−1,1]
|� j (x)|)2

.

235115-15



KAYE, CHEN, AND PARCOLLET PHYSICAL REVIEW B 105, 235115 (2022)

(a)

(b)

FIG. 10. (a) Solution G(τ ) of the SYK equation with J = 1,
β = 50, and three values of μ. (b) Compressibility K (T ) at low
temperature.

Combining these results, we find

‖e‖∞ �

√√√√2
p∑

j=1

(
max

x∈[−1,1]
|� j (x)|)2‖E‖2‖ρ‖1 = cε‖ρ‖1.

We note that
∑p

j=1(maxx∈[−1,1] |� j (x)|)2 depends only on p.
Numerically, we find that it is approximately equal to p for
typical choices of p, implying c ≈ √

2p. �

APPENDIX C: PROOF OF LEMMA 1

From (20), we have

GDLR(τ ) =
r∑

l=1

ĝl

r∑
k=1

γk (τ )Kkl =
r∑

k=1

γk (τ )gk

and similarly for HDLR, so

GDLR(τ ) − HDLR(τ ) =
r∑

k=1

γk (τ )(gk − hk )

and

|GDLR(τ ) − HDLR(τ )| �
√√√√ r∑

k=1

γ 2
k (τ ) ‖g − h‖2.

Since γk (τ ) = ∑M
i=1 �i(τ )Rik , we have

r∑
k=1

γ 2
k (τ ) � ‖R‖2

2

M∑
i=1

�
2
i (τ ) � 2‖R‖2

2.

Here we have used Lemma 2 from Appendix D, as in
Appendix B. The result follows from these estimates. �

APPENDIX D: BOUND ON THE SUM OF SQUARES OF
LAGRANGE POLYNOMIALS FOR CHEBYSHEV NODES

The following lemma is used in Appendixes B and C:
Lemma 2. Let {�k (x)}p

k=1 be the Lagrange polynomials
for the p Chebyshev nodes of the first kind on [−1, 1].

Then
p∑

k=1

�2
k (x) �

p∑
k=1

�2
k (1) = 2 − 1/p.

Proof. The result follows from the identity

p∑
k=1

�2
k (x) = 1 + 1

2p
[U2p−2(x) − 1], (D1)

for Un(x) the degree n Chebyshev polynomial of the second
kind. Indeed, Ref. [44] Eq. (18.14.1)] gives that

|Un(x)| � Un(1) = n + 1,

and the desired result follows from this and (D1).
To prove (D1), we note that both the left- and right-hand

sides are polynomials of degree 2p − 2, so it suffices to show
that they agree in value and derivative at the p Chebyshev
nodes,

x j = cos

(
2 j − 1

2p
π

)
,

for j = 1, . . . , p.
For the equality of values, the sine difference formula

gives

U2p−2(x j ) =
sin

(
(2p − 1) 2 j−1

2p π
)

sin
( 2 j−1

2p π
) = 1.

Since
∑p

k=1 �2
k (x j ) = 1, this gives the equality.

For the equality of derivatives, we must show that

2
p∑

k=1

�k (x)�′
k (x) = 1

2p
U ′

2p−2(x)

for each x = x j . Throughout the argument, we will use the
formulas for the derivatives of the Chebyshev polynomials of
the first and second kind, given by

T ′
n (x) = nUn−1(x)

and

U ′
n(x) = (n + 1)Tn+1(x) − xUn(x)

x2 − 1
.

The cosine difference formula gives

U ′
2p−2(x j )

2p
= (2p − 1)T2p−1(x j ) − x jU2p−2(x j )

2p
(
x2

j − 1
)

=
(2p − 1) cos

(
(2p − 1) 2 j−1

2p π
) − x j

2p
(
x2

j − 1
)

= x j

1 − x2
j

for the right-hand side. For the left-hand side, we have

2
p∑

k=1

�k (x j )�
′
k (x j ) = 2�′

j (x j ) =
p∑

k=0
k 	= j

2

x j − xk
.
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Our objective is therefore to show that

p∑
k=0
k 	= j

2

x j − xk
= x j

1 − x2
j

(D2)

for j = 1, . . . , p.
Define

f j (x) =
p∑

k=0
k 	= j

1

x − xk
,

so that the left-hand side of (D2) is equal to f j (x j ). Let
�(x) = ∏p

k=1(x − xk ) be the node polynomial for the Cheby-
shev nodes x j . Then, we have

f j (x) = d

dx
log |�(x)/(x − x j )|.

We also have �(x) = Tp(x)/2p−1 since �(x) is a monic poly-
nomial of degree p with zeros at the Chebyshev nodes.

Therefore,

f j (x) = d

dx
log |Tp(x)/(x − x j )|

= (x − x j )T ′
p(x) − Tp(x)

(x − x j )Tp(x)

= p(x − x j )Up−1(x) − Tp(x)

(x − x j )Tp(x)

and, using l’Hôpital’s rule, we find
p∑

k=0
k 	= j

1

x j − xk
= lim

x→x j

f j (x)

= lim
x→x j

p(x − x j )Up−1(x) − Tp(x)

(x − x j )Tp(x)

= lim
x→x j

p(x − x j )U ′
p−1(x)

Tp(x) + p(x − x j )Up−1(x)

= lim
x→x j

p[pTp(x) − xUp−1(x)]/(x2 − 1)

Tp(x)/(x − x j ) + pUp−1(x)

= x j

2
(
1 − x2

j

)
as was claimed. �

[1] A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics (Dover, New York,
1963).

[2] X. Dong, D. Zgid, E. Gull, and H. U. R. Strand,
Legendre-spectral Dyson equation solver with super-
exponential convergence, J. Chem. Phys. 152, 134107
(2020).
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