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Hybrid Kohn-Sham + Thomas-Fermi scheme for high-temperature density functional theory
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Density functional theory has revolutionised our understanding of dense, strongly coupled systems in the
condensed-matter limit. At elevated temperatures, such as those found in warm dense matter and dense plasma,
the computational cost of calculating enough states to accurately describe a thermal ensemble of electrons is a
major obstacle to practical Kohn-Sham calculations. This problem has recently been tackled from a number of
approaches, including a plane-wave approximation for electrons at high energy. In this work, we demonstrate
how the Thomas-Fermi density of states, equivalent to a local plane-wave approximation, can yield improved
results for thermodynamic quantities, electron density profiles, and interatomic forces while requiring fewer
states than existing methods.
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I. INTRODUCTION

Our understanding of warm and hot dense matter (WDM
and HDM) rests in no small part on our capacity to perform
accurate, large-scale (both spatially and temporally) quantum-
mechanical simulations. In turn this provides insight into
properties ranging from bulk thermodynamic quantities [1,2]
to the detailed microphysics of dense plasmas, with applica-
tions in environments as diverse as the interiors of stars to
inertial confinement fusion experiments here on Earth. These
unique conditions of high density and temperature create a
challenging quantum many-body problem. Consequently, a
large number of approaches and computational techniques are
available to tackle the problem [3–6].

The choice of approach is frequently influenced not only
by the inherent approximations, but also by the available
computational resources and time. For example, while Kohn-
Sham density functional theory (KS-DFT) [7–9] has proven
to be a powerful tool for ground-state and WDM conditions,
it becomes computationally prohibitive for larger systems
and at higher temperatures [10]. Other methods, such as the
path-integral Monte Carlo method [11], can benefit from an
increased efficiency at higher temperatures while encounter-
ing other challenges in the condensed limit. There exists,
therefore, a significant motivation to extend practical imple-
mentations of these methods across the temperature-density
plane in order to test their underlying approximations.

In this paper, we consider a hybrid DFT approach suit-
able for high temperatures in which the electronic structure
is partitioned into Kohn-Sham and Thomas-Fermi (TF)
contributions. A similar, extended plane-wave approxima-
tion (extPW) [12] has recently been proposed and used to
perform high-temperature DFT calculations, with favorable
comparison to full Kohn-Sham calculations. By comparison,
our TF-based model bridges the gap to standard orbital-free
DFT methods [1,2,13,14], and it is shown here to yield im-
proved results when compared to extPW calculations.
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As a test case, we perform calculations for iron under
WDM and HDM conditions using our own implementation of
both the extPW method and our TF-based model in QUANTUM

ESPRESSO. Our method demonstrates approximately one order
of magnitude improvement in pressure calculations over the
extPW method, as well as significantly better electron den-
sity profiles and interatomic forces due to our account of the
nonuniform potential distribution in a plasma.

In addition, we have supplemented our iron results with
calculations for a disordered ion arrangement of warm dense
lithium deuteride (LiD). Both the extPW method and our TF-
based model yield excellent results for the pressure, however
the latter is seen to yield notably more accurate predictions for
interatomic forces.

II. METHOD

In a hybrid DFT approach, the equilibrium density of the
system is partitioned into Kohn-Sham nKS(r) and orbital-free
contributions nof(r) [10]. The former is found from a reduced
Kohn-Sham calculation in which one solves for a limited
number of Kohn-Sham states ψKS

i , i = 1, . . . , N :[−h̄2

2me
∇2 + veff

]
ψKS

i = εKS
i ψKS

i . (1)

The Kohn-Sham density contribution is then found by
weighting the Kohn-Sham states according to Fermi-Dirac
distribution:

nKS(r) =
N∑
i

2

1 + eβ(εKS
i −μ)

∣∣ψKS
i (r)

∣∣2
, (2)

where μ is the chemical potential of the system and β =
1/kBT . In addition, we have included the factor of 2 for
spin degeneracy as we neglect fine-structure effects for the
purposes of studying WDM and HDM conditions.

At high temperatures, the number of states needed to cal-
culate the density solely in terms of the Kohn-Sham wave
functions scales as T 3/2 [15]. Consequently, standard Kohn-
Sham algorithms exhibit cubic scaling in computational cost
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with temperature at a fixed system size. Hybrid schemes,
therefore, use an alternative means to determine the remaining
contribution nof(r). Once this is achieved for the nonin-
teracting problem, described by Eq. (1), the usual mixing
algorithms for obtaining a self-consistent density in DFT can
be used.

In this work, we use a TF form for the density of states
such that one has

nTF
of (r) =

√
8m3

π3h̄3

∫ ∞

εKS
N

dε[ε − v(r)]1/2 fFD(ε), (3)

where fFD(ε) is the Fermi-Dirac distribution without spin
degeneracy. The key difference between our method and that
of the extended plane-wave approach is the use of a spatially
varying potential v(r). The method of Ref. [12] is then recov-
ered by setting this to a constant v(r) = U0.

Our prior rationale for using Eq. (3) is based on the un-
derstanding that, in expanding the density matrix at finite
temperature, both the density and kinetic energy (or equiva-
lently, the pressure) can be approximated at zeroth-order using
a local Thomas-Fermi form. The associated errors in the local
density of states are then proportional to the (local) gradients
of the potential over kinetic energy or, for the case of inte-
grated quantities, over the temperature [16,17]. While such
an expansion in terms of the potential can be mathematically
difficult for general potentials in three dimensions, including
those with strong gradients such as Coulomb potentials, their
resummations in terms of the density are the basis for many
OF-DFT calculations today [18–21]. In this paper, we aim
to demonstrate via example how a TF-based approximation
can also function well in a hybrid scheme, in which some
subsection of the density of states is described by Kohn-Sham
orbitals.

There remains the task of determining an appropriate vr .
This is particularly relevant for integration with codes that
make heavy use of nonlocal pseudopotentials, upon which
the majority of KS-DFT calculations in WDM and hot dense
plasma conditions have relied. For the calculations presented
in this paper, we will simply take the local component of the
effective potential veff appearing in Eq. (1). By comparison, in
Ref. [12], U0 is suggested to be determined by fitting to Nav

states at the high-energy end of the density of states given by
Eq. (1), i.e.,

U0 = 1

N

NKS∑
i=NKS−Nav

εKS
i −

〈
ψKS

i

∣∣∣∣−h̄2

2me
∇2

∣∣∣∣ψKS
i

〉
. (4)

This approach implicitly accounts for the nonlocal com-
ponent of the Kohn-Sham potential Veff. However, our
calculations have shown this nonlocal component to have only
a minor impact, consistent with Ref. [12]. Indeed, for the
pseudopotentials used in this work, an equally effective value
for U0 is provided by simply taking the spatial average of
the local potential across the system. This may not hold for
all pseudopotentials, in particular those with very deep cores,
however a spatial average of the potential has proven to be a
reasonable approximation thus far [22]. As an alternative to
Eq. (4), it also enables us to consider especially low values
for the number of Kohn-Sham states NKS as well as avoiding
oscillations in the value of U0 as one varies Nav.

We end this section by noting that taking the local compo-
nent of veff is not the only way to determine v(r) in Eq. (3),
and one could equally introduce a constant offset from nonlo-
cal potential contributions or use a local form of the averaging
in Eq. (4). In the following section, we will justify our local-
only approximation a posteriori by showing that the nonlocal
contributions to high-energy Kohn-Sham states remain small
in comparison.

III. COMPUTATIONAL DETAILS

We perform calculations using both the extended plane-
wave method of Ref. [12] and our TF-based approach under
WDM conditions with comparison to full KS-DFT results.
Calculations are performed using the QUANTUM ESPRESSO

package [23–25] modified to include these two methods. In
addition, we have made some minor changes to convergence
criteria of the code that may affect those looking to reproduce
our results. Both criteria must be satisfied simultaneously for
the code to stop.

First, the convergence of our self-consistent field (SCF)
calculation is determined by the density residual between
the electron density nin(r) used to generate the Kohn-Sham
potential and the total density nout(r) obtained from Eqs. (2)
and (3). The threshold is set such that we require∫

d3r |nin(r) − nout(r)|2 � 10−13. (5)

Second, convergence of the Kohn-Sham wave functions
is determined by the wave-function residual when solving
Eq. (1). For a Kohn-Sham Hamiltonian Ĥ and overlap op-
erator Ŝ associated with the pseudopotential, convergence is
determined by the condition〈

ψKS
i

∣∣[Ĥ − εKS
i Ŝ

]2∣∣ψKS
i

〉
� σψ. (6)

The value of σψ varies depending on the occupation of
the state |ψKS

i 〉. For those with occupation numbers greater
than 10−3, σψ = 10−14, while for those with lower occupation
numbers we have a less strict setting of σψ = 10−6. To achieve
these levels of wave-function convergence, a buffer zone of 3
(forcibly unoccupied) bands is used for 20 < NKS � 100, 10
for 100 < NKS � 500, and 15 for NKS > 500.

Evaluating the orbital-free contributions to the density and
pressure requires the efficient computation of numerous in-
complete Fermi-Dirac integrals (see the Appendix). For this
purpose, we use the highly efficient algorithm 745 [26,27]. To
accelerate our calculations, we have made additional, minor
modifications to QUANTUM ESPRESSO. The chemical potential
μ is determined via a simple Newton-Raphson approach, as
opposed to the original bisection algorithm, and a starting
guess is provided by the chemical potential from the previous
SCF cycle.

Our calculations for bcc iron (ρ = 8.18 g cm−3) utilize
a two-atom unit cell with a plane-wave cutoff of 150 Ry
and a shifted 8 × 8 × 8 Monkhorst-Pack grid to sample
the Brillouin zone. Force calculations for iron were per-
formed using a 64-atom disordered liquid configuration at
the � point with a plane-wave cutoff of 200 Ry. All results
for iron use a 16-electron projector augmented wave pseu-
dopotentials generated via ATOMPAW [28] together with the
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FIG. 1. Contributions from the local and nonlocal potential to
each Kohn-Sham eigenvalue for bcc iron at Te = 60 eV.

Perdew-Burke-Ernzerhof generalized gradient approximation
for the exchange-correlation potential.

Calculations for warm dense LiD were performed using
a disordered eight-atom unit at a density of 0.825 g cm−3.
A plane-wave cutoff of 200 Ry and a shifted 4 × 4 × 4
Monkhorst-Pack grid were used. Pseudopotentials were the
precision Li and H potentials available from the Standard
Solid-State Pseudopotentials library [29,30]. The exchange-
correlation potential used was the Perdew-Burke-Ernzerhof
generalized gradient approximation.

IV. RESULTS

A. Warm dense Fe

We present calculations for warm dense iron at electronic
temperatures of Te = 20, 40, and 60 eV using both our
TF-based model and the extPW approach. As previously de-
scribed in Sec. II, we have neglected the role of the nonlocal
potential in the TF contribution. The appropriateness of this
approximation is shown in Fig. 1, in which we plot the con-
tribution of the local and nonlocal potential for eigenvalues of
the bcc lattice at Te = 60 eV. It is clear from the plot that for
higher energies, the average expectation value of the nonlocal
component becomes negligible much faster [12] than one can
reasonably approximate the local potential as a constant. For
bulk properties such as the equation of state, therefore, we

FIG. 2. Predicted pressure for bcc iron (Te = 60 eV, NKS = 100)
using the extPW method as Nav in Eq. (4) is varied. The pressure
is seen to oscillate around that obtained using a spatially averaged
potential.

expect a proper account of the spatially varying local potential
to be more important than the nonlocal potential.

In Fig. 2 we plot extPW results for the pressure (Te =
60 eV) as the number of Kohn-Sham states used to determine
U0 is varied [see Eq. (4)]. The fluctuations are small up to
Nav = 80, at which point the averaging method begins to
include states that straddle the line between bound and free.
Otherwise, the pressure is seen to fluctuate within a fraction
of a percent around an equivalent calculation for which U0

taken as the spatial-mean of the local potential. In principle,
the number Nav might be chosen in an attempt to minimize
error with respect to a full Kohn-Sham calculation; however,
it is not immediately clear if determining an optimal Nav

with small-scale calculations will scale appropriately to large
molecular-dynamics simulations. In any case, the percentage
error is far from a smooth function of Nav, and for the sake
of definiteness we perform the following extPW calculations
using the spatial-mean definition for U0.

In Figs. 3 and 4 we compare the extPW method and our
TF-based approach to fully converged Kohn-Sham pressure
calculations for a bcc lattice configuration at elevated elec-
tron temperatures. In each case, our method shows up to an
order of magnitude less error when only a few Kohn-Sham
states are included. As the number of Kohn-Sham states is
increased, both models show a significant reduction in error;
however, the progression becomes somewhat erratic beyond
about 0.1%. There are multiple possible reasons for the less
than regular progression shown in Fig. 4 as the number
of Kohn-Sham state is increased. First, both methods use
a sharp transition from the Kohn-Sham to the orbital-free
density of states, and the latter is inevitably not quite con-
tinuous with the former. Second, both the extPW method
and TF-based model are effectively completely sampling the
Brillouin zone in contrast to the approximate Monkhorst-Pack
sampling used for the Kohn-Sham contributions. Overall, we
have checked the convergence of our Kohn-Sham calculations
with respect to k-point sampling and plane-wave cutoffs to
an accuracy of 0.01%. However, there remains the possibil-
ity of some unusual convergence behavior when Brillouin
zone sampling of the density of states is not identical for all
energies.
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FIG. 3. Shown are the calculated pressures via the method of this
paper (KS + TF), the extPW scheme (KS + PW), and a full Kohn-
Sham calculation for bcc iron.

Figure 5 shows the percentage error in valence electron
density of both methods for a bcc lattice configuration (viewed
along the 111 direction) at Te = 60 eV. Our results indicate
that the TF-type model is the more favorable approximation
in this regime. The mean error using the extPW method is
9%, almost twice that of our approach at 4.7%, while the
maximum error is also greater at 19.3% compared to 11.9%.

Finally, we show in Fig. 6 the root-mean-squared (RMS)
absolute and percentage errors in interatomic forces for a dis-
ordered liquid configuration of 64 iron atoms at Te = 20 eV.
Forces are calculated via electrostatics from the total den-
sity nKS + nof in the same manner as a standard Kohn-Sham
calculation, i.e., under the approximation that the hybrid ap-

FIG. 4. Plotted are the percentage errors for both the extPW
method (KS + PW) and the TF-based scheme (KS + TF) relative
to a full Kohn-Sham calculation for bcc iron.

proximation yields the same density as a full Kohn-Sham
calculation. The TF-based approach continues to show an im-
provement over the extPW approximation, with the uniform
orbital-free density component of the latter not contributing
to the forces due to translational symmetry.

B. Warm dense LiD

We supplement the above results with a further test cal-
culation for warm dense LiD at Te = 40 eV. Figure 7 shows
the error in the static pressure (i.e., discounting thermal ion
motion) and the RMS error in forces for an eight-atom dis-
ordered configuration. A full Kohn-Sham calculation yielded
a static pressure of 401 GPa. Both the extPW and TF-based
approach provide extremely accurate values for the pressure
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FIG. 5. Percentage error in the electron density relative to a full Kohn-Sham calculation, as viewed along the 111 direction in bcc iron
(ρ = 8.18 g cm−3, Te = 60 eV). The results of this work (right) using a hybrid TF-based model show significantly less error compared to the
extended plane-wave method (left).

with a relative error of ∼0.025%. However, the approach
of this paper remains the more accurate one for calculating
interatomic forces.

V. CONCLUSIONS

In this work, we have introduced a hybrid TF-based
scheme to extend Kohn-Sham calculations to high tempera-
tures, and we implemented it within the QUANTUM ESPRESSO

code. Our method presented here complements multiple av-
enues of inquiry, all with the common goal of efficient and
accurate high-temperature DFT calculations. Importantly, the
work presented here makes contact with the more standard
orbital-free calculations for which the TF model is frequently
the zeroth-order approximation.

As an example, we have presented calculations for
iron under WDM to HDM conditions with favorable
comparison to full Kohn-Sham calculations. In particular, we

find an approximate order-of-magnitude increase in accuracy
for the pressure when compared with existing plane-wave
methods, as well as much improved results for the elec-
tron density profile and interatomic forces. These results
are supplemented with a calculation for disordered LiD
at Te = 40 eV. While both the extTF and TF-based ap-
proaches yield accurate results for the pressure, the latter
is able to predict interatomic forces with notably more
accuracy.

The calculation of properties beyond bulk thermodynamic
quantities, such as ionization cross sections and dynamic
transport coefficients, is particularly sensitive to plasma inho-
mogeneities and the subsequent effect on scattering processes.
In this work, the TF form for the local density of states begins
to account for these spatial variations in a very basic way
while also serving as a starting point for further refinements,
the incorporation of which is the focus of current and future
research.

1000 1500 2000 2500 3000

Number of Kohn-Sham states

10−3

10−2

10−1

R
M

S
E

rr
o
r

in
F
o
rc

es
[R

y
/

B
o
h
r]

1000 1500 2000 2500 3000

Number of Kohn-Sham states

10−1

100

101

R
M

S
P
er

ce
n
ta

g
e

E
rr

o
r

KS + PW

KS + TF

FIG. 6. Root mean squared (RMS) absolute and percentage errors for forces acting on a disordered system of 64 iron atoms at Te = 20 eV.
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FIG. 7. Results for a disordered ion configuration of LiD at Te = 40 eV and a density of 0.825 g cm−3. Plotted are the absolute errors for
pressure and forces calculated using both the TF-based approach and extPW method relative to a fully converged Kohn-Sham calculation.
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APPENDIX: THERMODYNAMIC EXPRESSIONS

Our orbital-free contribution to the density [Eq. (3)] uti-
lizes a Thomas-Fermi-like local density of states:

LDOS(r, ε) =
√

8m3

π3h̄3 [ε − v(r)]1/2. (A1)

The orbital-free contribution to thermodynamic quantities
then generalizes from the usual Thomas-Fermi expressions in
a manner analogous to Eq. (3):

ETF =
∫

d3r
∫ ∞

εKS
N

dε LDOS(r, ε) ε fFD(ε),

PTF = 1

3V

∫
d3r

∫ ∞

εKS
N

dε LDOS(r, ε) [ε − v(r)] fFD(ε),

STF = −kB

∫
d3r

∫ ∞

εKS
N

dε LDOS(r, ε)

× { fFD(ε) ln fFD(ε) + [1 − fFD(ε)] ln[1 − fFD(ε)]}.
(A2)
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