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Solvable theory of a strange metal at the breakdown of a heavy Fermi liquid
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We introduce an effective theory for quantum critical points (QCPs) in heavy-fermion systems, involving a
change in carrier density without symmetry breaking. Our theory captures a strongly coupled metallic QCP, lead-
ing to robust marginal Fermi-liquid transport phenomenology, and associated linear in temperature (T ) “strange
metal” resistivity, all within a controlled large-N limit. In the parameter regime of strong damping of emergent
bosonic excitations, the QCP also displays a near-universal “Planckian” transport lifetime τtr ∼ h̄/(kBT ). This
is contrasted with the conventional so-called “slave boson” theory of the Kondo breakdown, where the large-N
limit describes a weak coupling fixed point and nontrivial transport behavior may only be obtained through
uncontrolled 1/N corrections. We also compute the weak-field Hall coefficient within the effective model as the
system is tuned across the transition. We then find that, between the two plateaus reflecting the different carrier
densities in the two Fermi-liquid phases, the Hall coefficient can develop a peak in the critical crossover regime,
like in recent experimental findings, in the parameter regime of weak boson damping.
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I. INTRODUCTION

The properties of heavy-fermion materials (HFMs) have
been a continued source of fascination, calling fundamental
concepts of solid state physics into question [1]. An important
ingredient in the physics of the HFMs is the coexistence and
interplay of conduction electrons with a half-filled localized
valence electron band behaving as local spin- 1

2 moments [2].
Early on, a mechanism was proposed whereby the valence
levels (VLs) effectively hybridize with the conduction elec-
trons through Kondo-type screening of their spin [3,4]. This
mechanism explains the establishment of a heavy Fermi liquid
(FL) with a large Fermi surface (FS) that includes both the
conduction and valence electrons as required by Luttinger’s
theorem. However, many of these materials can be tuned
through quantum critical points (QCPs) at which the large FS
gives way to one with a small volume, equal to the filling of
the conduction band alone [5–8].

Reconstruction of the FS can occur through two distinct
routes. The first is through symmetry breaking, such as an an-
tiferromagnetic transition, as seen in CeRhIn5 [5]. In this case
the emergent small FS satisfies Luttinger’s theorem within
the new reduced Brillouin zone. However recent experiments
with a related material, CeCoIn5 [8], suggest a FS changing
transition without symmetry breaking.

Such a transition has a simple description within a scheme
[4,9] in which the Kondo interaction is expressed as a cou-
pling to a bosonic valence fluctuation, i.e., c†

σ fσb. Here, cσ
represents the conduction electron with spin index σ , and fσ
is a fermion operator carrying the spin of the singly occu-
pied VLs. Hybridization between the conduction and valence
bands emerges with condensation of the boson b, leading to
the creation of a heavy FL phase.

*These authors contributed equally to this work.

As emphasized by Senthil et al. [9], aside from carrying a
physical electron charge, this boson is also charged under an
emergent U(1) gauge field that fixes the local occupation of
the VLs. Therefore, condensation of b in the heavy FL phase
leads to confinement through the Higgs mechanism. In the
gapped (uncondensed) phase of the boson, on the other hand,
the VLs effectively decouple from the Fermi sea and form a
U(1) spin liquid. This phase is referred to as a fractionalized
Fermi liquid (FL�), and it was argued that it supports a small
FS [10], thereby obeying a generalized form of Luttinger’s
theorem [11].

This so-called “slave boson” theory [4,9] describes a route
for a transition involving change in the FS volume without
symmetry breaking. However, the standard large-N approach
[4] used to approximate the theory fails to capture essential
properties of QCPs seen in HFMs; it does not offer a robust
explanation of the ubiquitous “strange metal” with its linear
in temperature (T ) resistivity ρxx at the QCP [8,12]. The
essential problem in the theory is that the feedback of the
single critical boson on a large number of N fermion species
is suppressed by 1/N . The conduction electrons are therefore
noninteracting at the large-N saddle point. Thus, the same
feature that makes this theory solvable also prevents it from
describing a fully strongly coupled QCP.

In this paper, we introduce a valence fluctuation theory,
which captures a strongly coupled QCP showing marginal
Fermi-liquid (MFL) phenomenology [13] and strange metal
T -linear resistivity, in a solvable limit. We start from the same
degrees of freedom as in the slave boson theory described
above [4,14]. However we introduce a different large-N limit,
which allows controlled calculation of transport properties
nonperturbatively.

This different large-N limit is inspired by recent work
on “low-rank” Sachdev-Ye-Kitaev (SYK) models, in which
N fermion flavors interact via random Yukawa couplings
with αN boson flavors [15–20]. Recently, this approach has

2469-9950/2022/105(23)/235111(23) 235111-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2053-5507
https://orcid.org/0000-0001-6264-7908
https://orcid.org/0000-0001-7857-8724
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.235111&domain=pdf&date_stamp=2022-06-13
https://doi.org/10.1103/PhysRevB.105.235111


ALDAPE, COOKMEYER, PATEL, AND ALTMAN PHYSICAL REVIEW B 105, 235111 (2022)

been used to compute quantum critical properties and quan-
tum chaos in the (2 + 1)-dimensional Gross-Neveu-Yukawa
model, namely, massless Dirac fermions coupled to a critical
boson field [21]. The critical exponents found at the saddle-
point level are in excellent agreement with those obtained
from conformal bootstrap, even for moderate values of N .
The key advantage compared to the standard large-N limit is
that, because both the fermion and boson numbers scale with
N , the saddle-point equations include self-consistent feedback
between them, allowing us to capture a strongly coupled
QCP.

We implement the large-N scheme in the Kondo lattice
problem by introducing N flavors of the spin- 1

2 fermions cσ
and fσ , and of the valence fluctuation (spin-0) boson b, while
retaining the global su(2) spin symmetry. We consider two
distinct models of the fermion-boson couplings gr

i jk . In model
I, the couplings are spatially disordered, and in model II they
are flavor random but translationally invariant. Thus, the ran-
domness in model II is just a theoretical tool. Integrating over
it may be viewed as averaging over an ensemble of translation-
ally invariant models that all yield identical long-wavelength
behavior.

In both models, we obtain a QCP showing linear in T re-
sistivity up to logarithmic corrections; however, these critical
points describe transitions between slightly different phases.
In model I, we obtain the linear in T resistivity at the QCP
only if the heavy FL transitions to a “layered FL�” phase,
where the spinons fσ and boson b are deconfined only within
two-dimensional (2D) planes. In model II, on the other hand,
the MFL is obtained at a transition to a fully three-dimensional
(3D) FL� phase. Moreover, not only is the resistivity linear in
T at the QCP, the transport lifetime always takes the universal
“Planckian” value τtr ≈ h̄/(kBT ). Model I by contrast can be
tuned between a strongly damped ”Planckian” regime, and a
weakly damped MFL charaterized by a sub-Planckian linear
in T relaxation rate. Interestingly, in the weakly damped MFL
regime, we find an enhancement of the Hall coefficient RH in
the critical regime, similar to recent experimental findings in
CeCoIn5 [8].

The rest of the paper is organized as follows: In Sec. II,
we review the standard large-N approach to Kondo lattice
models and then introduce our large-N limit. In Secs. III and
IV we solve two models, with and without translation invari-
ance, in this large-N limit, and calculate transport quantities.
We find strange metal behavior with T -linear resistivity at
the QCP, and the evolution of the Hall resistivity across the
QCP confirms a change of carrier density, with an additional
enhancement of the Hall coefficent near criticality.

II. LARGE-N KONDO LATTICE MODELS

In HFMs, rare-earth or actinide ions contribute a lattice of
localized valence spins �S coupled to the mobile conduction
electrons cσ . The essential low-energy physics of HFMs is
generally believed to be captured by the Kondo lattice model
and variations of it [2]:

H =
∑
k,α

εc,kc†
k,αck,α + JK

∑
r,α,β

(�Sr · c†
r,α �σαβcr,β ), (1)

where εc,k is the momentum (k) space dispersion of the con-
duction electrons. The localized valence spin at lattice site r
can be expressed in terms of Abrikosov fermions (spinons):

�Sr =
∑
α,β

f †
r,α

�σαβ
2

fr,β , (2)

which are subject to a single occupancy constraint at each lat-
tice site. The Kondo coupling is written as a quartic interaction
between these fermions and the conduction electrons. A stan-
dard way to then describe the possible hybridization between
the valence fermions and conduction electrons is through a
Hubbard-Stratonovich decoupling of the quartic interaction
[3,9,10,22]

JK

∑
r,α,β

(�Sr · c†
r,α �σαβcr,β ) → g

∑
r,α,β

(c†
r,α fr,αbr + H.c.). (3)

At the mean-field level the “slave boson” br is equal to the
hybridization 〈∑α cr,α f †

r,α〉. Note that in this convention the
Abrikosov fermion f † creates a hole in the valence band,
while b† creates a bound singlet consisting of a conduction
electron and a valence spin. Thus, the constraint ensuring a
single valence spin per site is∑

α

f †
r,α fr,α − b†

rbr = 1. (4)

The constraint can be implemented by a Lagrange multiplier
acting as the time component of a U(1) gauge field. Upon
renormalization, the gauge field is expected to become dy-
namical. The matter fields, i.e., the b bosons and f fermions
carry charges 1 and −1, respectively, under this emergent
gauge field. Note that under our gauge choice the boson b† car-
ries the same physical charge as the conduction electron, while
the fermion has no physical charge. The low-temperature
states represent phases of the emergent U(1) gauge theory
coupled to matter fields [9,10,23].

In the FL� phase, characterized by a small FS, the boson is
gapped and the gauge theory is in the deconfined phase. The
heavy FL phase with a large Fermi surface is established at a
QCP at which the boson b condenses, thereby confining the
gauge field through the Higgs mechanism.

Condensation of the valence fluctuations provides a sim-
ple understanding for the main features of the heavy FL
phase [2,24,25]. As evident from (3), the condensed boson
hybridizes the f fermions with the conduction electron. Thus,
the Fermi surface must grow to encompass the full density
of conduction and valence electrons. The coherent mixing
between the mobile conduction electrons with the localized
f spinons also explains the large effective mass, which is
the hallmark of the heavy FL phase. However, an exact de-
scription of the aforementioned Higgs transition within this
model is in general hard, as it involves fluctuating gauge fields
coupled to multiple matter particles. The standard approach
to make analytic progress in the valence fluctuation theory
has been to artificially enlarge the su(2) spin symmetry to
su(N ), and take the large-N limit. The large number N of
c and f fermion species controls an exact saddle-point so-
lution equivalent to a static mean-field theory, where br =
〈∑α cr,α f †

r,α〉 is obtained self-consistently [4,22,26]. Because
the critical fluctuations of the boson and the gauge field are
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suppressed, the conduction electrons remain noninteracting,
or at least good quasiparticles. Hence, this large-N limit is not
a good starting point for obtaining nontrivial critical transport
properties and, in particular, the strange metal phenomenol-
ogy that we want to describe. The main point of this paper
is to introduce a large-N limit that retains solubility of the
problem yet describes nonquasiparticle physics already at the
saddle-point level. The most important difference between our
approach and the previous large-N theories is that we keep
the fermion spin indices σ su(2) instead of promoting them
to su(N ), and instead endow all three species c, f , b with a
flavor index i = 1, . . . ,N . The large-N modification we make
then is

cσ , fσ , b → ci,σ , fi,σ , bi, i ∈ 1, . . . ,N, σ ∈ 1, 2. (5)

One can also continuously vary the ratio of the numbers of
flavors of each particle type, however, here we fix the same
N for all particles. Because all the species have a comparable
number of flavors, their self-energies all remain O(1) within
the large-N limit.

The second feature in our generalized large-N limit is
the introduction of a random ensemble of interaction con-
stants, similar to recently studied “low-rank” SYK models,
which involve fermions with random Yukawa coupling to
bosons [15–21]. The random interactions should be viewed
as a mathematical construct implementing a particular type of
controlled large-N limit. We therefore consider the following
family of model Hamiltonians;

H =
∑

λ∈{cσ , fσ ,b}
Hλ + Hint,

Hλ =
N∑

i=1

∑
k

(ελ,k − μλ)λ†
k,iλk,i,

Hint = 1

N

N∑
i, j,l=1

∑
r,σ

(gr
i jl c

†
r,i,σ fr, j,σbr,l + H.c.),

N∑
i=1

(
b†

r,ibr,i −
∑
σ

f †
r,i,σ fr,i,σ

)
= Nκ. (6)

Here gr
i jl are complex Gaussian random variables. We have

included emergent dispersions ελ,k for λ = fσ , b, which are
expected to be generated when integrating out higher-energy
modes. The last line of (6) is the large-N generalization of the
occupancy constraint in (4) (κ is a free parameter).

We consider two models for the coupling tensors gr
i jl . In

model I these are taken to be uncorrelated between different
sites r, whereas they are identical on all sites in model II:

Model I: gr
i jl gr′

i′ j′l ′ = g2δrr′δii′δ j j′δll ′ ,

Model II: gr
i jl gr′

i′ j′l ′ = g2δii′δ j j′δll ′ . (7)

Thus, model I is spatially disordered, and should be viewed
as a depiction of HFMs with spatially disordered Kondo
couplings. Model II, on the other hand, is translationally in-
variant and should be viewed as a model for clean systems.
The averaging over flavors in both models eliminates various

intractable Feynman diagrams [19,21,27], thus allowing con-
trolled access to the QCP at strong coupling.

While the f and b are also additionally coupled to the
emergent U(1) gauge field a, the coupling constant scales
as 1/

√
N : Hλa ∼ (a/

√
N )
∑N

i=1 λ
†
i λi, for λ = f , b. This en-

sures that the gauge field fluctuations do not contribute to the
f , b self-energies in the large-N limit. Nonetheless, integrat-
ing out the emergent gauge field propagator leads to exact
Ioffe-Larkin constraints on the current correlators [28,29],
tantamount to imposing series addition of the conductivities
of f , b (Appendix D).

In both models we assume simple quadratic dispersions
ελ = k2/(2mλ) for all three species λ = c, f , b. We choose
the masses mλ to be appropriate for the creation of a heavy
FL phase upon condensing the bosons, which implies that
the mass of f should be much larger than that of c. Fur-
thermore, since b is a composite particle of c and f , its
motion requires the combined motion of c and f that can
only occur at higher orders in perturbation theory, and it will
therefore have a mass even larger than that of f . We thus take
the hierarchy mb > m f � mc. This choice of masses implies
the bandwidths of c and f are large relative to that of b.
The c, f chemical potentials are chosen such that the respec-
tive densities are close to equal, motivated by stoichiometric
considerations, and by an observed near doubling in Hall
coefficient across the transition from the heavy FL to FL� in
CeCoIn5 [8].

The transition between the FL� and heavy FL phases oc-
curs, as in previous theories, through condensation of the
boson b. A natural parameter that can control the transition
across the QCP in experiments is the total physical charge
density nel = 〈nb〉 + 〈nc〉, while the VL occupation and hence
κ = 〈nb〉 − 〈n f 〉 are held fixed. However, for convenience of
calculation we tune κ instead. The two approaches are ap-
proximately equivalent in the regime we consider, where the
bandwidths of c and f are much larger than that of b, with the
difference between the approaches amounting only to small
relative changes in the c, f occupations, which only make
small changes in the physical properties of c, f , and therefore
will not significantly alter our results.

As in the case of previous work on SYK-type models
[19,21,27], the averaging over the coupling tensors in the
large-N limit yields exact coupled Schwinger-Dyson (SD)
equations for the Green’s functions of the three species c, f , b,
which we solve self-consistently throughout the phase dia-
gram. The self-energies for these SD equations are shown
in Fig. 1. Using these, we compute nonperturbatively the
T -dependent conductivity tensors in the two models, focusing
in particular, on the critical regime.

In the analysis of model I, we assume a special FL� phase,
in which the emergent gauge field, and thus also the f and
b particles that are charged under it, are all deconfined only
within individual 2D planes. The physical 3D system is a stack
of these 2D layers. The behavior of the resistivity across the
transition between the layered FL� and the heavy FL phase
is shown in Fig. 2(a). In the quantum critical regime ρxx

shows a quasilinear T dependence (linear with a logarithmic
correction).

The nature of the critical MFL depends on a dimensionless
coupling strength γ between the bosons and fermions. For
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FIG. 1. The only contributing diagrams to the self-energies of the
three particle species. All others are suppressed by the large-N limit
or averaging over gr

i jl . The averaging over the coupling tensors is
indicated by the dotted lines, with its correlator given by (7). The
dotted lines carry momentum for model I but do not for model II.

FIG. 2. (a) The phase diagram for model I. We have ρxx −
ρxx (T = 0) ∼ T α ln(
/T ), and the color indicates the value of α =
d ln[ρxx/ ln(
/T )]/d ln(T ). We exclude the (gray) crossover region
where our approximate treatment of the 3D condensed phase breaks
down. (b) The plot of RH at weak out-of-plane magnetic field vs
κ − κc. RH transitions nonmonotonically between two plateau values
controlled by the effective carrier densities in the FL� and heavy FL
phases, respectively. The value of RH is enhanced in the quantum
critical region. The dashed lines indicate points within the gray
region that are omitted. Due to the different dimensionality of f
and c, the plateau value on the right is only roughly 1/(nc + nf ).
(c) The boson “soft gap”, �bmb, and the strength of the boson
condensate, 〈br,1〉 = r0

√
N , are plotted vs κ − κc at low temperature.

�b is finite when κ < κc and is exponentially suppressed when
κ > κc, at which point interlayer instabilities allow for a 3D boson
condensate to form, forcing �b = 0. Again, we omit the crossover
between these two regimes (gray region). Here γ = 0.02 � 1, nc =
nf = 1, 
mb = π 2/2, mb = 5mf = 50mc (we set h̄ = kB = al = 1
everywhere, where al is the lattice constant).

sufficiently strong coupling, the bosons are overdamped,
and the QCP displays a near-universal “Planckian”
transport lifetime τ ∼ h̄/(kBT ), which is independent of all
microscopic details of the model (up to logarithmic factors).
In the opposite regime of weak damping (γ � 1), the critical
behavior provides an example of a skewed MFL [30], in which
the scattering rates of particle and hole excitations about the
electron FS are different. The resistivity is linear in T but
sub-Planckian, and the fermion self-energies are asymmetric
about ω = 0. On tuning across the QCP, the in-plane Hall
coefficient RH computed for weak out-of-plane magnetic
fields transitions between two plateau values that correspond
to the different effective carrier densities of the FL� and FL
phases. In the weakly damped regime this change of RH is
nonmonotonic, developing a peak in the quantum critical
region as a function of the tuning parameter κ [Fig. 2(b)].
This enhancement of RH near criticality is reminiscent, yet
much more modest than that observed in experiments on
CeCoIn5 [8].

For model II, we consider a fully 3D deconfined FL� phase.
We show that ρxx is quasilinear in T in the critical region if
the f FS at the QCP matches that of the conduction electrons,
and if the f fermions and b bosons additionally rapidly relax
momentum via impurity scattering and/or self-interactions on
the lattice. This is closely related to the work of Paul et al.
[31], who find a MFL for matching FS’s coupled to a complex
bosonic field under certain phenomenological assumptions.
Within model II, however, this result is exact in the large-N
limit. We further show that the two FS’s may be naturally
self-tuned to matching at the QCP, in order to maximize
the free energy released when the bosons condense. Unlike
in model I, we find that the bosons in model II are always
overdamped, leading to Planckian transport lifetime at low
temperatures independent of the coupling strength. Because of
the overdamped nature of the bosons there is no enhancement
of RH in model II.

III. MODEL I: SPATIALLY DISORDERED COUPLINGS

In this section we solve for the Green’s functions in model
I and calculate transport temperature dependence of transport
quantities across the transition. We identify two regimes of the
critical behavior, depending on the boson-fermion coupling
strength. The calculation is exact in the large-N limit.

A. Self-energies and phase diagram

The starting point for obtaining the phase diagram and
calculating the transport properties in this model at large N
are the coupled Schwinger-Dyson equations for the Green’s
functions of the three species:

Gc(iω) = 1

V

∑
k

1

iω − εc,k + μc −�c(iω)
,

G f (iω) = 1

V

∑
k

1

iω − ε f ,k + μ f −� f (iω)
, (8)

Gb(iω) = 1

V

∑
k

1

−iω + εb,k +�b −�b(iω)
,
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where V is the system volume. The self-energies �c, f ,b in
the large-N limit are given exactly by the diagrams in Fig. 1,
which read as

�c(iω) = g2T
∑
iω′

G f (iω′)Gb(iω − iω′),

� f (iω) = g2T
∑
iω′

Gc(iω′)Gb(iω′ − iω), (9)

�b(iω) = −2g2T
∑
iω′

Gc(iω′)G f (iω′ − iω).

Here V is the system volume, and the factor of 2 in the equa-
tion for �b arises from the su(2) spin degeneracy of c and f .
The self-energies only involve momentum-averaged Green’s
functions Gλ(iω) = (1/V )

∑
k Gλ(iω, k) because the random

interactions in model I are uncorrelated between different
sites. In the relevant regime where the fermion bandwidths
are the largest scales, their momentum-averaged Green’s func-
tions take the simple form Gc, f (iω) = −(i/2)νc, f sgn(ω) [32],
where νc, f are the respective spinless densities of states at
the Fermi energies. This allows to calculate the boson self-
energy �b:

�b(iω) = −2g2T
∑
iω′

Gc(iω′)G f (iω′ − iω) = −γ |ω| + Cb,

γ = g2νcν f /(2π ) = g2(3nc)1/3mcm f /(2π
4/3). (10)

Here γ is a dimensionless coupling constant characterizing
the strength of the boson damping. We will explain the effects
of its magnitude on the physics of the system in the subsequent
paragraphs. The T -independent constant Cb can be absorbed
by the T = 0 chemical potential of the bosons.

With the Green’s functions in hand, the phase diagram is
obtained by solving for the boson gap �b(T ) and the fermion
chemical potential μ f (T ) that would satisfy the constraint
〈nb〉 − 〈n f 〉 = κ . In the relevant regime of large fermion band-
width (or Fermi energy) compared to the temperature, the
change in the fermion occupation with temperature is negli-
gible. Therefore, fixing κ is essentially equivalent to fixing
the boson occupation

〈nb〉 = T
∑
ω

Gb(iω) = κ + 〈n f 〉, (11)

where 〈n f 〉 is treated as a constant. The phase transition,
associated with condensation of the boson, is then tuned by
the parameter κ , analogous to the fixed length constraint in the
O(N ) rotor model at large N [33]. Similar to the rotor model,
the boson occupation is fixed by solving for the variation of
the “soft gap” �b(T ) in the boson Green’s function (9) with
temperature.

The defining features of the zero-temperature phases tuned
by κ are shown in Fig. 2(c). In the FL∗ phase, obtained
for κ < κc, the zero-temperature gap �b(0) is positive and
vanishes continuously as κ approaches the critical value
κc. For κ > κc, on the other hand, one of the boson fla-
vors is condensed at T = 0 and acquires a condensate
amplitude |〈br,1〉| = r0

√
N . This leads to the hybridization

of the f and c fermion bands, which characterizes the
heavy FL phase. Details of the calculation are given in
Appendix B.

The temperature dependence of the soft gap �b(T ) is
crucial for determining the thermodynamic and transport
properties. Solving the constraint equation at criticality we
find that soft gap grows quasilinearly with temperature as
�b(T ) ∼ T w1(γ ,T ), where w1 varies quasilogarithmically
with T .1 Details of the calculation are given in Appendix C.
In the FL� phase (κ < κc)�b(T ) exhibits the critical behavior
for T � �b(0), while its temperature dependence is exponen-
tially suppressed for T � �b(0).

In the heavy FL phase (κ > κc) the temperature depen-
dence of �b is more subtle because the b and f fermions
are no longer confined to hop within planes in this phase.
Once a condensate is established, the interlayer interactions
generate interlayer hopping terms of the b and f partons of
strength proportional to r2

0 , thus establishing a fully 3D Higgs
phase (for full details see Appendix F). The approximate
description of the Higgs phase in terms of a self-consistent
3D condensate remains valid in the heavy FL phase below
a crossover temperature scale T ∗ that vanishes at the QCP.
Above the crossover scale T ∗ the b sector is dominated by
2D critical fluctuations.2 In computing the transport properties
for κ > κc we will treat these two regimes separately, leaving
out the more complicated crossover regime [gray region in
Fig. 2(a)].

We now turn to the fermion Green’s functions, show-
ing first that they accquire a MFL self-energy at the QCP.
To calculate the fermionic self-energies �c, f we need the
momentum-averaged b Green’s function:

Gb(iω) =
∫

dd k

(2π )d

1

−iω + k2/2mb + γ |ω| +�b

≈ mb

2π
ln

(



−iω + γ |ω| +�b

)
, d = 2 (12)

where 
 = π2/(2mb) is the boson bandwidth. We always
consider sufficiently low frequency and temperature such that
max(|ω|, γ |ω|,�b) � 
. This ensures that self-energies re-
main smaller than the bandwidths of their respective species
and thereby will keep our computations self-consistent. The
logarithmic form in (12) is only obtained for 2D bosons. The
QCP is defined by �b = 0; when inserted into (12) and (9),
we obtain MFL self-energies:

�c(iω,T = 0) = g2
∫

dω′

2π
G f (iω′)Gb(iω − iω′)

= γmb

2πνc

[
iω ln

(√
1 + γ 2

e
/|ω|

)
+ cot−1(γ )|ω|

]

+ Cc,

1The function w1(γ , T ) vanishes quasilogarithmically as T → 0,
diverges logarithmically as γ → 0, and is quasilinear in γ for γ � 1.

2As is well known there is no phase transition between the low-T
Higgs phase and high-T confined phase. Accordingly, there is no true
finite-T Bose condensation transition, only a crossover.
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� f (iω,T = 0) = g2
∫

dω′

2π
Gc(iω′)Gb(iω′ − iω)

= γmb

2πν f

[
iω ln

(√
1 + γ 2

e
/|ω|

)
− cot−1(γ )|ω|

]

+ Cf . (13)

The constants Cc, f can be absorbed into μc, f .
The parameter γ , related to the strength of damping of

the b bosons, allows us to tune between different physical
regimes. In general we expect γ to increase with the strength
of the Kondo coupling g. In the limit of γ � 1, the analytic
continuation of (13) to real frequency gives

Im[�c, f ,R](ω,T = 0) = − γmb

4νc, f
|ω|, (14)

which is the traditional MFL form [13]. On the other hand,
when γ � 1, the fermion self-energies (13) are asymmetric
about ω = 0:

Im[�c,R](ω,T = 0) = γmb

2πνc, f
|ω|
(

−π
2

− cot−1(γ )sgn(ω)

)
,

Im[� f ,R](ω,T = 0) = γmb

2πνc, f
|ω|
(

−π
2

+ cot−1(γ )sgn(ω)

)
.

(15)

Thus, in this regime, our model provides a concrete exam-
ple of a “skewed” MFL [30]. This skewed MFL is expected
to have a nonvanishing Seebeck coefficient in the T → 0
limit due to the asymmetric inelastic scattering rate in (15)
[30,34]. The nonvanishing Seebeck coefficient as T → 0, and
the asymmetric frequency dependence of the electron spectral
function, provide experimentally detectable signatures of the
small-γ regime.3

In the FL� phase, where �b(T = 0) > 0, we obtain, in a
similar fashion to (13),

�c, f (iω,T = 0) = −γmb ln[
/�b(T = 0)]

πνc, f
iω

+ i
γ 2mb

2πνc, f�b(T = 0)
ω2. (16)

The O(ω2) term leads to a Fermi liquid ω2 scattering rate on
the real frequency axis, and hence a scattering rate ∝ω2 +
π2T 2 upon analytic continuation to the thermal circle for
T > 0. The O(ω) term leads to a renormalization of the Fermi-
liquid quasiparticle weights, and hence an enhancement of the
conduction electron effective mass, given by

m∗
c = mc

[
1 + γmb

πνc
ln

(



�b(T )

)]
. (17)

Here, we extended the result to small nonvanishing tem-
peratures by replacing �b(0) → �b(T ). Since �b(T = 0) ∼
κc − κ vanishes on approach to the QCP, the zero-temperature
effective mass diverges, consistent with experimental findings

3The magnitude of the low-temperature Seebeck coefficient is
∼kB/e when γ � 1, declining to zero as γ is increased to γ � 1.

in HFMs [12,35]. In the critical region �b ∝ T up to log-
arithmic corrections. Thus, the divergence of m∗

c is cut off
logarithmically by the temperature at criticality.

We now calculate the imaginary part of the fermion self-
energies at finite T , necessary for computing conductivities.
The c fermion self-energy in the Lehmann representation is
given by

�c(iω,T ) = −g2
∫

dε dε′

(2π )2
A f (ε)Ab(ε′)

nB(ε′) + nF (−ε)

ε′ + ε − iω
,

(18)
where nB, nF are the Bose and Fermi functions at temperature
T , A f (ε) = −2 Im[GR

f (ε)] = ν f is the fermion spectral func-
tion, and Ab(ε) the boson spectral function. We analytically
continue iω → ω + iδ to obtain

Im[�c,R(ω,T )] = −g2ν f

∫
dε

4π
Ab(ε)[nB(ε) + nF (ε − ω)].

(19)

This expression also holds for Im[� f ,R] with the change ν f →
νc and ω → −ω. The boson spectral function is derived in
Appendix B and is given by

Ab(ω) = mb

π

[
π�(ω −�b) + tan−1

(
γω

�b − ω
)]
, (20)

where �(x) is the Heaviside step function. Note that the tem-
perature dependence of Ab comes entirely from its dependence
on�(T ). We have shown that in the critical region�b ∝ T up
to logarithmic corrections. Therefore, up to these corrections,
the spectral function can be expressed as Ab(ω/T, z), with z =
�b/T a temperature-independent constant. Using this expres-
sion in (19) and scaling the integration variable immediately
gives a T -linear result up to the logarithmic corrections. We
will show that this property implies near T linearity of the
resistivity.

In the two limits γ � max(1,�b/T ) and γ � 1 we obtain
explicit expressions for the imaginary parts of the self-energy
in the critical region (Appendix C). For large γ we have

Im[�c,R(ω,T )] ≈ − γmb

2πνc
T

[
�b

γT
ln

(

e

�b

)

+ π ln
[
2 cosh

( ω
2T

)]]
; �b/(γT ) < 1,

�b ≈ πγT

ln
(



T γ e

)W0

[
2
√

e

π2
ln

(



T γ e

)]
, (21)

where W0(z) is the Lambert W function. For γ � 1, (13) is
well approximated by

Im[�c,R(ω,T )] ≈ −γ
2mb

2πνc
T (1 + eω/T ), |ω| � T . (22)

Like at T = 0 [Eq. (15)], this self-energy is asymmetric
between positive and negative frequencies, and is therefore
skewed.
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B. Conditions for Planckian dissipation

It has been proposed that inelastic relaxation times, in most
if not all situations, cannot be much smaller than the quantum
mechanical “Planckian” timescale τP = h̄/(kBT ) (see [36]
and references therein). There is a growing list of materials,
showing strange metal behavior at low temperatures, which
seem to be close to this limit, namely, they relax on the Planck-
ian timescale up to a constant of order one [37–41]. Since the
self-energies calculated above imply relaxation times propor-
tional to 1/T , it is interesting to ask how systems described
by model I line up with the proposed Planckian bound.

Note, however, that the correct quasiparticle relaxation
time cannot be extracted directly as the inverse Im�R. Rather
it is renormalized by the same factor as the mass. To see this,
we eliminate the prefactor of the ω term to obtain the standard
Fermi-liquid form of the Green’s function

Gc,R(ω, k) = Z

ω − Zξk − iZ Im[�c,R(ω)]
(23)

with Z = m/m∗
c . From this we can immediately obtain 1/τc =

Z Im[�c,R(ω = 0)]. This is the same timescale extracted from
analysis of transport data pertaining to strange metal QCPs
[37–41] using the Drude formula for quasiparticle transport
τ = m∗σxx/(ne2). In the experiments the effective quasipar-
ticle mass is measured slightly away from the critical point.
Note that we focus here on the relaxation rates of the con-
duction electrons because, as shown in Sec. III C below, they
dominate the transport.

In the strongly damped regime, where γ � 1,�b/T ,
Eqs. (17) and (21) give

τc =
[
πνc

γmb
+ ln

(



γT

)]
h̄

kBT

≈ ln

(



γT

)
h̄

kBT
. (24)

At realistic temperatures τc can be viewed as Planckian relax-
ation modified only by a slowly varying logarithmic function
of temperature and nearly independent of the microscopic
couplings. The result provides an appealing potential expla-
nation for observation of near Planckian relaxation across
different materials, with O(1) proportionality constants that
vary only slightly between materials [37].

In the weakly damped regime γ � 1 Eqs. (17) and (22)
give

τc = 1

γ

[
πνc

γmb
+ ln

(



T ln(π/γ )

)]
h̄

kBT
, (25)

which is manifestly nonuniversal. The proposed Planckian
lower bound is still obeyed, but exceeded by a large factor of
at least 1/γ . Thus, we do not expect Planckian transport in the
weak damping regime. Such “sub-Planckian” behavior has in
fact recently been reported in experiments on HFMs [42].

C. Transport

The computation of transport properties is greatly simpli-
fied in model I due to the spatially disordered coupling gr

i jl .
To clarify this point, let us first ignore the effects of the
emergent U(1) gauge field. In this case the Kubo formula

for model I takes a particularly simple form involving only
the bare bubble diagram for each of the three species (the
first diagram in the series shown in Fig. 3). To see this, first
note that only vertex corrections with noncrossing boson lines
can potentially contribute in the large-N limit. However, in
such diagrams, the momentum integral on the loop containing
the bare current vertex is decoupled from the rest of the
diagram due to averaging over the site-uncorrelated couplings
gr

i jl . Once decoupled, these loop integrals vanish because the
current vertices and the propagators on the loop have opposite
parities under spatial inversion. Note that all cross species
current correlations must involve vertex corrections, which
vanish by the same mechanism. Thus, the conductivities asso-
ciated with the different species can be separately calculated
from their respective bubble diagrams. Physically, these dia-
grams describe current decay due to scattering of fermions on
critical bosons, which is not momentum conserving due to the
spatially disordered couplings.

The effects of the emergent U(1) gauge field on transport
can now be included by integrating it out exactly in the large-
N limit. This leads to a Ioffe-Larkin composition rule for the
in-plane conductivities of the three species, described by the
respective bubble diagrams (see Appendix D) [28,29]:

σ =
(
σxx σxy

−σxy σyy

)
= σc + (σ−1

b + σ−1
f

)−1 ≡ σc + σb f .

(26)

In other words, the conductivities of the f fermions and the
bosons, which carry a U(1) gauge charge, are added in series
and their combined current is added in parallel to that of the
conduction electrons.

The transport properties of the two phases can be easily
understood from this composition rule. In the heavy Fermi-
liquid phase, obtained for κ > κc, the boson is condensed and
therefore contributes zero resistance to the in-series addition.
The total conductivity is then a result of adding the f and
c fermion currents in parallel, consistent with the expected
increase of the carrier number associated with the large Fermi
surface. In the FL∗ phase, obtained for κ < κc, the boson
conductivity vanishes at zero temperature due to the soft gap.
The combined conductivity of the bosons with the f fermions
also vanishes due to the series addition. Therefore, the total
conductivity is equal to just that of the conduction electrons
σ = σc, compatible with a small Fermi surface consisting of
only those electrons.

We now argue that in the quantum critical region at finite
temperatures the transport is also dominated by the conduc-
tion electrons. To obtain the boson contribution σb, note that
in the critical regime we have �b(T ) ∼ T (up to logarithms),
which retains the scaling of the Green’s function as 1/ω. A
simple scaling analysis of the bubble diagram then shows that
σb ∼ T 0, much smaller than σ f ∼ 1/T . Thus, the small boson
conductivity bottlenecks the series addition with the spinons.
Then, the total conductivity is dominated by the much larger
σc ∼ 1/T added in parallel. We confirm by exact numerical
evaluation that indeed the total conductivity in the critical
region is dominated by the conduction electrons (Fig. 4 inset).

The longitudinal resistivity of the conduction electrons,
derived from the bubble diagram in Fig. 3, takes the form [32]
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= +

f

f

b b +

b

b

f f + · · ·

FIG. 3. The diagrams that contribute to the c conductivity. These diagrams are not suppressed by the large-N limit, but only the first
(bubble) diagram is nonzero in model I; in model II, the corrections to the bubble do not identically vanish, but their effects are nevertheless
suppressed (see main text). As in Fig. 1, dotted lines indicate the averaging over the flavor random couplings gr

i jl , which carry momentum in
model I (but not in model II). Consequentially, the momentum integrals in the left and right loops of the correction diagrams are decoupled
only in model I. The diagrams that contribute to the f and b conductivities are analogous to the ones above. The diagrams that contribute to the
cross correlations of currents of different species are analogous to the vertex diagrams correcting the bubble diagram above, and also vanish in
model I (but not in model II).

(see also Appendix A)

ρc,xx = T

(
nc

8mc

∫ ∞

−∞
dω

sech2[ω/(2T )]

|Im[�c,R(ω,T )]|
)−1

. (27)

In the critical region Im[�c,R(ω,T )] ∼ T for |ω| � T , so that
the integral in (27) is independent of T at leading order. Thus,
we get nearly T -linear resistivity in the critical strange metal.

In the FL� phase we found in (16) that |Im[�c,R(ω,T )]| ∝
ω2 + π2T 2. Plugging this into (16) gives ρxx ∝ T 2 as in a
normal Fermi liquid [Fig. 2(a)].

In the heavy FL phase, the boson conductivity diverges due
to the condensation of 〈br,1〉 ∼ r0

√
N and the Ioffe-Larkin

composition rule therefore implies the parallel addition of
the c and f conductivities. The condensate also generates
interlayer hopping of the bosons and spinons, which in return
stabilize the condensate, within this mean-field treatment, at
nonvanishing low temperatures. Details of this self-consistent
model are described in Appendix F.

FIG. 4. RH vs T in model I for various B and �κ = κ − κc,
computed numerically without any approximations. RH is roughly
constant within the critical region and is higher than the expected
RH ≈ −1/nc seen in the FL� region (blue and orange curves). A
larger B suppresses RH slightly. There is a large enhancement in the
crossover region between the condensed bosons and the quantum
critical region, when we ignore interlayer instabilities for κ > κc

(green curve). (Inset) �ρxx ≡ ρxx − ρxx (T = 0) vs T for different
values of �κ . The other parameters are the same as in Fig. 2.

Note that the c and f fermions continue to couple to the
N − 1 uncondensed gapless boson flavors b2,...,N . The 3D
boson dispersion for b2,...,N implies that we must compute
the equivalent of (12) with an additional integral over the
out-of-plane momentum, which leads to it having a ω1/2 fre-
quency dependence [instead of ln(ω)], and subsequently to
Im[�c, f ,R] ∼ const + max(T 3/2, ω3/2). This results in a resis-
tivity that behaves as ρxx ∼ const + T 3/2 at low T as seen in
Fig. 2(a), where the constant contribution to Im[�c, f ,R] (and
therefore ρxx) is generated by scattering off of the condensed
b1 mode. The N − 1 uncondensed boson modes leading to
the T 3/2 correction exist only as an artifact of the large-N
limit, and they will not be present in the physical N = 1 limit.
Therefore, in the physical system we expect the finite-T cor-
rections to the resistivity in the heavy FL phase to be weaker
than T 3/2.

At nonzero out-of-plane magnetic fields, B �= 0, σ may
be computed by expressing the Kubo formula in the basis
of Landau levels since the local self-energies are spatially
independent. Vertex corrections to the current correlation
functions continue to vanish even when B �= 0 (Appendix A).
As a result of integrating out the emergent U(1) gauge field,
the in-plane σb, f are computed in presence of renormalized
magnetic fields produced by the response of the emergent
U(1) gauge field to the (weak) external magnetic field B
(Appendix D):

B f = B
χb

χ f + χb
, Bb = B

χ f

χ f + χb
. (28)

Here χy is the diamagnetic susceptibility for species y. We
set χ f = 1/(24πm f ), i.e., the free-fermion Landau diamag-
netic susceptibility, corrections to which are suppressed by the
large- f bandwidth (see Appendix E), and χb to its zero field
value as we are only concerned with small B.

In the FL� phase and the quantum critical region, since
the transport is dominated by the conduction electrons as dis-
cussed above, we can express the weak-field Hall coefficient
as

RH ≈ Rc
H = σc,xy

(σc,xx )2

= −4T

nc

∫∞
−∞ dω sech2[ω/(2T )]Im[�c,R(ω,T )]−2(∫∞
−∞ dω sech2[ω/(2T )]Im[�c,R(ω,T )]−1

)2 .
(29)

When Im[�c,R(ω,T )] is independent of ω, we get RH ≈
−1/nc. Thus, an enhancement of RH beyond this value re-
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quires a strong frequency dependence of Im[�c,R(ω,T )] at
|ω| � T , as otherwise RH would be independent of the self-
energy. In the FL� phase, Im[�c,R(ω,T )] ∝ ω2 + π2T 2, and
RH ≈ −1.05/nc. We find that in the quantum critical re-
gion, for weak damping γ � 1, RH ≈ −4/(3nc), which can
be obtained by inserting (22) into (29). Therefore, there is
an enhancement of RH upon entering the quantum critical
region from the FL� phase. In the strongly damped γ � 1
regime, the frequency dependence of Im[�c,R(ω,T )] in the
quantum critical region (21) is weaker than that in (22), and
consequently RH ≈ −1.07/nc in the quantum critical region,
which is a negligible enhancement over the FL� phase. In
Fig. 4 we demonstrate the enhancement of RH for γ � 1,
seen when crossing from the FL� phase to the quantum critical
region as a function of T , by computing the total conductivity
numerically without any approximations. The enhancement
of RH is suppressed by magnetic field and sharpened (as
a function of κ) with decreasing temperature. Figure 2(b)
shows the enhancement of RH in the crossover between the
two regimes as a function of the tuning the parameter κ at
constant temperature. This enhancement is more modest than
that observed in experiments on CeCoIn5 [8].

We have noted already that upon tuning κ into the heavy FL
phase (κ > κc), the total conductivity tensor is simply σc + σ f

because the boson is superconducting and connected in series
to the f . Moreover, in the presence of an external magnetic
field, the Meissner effect generated by the superconducting
boson leads to a divergent susceptibility χb that screens the
magnetic field seen by the boson, while the f fermions see
the full magnetic field up to the small Landau diamagnetism.
Consequently, the Hall effect is just as it would be for a
Fermi liquid composed of both the c and f fermions, |RH |nc =
nc/(nc + n f ) = 1

2 . Thus, as seen in Fig. 2(b), |RH |nc changes
from ≈1 in the FL� phase to ≈ 1

2 in the heavy FL phase.
Note, however that the calculation performed to obtain

these plots is interrupted in the grayed out crossover region
of Fig. 2(a) between the critical and heavy FL regimes. We
can attempt to capture RH in this region by continuing the cal-
culation from the critical regime, with the boson fluctuations
decoupled between 2D layers, down to low temperatures.
In this case we find a strong enhancement of the Hall co-
efficient over an intermediate temperature window (Fig. 4)
in the weakly damped γ � 1 regime. The enhancement is
dominated by the contribution of the boson conductivity σb

to the total conductivity σ. The strong nonmonotonic behav-
ior stems from a competition between two effects. On the
one hand, the boson gap decreases rapidly with decreasing
temperature and becomes exponentially suppressed below the
grayed out crossover regime �b ∼ T exp[− 2π (κ−κc )

T mb
]. This

leads to a large σb,xy due to bosons excited above the small
gap. On the other hand, the susceptibility χb diverges rapidly,
ultimately leading to vanishing of Bb and hence also of σb

at zero temperature. The interplay between these two effects
leads to the sharp peak in |RH | versus temperature seen in
Fig. 4. This strong enhancement is more reminiscent of the
experimental results on CeCoIn5 [8].

We note that when the boson is strongly damped, with
γ � 1, this mechanism for enhancement of RH is not effective
because the boson becomes nearly particle-hole symmetric
with Gb(iω) ≈ Gb(−iω).

IV. MODEL II: TRANSLATIONALLY INVARIANT
COUPLINGS

In this section we consider the model (6) with ran-
dom tensor couplings that are the same on all lattice sites,
satisfying gr

i jl gr′
i′ j′l ′ = g2δii′δ j j′δll ′ . We also assume that, in

the FL� phase, the U(1) gauge field is fully deconfined
in three dimensions. Due to the momentum conservation,
the SD equations (with self-energies given by Fig. 1)
now involve momentum-dependent (rather than momentum-
averaged) Green’s functions. We further specialize to the
case where the c and f FS match [31], which we will
demonstrate is a natural condition. We will then continue to
compute the transport quantities in parallel to the analysis of
model I.

A. Matched Fermi surfaces

We argue that the matching of the FS’s of c and f fermions
is not as fine tuned a condition as it might appear. First, an
equal site occupation n ≈ 1

2 in both bands is in many cases a
natural result of stoichiometry [8]. But, though having equal
Fermi-surface volumes is a necessary condition, it does not
necessarily imply matching. A key point is that the f fermions
are emergent degrees of freedom (partons), whose dispersion
is generated dynamically, unlike the dispersion of the c which
is fixed by microscopic material parameters. Below we argue
that the dynamical variable that controls the dispersion of the
f fermions self-tunes to match the FS of the c fermions at
the critical point as such matching maximizes the free energy
relieved by condensation of the b.

To demonstrate the energetic mechanism behind the match-
ing of the FS’s, we assume that the c and f FS’s are ellipsoidal,
with the dispersions

εc,k = k2
x

2mc,x
+ k2

y

2mc,y
+ k2

z

2mc,z
,

(30)

ε f ,k = k2
x

2m f ,x
+ k2

y

2m f ,y
+ k2

z

2m f ,z
,

and that they have the same volume

VFS = μ3/2
c

√
2mc,xmc,ymc,z/(3π

2)

= μ
3/2
f

√
2m f ,xm f ,ym f ,z/(3π

2). (31)

The ratios rα={c, f };β={y,z} = mα,β/mα,x control the shape of
the Fermi surfaces. We will treat the parameters of the f
dispersion as variational parameters that minimize the ground-
state energy of the system upon boson condensation. When
the boson is uncondensed, the grand free energy of the non-
interacting fermion system at T = 0 is F0 = −(2/5)VFS(μc +
μ f ), not taking into account the fluctuations of the bosons.
Upon condensing b → b0, and ignoring the remaining boson
fluctuations, the mean-field Hamiltonian is

H0 =
∑
k,σ

[(εc,k − μc)c†
k,σ ck,σ + (ε f ,k − μ f ) f †

k,σ fk,σ ]

+ b0

∑
k,σ

[c†
k,σ fk,σ + H.c] + E (b0), (32)
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FIG. 5. The relative grand free energy relieved, δF ;c, f /(b2
0F0 ), vs

the eccentricity ratios controlling the shape of the ellipsoidal f Fermi
surface relative to that of the c Fermi surface, for μ f = μc/10. We
use V = 20

√
2/(3π 2), mc,x = 1.0, rc;y = 0.8, rc;z = 1.2. It is maxi-

mized when the f and c Fermi surfaces are of the same shape, i.e.,
r f ;y = rc;y and r f ;z = rc;z (star).

where E (b0) ∼ −b2
0 + b4

0 < 0 is the grand free energy arising
from the purely bosonic part of the Hamiltonian. We then
determine the change in grand free energy at T = 0 of the
two fermion bands produced by diagonalizing the 2 × 2 c, f
Hamiltonian:

F − F0 =
∑
±

∫
d3k

2π3

(
(εc,k − μc) + (ε f ,k − μ f )

±
√

(εc,k − ε f ,k + μ f − μc)2 + 4b2
0

)
× θ(μc + μ f − εc,k − ε f ,k

∓
√

(εc,k − ε f ,k + μ f − μc)2 + 4b2
0

)
+ 2

5
VFS(μc + μ f ) + E (b0). (33)

We can now consider the set of parameters for f that
maximize δF ;c, f = F0 − F + E (b0), which is the fermion
contribution to the grand free energy relieved by boson con-
densation. The total grand free energy relieved, F0 − F , then
is also maximized for fixed b0. We know that, physically, the
f bandwidth is much smaller than the conduction electron
bandwidth, so we fix μ f at some value μ f � μc. Eliminat-
ing m f ,x through this and the constraint on V , we then vary
the remaining parameters r f ;y and r f ;z. We indeed find that
δF ;c, f is maximized when r f ;y,z = rc;y,z respectively (Fig. 5),
implying the matching of the c and f Fermi surfaces in our
toy mean-field calculation. We will study the renormalization
of the f dispersion at strong coupling beyond the mean-field
level (which can be obtained by exact numerical solution
of the SD equations and by minimizing the total interacting
grand free energy at the large-N saddle point) in future work.

B. Self-energies and phase diagram

The SD equations for model II with the matched FS that
we have motivated are given by

Gc(iω, k) = 1

iω − εc,k + μc −�c(iω, k)
,

G f (iω, k) = 1

iω − ε f ,k + μ f −� f (iω, k)
,

Gb(iω, k) = 1

−iω + εb,k +�b −�b(iω, k)
. (34)

These equations are complemented by the expressions for the
self-energies (diagrams in Fig. 1)

�c(iω, k) = g2T
∑

iν

∫
d3q

(2π )3
G f ((iω + iν), k + q)

× Gb(−iν, q),

� f (iω, k) = g2T
∑

iν

∫
d3q

(2π )3
Gc( − (iω + iν), k + q)

× Gb(−iν, q),

�b(iω, k) = −2g2T
∑

iν

∫
d3q

(2π )3
Gc(iω + iν, k + q)

× G f (iν, q). (35)

Here again, the factor of 2 in the equation for �b arises
from the su(2) spin degeneracy of c and f . Although the
self-energies here can have momentum dependence due to the
translational invariance of model II, let us assume to begin
with that the fermionic ones are independent of momentum
for k near the FS, that is �c, f (iω, k) = �c, f (iω). We will see
below that this is a self-consistent assumption.

With the assumption of momentum-independent fermionic
self-energies, we can average the contributions to the bosonic
self-energy coming from small patches of the FS [43]. The
contribution from a given patch is

�
p
b (iω, k) = −2g2T

∑
iν

∫
dq⊥
2π

d2q‖
(2π )2

× (iν − v f ,F q⊥ − q2
‖/(2m f ) −� f (iω))−1

× (iν + iω − vc,F (q⊥ + k⊥)

− (q‖ + k‖)2/(2mc) −�c(iω + iν))−1, (36)

where ⊥, ‖ define the directions relative to the patch of the
matched FS, vc, f ,F are the Fermi velocities, and mc, f are the
fermion masses. After integrating over q and averaging over
patches (see Appendix G), we obtain

�b(iω, k) ≈ −2g2mcm f
|ω|
k

≡ −γ2
|ω|
k
. (37)

Here γ2 = 2g2mcm f is the natural dimensionless coupling for
the boson damping, akin to γ in model I. The FS matching
allows a small momentum boson (k → 0) to decay into c- f
particle-hole pairs, resulting in a low-k singularity of the
boson self-energy. This self-energy is identical to the “Lan-
dau damping” form [43] of low-momentum bosons coupled
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to low-energy particle-hole excitations about the FS of an
ordinary metal. The Landau damping we obtain implies a
dynamical exponent z = 3 for the critical bosonic fluctua-
tions which has been shown to lead to MFL phenomenology
in d = 3 [44,45], as we will also explain in the following
paragraphs.

Having calculated the boson self-energy, we may now de-
termine the boson gap �b(T ) using the occupancy constraint
as done above for model I. Similarly to model I, we get a
QCP separating the FL� phase for κ < κc, where the boson

is soft gapped at zero temperature and the heavy FL phase
for κ > κc, where the boson is condensed 〈b1〉 ∼ r0

√
N . At

the critical point we find �b(T ) ∼ T 5/4 at low temperatures
(and B = 0). The phase diagram of model II is therefore
qualitatively similar to Fig. 2: the critical fan is flanked by
a FL� phase with a T 2 resistivity on the left, and a heavy FL
phase with a large carrier density on the right.

With the boson Green’s function determined we can
compute the c self-energy (the calculation for f is almost
identical):

�c(iω, k) = g2T
∑

iν

∫
dq⊥
2π

d2q‖
(2π )2

1

iν + γ2
|ν|
q + q2

2mb
+�b

(iν + iω − v f ,F (q⊥ + k⊥) − (qs ‖ +k‖)2/(2m f ) −� f (iω + iν))−1.

(38)

Since the fermion propagator (which depends on q⊥ ∼ q2
‖) is much more sensitive to q⊥ at small frequencies and momenta than

the boson propagator (which depends on q2
⊥ + q2

‖ ∼ q4
‖ + q2

‖), we can set q⊥ = 0 in the boson propagator. As a result of this the
self-energy takes a form similar to model I, coupling momentum-averaged Green’s functions (q⊥ averaged for fermions and q‖
for the bosons). Moreover, the self-energy we obtain resembles the behavior in model I in that the momentum-averaged fermions
couple to an effectively 2D boson;

�c(iω, k) ≈ g2T
∑

iν

(∫
dq⊥
2π

G f (i(ν + ω, q + k))
)(∫

d2q‖
(2π )2

Gb(−iν, q‖)

)

= − ig2

2v f ,F
T
∑

iν

∫
d2q‖
(2π )2

sgn(ν + ω)

iν + γ2
|ν|
q‖

+ q2
‖

2mb
+�b

. (39)

This self-energy is indeed independent of momentum k, as promised earlier. We continue by noting that we can ignore the iν
term compared to the boson self-energy γ2|ν|/q‖, which is much larger at low frequencies. Hence, we obtain the self-energy in
the low-frequency limit and T = 0:

�c, f (iω,T = 0) = − γ2mb

12π2mc, f kF
iω ln

(
e
√

2mb
3

γ2|ω|

)
(QCP),

�c, f (iω,T = 0) = −γ2mb ln[
/�b(T = 0)]

8π2mc, f kF
i + i

γ 2
2

√
mb/2

32πmc, f kF�
3/2
b (T = 0)

ω2 (FL�), (40)

where 
 is the boson bandwidth and kF is the Fermi momen-
tum of the matched FS’s. Due to the strong Landau damping
we obtain a nonskewed MFL for all values of the damping
parameter γ2. This should be contrasted with model I, which
leads to a skewed MFL for small damping parameter γ . How-
ever, the renormalization of the effective fermion masses upon
approaching the QCP from the FL� phase are the same as in
model I.

At low but nonzero temperatures above the critical point,
the Matsubara frequency sum in (40) may be computed an-
alytically upon ignoring the iν term as before. Then, we
can compute the q‖ integral numerically with a UV cutoff
∼√

2mb
 to obtain

�c, f (iω,T ) = − iγ2mb

mc, f kF
T sgn(ω)ϕ

( |ω|
T
,



T
,




�b(T )

)
.

(41)

The dependencies on 
/T and 
/�b(T ) are logarithmic, as
in model I. As we have seen in the calculations for model
I, this form of the self-energy leads to a universal Planckian

scattering rate τ−1 = [mc/m�
c (T )]Im[�c,R(ω = 0,T )], up to

slowly varying logarithmic factors. Note that we obtain this
Planckian scattering rate independent of the damping parame-
ter γ2 unlike in model I, which resulted in Planckian scattering
only in the strong damping regime γ � 1.

C. Transport

An exact calculation of the transport properties in model
II is more complicated than in model I because the vertex
correction diagrams in Fig. 3 do not vanish. Due to momen-
tum conservation, the momentum integrals in the left and
right loops of these diagrams do not decouple as they do in
model I. Similarly, the cross-species current correlations do
not vanish in model II as they do in model I and complicate
the Ioffe-Larkin rule. Nonetheless, we will argue below that
the effects of all of these corrections may be neglected, lead-
ing to transport properties that are dominated, as in model
I, by the self-energies obtained from the bubble diagram in
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the previous section [Eq. (41)].4 We show that this results
in strange metal phenomenology (nearly T -linear resistivity)
in the critical fan for sufficiently low temperatures. In the
subsequent paragraphs, we will explain explicitly how this
comes about.

First, we note that the conductivity in the quantum critical
and FL� regimes is dominated by the conduction electrons c.
The much heavier damped bosons, added in parallel, form
an insulator in the FL� phase, and a poor conductor at
the QCP, and therefore contribute negligibly to the conduc-
tivity. In the heavy FL phase, condensation of b leads to
effective hybridization of the c and f bands, and the elec-
trical transport is determined by the large hybridized Fermi
surface.

Let us now turn to the question of vertex corrections. In
conventional quantum critical systems, a single scattering of
an electron off a low-momentum critical boson (q → 0), in-
cluded in the electron self-energy, leads to vanishing current
relaxation. The transport time is therefore not set by the quasi-
particle relaxation time, and is instead obtained from the Kubo
formula only by summing over multiple scatterings, which
are included in the current vertex corrections. In model II,
the situation is different because the decay process included
in the electron self-energy ck → fk−q + bq leads to signif-
icant current relaxation even at small momentum transfers
q → 0. The final-state current carried by the boson ∼eq/mb

is much smaller than the initial state current ∼evF carried
by the conduction electron. Note that the f fermion does not
contribute any additional current to the final state: due to the
local occupancy constraint enforced by the Ioffe-Larkin rules,
the boson and f fermion must carry the same current, which is
also equal to the total current carried by them, as the f fermion
is uncharged.

Although single-scattering events lead to current relax-
ation over short timescales, whose rate is set by the electron
self-energy, as argued above (see also [31]), we also need
momentum relaxation in order to obtain a finite DC con-
ductivity. The nonzero overlap of the total current and the
conserved total momentum operators will prevent the current
from fully relaxing over the long timescales relevant to DC
transport, leading to an infinite DC conductivity [46]. How-
ever, this problem is resolved in practice by the existence of
an adequate amount of impurities that can scatter the heavy
f fermions and thus dissipate the momentum received from
the c fermions faster than the equilibration rate between the
three species. This eliminates the above “momentum drag”
phenomenon, and allows the self-energy to also set the cur-
rent relaxation rate of the conduction electrons c over long
timescales.

Our identification of the current relaxation rate with the
rate set by the c electron self-energy (41), just like in model
I, therefore allows for an identification of Planckian strange
metal phenomenology in the critical regime of model II at

4While the transport vertex corrections can still be resummed ex-
actly as a ladder series owing to our controlled large-N limit, unlike
in previous work on fermions coupled to critical bosons [52], this
calculation is tedious, and we therefore defer it for future work

sufficiently low T . As in model I, we can obtain the resistivity
from Eq. (27), which results in ρxx ∼ T ln(
/T ).

Important differences from model I, however, arise from
the boson damping �b(iω, k) ∼ |ω|/k, which is parametri-
cally much larger at small k than �b(iω, k) ∼ γ |ω| in model
I regardless of the value of γ . Because the momentum of
occupied bosons is effectively cut off at k ∼ √

mbT . We can
identify an effective damping constant γ (T ) = γ2/

√
mbT ,

which is always large at sufficiently low temperatures (see
Appendix G). Hence, there is never any significant enhance-
ment of RH in the critical regime at low T in model II,
as there is no weak b damping regime like the small-γ
regime for model I, that was required there to obtain an
enhanced RH . Furthermore, the strong damping ensures that
model II is always in the Planckian regime at low enough
T , as opposed to model I, which was Planckian only when
γ � 1.

In Appendix G, we consider a higher-temperature regime,
occurring for T � γ 2

2 /mb, in which the boson damping is
weaker and an enhancement of RH is consequently obtained.
However, the resistivity in this regime is no longer T linear
and instead scales as ∼√

T .

V. DISCUSSION

The large-N approach formulated in this paper captures
a strongly coupled QCP, showing linear in T resistivity at
a Kondo breakdown transition involving a change of the
Fermi-surface volume. Such MFL phenomenology, seen ubiq-
uitously in experiments with heavy-fermion materials, could
not be obtained in a controlled way within previous large-N
theories [3,4,9,22]. The essential element in our formulation
is that the number of fermions and critical boson species are
both scaled with N .

The MFL with linear in T resistivity is obtained within two
distinct models of the Kondo lattice. It is worth emphasizing
the differences in the physical situations they describe, and in
the predicted phenomena. Model I is disordered, and leads to
a MFL only if the QCP and adjacent FL� phase are deconfined
in layers, that is deconfined inside 2D planes, yet confined be-
tween planes. This model can be tuned between two regimes
by a coupling constant γ . In the strong damping limit γ � 1
the system exhibits Planckian dissipation, with a universal
electron relaxation time τtr ≈ h̄/(kBT ). The strong damping
also prevents any significant enhancement of the Hall coeffi-
cient RH in the critical regime. In the weak damping regime
γ � 1, the transport relaxation time is much larger than the
Planckian time (by a factor 1/γ ), and the Hall coefficient RH

is enhanced in the critical regime. Furthermore, the electron
self-energy in this regime is “skewed” with an asymmetry
in the damping of particle vs hole excitations (22). We note
that strange metallic behavior with a transport relaxation time
much larger than the Planckian time has been observed exper-
imentally in HFMs [42].

Model II, on the other hand, is translationally invariant, and
describes a transition from a fully 3D FL� with a small Fermi
surface to a heavy Fermi liquid with a large Fermi surface.
The critical boson is always strongly damped at low tempera-
tures due to Landau damping, leading to Planckian dissipation
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with a universal electron transport lifetime τtr ∼ h̄/(kBT ). The
strong damping prevents enhancement of RH in the critical
regime.

A testable prediction, which follows from the analysis of
the two models, is that Planckian dissipation at the QCP can-
not be accompanied by enhancement of the Hall coefficient
RH . Enhancement of RH at the QCP, as has been observed in
recent experiments with CeCoIn5 [8], can occur only in the
weakly damped regime of model I, where a set of additional
features are predicted: first, the QCP and the nearby FL� phase
are deconfined only within 2D planes, which would have ob-
servable implications on transport. For example, the thermal
conductivity is expected to be strongly anisotropic because
in this phase spinons contribute to the in-plane, but not to
the out-of-plane, thermal transport. The charge conductivity,
on the other hand, is dominated by the conduction electrons,
which can hop between planes, and would therefore be much
more isotropic. Consequently, only the in-plane Lorenz ra-
tio is expected to be significantly enhanced. Another unique
property of the weakly damped (γ � 1) MFL, is a skewed
fermion spectral function, which is expected to generate a
low-temperature Seebeck coefficient in the critical regime
[30,32]. Sizable T → 0 Seebeck coefficients have recently
been reported experimentally in 2D strange metals [34,47],
and it would be interesting to investigate whether these arise
due to skewed electron self-energies.

The large-N approach we have introduced to study the
Kondo breakdown transition in HFM can also be useful in for-
mulating a controlled theory of other quantum critical states.
The high-Tc cuprate superconductors, for example, exhibit
similar signatures of FS reconstruction near optimal doping
[48], accompanied by T -linear resistivity [49]. While there
are no local moments to be subsumed in the Fermi sea, a
parton model describing a change in FS volume has recently
been proposed [50]. Investigating this QCP using the large-
N scheme is an interesting problem for future work. Our
approach can also be used to address the interplay of these
critical fluctuations with superconductivity and magnetism,
which appear to be crucial to cuprate phenomenology.

Another interesting extension of this work would be to
formulate a controlled treatment of gapless gauge field fluctu-
ations coupled to matter fields. This is important, for example,
for describing gapless U(1) spin liquids or the Halperin-Lee-
Read state in a half-filled Landau level [51,52]. The standard
large-N theory captures the gauge field fluctuations within a
1/N expansion, which is known to be uncontrolled [53]. In
the large-N models we introduced here, gauge field fluctu-
ations are still suppressed by 1/N , but the 1/N expansion
could possibly be better controlled. Furthermore, it is inter-
esting to explore generalizations of the scheme to include
N flavors of U(1) gauge fields with flavor-random gauge
couplings, and thereby capture the feedback of the gauge
field fluctuations self-consistently at the saddle-point level
itself.
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APPENDIX A: KUBO FORMULA IN LANDAU
LEVEL BASIS FOR MODEL I

In this Appendix, we obtain expressions for the conductiv-
ities of the different species in model I via the Kubo formula,
which are given by their respective bubble diagrams of Fig. 3,
as described in the main text. We compute these generally
at nonzero values of the out-of-plane magnetic field B by
working in the Landau-level basis in the x-y plane with wave
functions

ψn,k (x, y) = 1√
Lx�

eikxφn,k (y/�);

φn,k (z) = π−1/4

√
2nn!

Hn(z + k�) exp

(
− (z + k�)2

2

)
,

(A1)

where � = 1/
√

eB and Hn(x) are the (physicist’s) Her-
mite polynomials satisfying the recursion relation Hn+1(x) =
2xHn(x) − H ′

n(x). The energy of the states is ωcλ(n + 1/2)
where ωcλ = |e|B/mλ, where λ ∈ {c, f , b}. The use of the
Landau-level basis is possible because the self-energies of
all three species are independent of momentum and therefore
proportional to the identity matrix in real space, which im-
plies that they are also proportional to the identity matrix in
the Landau-level basis, greatly simplifying the computation.
Results such as (27) and (29) in the weak magnetic field limit
can be obtained by taking the B → 0 limit of our expressions
here. It is important to recall the following identities:

∫
dz φn,k (z)∂zφm,k (z)

=
√

m

2
δn,m−1 −

√
m + 1

2
δn,m+1,∫

dz φn,k (z)∂z(z + k�)φm,k (z)

=
√

m

2
δn,m−1 +

√
m + 1

2
δn,m+1. (A2)

Now, our starting point is the Kubo formula in momentum
space, which we will transform to the Landau-level basis.
Recall that [55] σλ,αβ (ω, q) = −Im�R

λ,αβ (ω, q)/ω where

�λ,αβ =− 1

V

∫
dx dx′dy dy′eiqx (x−x′ )eiqy (y−y′ )

×
∫ 1/T

0
dτ eiωτ 〈Tτ J†

λ,α (r, τ )Jλ,β (r′, 0)〉, (A3)

235111-13



ALDAPE, COOKMEYER, PATEL, AND ALTMAN PHYSICAL REVIEW B 105, 235111 (2022)

where τ is imaginary time. With the above identities, a straightforward calculation will yield the spatially integrated current as

2mλi

e

∫
dx dy Jλ(r, τ ) ≡

∫
dx dy[λ†

r (τ )(∇ − ieA)λr (τ ) − (∇ + ieA)λ†
r (τ )λr (τ )]

= 2

�

∑
k,n

[(
i
1

)√
n + 1

2
λ

†
nk (τ )λn+1,k (τ ) +

(
i

−1

)√
n

2
λ

†
nk (τ )λn−1,k (τ )

]
. (A4)

We now evaluate �λ,xx and �λ,xy at q = 0 using this expression. Using Gλnk (τ ) = 〈λnk (τ )λ†
nk (0)〉, we get

(
�λ,xx

�λ,xy

)
= −η e2

V �2m2
λ

∫ 1/T

0
dτ eiωτ

∑
nk

(
n+1

2 Gλnk (τ )Gλ,n+1,k (−τ ) + n
2 Gλnk (τ )Gλ,n−1,k (−τ )

−i n+1
2 Gλnk (τ )Gλ,n+1,k (−τ ) + i n

2 Gλnk (τ )Gλ,n−1,k (−τ )

)

= −η e2ω2
cλ

2π
T
∑
iνn

[∑
n

n + 1

2

(
1

−i

)
Gλn(iνn)Gλ,n+1(iνn − iω) + n

2

(
1

i

)
Gλn(iνn)Gλ,n−1(iνn − iω)

]
, (A5)

where η = ± for bosons and fermions, respectively, because of time ordering. In the second step, we switched to Matsubara
frequencies, used the fact that Gnk (τ ) ≡ Gn(τ ) is independent of k, and there are LxLy/�

2/(2π ) terms in the k sum.
We have neglected the vertex corrections to the conductivity in Fig. 3 here, which can be shown to vanish even at B �= 0.

Since the disordered interactions gr
i jk are uncorrelated between different sites in model I, such corrections can be written as

δ�λ =
〈 ∫

dx dy Jλ(r, τ )
∫

dx1,2dy1,2dτ1,2,3,4λ
†
r1

(τ1)λr1 (τ2)K (τ1, τ2, τ3, τ4)λ†
r2

(τ3)λr2 (τ4)
∫

dx′dy′Jλ(r′, τ ′)

〉
. (A6)

Since λr (τ ) =∑n,k ψn,k (r)λnk (τ ), and Gλnk (τ ) are independent of k, the identity∫
dk Hn(z + kl )Hn±1(z + kl )exp[−(z + kl )2] = 0 (A7)

ensures that these corrections vanish.
Proceeding similarly as to [55], we next switch to the Lehmann representation, analytically continue, take the imaginary part,

and expand for small ω. We find

σλ,xx = −sλ lim
ω→0

Im[�λ,xx(ω)]

ω
= − sλe2ω2

cλ

4π

∑
n

(n + 1)
∫

dε

(2π )
Aλn(ε)Aλ,n+1(ε)

(
∂nη(ε)

∂ε

)

= − sλe2

4π

∫
dε

2π

4�′′
λ (ε) ∂nη (ε)

∂ε

4[�′′
λ (ε)]2 + ω2

cλ

{
2�′′

λ (ε) + 2(ε + μ̃λ)Im

[
ψ0

(
1

2
+ −ε + i�′′

λ (ε) − μ̃λ
ωcλ

)]}
, (A8)

where sλ is the spin degeneracy of the species λ. We performed the Landau-level sum in terms of the digamma function ψ0, and
we used ψ0(z) = ψ0(1 + z) − 1/z and

Aλn(ε) = 2η�′′
λ (ε)

[ε + μ̃λ − (n + 1/2)ωcλ]2 + [�′′
λ (ε)]2

, (A9)

so that �′′
λ (ε) = Im[�λ,R(ε)] and μ̃λ = μλ − Re[�λ,R(ε)].

For σλ,xy, we convert to relative and center-of-mass coordinates εc = (ε + ε′)/2 and εr = ε − ε′. We then symmetrize with
respect to εr in order to get an integral from 0 to ∞. We find

�λ,xy(ω → 0) = −i
e2ω2

cλ

4π

∑
n

(n + 1)
∫

dε dε′

(2π )2
Aλn(ε)Aλ,n+1(ε′)[nη(ε) − nη(ε′)]

[
2(ω + iδ)

(ε − ε′)2

]
,

σλ,xy = − sλe2ω2
cλ

2π

∑
n

(n + 1)
∫ ∞

0

dεr

2π

∫ ∞

−∞

dεc

2π

sinh
(
εr
2T

)
cosh

(
εc
T

)− η cosh
(
εr
2T

) 1

ε2
r

×
[

Aλn

(
εc + εr

2

)
Aλ,n+1

(
εc − εr

2

)
− Aλn

(
εc − εr

2

)
Aλ,n+1

(
εc + εr

2

)]

= − sλe2

(2π )3

∫ ∞

0
dεr

∫ ∞

−∞
dεc[Fλ(εc, εr ) − Fλ(εc,−εr )]

sinh
(
εr
2T

)
cosh

(
εc
T

)− η cosh
(
εr
2T

) 1

ε2
r

. (A10)
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The sum can be done to give an explicit expression for Fλ(εc, εr ) as

Fλ
(
ε+ε′

2 , ε − ε′)
2�′′

λ (ε)�′′
λ (ε′)

= Im

[
ψ0
( 2ε−2i�′′

λ (ε)−2μ̃λ(ε)
2ωcλ

− 1
2

)
[2ε − ωcλ − 2i�′′

λ (ε) − 2μ̃λ(ε)]

�′′
λ (ε){�′′

λ (ε′)2 + [ε′ − ε + ωcλ + i�′′
λ (ε) − μ̃λ(ε′) + μ̃λ(ε)]2}

]

+ Im

[
ψ0
( 2ε′+2i�′′

λ (ε′ )−2μ̃λ(ε′ )
2ωcλ

+ 1
2

)
[2ε′ + ωcλ + 2i�′′

λ (ε′) − 2μ̃λ(ε′)]

�′′
λ (ε′){�′′

λ (ε′)2 −�′′
λ (ε)2 + 2i�′′

λ (ε′)[ε − ε′ − ωcλ + μ̃λ(ε′) − μ̃λ(ε)] − [ε − ε′ − ωcλ + μλ(ε′) − μλ(ε)]2}

]
.

(A11)

For the fermions, for small magnetic fields, these ex-
pressions give the same result as the expressions derived
from the Boltzmann equations in [32] with the identification
v2

Fν/(4π ) → n/m where vF is the Fermi velocity, n is the
density, and m is the mass. However, for large magnetic fields,
our expressions will have quantum oscillations that are absent
in the Boltzmann treatment.

APPENDIX B: BOSON SPECTRAL FUNCTION
AND �b IN MODEL I

In this Appendix, we derive the boson spectral function
and the soft gap �b generally for a nonzero out-of-plane
magnetic field. As in the derivation of the Kubo formula, we
use the Landau-level basis, which is made possible by the
spatial locality and site invariance of the occupancy constraint
in the last line of (6). The values of �b at small magnetic
fields can be obtained by taking the B → 0 limit in our
expressions.

Because μc, μ f � ωc,c/ f , we still have the original re-
sult for the fermion Green’s function that Gc, f (iω) =
−i(νc, f /2)sgn(ω). That is, the fermions are less affected by
the Landau-level quantization than the bosons, and, conse-
quently, the boson self-energy calculation in the main text is
unaffected.

However, the boson spectral function must be calculated
by summing over the spectral functions in each Landau level
instead of integrating over momentum. The result is

Ab(ω) = 1

�22π

∑
m

2γω

[ω − (m + 1/2)ωcb −�b]2 + γ 2ω2

= −mb

π
Im

[
ψ0

(
1

2
− −�b + ω + iγω

ωbc

)]

B→0−−→ mb

π

[
π�(ω −�b) + tan−1

(
γω

�b − ω
)]
, (B1)

where �(x) is the Heaviside step function, ψ0(z) is the
digamma function, � = 1/

√
ebB, and ωcb = ebB/mb with

eb,mb the charge and mass of the boson, respectively.
Now, recall from the main text that the scaling of the

fermion self-energy expressions above depends crucially on
�b(T ). It can be easily checked that the change in the number
of f fermions in response to a shifting chemical potential
is suppressed by �μ f /
 f where 
 f , the f fermion band-
width, is assumed to be large. Therefore, the constraint can be

written as

κ − κc = (Gb(τ = 0−,�b(T )) − Gb(τ = 0−,�b,c(0)),

(B2)

and �b depends on both temperature and κ , but we suppress
the κ dependence generally. When κ = κc, �b = �b,c and
�b,c(T = 0) = 0. This is reminiscent of the O(N ) rotor model
[33] and the calculation of the thermal mass in [56].

Although we can do this calculation carefully in mul-
tiple ways, we will recall that Gb(τ = 0−) =∑i〈b†

i (τ =
0−)bi(τ = 0−)〉 ≡ nb, which is the number density of bosons.
For this number to converge, we choose to regulate it in the
usual way (see [55])

nb = 1

V

∑
nk

∫ ∞

−∞

dω

2π
nB(ω)Abn(ω,�b), (B3)

where Abn is the summand seen in (B1).
Figure 6 summarizes the behavior of �b(T ) in the three

phases at zero and finite applied field. The important feature
is the T -linear (up to logarithmic corrections) growth in the
critical region. Low-T transport is dictated by the limit of z =
�b/T which shifts from ∞ to zero across the transition.

FIG. 6. We plot �b vs T for various �κ = κ − κc with the
color indicating �κ . All curves become T linear upon entering the
critical region, but are either exponentially suppressed or approach
a constant as T → 0 if �κ > 0 or �κ < 0, respectively. All other
parameters are the same as in Fig. 2 in the main text.
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Note that ∫ ∞

−∞
dω nB(ω)Abn(ω,�b) =

∫ ∞

0
dω nB(ω)[Abn(ω,�b) − Abn(−ω,�b)] −

∫ ∞

0
dω Abn(−ω,�b), (B4)

and that the first integral on the right-hand side is 0 when T = 0. Recalling the form of the boson’s spectral function from (B1),
we will find

2π (κ − κc) = ωcbmb

2π

[∫ ∞

0
nB(ω)

[Ab(ω,�b) − Ab(−ω,�b)]

1/(�22π )
+ 2γ

γ 2 + 1
ln

(
�(N + 3/2)�(1/2 +�b/ωcb)

�(N + 3/2 +�b/ωcb)�(1/2)

)]
, (B5)

where we have cut off the Landau-level sum at N = 
/ωbc and �(n) is the gamma function.
Taking the B → 0 limit of (B5), we can scale out �b = zT and x = ω/T to find

2π2(κ − κc)
1

T mb
=
∫ ∞

0

dx

ex − 1

[
tan−1

(
γ x

z − x

)
+ tan−1

(
γ x

z + x

)]
− π ln(1 − e−z ) − γ

γ 2 + 1
z ln

(

e

zT

)
. (B6)

As z → 0, the first two terms of the left-hand side dominate
and as z → ∞, the rightmost term dominates, so we see that
there is a solution with z, whose value will change logarithmi-
cally, as T → ∞. As expected, there is always a solution, so
the bosons are not truly condensed as long as their dispersion
is strictly 2D. Instead, for κ > κc the gap becomes expo-
nentially small in (κ − κc)/T , i.e., �b ∼ T exp[− 2π (κ−κc )

T mb
].

In reality, however, there is a stable condensate solution at
low temperature, facilitated by the 3D boson dispersion self-
consistently generated by the presence of the condensate. For
this reason, we have treated this low-temperature regime of
the large Fermi-surface phase (κ > κc) separately (see Ap-
pendix F).

APPENDIX C: LIMITING SELF-ENERGY
CALCULATIONS IN MODEL I

At low temperatures over the critical region,�b/T is order
one, so σ b

xx and σ b
xy are suppressed relative to the fermions,

which are gapless. Therefore, by the Ioffe-Larkin composition
rules (see Appendix D), σ b f

xx ≈ σ b
xx and RH ≈ RH,c at low

temperatures, which we confirm numerically. RH,c, in turn,
is determined by (29), and depends on the dimensionless
parameters (κ − κc)/(T mb), 
/T , and γ . In Fig. 7 we plot
the dependence of RH,cnc at criticality (κ = κc) on the latter
two parameters.

To understand this behavior, we now derive simple limiting
forms for the low-temperature �b and fermion self-energy at
criticality at low B. We will consider three limits γ → 0 with
T small but finite, γ → ∞ with T small but finite, and T → 0
with γ fixed. These expressions are used to obtain an estimate
of the enhancement of the Hall coefficient given in the main
text.

We first wish to solve (B6) when κ = κc and γ → 0 at
fixed T . The integral on the right-hand side (RHS) is smaller
than the other two terms, in this limit. We make the guess that
e−z � 1, so we arrive at

z = �b

T
= ln

[
π

γ z ln
(

e
zT

)
]

= ln

(
π

γ

)
− ln

[
z ln

(

e

zT

)]

≈ ln

(
π

γ

)
− ln

[
ln

(
π

γ

)
ln

(

e

ln(π/γ )T

)]
; γ → 0,

(C1)

which justifies our assumption. In the last step, we used the
fact that the second term is smaller than the first as γ → 0, so
we obtained an approximate expression for z by simply sub-
stituting z = ln(π/γ ) on the RHS. Better approximations are
obtained by iteration, by substituting the improved expression
for z.

By inserting (B1) into (19), we can evaluate the self-energy
at leading order in γ at criticality:

�ω,T ≡ Im[�c,R(ω,T )]

= lim
γ→0

− γmb

2πνc
T

{
ln

(
1 + e(ω−�b)/T

1 − e−�b/T

)

+ γ
[
−ω

T
+ �b

T
ln

(
�b

|�b − ω|
)]}

. (C2)

The O(1) term arises from approximating the spectral function
as a step function. In the limit that T is fixed and γ → 0,
�b/T ∼ ln(1/γ ). Corrections to the spectral function, there-
fore, need only be integrated against nF (ε′ − ω) −�(−ε′),

FIG. 7. We plot RH,cnc, the Hall coefficient for the c electrons
when κ = κc, which approximates the total RH at low temperatures.
In this regime, it depends on only two parameters: γ and 
/T . We
find in this supplement that the peak at low γ is exactly at 4

3 .
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Aµ = Aµ +

b

b

aµ

Aµ +

f

f

aµ

Aµ

FIG. 8. The diagrams that contribute to the renormalized charge. The propagators and polarization bubbles are all fully dressed. Aμ is the
external gauge field, aμ is the emergent gauge field, and the lines to the right of the diagrams are either b or f propagators depending on
whether the renormalized b charge or renormalized f charge is being computed.

which we evaluate with the Sommerfeld approximation. The
first term in (C2) goes as Te−�b/T ∼ γ�b, but, in this limit,
the second term goes as γω2/�b and is therefore higher order.
Computing RH,cnc using (29), and using just the first term in
(C2), gives exactly 4

3 when γ � 1.
Turning to the γ → ∞ limit, we see that the integral in

(B6) is well approximated by taking the integrand as π from
zπ/(2γ ) to z, and as 0 everywhere else. The error from this
approximation is roughly a constant close to π/2 as γ → ∞,
so we end up needing to solve

−π ln

(
1 − e−zπ/(2γ )

√
e

)
= z

γ
ln

(

e

zT

)
. (C3)

If T is small enough, z/γ will be small, which allows us
to approximate the left-hand side as −π ln[(zπ )/(2

√
eγ )].

Finally, since z/γ is small, we neglect the term (z/γ ) ln(z/γ )
that appears on the right-hand side. These approximations
altogether yield

z ≈ πγ

ln
(



T γ e

)W0

[
2
√

e

π2
ln

(



T γ e

)]
, γ → ∞ (C4)

where W0(z) is the Lambert W function.
The self-energy in the large-γ limit is well approximated

by the following:

�ω,T = − γmb

2πνc
T

[
z

γ
ln

(

e

zT

)
+ π ln(1 + eω/T )

− tan−1(γ ) ln

(
1 + eω/T

1 + e−ω/T

)]
, γ → ∞, z/γ < 1

(C5)

where the integrals over the fermion occupation functions are
done by setting �b → 0 in the spectral function, which is
accurate so long as �b/(T γ ) � 1. When z → 0 limit of that
expression is plugged into (29), one finds RH,c ≈ −1.07/nc in
good agreement with the numerics. Numerical studies confirm
RH,cnc increases near γ = 0,∞ with a single minimum near
γ = 1, the maximum being 4

3 .
To understand the temperature dependence of the resistiv-

ity at criticality and small γ we use the formula [32]

ρc,xx =
(

nc

8mcT

∫ ∞

−∞
dε

sech2(ε/2T )

�ε,T

)−1

= T

(
nc

8mc

∫ ∞

−∞
dx

sech2(x/2)

(�xT,T )/T

)−1

. (C6)

Plugging the value of �b (C1) into (C2) or the exact result
we get that �xT,T /T depends on T only through logarithmic
corrections.

To calculate the self-energy in the low-temperature limit
at fixed field, as we do in our numerical calculations, we
must use the finite field expression (B1). For temperatures
sufficiently lower than B the self-energy takes the form �c ≈
(T 2/B)g(ω/T ) and will be dominated by the cyclotron fre-
quency. This will invalidate the small field approximation. In
this case we must include the quadratic terms in B for the
Hall coefficient [32]. The Hall coefficient then goes to one
as �/B → 0.

APPENDIX D: DERIVATION OF THE IOFFE-LARKIN
CONDITION FOR MODEL I

The Kubo formula allows us to evaluate the conductivity
tensors for the three species. To find the total conductivity,
however, we must combine the contribution from the three
species. Although the c fermions are a separate species and
will be added in parallel to the b and f contribution, the latter
two species add together in series instead of in parallel due
to the Ioffe-Larkin composition rule. In this section, we will
derive the Ioffe-Larkin composition rule closely following
Lee and Nagaosa [29]. Our derivation is exact in the large-N
limit.

Due to the emergent gauge field, the charge of the b bosons
and f fermions is renormalized. The physical condition is
that eb + e f = −1 as the b f c† term in the Lagrangian must
conserve charge. How the charge is distributed is a gauge
choice, with the emergent gauge field ensuring the physical
results are independent of this choice.

We see in Fig. 8 that there are three diagrams that con-
tribute to the renormalization of the charge. In the diagrams,
the polarization bubbles �,5 and propagators are fully renor-
malized (with the fermionic spin degeneracy included). Any
other diagram is either zero because of the locality of the
SYK-type interaction or suppressed by 1/N . We note that the
propagator for the emergent U(1) gauge field is [29]

D(τ − τ ′) = −〈a(τ )a(τ ′)〉 = −(� f + �b)−1, (D1)

and the boldface is indicating tensors, which follows if the
inverse bare propagator is taken to be infinitesimal.

5The polarization bubbles � f ,b involve the subtraction of diamag-
netic terms not explicitly shown in Fig. 8, which render � f ,b(ω, q) =
� f ,b(ω, q) − � f ,b(ω = 0, q = 0)
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Summing these diagrams for, e.g., the f fermions gives

er
f = e f − e f � f (� f + �b)−1 + eb�b(� f + �b)−1

= (e f + eb)�b(� f + �b)−1 = −�b(� f + �b)−1, (D2)

where the extra minus sign for �b comes because f and b
are oppositely charged under the emergent gauge field, and all
polarization bubbles are evaluated at (ω, q). Switching f ↔ b
will give the boson result. Therefore, the charge renormalizes
to become a tensor. It is worth noting that �b, � f , and �b +
� f are 2 × 2 antisymmetric matrices and therefore commute

with each other. When we compute the total current-current
correlator due to the f and b subsystems after renormalizing
the currents using the respective charge renormalizations. We
find, since there are no current cross correlations, as discussed
in the main text,

�tot = �b�
2
f

[
(�b + � f )−1]2 + � f �

2
b

[
(�b + � f )−1]2

= (�−1
b + �−1

f

)−1
, (D3)

which implies that the f and b resistivity are added in series.

One important point that is glossed over in the above is that the electric and magnetic fields are renormalized differently, and
�b and � f are evaluated for different effective magnetic fields. In our notation, �(ω, q) ≈ −iσω + χq2, so the renormalization
changes depending on whether the vertex is magnetic Aμ(ω = 0, q → 0) or electric Aμ(ω → 0, q = 0). We find, for instance
for the f fermions

E f
eff = σb(σ f + σb)−1E , B f

eff = χb

χb + χ f
B, (D4)

for a weak magnetic field B. In the magnetic field case, we additionally average over q, which replaces χ with half its trace
χ = (χxx + χyy)/2.

In our derivation, we have neglected contributions to σ and χ from potential cross correlations � f b ∼ 〈Jf Jb〉. Doing so is
valid, as model I’s site uncorrelated gr

i jk render them of the form

� f b(iω, q) ∼
∫

d2k d2k′d� d�′v f ,kvb,kG f ,k+q/2(i�+ iω/2)G f ,k−q/2(i�− iω/2)Kf b(i�, i�′, ω, q)

× Gb,k′+q/2(i�′ + iω/2)Gb,k′−q/2(i�′ − iω/2), (D5)

where vx,k = ∇kεx,k . Since Gx,k = Gx,−k , Gx,k+q/2(i�+ iω/2)Gx,k−q/2(i�− iω/2) = Gx,k (i�+ iω/2)Gx,k (i�− iω/2) +
 x,k (i�, iω)|q|2, with  x,k =  x,−k , and vx,k = −vx,−k , the O(ω) and O(q2) terms in the expansion of � f b(ω, q) vanish and
we can thus neglect these cross correlations.

APPENDIX E: DIAMAGNETIC SUSCEPTIBILITIES IN MODEL I

Because of the renormalization of the magnetic field from the internal gauge field, we must find expressions for χ f and χb.
To find them, we evaluate χλq2 = �λ(ω = 0, q → 0) −�λ(ω = 0, q = 0). We average the two possible directions. Then, we
have the bubble contributions [vertex corrections vanish for the same reason as (D5) does]

�λ(q → 0) = �λ,xx +�λ,yy

2
= −η 1

V

∑
k

k2

2m2
λ

T
∑

iν

(Gλ(k − q/2, iν)Gλ(k + q/2, iν))

= −2ηT
∫ k̃max

0

dk̃

(2π )2

∫ 2π

0
dθ k̃3

(∑
iν

1

[iν/T − k̃2 + k̃q̃ cos(θ ) − q̃2/4 + μλ/T −�λ/T ]

1

(q̃ → −q̃)

)
,

χλ = −η 1

2mλ

∫ kmax

0
k3 dk

2π

(∑
iν

(iνλ/T + μ/T −�λ/T )

(iν/T − k2 + μλ/T −�λ/T )4

)
, (E1)

where in the second line of the above, we rescaled the momenta by a factor of k̃ = k/
√

2mλT , and we relabeled k̃ → k in line 3.
We can do the Matsubara sums exactly in the bosonic case since �b(iω) = −γ |ω|. We carry them out to find (z = −μ/T =

�b/T )

χb = − 1

2mb

∫ √

/T

0

dk

2π
k3

(
z

(k2 + z)4
+ Re

[
ψ2
(

k2+z
2πγ−2π i

)
(2πγ − 2π i)3

+ k2

3

ψ3
(

k2+z
2πγ−2π i

)
(2πγ − 2π i)4

])
, (E2)

with ψn(z) the polygamma function and 
 is the boson bandwidth. This expression diverges as χb ∼ (1/mb) ln(
/�b) when
�b → 0.

For the f fermions, we can transform (E1) to

χ f = 1

2m f

∫ 
 f

−μ f

dε

2π
(ε + μ f )T

∑
iν

(
[iν + μ f −� f (iν)]

[iν − ε −� f (iν)]4

)
= T

∑
iν

(
 f + μ f )2[
 f − 2μ f + 3� f (iν) − 3iν]

24πm f [
 f +� f (iν) − iν]3[μ f −� f (iν) + iν]
. (E3)
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FIG. 9. (a) The phase diagram for model I in 2D with no
interlayer instabilities. The resistivity is given by ρxx − ρxx (T =
0) ∼ T α ln(
/T ), and the color indicates the value of α =
d ln[ρxx/ ln(
/T )]/d ln(T ). (b) The plot of the weak field RH vs
κ − κc. RH has a peak near the crossover from Fermi-liquid behavior
to T -linear resistivity and approaches a constant to either side signal-
ing the change in carrier density. The large peak of RH seen at low
temperatures is occurring as the boson is condensing, as discussed in
the main text. The same parameters are used as in Fig. 2 in the main
text.

We note that T and |� f (iν)| are always much smaller than
the f bandwidth 
 f and Fermi energy μ f , for any value
of ν, since |� f (iν)| is bounded by a scale controlled by the
boson bandwidth
 � 
 f , μ f . Therefore, we can expand the
summand of (E3) in powers of � f and take the T → 0 limit.
It may then be seen that the sum of the absolute values of the
contributions from all these terms in the expansion is bounded
by a quantity that vanishes in the limit of 
 f , μ f → ∞,
leaving χ f to take its free-fermion value of 1/(24πm f ), which
can be easily verified by inserting the result for � f (iν) and
then numerically integrating over ν in this limit.

APPENDIX F: INTERLAYER INSTABILITIES IN MODEL I

Using the expressions from the previous sections, we can
find ρxx and RH exactly for a 2D version of model I without
interlayer couplings, for all values of parameters at small B.
For the same parameters used in the main text, we plot RH

and ρxx in Fig. 9 while ignoring interlayer couplings, which
should be compared with Fig. 2 in the main text that takes
interlayer couplings into account. Note the large enhancement
of RH seen at low temperatures when κ > κc, as also seen in
Fig. 4 in the main text.

Despite the exact solvability of model I in its 2D version
described here, to make physical predictions we must analyze
possible instabilities that will take us away from our solution.
In the 2D version of model I, the only possible instabilities at

large N are BCS-type fermion-pairing instabilities, induced
by adding weak attractive interactions, which occur at ex-
ponentially small energy scales and which we hence ignore.
However, the physical version of model I includes a third
spatial dimension, and we should therefore ask what relevant
inter-layer interactions are allowed and what their impact on
the physics will be.

An important feature of the physical version of model I is
that the b and f partons are deconfined in a stack of indepen-
dent 2D layers. We can therefore write the following large-N ,
instability-inducing [57], local, gauge-invariant, quartic inter-
actions between adjacent layers l and l ′, where r denotes the
2D coordinate of a site within a layer:

Hbb = −Jb

N

N∑
i, j=1

∑
r

b†
r(l ),ibr(l ′ ),ib

†
r(l ′ ), jbr(l ), j,

H ′
bb = −J ′

b

N

N∑
i, j=1

∑
r

b†
r(l ),ib

†
r(l ′ ),ibr(l ′ ), jbr(l ), j,

Hf f = −Jf

N

N∑
i, j=1

∑
r,σ,σ ′,
τ,τ ′

f †
r(l ),i,σ f †

r(l ′ ),i,σ ′ fr(l ′ ), j,τ fr(l ), j,τ ′ ,

Hb f = −Jb f

N

N∑
i, j=1

∑
r,σ

[b†
r(l ),ibr(l ′ ),i f †

r(l ), j,σ fr(l ′ ), j,σ + H.c].

(F1)

None of these terms contribute directly to the parton
self-energies or transport at large N . Hf f induces BCS-
type interlayer f fermion-pairing instabilities, which occur
at exponentially small energy scales, and are therefore
not of concern to us. The terms in Hbb create interlayer
boson instabilities driven by susceptibilities that scale as
∼mbJ ′

b ln(
/�b). In the gapped phase of the boson, and in the
quantum critical region, these susceptibilities are thus small
at the temperature scales of interest, hence, we ignore them.
However, for κ > κc, �b(T ) starts decreasing rapidly below
some temperature scale (Fig. 6), which makes these suscepti-
bilities large, causing the onset of instabilities that lead to the
condensation of interlayer boson bilinears in the gray region
of Fig. 2 in the main text. The resulting 3D boson phase will
then further have single-boson condensation as temperature
is lowered [33], entering the region below the gray wedge.
Once this happens, both the partons will have 3D dispersions
as these boson interaction terms will appear like interlayer
hoppings b†

l b†
l ′bl bl ′ ∼ cbb†

l bl ′ , and Hb f will similarly generate
interlayer hopping for the f fermions.6 This leads to two
important changes to the model: first, the partons develop
an anisotropic dispersion with hopping proportional to the
single-boson condensate strength at temperatures well below
the gray wedge; second, the fermions now scatter off both
the N − 1 critical bosons b2,...,N as well as the condensed
mode 〈b1〉.

6H ′
bb will also generate interlayer boson pairing terms ∼c′

bb†
l b†

l ′ ,
but the Hugenholtz-Pines theorem [54] nevertheless ensures a 3D
gapless boson phase, with the same effects on the fermions.
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To model these effects, the dispersion of the partons is
changed to be

εb/ f ,k = 1

2mb/ f

(
k2

x + k2
y + Yb/ f k2

z

)
, Yb/ f = 4π2Jb/b f r2

0 ,

(F2)

where r0 is the size of the condensate. For Fig. 2 in the main
text we take Jb = 1. Rewriting the SD equations within the
condensed phase, the only changes are to the fermion self-
energy and the constraint. The constraint equation becomes

κ − κc = r2
0 + (nb − nc

b

)
, (F3)

where, in this equation, nb is the number of bosons not
participating in the condensate with �b = 0, and using the
self-consistently determined dispersion. The self-energy
expression is changed to be

Im[�c,R] = −r2
0 g2 ν f

2
− g2 ν f

4π

∫ ∞

−∞
dε Āb(ε)

× [nB(ε) + nF (ε − ω)], (F4)

with Ãb the spectral function of the uncondensed modes.
To keep the number of f fermions fixed, as the dispersion

changes, the Fermi energy shifts which in turn modifies the
density of states. In order to connect with the 2D model, we
introduce a maximum momentum in the z direction, K . The
spinless density of states is then given by

ν f =
⎧⎨
⎩

Km f

π
, ε0

F >
Yf K2

3m f
,

m f

π

( 3ε0
F Km f

c f

)1/3
, ε0

F <
Yf K2

3m f
,

(F5)

where εF,0 is the Fermi energy with Yf = 0. Note that we take
K = π so the density of states in the small condensate regime
is ν f = m f , the same as in the purely 2D case. We will work
in the regime where the second condition of (F5) is never

reached; this is achieved by taking Jb f sufficiently small. If
the second condition was achieved, γ = g2νcν f /(2π ) would
change.

The spectral function for the uncondensed modes can be
evaluated utilizing the 2D results by replacing �b → �b +
Ybk2

z /(2mb) in (B1) to find

2π

mb
Ãb(ω, 0)

= K sgn(ω) − 2K

π
tan−1

(
YbK2

4γmbω
− 1

γ

)
− 4

πYb

× Im

[√
2(1 + iγ )ωmb tanh−1

(
YbK√

2mb(1 + iγ )ω

)]
.

(F6)

Unlike the O(N ) rotor model, the dispersion is also modified
as the condensate grows. This changing dispersion results in
a different temperature dependence when T mb � κ − κc and
also results in multiple self-consistent values of the conden-
sate size r0 at fixed κ and T . If we assume interactions which
generate a 3D instability at T = 0, the physical solution for r0

is the one that approaches a nonzero constant at low tempera-
tures, which is the one we use in our numerical calculations.

Deep in the condensed phase at low temperatures, r0

will be roughly constant and large. In this regime, the
frequency dependence of the spectral function for the uncon-
densed boson modes then goes as as

√
ω, leading directly to

Im[�c,R(ω = 0,T )] ∼ T 3/2 + const behavior.

APPENDIX G: SELF-ENERGIES AND CRITICAL
TRANSPORT IN MODEL II

To evaluate the boson self-energy we start with the individ-
ual patch contribution (36). Integration over q⊥ yields (using
vc, f ,F = kF/mc, f , where kF is the Fermi momentum)

�
p
b (iω, k) = −ig2T

∑
iν

∫
d2q‖
(2π )2

[sgn(ν + ω) − sgn(ν)]

×
[
v f ,F

(
i(ν + ω) −�c(iν + iω) − vc,F k⊥ − k‖q‖ cos(θ )

2mc
− k2

‖
2mc

)
− vc,F [iν −� f (iν)]

]−1

, (G1)

where θ is the angle between q‖ and k‖. This further reduces upon integration over θ to

�
p
b (iω, k) = − ig2

2π
T
∑

iν

∫ qmax

0

q‖dq‖ [sgn(ν + ω) − sgn(ν)]

v f ,F [i(ν + ω) −�c(iν + iω)] − vc,F [iν −� f (iν)] − v f ,F k‖q‖
2mc

− vc,F v f ,F k⊥ − v f ,F k2
‖

2mc

× 1√
1 +

v f ,F k‖q‖
m

v f ,F [i(ν+ω)−�c (iν+iω)]−vc,F [iν−� f (iν)]− v f ,F k‖q‖
2m −vc,F v f ,F k⊥− vF k2‖

2m

≈ g2qmaxmc

π2v f ,F

|ω|
k‖

= g2qmaxmcm f

π2kF

|ω|
k‖
. (G2)

As we are restricting to the contribution from a single patch, the parallel momenta q‖ is cut off at qmax ∼ kF d� where d� is the
solid angle of the patch. If we now average over all patches, we obtain

�b(iω, k) ≈ −
∫ 2π

0
dφ
∫ π

0
sin θ dθ

g2mcm f

π2

|ω|
k sin θ

= −2g2mcm f
|ω|
k

≡ −γ2
|ω|
k
. (G3)
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FIG. 10. (a) Temperature dependence of ρxx over the QCP in model II. The dashed green lines indicate fits to ρ(T )/ρ(T0) = a1
√

T/T0

and ρ(T )/ρ(T0) = a2(T/T0 ) ln(a3T0/T ) in the main and inset plots, respectively. (b) Temperature dependence of RH in model II. We use
γ2 = 0.02, mb = 1.0, the crossover scale T0 = γ 2

2 /mb = 4 × 10−4, and the boson bandwidth 
 = π 2/2 ≈ 1.23 × 104 T0. The bandwidths of
the conduction electrons and f fermions are assumed to be very large.

We now discuss the fermion self-energies (40) at critical-
ity. There, the c, f self-energies are expected to show MFL
frequency dependence because of the logarithm divergence of
the momentum integral over q‖. As mentioned at the end of
Sec. IV C in the main text, in this Appendix, we are interested
in the higher-temperature regime where the boson is not that
strongly damped, so we do not ignore the iν term in the
boson propagator in (40) while computing the fermion self-
energies. The Matsubara frequency sum can then be separated
into a UV divergent piece, that is a constant and which may
be absorbed by a chemical potential shift, and a UV finite
piece, which may be computed analytically. Then, we can
compute the momentum integral numerically with a UV cutoff
∼√

2mb
 to obtain

�c, f (iω) ≈ const − iγ2mb

mc, f kF
T ϕ̃

(
ω

T
,



T
,




�b(T )

)
, (G4)

where the function ϕ̃ is no longer symmetric between
±ω in the higher-energy regime 
 � ω,T � γ 2

2 /mb,

where the iν term in the boson propagator in (40) is
dominant.

In this higher-temperature (energy) regime, the small wave
vectors in the boson propagator are cut off by temperature as
q2

‖ ∼ mbT [by comparison of q2
‖/(2mb) to the iν term], and the

boson self-energy γ2|ν|/q‖ (which we now treat as a perturba-
tion) may therefore be approximated to be ∼γ2|ν|/

√
mbT in

(40). Model II then behaves similarly to model I at small γ ,
with γ ∼ γ2/

√
mbT , from the point of view of the fermions.

Then, by virtue of (27) and (29), we have ρxx(T ) ∼ √
T (up

to logarithm corrections), and |RH nc| → 4
3 .

In Fig. 10 we show the crossover between the strongly
damped low-temperature regime and the weakly damped
higher-temperature regime over the QCP, by exact numerical
calculation of the conduction electron bubble diagram con-
tribution to the conductivity tensor. As we also argued for
the case of model I, this bubble diagram is still the dom-
inant contribution at criticality. Indeed, the contribution of
the f fermions and the bosons is still suppressed even in the
higher-energy regime of model II (that is similar to the γ � 1
regime of model I), due to the relatively low conductivity of
the bosons.
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