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We report the first nonjellium, systematic, density functional theory (DFT) study of intrinsic and extrinsic
defects and defect levels in zinc-blende (cubic) gallium nitride. We use the local moment counter charge (LMCC)
method, the standard Perdew-Becke-Ernzerhoff (PBE) exchange-correlation potential, and two pseudopotentials,
where the Ga 3d orbitals are either in the core (d0) or explicitly in the valence set (d10). We studied 64, 216,
512, and 1000 atom supercells, and demonstrated convergence to the infinite limit, crucial for delineating deep
from shallow states near band edges, and for demonstrating the elimination of finite cell-size errors. Contrary
to common claims, we find that exact exchange is not required to obtain defect levels across the experimental
band gap. As was true in silicon, silicon carbide, and gallium arsenide, the extremal LMCC defect levels of
the aggregate of defects yield an effective LMCC defect band gap that is within 10% of the experimental gap
(3.3 eV) for both pseudopotentials. We demonstrate that the gallium vacancy is more complicated than previously
reported. There is dramatic metastability–a nearest-neighbor nitrogen atom shifts into the gallium site, forming
an antisite, nitrogen vacancy pair, which is more stable than the simple vacancy for positive charge states.
Our assessment of the d0 and d10 pseudopotentials yields minimal differences in defect structures and defect
levels. The better agreement of the d0 lattice constant with experiment suggests that the more computationally
economical d0 pseudopotentials are sufficient to achieve the fidelity possible within the physical accuracy of
DFT, and thereby enable calculations in larger supercells necessary to demonstrate convergence with respect to
finite size supercell errors.
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I. INTRODUCTION

Gallium nitride is a crucial component for several elec-
tronic and optical applications. It forms the active layer of
AlGaN/GaN high electron mobility transistors used for RF
communication and for power electronics. It is also used for
blue LED’s and, hence, is crucial to the recent diode lighting
advances. There is an emerging, significant interest in the
metastable, cubic phase of gallium nitride because of the ab-
sence of spontaneous polarization fields, and because the band
gap, 3.3 eV, compared to 3.45 eV for the hexagonal wurtzite
structure, is amenable to green light emission [1–3]. Finally,
cubic gallium nitride is a bright single photon emitter [4–8].
While there are many experimental and theoretical studies of
wurtzite gallium nitride, including important recent surveys
[9–12], there are few experimental studies on cubic gallium
nitride [13,14], and no systematic computational studies of
defects in cubic gallium nitride for the last fifteen years. The
earlier density functional theory (DFT) studies that included
defects in the cubic phase [15–18] were on very small super-
cells, and were subject to the persistent band gap problem,
wherein the standard local density (LDA) and generalized gra-
dient (GGA) approximations predict one-electron band gaps
that are roughly 40% smaller than experiment. Also, these
studies paid little or no attention to the fundamental electro-

static problems within the jellium approximation, where the
net charge on a defect, which would lead to divergent total
energy in a supercell model, is compensated by a uniform
background charge density. As a result of these deficiencies
their predictions for defect levels are now considered unre-
liable. With increased technological interest, and with recent
developments in theory—methods that circumvent the Kohn-
Sham (K-S) band gap problem, and that impose rigorous and
accurate control of boundary conditions [19,20]—a new fo-
cus specifically on the defects in cubic (zinc-blende) gallium
nitride is merited.1

More recent defect calculations in gallium nitride have
focused on the wurtzite structure using hybrid exchange-DFT
(HE-DFT) methods, where the functional includes some form
of exact exchange [21–23] to deliberately fit the K-S band
gap to experiment, and where more intentional approaches
for treating electrostatic boundary conditions [19,20,24–28]
have been exploited. Over the past decade, these methods
have become commonplace, driven by the widely held belief
that HE-DFT is required to obtain the full spectrum of de-
fects across the band gap. However, use of HE-DFT typically

1We should note the recent rediscovery of some of the principles
articulated in Refs. [19,20,71].
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TABLE I. Lattice constant, K-S band gap, elastic constants, and the bulk modulus B for zinc-blende gallium nitride. LO=local orbital,
PP=pseudopotential, PW=plane wave, MB=mixed basis, FLAPW=fully linearized augmented plane wave, FP-LMTO=full potential lin-
earized muffin tin orbital, d10 = Ga 3d orbitals explicitly included, d0 = Ga 3d orbitals subsumed into the core, GGA-generalized gradient
approximation. Numbers inside (outside) parentheses for B are from a Birch Murnaghan fit [(C11 + 2C12)/3].

Approximation a (Å) K-S Egap(eV) C11(GPa) C12 (GPa) C44 (GPa) B (GPa)

Current Work PBE d10 LO 4.588 1.50 242 122 127 162 (163)
PBE d0 LO 4.482 2.40 261 124 151 170 (167)

Ref. [42] GGA d10 PP PW 4.55 1.69 255 133 177 173
Ref. [43] GGA FLAPW 4.55 1.51
Ref. [44] GGA FLAPW 4.55 1.53
Ref. [45] GGA d10 PP PW 4.59 1.28
Current Work LDA d10 LO 4.496 1.99 274 145 150 188 (192)

LDA d0 LO 4.390 2.99 291 146 169 194 (193)
Ref. [46] LDA FLAPW 4.41 1.521 274 166 199 212 (202)
Ref. [47] LDA FP-LMTO 4.46 2.0 296 154 206 201
Ref. [48] LDA d0 PP PW 4.54 285 161 149 202
Expt. 4.52 [49] 3.3 [50]

comes at a cost of using smaller supercells, as exact exchange
is computationally expensive. Moreover, a more systematic
assessment of the relative performance of the HE-DFT and
DFT + U methods for transition metal defects in gallium
nitride suggests that modification of the functional to obtain
a better band gap does not lead to an accurate description of
the electronic structure of defects [29,30]. Finally, all of these
calculations use a jellium approximation.

We use the local moment counter charge (LMCC) method,
where a localized charge distribution compensates a charged
defect state, to solve the Poisson equation with the cor-
rect boundary conditions in a supercell model [19,20]. This
provides a more rigorous treatment of charged defects and
enables accurate calculations of defect energy levels–defect
levels obtained from total energy differences. In the LMCC
method, the K-S band gap is used solely to determine if a
given defect eigenstate is within the band gap, and, thus, that
the charge state is localized. An effective defect band gap
is determined from the extremal values of computed defect
levels derived from transitions between localized charge states
in a large ensemble of defect calculations. In Si, Schultz found
an effective defect gap that spanned the full experimental
gap (1.2 eV), despite a K-S gap of only 0.6 eV, using semi-
local functionals [31,32]. For GaAs, four different chemical
contexts(two functionals, with 3d-core and 3d-valence Ga
pseudopotentials) yielded K-S band gaps ranging between
0.13 and 0.84 eV [33], while the defect level results in Fig. 4
of Ref. [33] revealed minimal impact of the K-S band gap
upon the computed defect levels.

A significant computational savings could be gained if the
Ga semicore d electrons were subsumed into the pseudopoten-
tial rather than treated as valence electrons. Although gallium
pseudopotentials have been systematically studied relative to
bulk properties in Ga-group V semiconductors [34], their ef-
fect on the fidelity of related defects has not been assessed in
gallium nitride. In this paper, we perform a systematic study of
defects in cubic gallium nitride with both d-core (“d0”) and d-
valence (“d10”) pseudopotentials to inform future simulations
in more complex systems of the benefits and shortcomings of
each pseudopotential.

The balance of the paper is organized as follows. In Sec. II,
we discuss details of the calculational technique and of our
results on bulk gallium nitride. We present our estimate of
the band gap based on the ensemble of defect calculations in
Sec. III A, and detailed discussions of individual defects in
Sec. III B, where we compare our results to the literature. We
conclude in Sec. IV. We include Tables I–VI, and Figs. 1–4 in
Ref. [35].

II. METHOD

We performed the calculations reported here using SE-
QQUEST [36], a local orbital, DFT code. The basis functions
are double-ζ quality plus polarization functions. For vacan-
cies, we add a set of floating Gaussian functions to eliminate
the basis undercompleteness problem. We used the Perdew-
Becke-Ernzerhoff (PBE) version of the generalized gradient
approximation [37], and Troullier-Martins pseudopotentials
[38]. Specifically, we have used a pseudopotential where the
gallium 3d orbitals are treated explicitly (d10), and a pseu-
dopotential where they are subsumed into the core orbitals
(d0). The construction of these gallium pseudopotentials is
discussed at length in Ref. [34]. We also used a spin-polarized
version of PBE. Except where noted, all charge states of
the defects we studied followed Hund’s rule; high-spin states
were preferred.

As mentioned in Sec. I, for charged defects, we used the
LMCC method [19,20], wherein the net charge on the defect
is compensated by a localized charge density, rather than a
constant charge density (jellium) over the entire supercell.
This enables the use of correct boundary conditions for an
isolated, charged defect. For all charged defects, we use the
Jost approximation [39], shown in Eq. (1), to approximate the
long-range polarization energy of the bulk dielectric outside
of the supercell volume,

Epol = − Q2

2RJost

[
1 − 1

ε0

]
, (1)

where Q is the net charge on the defect, RJost is the radius
of the sphere representing the supercell volume, and ε0 is
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TABLE II. Summary of approximations in previous results to which we refer below. (a) Methods used for vacancies, antisites, and the
nitrogen interstitial. (b) Methods used for the divacancy. PP=pseudopotential.

Ref. VdW-2004 [16] GR-2013 [12] Diallo-2016 [11] Lyons-2017 [10] Gao-2019 [9]

PP/PAW PP: Ga-3d0 PP: Ga-3d10 PAW: Ga-3d10 PAW: Ga-3d0 PAW Ga-3d (?)
Cell size (atoms) 96 96 128 96 128
Finite cell correction none Refs. [26,55] Ref. [25] Ref. [26] Ref. [26]
Functional LDA-SP sX-LDA [21,22] HSE06-SP HSE06-SP HSE06-SP
k mesh 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 (unknown) 4 × 4 × 2

Ref. Gohda-2010 [56] Ganch-2006 [15]
PP/PAW PAW: Ga-3d10 PAW: Ga-3d(?)

Cell size (atoms) 96 300
Finite cell correction none none

Functional PBE LDA
k-mesh 4 × 4 × 4 2 × 2 × 2

the static dielectric constant for the bulk crystal. In these
calculations we use the experimental value for ε0. For a
thorough discussion of this approximation, see Ref. [40].
Finally, the potential of a charged defect and of the per-
fect crystal are asymptotically aligned infinitely far from
the defect. In this way, all defect total energies are refer-
enced to a single, unknown chemical potential defined by this
alignment.

We determine which defect charge states are localized,
and hence states in the gap, from the computed one-electron
K-S eigenstates. We calculate the projected density of states
(PDOS) on various atoms of interest using a generalized Mul-
liken population analysis, and by using a Gaussian broadening
function around each K-S eigenenergy. We use the position
of the one-electron K-S state within the K-S band gap as a
qualitative guide to localization. If the highest occupied level
of a charge state is within the K-S gap, as evidenced in the
PDOS, it is a candidate for localization. The amplitude of
these peaks is a direct measurement of localization. If the
highest occupied PDOS peak is near a band edge, we probe its
behavior as a function of supercell size [41]. The localization
of a truly deep level should be either constant or increase as
a function of cell size. In this study, we used 64, 216, 512,
and 1000 atom cells to verify that we eliminate the finite
cell artifacts, including hybridization of defect wave functions
with either valence or conduction band states (which would
be clear in the PDOS), by studying the convergence of both
one-electron properties and defect levels arising from total
energy calculations.

As discussed in Sec. III B, we predict localized charge
states that were unreported in previous wurtzite calculations.
In those cases, we used a 300 atom wurtzite supercell to de-
termine whether these new charge states persist in that phase.

Having determined the truly localized charge states for
each defect, we calculate the defect levels directly as ion-
ization potentials between these with respect to the single
chemical potential, rather than indirectly from energies of
formation. While this chemical potential is unknown, the
complete defect level spectrum is known relative to this one
unknown, so that the defect level spectra of the different
defects are correctly aligned with each other. At this point in
the method, we have all of the defect levels that arise from
localized states for different defects in correct registry with
one another on an energy scale determined by the chemical
potential. We still need to locate the valence and conduction
band edges relative to these defect spectra. We determine the
upper and lower bounds of the effective band gap, the implicit
valence and conduction band edges, from the total breadth in
energy of all defect levels that arise from localized states. The
smallest ionization potential bounds the CBE from below, and
the largest ionization potential bounds the VBE from above.

To validate our local orbital approximation, we calculated
band structures, equilibrium geometries, formation energies,
and elastic properties for a two atom primitive cell of zinc-
blende gallium nitride. In Table II, we give our results for
lattice constant, (K-S) band gap, and selected elastic con-
stants, and compare with previous calculations for both LDA
and GGA results. For all of the current work reported in
Table II, we used an 8 × 8 × 8 Monkhorst-Pack k grid [51]
and a 48 × 48 × 48 r grid. These are well-converged results
with respect to both r- and k-grid spacings. Both FLAPW
and LMTO are all-electron calculations that use mixed basis
sets. Even though all of our defect calculations used the PBE
approximation, we include bulk LDA properties because there
are very few published PBE calculations of zinc-blende gal-
lium nitride, and only one reporting elastic constants [42]. It

TABLE III. The predicted spatial symmetry type for each of the lowest energy (high-spin state) configuration of each stable charge state
for VGa.

Charge State +1 0 −1 −2 −3

Slater determinant |a1 ↑ x ↑ y ↑ z ↑> |x ↑ y ↑ z ↑> |x ↑ x ↓ y ↑ z ↑> |x ↑ x ↓ y ↑ y ↓ z ↑> |x ↑ x ↓ y ↑ y ↓ z ↑ z ↓>

w-f symmetry A2 A2 T2 T2 A1

defect symmetry Td Td Td Td Td
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TABLE IV. The predicted spatial symmetry type for each of the lowest energy (high-spin state) configurations of each stable charge state
for VN , and the calculated defect symmetry. Symmetries in parentheses are for d0.

Charge State +3 +2 +1 0 −1

Slater Determinant |> |a1 ↑> |a1 ↑ a1 ↓> |a1 ↑ a1 ↓ x ↑> |x ↑ y ↑>

w-f symmetry A1 A1 A1 T2 T1

defect symmetry Td Td Td Td (pD2d ) pD2d ? (pD2d )

is clear that our local orbital technique, either LDA or PBE,
agrees satisfactorily with other plane wave, pseudopotential
calculations, as well as with all-electron calculations, at least
as well as they agree with one another. Including gallium
3d orbitals in the basis leads to consistently larger lattice
constants. Our d10 lattice constant matches Ref. [45] and
is within 1% of the value in Ref. [42] a plane wave pseu-
dopotential calculation and is within 1% of FLAPW-GGA
calculations, where 3d orbitals are explicitly part of the set of
valence orbitals. Also, our calculated band gap is in excellent
agreement with Refs. [43,44], and within 12% of Ref. [42],
although in worse agreement (greater than 15% difference)
with Ref. [45]. Our PBE d10 elastic constants are between
5% and 30% different from the most similar calculation in
Ref. [42]. The largest difference is in the shear constant C44.
Aside from the comparison with previous calculations, our d0

calculations give a reduced theoretical lattice constant (2.3%
smaller), and an increased band gap (60% larger) relative to
the d10 results. These two quantities are directly related. When
we calculate the d10 band gap at the d0 lattice parameter we
obtain 1.98 eV.

III. RESULTS

A. The defect band gap

Before we discuss individual defects, we show in Fig. 1 the
level spectra for all defects we studied to illustrate visually
our estimate of the defect band gap. We have interlaced the
d10 and d0 results, facilitating defect-by-defect comparison.
As discussed in Sec. II, the VBE is bounded from above by
the largest (deepest) ionization energy, which is the +2/ + 3
transition of the split-100 nitrogen intersitial, I<100>

N . The con-
duction band edge is bounded from below by the smallest
(highest) computed defect ionization energy, which for this
collection is the −2/ − 1 level of the zinc substituting on
the nitrogen site, ZnN . These bounds define the extent of the
predicted effective defect band gap. These band edges, and the
inferred defect band gap, are bounds, not direct predictions
of the VBE and CBE. A survey of additional defects could
discover levels that extend these bounds outwards. The calcu-
lations for this selection of defects represents a lower bound
on the effective defect gap. The CBE marked in Figs. 1(a)
and 1(b), 3.30 eV above the valence band edge, indicates the
experimental gap [50].

For cubic gallium nitride, the two pseudopotentials predict
different estimates for the effective defect band gap. The d0

prediction is 3.58 eV for the 216 atom cell (3.47 eV for the
1000 atom cell), while the d10 prediction is 2.91 eV, assuming
that the band edges are at the extremal defect levels. If we as-
sume a margin of 0.05 eV between the last defect level and the
actual band edge, to account for effective mass-like shallow

levels, then the band gaps are 3.57 and 3.01 eV—each 0.3 eV,
or 9%, away from the experimental value. While the shapes of
the individual defect spectra are generally the same for both
pseudopotentials, the d0 spectra are uniformly, though not
dramatically, wider. Considering that the band gap is not fitted
to the experimental result, either by adjusting the fraction of
exact exchange in the exchange-correlation potential, or by
using some variant of a “scissors operator,” these results lend
further support to the prior claim by Schultz and others that the
LMCC method gives an excellent overall representation of the
band gaps of a variety of materials, now including silicon [31],
gallium arsenide [33,52], cesium iodide [53], silicon carbide
[54], and gallium nitride, without the need for exact exchange.

In Fig. 2, we show the degree of convergence of our defect
levels with respect to supercell size for the d0 pseudopotential.
Results are qualitatively similar for the d10 calculations. A
3 × 3 × 3 k grid, shifted away from the � point, was required
for the 64 atom cells. For all others, a 2 × 2 × 2 k grid,
also shifted away from the � point, sufficed. In all cases,
we used the Monkhorst-Pack method for k-grid generation
[51]. While there are clear changes between the 64 atom
and the 216 atom supercells, beyond that, with the exception
of the −2/ − 1 level of the zinc substitutional, the changes
are minor. We note that, even at 1000 atoms, the −2/ − 1
defect level in Fig. 2(c) is not fully converged. By itself, level
convergence does not determine whether this is a gap defect
level. If it were an effective mass state, the level would move
closer to the band edge, as the wave function is allowed to
expand with cell size. For this defect, the localization obtained
from PDOS is essentially constant in the highest occupied,
one-electron defect state in the gap. In fact, the sensitivity to
cell size, combined with the stable localization, makes this a
good lower bound for the conduction band edge. Note also
that in Fig. 2(b), for the <100> split nitrogen interstitial, the
2 + /3+ level is very stable, even though it is extremely close
to our predicted valence band edge. This state is accidentally
shallow—it arises from two strongly localized charge states,
each insensitive to the proximity of the supercell boundaries.
Taken together, the spectra of these three defects demonstrate
the insensitivity of the electrostatics to the cell size.

In Fig. 3, we show the energies of formation for the neutral
charge states of the vacancy and antisite defects as a function
of supercell size. While the d0 formation energies are consis-
tently larger than the d10, the more important feature is that
both of these sets of results show that the rate of convergence
with respect to cell-size is mixed. For some defects there
is significant variation between the 64 atom and 216 atom
supercells, with little difference between the 216 atom and the
1000 atom supercells. This result is important because all of
the most recent studies in wurtzite, Refs. [9–12], use 96 or 128
atom cells, and claim that their results are well converged. The
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FIG. 1. Defect spectra for intrinsic and extrinsic defects in zinc-blende gallium nitride for the d10 and d0 pseudopotentials. VB and CB are
separated by the experimental band gap [50]. All levels here are for the 216 atom supercell.

neutral results are independent of the approximations used to
account for finite cell size electrostatics, so that the variations
point to either or both of defect banding in small cells, and
poorly converged relaxations.

Based on the results shown in Figs. 2 and 3 (and on the
rest of our results), with few exceptions, our calculated defect
levels are converged for the 216-atom cell. Unless otherwise
stated, the results in the following sections on individual de-
fects are from the 216-atom cell.

B. Individual defects

We focus on the on-site defects, vacancies, including the
divacancy, antisites, and substitutional defects, leaving a de-

tailed discussion of interstitials to a future publication. Unless
noted otherwise, descriptions of the electronic structure of
individual charge states apply qualitatively to both the d10 and
the d0 calculations. We compare our predictions to several
previous sets of results for defects in the wurtzite struc-
ture. We compare to Van de Walle and Neugebauer [16],
as this was a careful, general review of defect physics, and
included a discussion of the relative merits of d0 and d10

pseudopotentials for bulk properties. Those results stand as a
benchmark of LDA without the inclusion of finite size effects.
We also compare to other recent HE-DFT results that do
include electrostatic, finite cell size corrections, albeit based
on the jellium approximation. In Table II, we summarize the
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FIG. 2. Defect levels for the (a) the gallium vacancy, (b) the nitrogen split interstitial, and (c) zinc substitution on the nitrogen lattice for
the d0 calculations as a function of supercell size.

approximations used in these calculations. Gillen and Robert-
son [12] used an LDA screened exchange method, while
Lyons and Van de Walle [10], Diallo and Demchenko
[11], and Gao and coworkers [9] used the Heyd-Scuseria-
Ernzerhoff (HSE-06) [23] exchange correlation potential
modifying the PBE method. All of the referenced calculations
are for the wurtzite structure. However, we expect the results
to be similar to zinc-blende because the local chemistry is very
similar. Neugebauer and Van de Walle also claimed that their
unpublished zinc-blende results were similar to wurtzite [16].

In our discussion of all approximately tetrahedral defects,
we will appeal to a molecular orbital treatment similar to
Schultz [41], and inspired by Watkins [57]. The orbitals
are shown in Fig. 4 for a typical antisite. For vacan-
cies, the absence of the central atom makes little qualitative
difference—the bond orbitals are replaced by sp3 orbitals
facing the vacancy. The ideal, unrelaxed antisites, single

vacancies, and substitutional defects have tetrahedral (Td )
symmetry. We will use the states in Fig. 4 to build up many-
electron, Slater determinants, from which we can derive the
symmetry of various spin states, and predict the charge states
of each defect that are unstable to Jahn-Teller distortions.2 A
concrete example is given in Sec. III B 1. In Fig. 5, we show
the principal distortions we applied. In most cases, these
were sufficient to capture the equilibria obtained from un-
constrained relaxations starting from less symmetric initial

2Even though in standard DFT, there is no need for Slater deter-
minants, as there are only one-electron operators, we know that the
true wave function has to be antisymmetric with respect to particle
interchange. Furthermore, the use of Slater determinants leads to the
correct assignment of symmetry for the many-electron states.
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FIG. 3. Formation energies for neutral vacancy and antisite de-
fects as a function of supercell size. Solid lines are d0, dashed lines
are d10. All values are for gallium-rich conditions.

geometries. They also give a systematic process for finding
other metastable, symmetry-constrained states.

1. Gallium vacancy

The gallium vacancy was initially thought to be the
simplest of the intrinsic defects. However, aside from the
simple vacancy, there is a site-shift conformation, discussed
in Sec. III B 2. For the simple vacancy, we predict five charge
states in the gap, +1 to −3 [see Fig. 1(a)]. To discuss in-
dividual charge states, we refer to Fig. 6, where we show
schematically the filling scheme for the a1 and t2 states. In
(a), we show the standard occupation in defect-free gallium
nitride of 8 electrons (5 from nitrogen and 3 from gallium).
Removing a gallium atom removes 3 electrons, leaving two
possibilities: a high-spin quartet, and a low-spin doublet, rep-
resented in Figs. 6(b) and 6(c), respectively. Ignoring the
purely symmetric, doubly occupied a1 manifold, the Slater
determinant for the high-spin, neutral charge state is |x ↑
y ↑ z ↑>. The purely antisymmetric space part transforms as
A2, a one-dimensional irreducible representation (irrep.), so

FIG. 4. Schematic of molecular orbitals used to describe defects.
From Ref. [41], with permission.

FIG. 5. Symmetric distortions applied to intrinsic defects. From
Ref. [41], with permission. pD2d and rD2d refer to paired and res-
onant structures, where pairs of nearest-neighbor atoms either form
bond pairs structures, or move apart.

this spin state has no Jahn-Teller instability, and we expect
a purely tetrahedral equilibrium geometry. In Table III, we
show the Slater determinant, the wave function irrep. and the
optimized symmetry for the lowest energy spin state of each
charge state. Even though the −1 and −2 charge states are
predicted to be Jahn-Teller distorted, the geometric distortions
are very small—changes in the fourth decimal place for dis-
tances, and in the third decimal place for angles. The most
interesting result is that the ground state of the +1 charge state
is localized, and that it is a spin quintet. No other spin state is
localized.

In Fig. 7, we show our defect level spectra compared
with selected previous calculations. Older studies in wurtzite
gallium nitride (see, for example, Refs. [15,16,56,58]), as
well as the more recent work of Gillen and Robertson [12],

FIG. 6. Schematic diagram for Td states arising from bond or-
bitals in Fig. 4. We use the standard labels for t2 basis functions.
(a) Normal bulk occupation. (b) Neutral VGa high spin. (c) Neutral
VGa low spin.
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FIG. 7. Defect levels for gallium vacancy from previous calculations (wurtzite) and the current results (zinc-blende). VdW-2004 from
Ref. [16], GR-2013 from Ref. [12], Diallo-2016 from Ref. [11], Lyons-2017 from Ref. [10], and Gao-2019 from Ref. [9].

predicted that the only charge states in the gap were 0, −1,
−2, and −3. However, in agreement with the current results,
the recent HSE calculations of Diallo and Demchenko [11],
Lyons and van de Walle [10], and Gao et al. [9] predicted
that the +1 state is in the gap. That this was absent from the
Gillen-Robertson result [12] may simply reflect a neglect of
the possibility of a quintet. The current results, and the recent
HSE calculations, place the -/0 defect level close to, or above,
mid gap, compared to the prior prediction of a near-valence
band state. In fact, all of the recent predictions for this level
are within 0.3 eV of each other. Both current calculations,
with and without explicit presence of the gallium 3d orbitals,
predict that the 0/+ defect level is ∼0.4 eV closer to the VB
edge than both the Diallo-Demchenko and the Lyons-Van de
Walle results.

2. Site-shifted gallium vacancy

If one of the nearest-neighbor nitrogen atoms hops into
the gallium vacancy site, it creates an intimate VN :NGa pair,
which we label as a site-shift complex. This class of defects
has been studied earlier in gallium arsenide [59–61] and sil-
icon carbide [40]. Figures 8(a) and 8(b) show the canonical
geometry for the positive charge states, and for the neutral
and −1 charge states, respectively. Here, N* denotes the
antisite nitrogen atom. All the positive charge states have C3v

symmetry, while the neutral and −1 charge states undergo a
strong distortion, wherein the antisite nitrogen atom becomes
twofold-coordinated. We note that the twofold conformation
for the +1 charge state is only favored by 2 meV for the d10

pseudopotential.
In Fig. 9, we show the calculated defect levels from the

current calculations. The current calculations predict that this
defect has five stable charge states in the gap, from +3 to
−1. While all of the charge states in Fig. 9 refer to local geo-
metrical minima, several of these are metastable. The simple
gallium vacancy is preferred in the −1 and neutral charge

states, while the site-shifted VN :NGa complex is favored for
the +1 charge state, and is the only stable structure for the +2
and +3.

3. Nitrogen vacancy

Because of its low formation energy, as seen in Fig. 3, the
nitrogen vacancy is believed to be the most abundant intrinsic
defect. It was initially suggested to account for the intrinsic
n-type character of the material. However, for positive charge
states, the formation energy increases linearly with the Fermi
level (see, for example, Eq. (1) and Fig. 3 in Ref. [10]), so that,
for n-type gallium nitride, the formation energy would pro-
hibit large densities. Hence, the observed intrinsic n-character
must arise from accidental incorporation of extrinsic species.

As seen in Fig. 1, we predict five charge states in the gap,
+3 to −1. The d10 pseudopotential predicts a −Ueff to exclude
the +2 and the neutral charge states. The d0 pseudopotential
gives nearly the same qualitative physics. It predicts all charge
states will be present, but that both the +2 and neutral charge
states exist within very small intervals of the Fermi energy. We
summarize the electronic structure of the individual charge
states in the current calculations in Table IV. Several subtle
features bear comment. First, we predict from group the-
ory that all of the positive charge states retain Td symmetry
for both pseudopotentials. Second, we predict that both the
neutral and −1 charge states have degenerate ground states,
belonging to either a T1 or T2 manifold, so that they should
be unstable to a Jahn-Teller distortion. However, this would
only be true if the one electron t2 states were all in the gap.
The two pseudopotentials do not give the same results, as
summarized in Table V. For all supercell sizes, the d0 pseu-
dopotential predicts that the neutral and −1 charge states are
localized, and that the ground state is pD2d . In the −1 charge
state there are two pairs of bonded gallium atoms. In the
neutral charge state, the gallium-gallium bonds are essentially
broken (RGa-Ga = 2.96 and 3.17 Å), but the pD2d symmetry
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FIG. 8. Canonical geometries for all charge states of the VN :NGa

site-shift complex. (a) is lowest energy for all positive charge states,
while (b) is lowest for 0 and −1 charge states. The red sphere (X)
indicates the tetrahedral center of the nitrogen vacancy. N* indicates
the antisite nitrogen atom.

persists. There is a metastable Td geometry that is 0.49 eV
(0.28 eV) higher in energy for the 216 atom (512 atom)
supercell, but this is deceptive, because the t2 states are above
the conduction band, so that the highest energy electrons are
actually at the bottom of the conduction band, and, hence,
delocalized.

The predictions of the d10 pseudopotential are qualita-
tively different. For the 216 atom supercell, it also predicts
an equilibrium pD2d geometry, although the stability relative

TABLE V. Geometries and relative stabilities of the −1 charge
state of the nitrogen vacancy for the d0 and d10 pseudopotentials as a
function of supercell size. Numbers outside (inside) parentheses are
for 216 atom (512 atom) supercells.

�E (pD2d -Td ) (eV) RGa-Ga (Å)

d0 −0.49 (−0.28) 2.68 (2.69)
d10 −0.01 (-) 2.73 (-)

FIG. 9. Current results for defect levels for the VN :NGa site-shift
complex.

to the Td geometry is very small (0.01 eV). For the 512 atom
supercell, there is no pD2d geometry. Instead, the K-S states
accommodating these additional electrons rise above the K-S
conduction band edge, so a local charge state is not stabilized.
The equilibrium geometry is approximately tetrahedral. Thus,
for the larger cell, we do not predict a −1/ + 1 defect level
in the gap. The d10 pseudopotential also does not predict any
distortion in the neutral charge state, for the same reason; the
t2 states are above the K-S CB edge for both the 216 and the
512 atom supercells. The significantly larger d0 K-S band gap
accounts for this qualitative difference between the d0 and the
d10 level structures. As discussed in Sec II, we contend that
the d0 results are more reliable, because they reproduce more
faithfully the bulk properties.

In Fig. 10, we compare our defect level spectra with results
from the same representative studies we used for the gallium
vacancy [9–12,16]. There is general qualitative agreement
between all of the calculations in the lower half of the band
gap—all predict a +1/ + 3 defect level near the valence band
edge. All predict a −Ueff . The current calculations are in
essential agreement. The d10 pseudopotential predicts a −Ueff ,
while the d0 pseudopotential predicts a very small, positive
Ueff (0.02 eV). All +1/ + 3 levels are within 0.2 eV of each
other. The levels in the upper half of the bandgap are less
consistent, even across recent, HE-DFT studies. Diallo and
Demchenko [11] predict no localized states above the +1
charge state, while Lyons and Van de Walle [10] and Gao
et al. [9] do not predict a localized −1 charge state. Gillen
and Robertson [12], predict a −Ueff between the +1 and −1
states, in qualitative agreement with the current d0 result.
These differences have important implications. Diallo and
Demchenko predict that the nitrogen vacancy is a deep donor
and hence could be an abundant source of excess electrons,
as was originally proposed by Van de Walle and Neugebauer,
while Lyons and Van de Walle, and Gao et al. do not. In
agreement with Gillen and Robertson, we predict that the
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FIG. 10. Defect levels for the nitrogen vacancy. See Fig. 7 for references. All previous results were for wurtzite-gallium nitride.

nitrogen vacancy is an acceptor that traps conduction band
electrons.

4. Gallium antisite

Because the gallium atom is so much larger than nitro-
gen, we expect steric limitations on distortions around the
gallium antisite. Nevertheless, we find significant distortions
away from the ideal tetrahedral conformation in several charge
states. We predict seven charge states within the band gap,
from +4 to −2. In Table VI, we summarize the electronic
structure and geometry of each stable charge state. The d0 and
d10 pseudopotentials predict the same qualitative geometries
for all charge states with the exception of the +3 state, where
the d0 pseudopotential predicts virtual degeneracy between a
short-bond (sb) C3v and C2v , while the d10 pseudopotential
gives predicts that the C2v symmetry is favored by 65 meV.

In Fig. 11, we compare with wurtzite results of
Refs. [9–11,16]. All predict at least +3 through −1 levels
in the gap, and all but Gao et al. [9] predict the +4 state in
the gap. The positions of the 0/+ and −/0 levels are in good
agreement across calculations. In agreement with Diallo and
Demchenko [11], the current calculations predict the +3/ + 4
level to be significantly lower in the gap—within ∼0.5 eV
of the VB edge—than any other previous calculations. We
also predict that the +2/ + 3 is also much lower than all
the previous results. Finally, in agreement with Diallo and
Demchenko [11], and with Gao et al. [9], we predict that the

−2/ − 1 level is in the gap. However, in our calculations, the
−2 charge state does not persist in the gap in the wurtzite
structure.

5. Nitrogen antisite

Because the nitrogen atom is so much smaller than the
gallium, and because the nitrogen-nitrogen bond is so much
smaller than the equilibrium nitrogen-gallium bond, the nitro-
gen antisite equilibrium geometries have very large distortions
from the ideal tetrahedral coordination. There are several
metastable states, and some of these are so close in total en-
ergy that in equilibrium we would expect significant fractional
populations, implying that experimental determination could
be difficult. We predict six charge states within the band gap,
from +3 to −2.

We start our discussion of the individual charge states with
the −2 charge state, as this is only predicted to be localized
in the current calculations. The geometry, shown in Fig. 12, is
the qualitative archetype for all nonpositive charge states. The
N1-N* distance varies in analogy with the diatomic nitrogen
ion. As electrons are removed from the −2 charge state, RN∗-N2

decreases by 0.14 Å between the −2 and the neutral charge
state. The added charge also strengthens the bonds between
N1 and its gallium neighbors.

The +3 charge state is predicted to be stable in all of
the more recent calculations. However, the +3 equilibrium
geometry, as shown in Fig. 13, is unreported elsewhere.

TABLE VI. Slater determinant, wave function symmetry in tetrahedral configuration, and the calculated defect symmetry for each charge
state for the gallium antisite. For C3v , sb (lb) indicates that the bond between the antisite atom and its neighbor along the symmetry direction
is shorter (longer) than the other three.

Charge state +4 +3 +2 +1 0 −1 -2

Slater determinant |a1 ↑ a1 ↓> |x ↑> |x ↑ y ↑> |x ↑ y ↑ z ↑> |x ↑ x ↓ y ↑ z ↑> |x ↑ x ↓ y ↑ y ↓ z ↑> |x ↑ x ↓ y ↑ y ↓ z ↑ z ↓>

w-f symmetry A1 T2 T1 A2 T1 T2 A1

defect symmetry Td C3v (sb)/C2v C3v (lb) Td pD2d rD2d Td
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FIG. 11. Defect levels for the gallium antisite defect. See Fig. 7 for references. All previous results were for wurtzite-gallium nitride

Qualitatively, this is the equilibrium geometry for all three
positive charge states. This could be described as a long-
bond C3v structure, but that would understate the extent of the
distortion. Here, the antisite atom, N*, is bonded strongly to
three neighbors in sp2 hybridization, with no bonding to the
fourth neighbor. In the +2 and +1 charge states N1 and N∗
are more pyramidal. The ∠N1-N∗-N2 and ∠N∗-N1-Ga2 angle
increase by 10◦ and 5◦, respectively. In all cases, the distance
between N1 and N* is large enough to preclude bonding.

All charge states display metastability. For the +3 charge
state, there is a purely tetrahedral metastable state 0.54 eV
higher in total energy than the geometry shown in Fig. 13. The
+2 charge state has two metastable states. The lower energy
has C2v symmetry, and the higher energy is purely tetrahedral.
Interestingly, both of these states are within 10 meV of the C3v

ground state, even though there is significant distortion, and

FIG. 12. Equilibrium geometry of the −2 charge state of the
nitrogen antisite.

even rebonding. The +1 charge state also has two metastable
states. The closest in energy is a C2v structure, where the
antisite atom bonds to only two of its neighbors. Above
that, there is a short bond C3v structure, similar to that in
Fig. 12.

In Fig. 14, we compare our predicted defect levels with
those in Refs. [9–11,16]. There are strong similarities and
differences between these defect spectra. All three of the most
recent calculations predict a 2 + /3+ level in the gap, which is
absent from the results of Van de Walle and Neugebauer [16].
The current calculations capture an additional level (2 − /−),
only predicted by Gao et al. [9]. In our wurtzite calculation,
we predict that a localized −2 charge state persists, so we
expect a −2/ − 1 level there as well.

FIG. 13. Equilibrium geometry for the +3 charge state of the
nitrogen antisite. N* is the antisite nitrogen.
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FIG. 14. Defect levels for the nitrogen antisite defect. See Fig. 7 for references. All previous results were for wurtzite-gallium nitride.

6. Divacancy

Positron annihilation experiments on irradiated wurtzite
gallium nitride indicate that the principal nonradiative recom-
bination center is the divacancy, VV [62]. We find that the
neutral formation energy for VV, 6.35 eV (6.02 eV) for the
d0 (d10) pseudopotential, is actually less than that of VGa in
a gallium-rich environment. We predict five charge states in
the gap, +2 to −2. As noted by Gohda and Oshiyama [56],
we find that there are rather small variations in geometries for
the nonpositive charge states, while the positive charge states
exhibit dramatic differences for the positions of the gallium
atoms. For the nonpositive charge states the gallium atoms
move toward the vacancy center by ∼5%, while in the positive
charge states, they move away by ∼19%. The relaxations of
the positive charge states are easily rationalized: the orbitals
arising from nitrogen lone-pair orbitals are lower in energy,
and hence have greater electron affinity, than the gallium dan-
gling orbitals. In all of the negative charge states, at least one
of the gallium orbitals will be occupied, leading to pyramidal
local geometry. In the neutral singlet state, the gallium orbitals
are completely unoccupied. They rehybridize toward sp2, and
relax into the plane of the three nitrogen neighbors. However,
in the neutral triplet ground state, one of the gallium orbitals
retains occupation, frustrating the rehybridization. In all pos-
itive charge states, the gallium orbitals are empty so that the
hybridization is, again, approximately sp2. Finally, while the
two current calculations agree well for all four defect levels,
there is a subtle difference in spin states. The d10 calculation
+2 state is a doublet, while the d0 prefers the quartet spin
state.

In Fig. 15, we show the predicted defect levels for the
divacancy for the current calculations compared with those
from Refs. [11,15,56]. As shown in Table II, Gohda and
Oshiyama [56] used the PBE variant of GGA, and PAW poten-

tials, with explicit inclusion of the 3d orbitals in the valence
set, with no mention of the treatment of finite cell corrections.
Diallo and Demchenko [11] used the HSE hybrid functional
excluding the gallium 3d states from the valence set, and
used two terms of the Makov and Payne correction for finite
cell sizes. Ganchenkova and Nieminen [15] used LDA with
no finite cell-size correction. The results from these studies
differ significantly. While Diallo and Demchenko [11] and
the current calculations place the top-most 2 − /1− defect
level within ∼0.07 eV of each other, Gohda and Oshiyama
[56] predicted that level is absent. Rather, the 2 − /1+ level
exhibited −Ueff behavior and the highest energy defect level

FIG. 15. Defect levels for the divacancy from Refs. [15] (Ganch-
2006), [56] (Gohda-2010), [11] (Diallo-2016), and from the current
calculations. All previous results were for wurtzite-gallium nitride.
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FIG. 16. Equilibrium geometry of the nitrogen interstitial in all
non-negative charge states.

was a 3 − /2− transition. We find no evidence in our calcula-
tions for a localized −3 charge state, although Ganchenkova
and Nieminen [15] also predicted a −3 charge state. While
Gohda and Oshiyama [56] and the current calculations predict
the lowest energy localized charge state is the +2, Diallo and
Demchenko [11] predicted the +3 charge state is stable over
a fairly wide range (∼0.81 eV) of the Fermi energy. We find
no evidence of a +3 charge state in our calculations, even in
the 1000 atom supercell.

7. Nitrogen interstitial

We defer detailed discussion of the interstitials to a future
publication. However, the nitrogen interstitial has the lowest
energy defect level for either intrinsic or extrinsic defects, and,
thus, is the basis for our assignment of the valence band edge.
We give a brief discussion of our results here. We predict five
charge states in the gap, +3 to −1. In Fig. 16, we show the
canonical geometry for the <100> split nitrogen intersitial.
This is the equilibrium geometry for the +3, +2, +1, and
neutral charge states. The N1-N2 bond length ranges from 1.17
Å (+3) to 1.29 Å (neutral) for the d10 pseudopotential. The −1
charge state adopts a split-(110)N geometry, shown in Fig. 17.
Here the N1-N2 bond length is 1.54 Å. Not only is this the
lowest energy geometry we could find, but it is also the only
geometry with the Fermi level in the K-S band gap, indicating
true localization. For this charge state, the PDOS reveals that
the one-electron states in the gap have very large nitrogen
content. Neither Ga1 nor Ga2 in Fig. 17 contribute 10% as
strongly as N1 and N2. Again, our results are qualitatively
identical for d0 and d10.

In Fig. 18, we show the defect levels from the current cal-
culations, and from prior studies [9–11,16]. Several features
bear notice. With the exception of Lyons and Van de Walle
[10], all calculations predict the lowest energy charge state in
the gap is the +3 state, while all calculations predict that the
−1 is the highest energy charge state. All of the most recent
calculations, starting with Diallo and Demchenko [11], predict
that the −1/0 state is within a volt of the conduction band
edge, and that the 0/+1 level is above mid-gap.

FIG. 17. Equilibrium geometry for −1 charge state of the nitro-
gen interstitial.

8. Zn:N

The last defect we consider is zinc substituting on a nitro-
gen site. As mentioned in Sec. III A, we included this defect
because it gives an extremal value to bound the conduction
band edge. While zinc is expected to substitute for gallium,
Watkins and co-workers have hypothesized that this defect,
minus one nearest-neighbor gallium atom, is the possible ori-
gin of a strong optically detected magnetic resonance signal
[63]. We find, however, that the ZnN :VGa complex is unstable
for all charge states. The Zn shifts to the Ga site to become
a zinc decorated nitrogen vacancy—still with three equivalent
gallium atoms. In Table VII, we give the symmetry and elec-
tronic structure for each stable charge state. The equilibrium
geometries are mostly D2d , either paired or resonant. In all
cases, both pseudopotentials have the same equilibrium sym-
metry. Besides the subtle changes in defect symmetry, RZn-Ga

decreases monotonically as electrons are added to the +3
charge state, illustrating the bonding nature of the t2 orbitals.
The total change in bond length from +3 to −2 is 0.24 (0.26)
Å for the d0 (d10) pseudopotential.

The level structure for for the ZnN defect for both d0 and
d10 is shown in Fig. 1 for the 216 atom supercell, and for
d0 as a function of supercell size in Fig. 2(c). While, ideally
six electrons could be accommodated, the −3 state is not
localized. Finally, we find that the −2 charge state is not
localized in the wurtzite structure.

IV. DISCUSSION AND CONCLUSION

We have presented the first nonjellium calculations of de-
fect structures and defect levels for mostly intrinsic defects
in zinc-blende gallium nitride. As demonstrated in Sec. III A,
the effective defect band gap, calculated from the extremal
defect levels predicted by the LMCC method, is in good
agreement with experiment without including exact exchange.
This agreement is in line with previous LMCC results in
silicon [31,33], gallium arsenide [33,52], and, most recently,
in silicon carbide [40]. As in the previous studies, we have
demonstrated that our results are converged, and that we
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FIG. 18. Defect levels for the nitrogen interstitial defect. See Fig. 7 for references. All previous results were for wurtzite-gallium nitride.

have eliminated electrostatic, finite-cell effects by studying
the same defects in 64-, 216-, 512-, and 1000-atom supercells.
This convergence study has enabled identification of defect
levels arising from well-localized states very near the valence
and conduction band edges. Several specific topics warrant
discussion.

A. Comparison with wurtzite results

In Sec. III, we compared prior results on defects in wurtzite
GaN to the current results for the zinc-blende phase. Across
Figs. 7, 10, 11 and 14, we remarked on two salient features.
First, the defect levels from prior work, including the HE-DFT
results, are rarely in agreement with each other. There are
significant differences in positions within the band gap for
the same defect levels, and there are disagreements about
the total number of localized charge states. This is espe-
cially noteworthy for the HE-DFT calculations, all of which,
by design, produce nearly the same value for the K-S band
gap [64]. Second, our LMCC results resemble more closely
the HE-DFT results than the prior PBE results reported in
Refs. [15,16,56]. It is fair to say that the LMCC results are
in as good agreement with the other HE-DFT results as HE-
DFT results are with each other. Of course, neither LMCC
nor HE-DFT can prove accuracy. That requires demonstrating
agreement with unambiguous experiment, and there is little

direct experiment that ties defect levels in the gap to specific
physical models. Nevertheless, it is reassuring that two such
different approaches lead to some consensus. This has both
practical and fundamental implications. Practically, the agree-
ment implies that LMCC is a useful tool—that its predictions
are as valid as those from HE-DFT jellium, and that we can
investigate larger systems more routinely. Fundamentally, it
implies that prior claims that smaller splittings between de-
fect levels are evidence of deficient localization in PBE [65],
need revision. The level splittings in, for example, Ref. [16]
are the result of the jellium approximation and the attendant
incorrect electrostatic boundary conditions, rather than the
functional. Third, the predicted LMCC defect conformations
are in very good qualitative agreement with prior results, with
a few notable exceptions (see Sects. III B 2 and III B 5.) This
is expected, as local geometries are driven by symmetry and
simple molecular orbital principles.

B. Cell-size convergence

We note our results are demonstrated to be converged using
supercells containing up to 1000 atoms, where electrostatic
cell-size errors and defect banding should be much smaller.
This has given us confidence in our assignments of localized
charge states. We have also demonstrated that for some de-
fects, energies of formation are not converged at 64 atoms, and

TABLE VII. Slater determinant, wave-function symmetry, and defect symmetry in tetrahedral configuration for each charge state of the
zinc substitutional on the nitrogen site.

Charge state +3 +2 +1 0 −1 -2

Slater determinant |a1 ↑ a1 ↓> |x ↑> |x ↑ y ↑> |x ↑ y ↑ z ↑> |x ↑ x ↓ y ↑ z ↑> |x ↑ x ↓ y ↑ y ↓ z ↑>

wave function irrep. A1 T2 T1 A2 T1 T2

defect symmetry Td pD2d pD2d Td pD2d rD2d
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FIG. 19. Defect levels for the gallium vacancy for the d10 pseu-
dopotential calculated at the d0 (far left) and the d10 (far right) lattice
constant, compared to the same levels for the d0 pseudopotential
calculated at the d0 lattice constant.

that at least 216 atom cells are required. We should note that
Burr and Cooper [66] have shown supercell size can be crucial
even for neutral defects, where electrostatic effects should be
very small (dipole and higher order). They showed that 96
atom supercells can give incorrect ordering of energies for
different internal structures of neutral Schottky defects, and
that this misordering is a direct result of poor representation
of elastic properties in smaller cells. The misordering was
independent of the level of theory: force field calculations
gave the same misordering as DFT in 96 atom cells. In larger
cells containing 324 atoms, and where elastic properties are
represented better, the energetic ordering changes for all levels
of theory.

C. Role of d functions

This is the first defect study systematically to compare
results for pseudopotentials that include and exclude the gal-
lium 3d orbitals in the valence set. Several previous reports
have suggested their inclusion is crucial to obtain correct
defect structures and levels [67–69], while Van de Walle and
Neugebauer have claimed that a nonlinear core correction to
the d0 gallium pseudopotential suffices [16] to give results
equivalent to the d10. Thus, there lacks clear consensus about
either the necessity or the utility of their inclusion. With few
exceptions, our results predict the same qualitative geometries
as stable and metastable, independent of the pseudopotential.
The computed defect levels for d0 and d10 are qualitatively
and quantitatively similar (with noted exceptions). The only
consistent difference is a compression of splittings for the
d10 relative to the d0, which leads to a 15% reduction in the
predicted effective defect band gap, which is consistent with
the compression of the K-S band gap, as discussed in Sect. II.
In Fig. 19, we show a comparison between the d10 results at
the d10 and d0 lattice constants, and the d0 results at the d0

lattice constant, for the gallium vacancy. There are similar

results for the other defects showing that the compression
of levels is primarily the consequence of a change in lattice
constant. In fact when the extremal defect levels (−2/ − 1
for ZnN , and +2/ + 3 for NI ) for the d10 pseudopotential are
calculated at the d0 lattice constant, the predicted defect band
gap increases by 0.5 eV, putting the d0 and d10 predictions
within 0.1 eV of each other. So, when lattice constants are
equal, the defect band gap is approximately independent of the
pseudopotential, as it was in Ref. [33]. Careful reinspection
of the results in Fig. 4 of Ref. [33] shows identical trends
in gallium arsenide that we see in gallium nitride. The d10

pseudopotentials give larger lattice constants, smaller K-S
band gaps, and compressed defect level spectra compared to
d0 pseudopotentials. It was not remarked upon there because
all of the effects were much smaller–a 0.5% change of lattice
constant in gallium arsenide, compared to a 2.3% change in
gallium nitride, and a 0.06 eV change in effective defect band
gap in gallium arsenide, compared to a 0.6 eV change in
gallium nitride.

The neutral formation energies for d0 are consistently
larger than for d10, although the differences range from a few
tenths of an eV for the nitrogen vacancy, to over 1 eV for
the nitrogen antisite. More importantly, we find that there can
be substantial variation in formation energies as a function
of supercell size, although these appear to converge for cell
sizes at and above 216 atoms. These calculations show clearly
there is no meaningful utility in including gallium 3d orbitals
in gallium nitride calculations, while the d0 results for some
bulk properties, such as lattice constant and elastic constants,
are in better agreement with experiment.

D. Accuracy of defect band gap

The fidelity of the predicted effective defect band gap com-
pared to experiment rests on the existence of defect levels very
near both experimental band edges. It is fortuitous that we and
others have been able to find defects with near-edge defect
levels in many of the previously studied materials, including
silicon [31], gallium arsenide [33,41,52], and silicon carbide
[40,54], and that we have been able to do so in cubic gallium
nitride. In cesium iodide, for example, the LMCC method
covered 5 eV of a measured gap between 6.1 and 6.4 eV [53].
While a full band gap is not guaranteed, the relative positions
of the defect levels are rigorously converged with respect to
supercell size.
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