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First-principles prediction of the Landau parameter for Fermi liquids near the unitarity limit
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This paper explores the behavior of systems of cold fermions as they approach unitary above the critical
temperature. Symmetry arguments indicate that at unitarity the Fermi-liquid picture breaks down. As we move
away from unitarity, by decreasing the scattering length, the dilaton, the Goldstone boson resulting from the
spontaneous breaking of Schrodinger symmetry by the Fermi sea, becomes gapped. At energies below this
gap, the interaction between quasiparticles will be dominated by dilaton exchange. The dilaton mass can, in
turn, be related via anomaly matching to the scattering length and contact parameter within the confines of a
systematic expansion. We use this relation to predict that the quasiparticle width is given by the expression

�(E , T ) = 8m
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BT 2) where a is the the scattering length, m� is the effective mass, and C̃

is the dimensionless contact parameter. This prediction is valid for ( EF
E )2 � ak f � 1.
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I. INTRODUCTION

First-principles analytic predictions for strongly correlated
systems are typically obstructed by the lack of an expansion
parameter. Such predictions are possible when symmetry suf-
ficiently constrains the dynamics. The set of such systems
is, of course, extremely limited. In this paper we will show
that we can make analytic predictions for a continuum of
strongly correlated systems, within a systematic expansion,
by expanding around the conformally symmetric limit of a gas
of strongly interacting fermions in a cold atomic gas. In this
limit the system behaves as a “non-Fermi liquid” which has no
well-defined notion of a quasiparticle and is an a open puzzle
in the field of strongly correlated systems. To best attack this
problem it is wise to study non-Fermi-liquid behavior in as
simple a system as possible. A particularly prudent choice of
systems is cold atoms, since one may control the coupling
strength and all the complications of an underlying lattice
are absent. Recent experimental progress in producing such
“uniform quantum gases” [1–7] via boxed traps has opened
the door to the study of such ideal systems.

Fermions in the unitary limit cannot be described by
the canonical Fermi-liquid EFT (as described, e.g., in
Refs. [8–10]) because there is no way to nonlinearly realize
the spontaneously broken conformal and boost invariance and
maintain Fermi-liquid behavior, as shown in Refs. [11,12].
At present we do not know how to calculate in a systematic
expansion in the unitary limit. Here we will instead calculate
far enough away from unitarity that we can treat it as a Fermi
liquid but close enough to keep some approximate symme-
tries. By doing so we will able to predict the aforementioned
Landau parameters.

To understand how to calculate near unitarity we must first
understand why Fermi-liquid theory breaks down at unitarity.

*Corresponding author: spavaska@andrew.cmu.edu.

At unitarity the atomic underlying theory is invariant under
the full nonrelativistic conformal (Schrodinger) group. The
existence of the Fermi sea breaks a subset of symmetries:
Three boosts, dilatations, and special conformal transforma-
tions. While the breaking of global internal symmetries leads
to gapless Goldstone modes, one per broken generator, when
space-time symmetries are broken, this is no longer true
[13,14]. In such a case, the Ward identities can be saturated by
excitations which can be arbitrarily wide, i.e., they need not be
quasiparticles [15]. At the level of the action, invariance may
be maintained despite the dearth of Goldstones. The modes for
which the corresponding broken generators’ commutator with
unbroken translations yields another broken generator (not in
the same multiplet) can be eliminated from the action. This
is called the Inverse Higgs mechanism (IHM) and one can
use the space-time coset construction [13,14] to determine
invariant constraints which eliminate the extra Goldstones.
However, there are cases where there are no IHMs at play
and yet the Goldstones, which seemingly should be in the
spectrum, are not. The classic example of this is 3He where
only boosts are broken, and there are no corresponding Gold-
stones. In such systems, dubbed “framids” [16], the symmetry
is realized by constraining the form of the interactions [12].
In fact, the famous Landau condition on Fermi liquids is the
constraint that must be imposed on the action to ensure boost
invariance. Such a condition can be considered a “Dynamical
Inverse Higgs Constraint” (DIHC) [12]. In Ref. [11] it was
shown that in the unitary limit, in three spatial dimensions,
the symmetries can be realized either by imposing another
DIHC or by the inclusion of a dilaton. In either case the system
cannot behave like a canonical Fermi liquid above Tc.

Fermi-liquid theory starts with the assumption that quasi-
particles (in our case fermionic) exist in the spectrum with
widths that scale as � ∼ E2 due to Pauli blocking. Such
systems will have two marginal couplings, the “BCS” and the
forward scattering channels, with the former growing strong
in the IR leading to breaking of the particle number U (1)
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symmetry. However, when interactions in the UV become
strong, the Fermi-liquid description can break down at which
point there may no longer be any stable quasiparticles, leading
to non-Fermi-liquid behavior. Such is the case for fermion in
the unitary limit.

In this paper we explore the approach to this non-Fermi-
liquid behavior by calculating how the quasiparticle width
begins to deviate from Fermi-liquid behavior as the scattering
length (a) is increased. The starting point is the effective field
theory of Fermi liquids [8] where we consider small fluctua-
tions around the Fermi surface. We are interested in studying
the normal phase of the theory where T > Tc. Furthermore, as
will be explained below, to maintain calculational control we
will keep the scattering length finite.

Our approach begins by utilizing the pattern of sponta-
neous breaking of space-time symmetries. In Ref. [11] it was
shown that at unitarity, non-Fermi-liquid behavior emerges
due to the presence of a nonderivatively coupled gapless
Goldstone (the dilaton) that arises as a consequence of the
symmetry-breaking pattern. Typically Goldstones are deriva-
tively coupled and therefore decouple in the far IR; however,
for spontaneously broken space-time symmetries, for certain
symmetry-breaking patterns, Goldstone bosons, such as the
dilaton, couple nonderivatively [12,17] leading to a strong
coupling in the infrared.

When we perturb away from unitarity, the dilaton gets
gapped, with its mass acting as a control parameter which
can be used to study the crossover behavior. When the
mass is nonvanishing but sufficiently small, Fermi-liquid be-
havior is expected and dilaton exchange will dominate the
fermion-fermion interaction. Moreover, the dilaton mass can
be determined by matching the conformal anomaly between
the UV theory (where it is exactly known) and the IR theory.
Using this result, along with the fact that the dilaton coupling
is fixed by symmetry, allows us to to predict the s-wave Lan-
dau parameter in terms of the scattering length, the effective
mass of the fermion, and the contact parameter. With this
result in hand we then predict the value of the compressibility
and the quasiparticle lifetime.

II. THE EFT

In the normal phase of a gas of cold atoms the only spon-
taneously broken symmetries are boosts. Despite this fact, the
spectrum has no Goldstone bosons and the broken boosts are
still nonlinearly realized via the nontrivial (Landau) relation
between the effective mass and the p-wave Landau parameter.

The unitary limit in the trivial vacuum is a point of en-
hanced symmetry realizing the full 13-parameter Schrodinger
group. The Fermi surface spontaneously breaks boosts (K), di-
latations (D), and special conformal transformations(C). The
way these broken symmetries can be realized was discussed in
Refs. [11,12] which for completeness we summarize here. In
the case at hand, the Goldstone associated with the breaking of
conformal symmetry can be eliminated using the IHC arising
from the relation

[H,C] = iD, (1)

leaving only the dilaton, the Goldstone associated with the
broken scale invariance. The boost Goldstone called the fra-

mon is necessary to write down a Galilean invariant action for
the dilaton. However, it was shown in Ref. [12] that one can
eliminate the framon using an operator constraint called the
DIHC. In the Fermi-liquid theory, the DIHC is nothing but the
aforementioned Landau relation. The logical possibility re-
mains that the action obeys further constraints, such that there
is no dilaton in the action. However, as shown in Ref. [12],
without a dilaton in the action the quasiparticle would have to
obey a quadratic dispersion relation and the coupling would
have to undergo power-law running. Moreover, independent
of the choice of field variables, at unitarity there still must be
a gapless singularity in the stress-energy correlation function,
though it should be expected to be highly damped. Moving
away from unitarity toward a quasiparticle description, this
gapped channel will be nothing but the massive dilaton.

Let us explore the consequences of the existence of a light
(mφ � EF ) dilaton in the spectrum. We will treat the dila-
ton mass as the leading-order perturbation in the conformal
symmetry breaking, with higher-order corrections being down
by powers of mφ/EF . We begin by first writing down the
action in the conformal/unitary limit. Since the scattering
length diverges in this limit, the only scale in the theory is the
Fermi energy EF . To write down the action for quasiparticles
and the dilaton, we utilize the technique of space-time coset
constructions [13,14] which is a systematic way of nonlinearly
realizing the symmetries. We present here the results given in
Ref. [11] and refer the reader to that paper for details.

At the unitary point, the coset element can be written as

U = eiHt e−i �P.�xe−i �K .�ηe−iDφe−iCξ , (2)

where �η(x, t ), φ(x, t ) and ξ (x, t ) are the framon, dilaton, and
Goldstone of the conformal transformation, respectively. In
the remainder of the work, we will explicitly drop any x and
t dependence from the fields. Using the Maurer-Cartan form,
one can extract the covariant derivatives for the Goldstones
which transform linearly under the broken group. The cou-
pling of the dilaton φ in the quasiparticle action is given by

Sψ =
∫

dtd3xe− 5φ

	 [ψ̃†(ie
2φ

	 ∂t ψ̃

− (ε(e
φ

	 i�∂ ) − μF )ψ̃ )

+ f0(ψ̃†ψ̃ )2 + f1(ψ̃†σiψ̃ )2], (3)

where ψ̃ = e
3φ

2	 ψ . We have kept only the l = 0 Landau
parameter. The addition of higher l’s will not change our
predictions as we shall see.

We have introduced a scale 	 to normalize the dilaton field
in the exponential. Under dilatations, the dilaton shifts by a
constant φ −→ φ + c	 whereas the coordinates transform as
t −→ e2ct and x −→ ecx. The quasiparticle fields and their
covariant derivatives have to transform as a linear represen-
tation of the unbroken group ψ (x, t ) → e−3/2cψ (x, t ). One is
free to add an invariant term of the form Vdil = Ce−5φ/	 to the
dilaton Lagrangian. Thus maintaining a light dilaton implies C
must be fine-tuned to be small, as its natural value is of order
of the cutoff. This is analogous to the cosmological constant
problem, the most egregious fine-tuning in nature. How-
ever, in the context of fermions at unitarity, the appropriate
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fine-tuning is achieved by choosing the magnetic field such
that the atomic system is sitting near the Feshbach resonance.

Expanding to leading order in the dilaton field φ in the
quasiparticle action,

Sψ =
∫

d3x dt iψ†∂tψ + ψ†�vF · �∂ψ − 2μF

	
φψ†ψ + · · · ,

(4)

where �vF is the Fermi velocity. Power counting dictates that
the dilaton momenta must scale homogeneously under an
RG transformation in all directions ( �p → λ �p) and thus will
only scatter nearby points on the Fermi surface. Any other
choice of scalings would lead to a power suppression. The
quasiparticle and the dilaton energies scale in the same way as
we move toward the Fermi surface (ω ∼ λω). From the kinetic
terms in the dilaton and quasiparticle actions, we can read off
the scaling of the momentum space dilaton and quasiparticle
fields

ψ (p, t ) ∼ λ−1/2 φ(p, t ) ∼ λ−2. (5)

The scaling of the dilaton-quasiparticle interaction is marginal
as can be seen by going to momentum space and noting that,
as in the four-point quasiparticle interaction, the delta function
enforcing the three-momentum conservation scales as 1/λ

while the momentum space measure will scale as

d3 p1d3 p2d3k ∼ λ5, (6)

as all three-momentum components of the dilaton, as well as
the quasiparticle momenta along the direction normal to the
Fermi surface, scale as λ.

III. THE APPROACH TO NON-FERMI-LIQUID BEHAVIOR

As we move away from the unitary point, the scattering
length becomes finite and scale invariance becomes an ap-
proximate symmetry of the effective theory. Hence the dilaton
becomes a gapped pseudo-Goldstone. As we will see, we can
determine the mass of dilaton in terms of the scattering length
and the contact parameter. We are working in the units where
the fermion mass is one and h̄ = 1, and the length dimensions
will be

[t] = 2 [φ] = − 1
2 [ψ] = − 3

2 . (7)

Away from unitarity, the conformal symmetry is explicitly
broken; however if we keep the scale of explicit symmetry
breaking (the inverse scattering length) small compared with
the scale of spontaneous symmetry breaking (the Fermi wave
number) we may still treat the dilaton as a pseudo-Goldstone
boson. The smallness of the dilaton mass follows from the fact
that the scattering length is tuned to be large. The mass of the
dilaton is treated as a spurion such that the action is invariant
if we scale it according to its dimensions,

δL = 1
2 m2

φφ2. (8)

We now use a matching procedure to calculate mφ . In the
effective theory away from unitarity, the scale current is not
conserved,

∂μsμ = m2
φ	 φ. (9)

We will use current algebra to extract the mass by matching
it onto the full theory result. From the Noether construction
the dilatation charge is given by

D0(0) = 	

∫
d3x π (�x, 0), (10)

where π (x) is the conjugate momentum to φ. Hence using
Eq. (9) we have∫

x
[D0(0), ∂μsμ(�x, 0)] =

∫
d3x m2

φ	2. (11)

We match this commutator to the full theory, which is a
microscopic description of the theory, in terms of fermions
with action

S =
∫

dt
∫

d3x iχ†∂tχ + 1

2
χ†∇2χ + g(μ)(χ†χ )2, (12)

where χ is two-spinor. The van der Waals scale(	V DW ) pro-
vides the upper cutoff in the theory that suppresses higher
dimensional operators. The renormalized coupling can be
written in terms of the scattering length as [18]

g(μ) = 4π

− 2
π
μ + 1

a

. (13)

The four-fermion interaction defined in (12) explicitly
breaks scale invariance. One can verify that the dilatation
charge, the divergence of the scale current, and their commu-
tators are given, respectively, by

D0(0) =
∫

d3x

(
3

2
χ†(�x, 0)χ (�x, 0) + χ†(�x, 0)�x · �∂χ (�x, 0)

)

(14)

∂μsμ = (g(μ) + β(g))(χ†χ )2 (15)
∫

d3x m2
φ	2 = 3

∫
d3x (g(μ) + β(g)) (χ†χ )2, (16)

where in (16) we have matched the commutators in the full
and the effective theory using (11). β(g) is the beta function
associated with the coupling. Note that the RHS of (16) is an
RG invariant, and the dilaton mass is independent of the scale
μ. The coupling and the four-fermion operator both depend
on the scale μ but the dependence cancels exactly in (16) to
give a scale-independent mass as required. Evaluating the beta
function and taking the expectation value, we have

m2
φ	2 = 3

4πa
〈g2 χ

†
↑χ↑χ

†
↓χ↓〉 ≡ 3

4πa
C, (17)

where we have now made the spin state explicit and C is
the contact parameter [19] whose vacuum expectation value
is a measure of the local pair density of the fermions and is
independent of the RG scale μ. For any system consisting of
fermions with two spin states and large scattering length, one
can define universal relations which depend on the contact.
Note that 	 is still an undetermined free parameter. However,
we will see that it will cancel in the calculation of the Landau
parameter f0.

If the dilaton mass is sufficiently small it will dominate
the quasiparticles interactions, as other contributions to the
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interaction, arising from integrating out other modes, will be
parametrically suppressed by powers of mφ/EF .

IV. QUASIPARTICLE WIDTH

The self-energy only gets contributions from the forward
scattering coupling, as the other marginal coupling (BCS) is
restricted to back-to-back interactions. The imaginary part of
the self-energy of a Fermi liquid due to singlet interaction

is �FL(E , T ) = 4 f 2
0 I (E , T ), where I (E , T ) = m3

�

2(2π )3 (E2 +
π2k2

BT 2) is the imaginary part of the two-loop self-energy
diagram at finite temperature. We integrate out the dilaton to
generate net interaction

Lint = ( f0 + 8πaμ2
F

3C )(ψ†ψ )2 + · · · , (18)

where the corrections are suppressed by powers of E2/m2
φ =

kF a E2

E2
F

where we have taken 	 ∼ k1/2
F as the symmetry-

breaking scale. Thus if we are in the regime,
(EF

E

)2

� akF � 1, (19)

then the dilaton exchange dominates so that the effective cou-
pling, after repristinating factors of h̄ and the atomic mass m,
is given by

fD ≡ f0 = 8πaμ2
F m

3h̄4k4
FC̃

. (20)

C̃ = C
k4

F
is the dimensionless contact parameter which has been

measured to be of order one (when kF a > 1) in the cases of
a trapped system [20]. Note that since the coupling to the
dilaton is scalar in nature, the spin-triplet channel ( f1) as well
as higher angular momentum interactions will be subleading
in our expansion. Using our result (20) we can then calculate
the quasiparticle width

�(E , T ) = 4 f 2
DI (E , T ), (21)

such that

�(E , T ) = 8m

9π C̃2

(√
m

m�

aμ2
F

4h̄E2
F

)2
(E2 + π2k2

BT 2) (22)

and EF = k2
F

2m�
. The theoretical errors in this predictions are of

order

��T

�
∼ O

(
1

kF a

)
+ O

(
kF a

(
E2

E2
F

))
. (23)

We may also utilize this result to calculate the compress-
ibility, which is given by

κ = 1

n2

NF

1 − h̄2NF fD
= 1

n2

NF

1 − 2
3π

m
m�

kF aμ2
F

C̃E2
F

, (24)

where NF = m� pF

h̄3π2 is the density of states at the Fermi sur-
face and n is the Fermion number density. As indicated
by the theory error, these results are not valid in the re-
gion where the scattering lengths diverges, since in this
region one cannot integrate out the dilaton. Also in the
limit (a → 0−), this prediction is not applicable since the

FIG. 1. The plot shows the phase diagram as a function of the
energy and the scattering length. Our prediction for the self-energy
� is valid below the green line (E ∼ 0.4EF ) in the Fermi-liquid (FL)
region. The dilaton mass curve (orange) separates this region from
the non-Fermi-liquid (NFL) region. The region above E ∼ 0.4EF

(green line) (this line is a rough guess of the region where the EFT
breaks down) is where the effective theory begins to break down.

symmetry-breaking parameter (1/a) diverges and hence the
dilaton is not a pseudo-Goldstone anymore. Finally, note
that the spin susceptibility is not predictable because it de-
pends on the S = 1 interaction which is not mediated by the
dilaton.

V. CONCLUSIONS

It is known that degenerate fermionic systems cross over
from Fermi to non-Fermi liquids as unitarity is approached.
Symmetry requires that Fermi gases at unitarity manifest a
gapless excitation in response to external stress. This “dilaton”
mode will look like an overdamped sound mode, but since we
are working in the attractive regime where there is no zero
sound, this mode can be isolated. Furthermore, by working
below the hydrodynamic limit, there will be no contamination
from the second sound.

Perturbing away from the unitary limit gaps this mode.
For energy scales large compared with the gap, the quasi-
particle excitations are expected to behave as in a non-Fermi
liquid with a width that scales linearly with the energy.
However, as the energy of the quasiparticle drops be-
low the gap, the dilaton-mediated interaction localizes and
Fermi-liquid behavior with the width scaling quadratically
with energy is expected. The behavior of the system as
a function of energy and scattering length is depicted in
Fig. 1.

The key insight noted here is that the mass of the dilaton
can be fixed by matching the effective theory current alge-
bra to that of the full theory, the result of which leads to
a prediction for the mass in terms of the scattering length
and contact parameter, which in turn allows us to make a
prediction for the quasiparticle lifetime including the normal-
ization. The width is predicted to scale quadratically with the
ratio of scattering length to the contact parameter. Note also
that the dilaton, because it is not derivatively coupled, will
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only generate the l = 0 Landau parameter. Thus we have the
additional prediction that the l = 0 Landau parameter will
dominate all other channels. We also calculate the compress-
ibility of the Fermi liquid as a function of the scattering length.
These predictions have a limited range of validity. The energy
must be small enough that the dilaton exchange can still be
treated as a local interaction. This limitation also implies
our EFT breaks down when the scattering length, which is
inversely proportional to the dilaton mass, becomes large, i.e.,
in the NFL region. The range of validity of the theory is

shown in Fig. 1 as the region bounded by the green line from
above.
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