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Nonlinear σ model for disordered systems with intrinsic spin-orbit coupling
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We derive the nonlinear σ model to describe diffusive transport in normal metals and superconductors with
intrinsic spin-orbit coupling (SOC). The SOC is described via an SU(2) gauge field, and we expand the model
to the fourth order in gradients to find the leading non-Abelian field-strength contribution. This contribution
generates the spin-charge coupling that is responsible for the spin-Hall effect. We discuss how its symmetry
differs from the leading quasiclassical higher-order gradient terms. We also derive the corresponding Usadel
equation describing the diffusive spin-charge dynamics in superconducting systems. As an example, we apply
the obtained equations to describe the anomalous supercurrent in dirty Rashba superconductors at arbitrary
temperatures.
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I. INTRODUCTION

The intrinsic spin-Hall effect is a magnetoelectric coupling
between spin and charge degrees of freedom, which arises
from a geometric property of the electron bands caused by
the spin-orbit coupling (SOC) [1–3]. The spin-charge inter-
conversion is the basis of the spin-Hall magnetoresistance [4],
the Edelstein [5,6], and spin-galvanic effects [7], observed in
a wide variety of systems [8–11].

The counterpart of these effects in superconducting sys-
tems with SOC has also been widely studied [12–15].
Supercurrents, i.e., currents without dissipation, can induce a
spin density. Reciprocally, a Zeeman or exchange field can
cause supercurrents in a superconducting system with strong
SOC. An example of the latter is the realization of anomalous
Josephson junctions [16,17], where the interplay between the
SOC and a spin-splitting field leads to the appearance of spon-
taneous supercurrents in superconducting loops [18,19]. The
charge-spin coupling in superconducting systems with SOC is
also at the basis of the superconducting diode effect [20–24],
observed experimentally [25,26]. With potential applications
in emerging technologies, all these effects are observed in
hybrid systems, which combine different materials with dis-
order. From a theoretical point of view, the formulation of a
kinetic theory of electronic transport in the presence of SOC
is therefore of extreme importance.

If the system under consideration is described by an ef-
fective Hamiltonian with a linear in momentum SOC, the
latter can be treated by introducing an SU(2) gauge poten-
tial [27–33]. This viewpoint turns out to be fruitful, as the

intrinsic spin-Hall contribution in electron transport theory
can be related to the corresponding SU(2) field strength
[15,30,32–34]. In superconductors, the magnetoelectric con-
tribution has been considered in various limits [12,15,17,
35–38]. One of the questions is the effect of impurity scat-
tering, and the formulation of the transport theory in terms
of kinetic equations for the quasiclassical Green’s functions
(GFs), in superconductors with SOC in the diffusive limit.
This type of formulation is the most suitable for the study of
realistic mesoscopic systems, such as anomalous Josephson
junctions, superconductor-ferromagnet, or superconductor-
semiconductor hybrid systems [18,19,26].

Intrinsic magnetoelectric effects in diffusive hybrid sys-
tems have been considered mostly in the linearized case, when
superconducting correlations are weak either due to large
temperature or weak proximity effect [15–17,39]. In such a
case, the SU(2)-covariant quasiclassical equation, the Usadel
equation, has a similar form as the diffusion equation in a
normal system [33] and the anomalous (superconducting) GFs
can be treated perturbatively. Going beyond the linearized
case is not a trivial task and attempts to obtain the Us-
adel equation beyond that limit using standard quasiclassical
kinetic equation approaches run into technical consistency
issues [40]. On the one hand, the spin-Hall effect appears in a
subquasiclassical order in the expansions. On the other hand,
the resulting Usadel equation needs to preserve a commutator
form to ensure the normalization of the quasiclassical GF.
An alternative and reliable way to formulate the diffusive
limit transport theory is via the nonlinear σ -model approach
[41–45]. The saddle-point equation of the nonlinear σ model
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is the Usadel equation. We used this approach previously in
Ref. [46] to describe the contribution of extrinsic SOC to mag-
netoelectric effects in superconductors. However, in the case
of intrinsic SOC described by SU(2) gauge fields, the number
of terms appearing in the naive expansion of the action with
respect to the gradients and fields is immense and cannot be
treated manually.

In this work we derive the nonlinear σ model for super-
conducting and normal systems including the intrinsic SOC
in the form of an SU(2) gauge field. We identify the lead-
ing SU(2) field strength term responsible for the spin-Hall
effects in the gradient expansion of the model, and the relevant
symmetry properties. We perform the expansion systemat-
ically via computer algebra, and also recover other terms,
e.g., describing thermoelectric effects [47]. The correspond-
ing saddle-point equations provide a general framework to
study magnetoelectric effects in disordered superconductors
at arbitrary temperature and generalize the Usadel equation to
include the intrinsic spin-Hall effects. Using this equation we
determine the anomalous current generated by the interplay
between SOC and an exchange field in a proximitized normal
metal with Rashba SOC. Our result corrects previous results,
and predicts an enhancement of the anomalous current for
exchange fields of the order of the superconducting gap.

The paper is structured as follows. In Sec. II we outline
the main results of our work, namely the nonlinear σ -model
Keldysh action, Eqs. (5)–(7), and its saddle-point equation,
the generalized Usadel equation, Eqs. (8)–(11). In Sec. III we
discuss the gradient expansion of the nonlinear σ model with
SU(2) gauge fields, and derivation of the main results. Ex-
planation of the computer implementation of this calculation
is postponed to Appendix. In Sec. IV we derive the kinetic
equations found at the saddle point of the model. In Sec. V
we provide an example by calculating the anomalous current
induced by an exchange field in a Rashba superconducting
system. Section VI concludes the discussion.

II. MAIN RESULTS

Consider a normal conductor with linear-in-momentum
spin-orbit coupling (SOC) and an exchange field. In the most
general case, its Hamiltonian can be written as

H0 = p̂2

2m
− 1

2m
Aa

k p̂kσ
a − 1

2
Aa

0σ
a + Vimp, (1)

where the second and third terms describe the SOC and
exchange field, respectively, σ a are Pauli matrices spanning
the spin space, and Vimp is a random impurity potential.
Here and throughout the paper summation over repeated in-
dices is implied. The linear SOC can be related to a local
SU(2) gauge invariance of the corresponding Hamiltonian
[27,29,30,32,33,39,48] that can be written (up to an irrelevant
constant) as

H0 = 1

2m
( p̂ j − Â j )

2 + Vimp − Â0, (2)

where Â j = 1
2Aa

jσ
a.

To describe superconducting systems with SOC one con-
structs from the normal state Hamiltonian, Eq. (2), the

Bogoliubov–de Gennes Hamiltonian

H = τ3

[
[ p̂ − Ǎ(r)]2

2m
− μ + Vimp(r) − Ǎ0(r) − �̂(r)

]
, (3)

where �̂ is the superconducting anomalous self-energy for
s-wave superconductor given by �̂ = τ3τ1�e−iτ3φ .
Here τ j are Pauli matrices in the Nambu space.
For generality, in Eq. (3) we have included the
U (1) scalar and vector electromagnetic potentials,
�, (Ax, Ay, Az ), by defining Ǎi = Aiτ3 + 1

2Ai · σ and
Ǎ0 = � + 1

2A0 · στ3. The field strength associated
with Ǎ is

F̌μν = ∂μǍν − ∂νǍμ − i[Ǎμ, Ǎν], (4)

containing electric and magnetic fields, and their SOC gener-
alizations. Here and below we use Greek indices for the range
ν = 0, 1, 2, 3 including the time component, and Latin indices
for the spatial components i = 1, 2, 3.

Starting from Hamiltonian (3), we derive a disorder-
averaged theory describing electron diffusion in such system,
valid in the quasiclassical diffusive limit ξ � 
 � λF , where
ξ , 
, and λF are the superconducting coherence length, the
mean free path, and the Fermi wavelength. To obtain the Hall
and spin-Hall effects, we include the leading subquasiclassical
corrections ∝ (λF /
)1. As explained in Sec. III, we formulate
the problem as a systematic expansion of Eq. (3) in the small
parameters, in the approximation scheme of nonlinear σ mod-
els, which concentrates on physics of the low-energy diffusion
modes.

A. Keldysh action

Our main result can be compactly expressed as the nonlin-
ear σ -model Keldysh action,

S[Q] = S0[Q] + SH[Q], (5)

S0[Q] = iπνF

8
Tr[D(∇̂Q)2 + 4i(
 + Ǎ0)Q], (6)

SH[Q] = iπνF D
2

8pF 

Tr[−F̌i jQ(∇̂iQ)(∇̂ jQ)]. (7)

Here Q(r) is a matrix field with Q(r)2 = 1, which describes
the low energy diffusion modes, ∇̂iQ = ∂ri Q − [iǍi, Q] are
its covariant gradients, and 
 = iτ3ε̂ + �̂ contains the energy
operator and local self-energies. Moreover, νF is the density
of states, and D the diffusion constant. The local gauge sym-
metry of the original Hamiltonian in Eq. (3) translates to the
invariance of the σ model under the (gauge) transformations
Q �→ UQU −1, Ǎ j �→ UǍjU −1 + iU∂ jU −1, F̌i j �→ UF̌i jU −1,

 + Ǎ0 �→ U (
 + Ǎ0)U −1.

The action S0 comprises the previous nonlinear σ -model
theory for superconductivity [43,44,49,50] with the spin-
dependent gauge fields.

The term SH contains the leading magnetic field-strength
contribution that breaks the symmetry of S0, hence bringing in
new physical effects related to generalized Hall effects. Indeed
that term in the case of two-dimensional (2D) electron gas and
U (1) fields has the form of the topological term in Pruisken’s
action for the integer Hall effect [51–53]. We notice that this
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term also appears in the nonlinear σ model for a disordered
Weyl semimetal [54,55]. In contrast, the SU(2) counterpart
of the Hall term cannot be written as a total derivative, and
hence will generate a nontrivial contribution to the saddle-
point equation for Q [see Eq. (8)]. SH describes the spin-Hall
effects, i.e., effects caused by the spin-charge coupling.

As discussed later, the action also contains other terms.
For example, the gradient expansion also generates formally
larger terms that do not break symmetries of S0—these will
renormalize diffusion, but do not contribute to magneto-
electric effects. There are also other terms that break the
electron-hole symmetry, associated with thermoelectric ef-
fects, previously discussed in Ref. [47]. We recover all these
terms from our systematic analysis in Sec. III.

B. Generalized Usadel equation

The saddle-point equation of S0 is the covariant version of
the well-known Usadel diffusion equation [56] for supercon-
ducting systems, and Eq. (5) provides its minimal extension
including the Hall and intrinsic spin-Hall effects. The Usadel
equation is obtained from minimizing the action under the
condition Q2 = 1, that is i(δS/δQ)|Q2=1 = 0, and has the form

∇̂iJi = [i
 + iǍ0, Q]. (8)

Here Jμ are the matrix currents, proportional to the variation
of S with respect to the matrix-valued vector potential Ǎμ.
Hence, their different components are directly related to ob-
servable charge Jc and spin Js currents by taking appropriate
traces, Jc

i (t ) = −πν
2 trτ3J K

i (t, t ), Js
i j (t ) = −πν

2 trσ jJ K
i (t, t ).

Spin density and charge imbalance are given by Si =
−πν

2 trσiτ3JK
0 (t, t ) and δρ = −πν

2 trJK
0 (t, t ). Here K super-

script denotes the upper right Keldysh component of the
matrix.

The spatial components of the matrix currents can be ex-
pressed as

Ji ≡ − 2

πν

δS

δǍi
= J (0)

i + J (H)
i , (9)

J (0)
i = −DQ∇̂iQ, (10)

J (H)
i = −Dτ

4m
[{F̌i j + QF̌i jQ, ∇̂ jQ}

− i∇̂ j (Q[∇̂iQ, ∇̂ jQ])], (11)

and time component is J (0)
0 = Q. The current J (0) is the

standard diffusive current, and J (H) is the leading contribution
from spin-charge coupling. The first term in Eq. (11) becomes
the (spin-)Hall current in the normal state, and the remain-
der gives superconducting corrections. Equation (8) implies
a covariant conservation equation of these spin currents [32],
where nonconservation of spin current is associated with the
[−iA, ·] part of the covariant derivative.

In the next sections we derive the above results.

III. GRADIENT EXPANSION

The starting point is the Keldysh partition function [44,45]
expressed via the path integral with the action corresponding

to the Hamiltonian of Eq. (3),

S =
∫

C
dt �̄T (iτ3∂t − τ3H)�, (12)

where � = (ψ↑, ψ↓, ψ̄↓,−ψ̄↑)T /
√

2 and �̄ = −iσyτ1�

are Nambu spinors of electron fields on the Keldysh
contour C. We then perform standard steps in the
nonlinear σ -model derivation: (i) averaging the generating
function over the Gaussian disorder potential with
〈Vimp(r)Vimp(r′)〉 = 1

2πντ
δ(r − r′) where τ and ν are

parameters describing the scattering time and density of states,
and (ii) decoupling the generated quartic interaction term with
a local matrix field Q, [�̄i(r, t )� j (r, t ′)][�i(r, t )�̄ j (r, t ′)] �→
�̄i(r, t )Qi j (r; t, t ′)� j (r, t ′). The details of this procedure
in the Keldysh formulation are discussed, e.g., in
Refs. [44,45,49,57]. As these steps only involve the disorder
term of the action, the gauge fields do not directly affect the
procedure at this stage.

After integrating out the fermion fields, the result becomes
the nonlinear σ -model action,

S = iπνF

8τ
TrQ2 − i

2
Tr ln⊗ G−1, (13)

G−1 = 
 + μ − 1

2m
(pk − Ǎk )(pk − Ǎk ) + i

2τ
Q, (14)

where 
 = ετ3 + Ǎ0 + �̂, ε̂ = i∂tδ(t − t ′), and νF is the den-
sity of states at the Fermi energy.

In Keldysh theory, Q(r; t, t ′) depends on two times, and
is a 8 × 8 matrix, with 4 × 4 blocks with the Nambu and
spin indices, in a 2 × 2 retarded–advanced–Keldysh structure
[58]. Here and below, matrix products and trace also imply
integrations over time, (XY )(t, t ′) = ∫ ∞

−∞ dt1 X (t, t1)Y (t1, t ′)
and TrX = ∫ ∞

−∞ dt dd r trX (t, t ). In some cases it can be tech-
nically advantageous to use the energy representation that is
defined as follows: X (ε, ε′) = ∫ ∞

−∞ dt dt ′ eiεt−iε′t ′
X (t, t ′).

We use here a Wigner representation for the spatial
coordinates,

G(r, r′; t, t ′) =
∑

p

eip·(r−r′ )G

(
r + r′

2
, p; t, t ′

)
, (15)

in which convolutions (A ⊗ B)(r, r′; t, t ′) =∫
dr1 dt1 A(r, r1; t, t1)B(r1, r′; t1, t ′) can be expressed by

the Moyal product

(A ⊗ B)(r, p; t, t ′) =
∫ ∞

−∞
dt1 A(r, p; t, t1)

× exp[
i

2
(
←
∇r ·

→
∇ p −

←
∇ p ·

→
∇r )]

× B(r, p; t1, t ′). (16)

Here the arrows above the ∇ indicate on which function the
derivative operator acts. The trace becomes

TrX =
∫

dd r dt
∑

p

trX (r, p; t, t ), (17)

where tr is the trace over matrix indices. For brevity, in the
following we will not write down the time integrations.

Next, we expand the action of Eq. (13) in gradients of
Q and gauge fields Ǎμ. This follows a standard approach
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in σ models. In this expansion, one usually separates the
“transverse” nearly massless modes of the Q field, from the
“longitudinal” massive modes. The longitudinal modes usu-
ally only renormalize coefficients of the transverse mode
theory. Below, we concentrate only on the massless modes,
and separate them out by writing Q = T (� + B)T −1 where
� is the uniform saddle-point solution at 
 = Ǎ = 0 with
�2 = 1, B with [B,�] = 0 describes longitudinal fluctua-
tions, and T parametrizes the remaining rotations around it
[59,60]. Since at 
 = Ǎ = 0 all matrices Q = T �T −1 are
also saddle-point solutions, the rotations T in general describe
the nearly massless modes, whereas the longitudinal modes
are suppressed by the impurity scattering energy scale 1

τ
. We

will first neglect the longitudinal corrections and set B = 0.
Inserting the parametrization to Eq. (13), the electronic part

can be rewritten as

Tr ln G−1 = Tr ln⊗

[
μ − (pk − ak )(pk − ak )

2m
+ ib

2τ
� + a0

]
,

(18)

where

a0 = T −1(
 + Ǎ0)T, (19)

ak = iT −1∂kT + T −1ǍkT . (20)

The expansion in gradients of Q and in Ǎ and 
 now translates
to expanding the Tr ln in small a0, ak . Note that because 


also contains the energy ε, the expansion is valid only at low
energies |ε| � τ−1, and can be used to describe only the low-
energy part of T (ε, ε′).

We carry this expansion to fourth order in ai, a0. We also
expand the result in the quasiclassical parameter ψ = pF 
 �
1. In the end we rewrite the result in terms of the covariant
gradients

∇̂iQ = T [−iai,�]T −1 = ∂iQ − i[Ǎi, Q], (21)

∇̂0Q = T [−ia0,�]T −1 = −[i
 + iǍ0, Q], (22)

and non-Abelian field strengths

T (∂ia j − ∂ jai − i[ai, a j])T
−1

= ∂iǍ j − ∂ j Ǎi − i[Ǎi, Ǎ j] = F̌i j, (23)

T (∂ka0 − i[ak, a0])T −1

= ∂kǍ0 − ∂t Ǎk − i[Ǎk, Ǎ0] + ∇̂k�̌ = F̌k0 + ∇̂k�̌. (24)

By construction, the final result should be formally gauge
covariant and therefore it can contain only covariant objects,
which is indeed confirmed by explicit calculations.

Expansion of the logarithm, gradient expansion of the
Moyal product, calculation of the momentum sum in the
Tr, and rewriting the result, is a mechanical calculation, and
mainly a bookkeeping problem. We discuss our technical
method in Appendix, and concentrate on the results below.

A. Results

The gradient expansion produces the terms

δS = Sgrad + S
, (25)

where Sgrad contains only spatial gradients, and S
 contains
the remaining terms with 
 and Ǎ0. The leading part in the
expansion of S
 is well known,

S
 = iπνF

8
Tr4i(
 + Ǎ0)Q + · · · . (26)

The pure spatial gradient terms, up to fourth order in gradients
and first order in 1/(pF 
) in three dimensions, are

Sgrad = S2 + S4,0 + S4,1 + S′
4,1 + · · · , (27)

S2 = iπνF D

8
Tr(∇̂Q)2, (28)

S4,0 = iπνF D
2

8
Tr

[
− 3

5
∇̂(i∇̂iQ∇̂ j∇̂ j)Q

+ 3

4
∇̂(iQ∇̂iQ∇̂ jQ∇̂ j)Q

]
, (29)

S4,1 ≡ SH = iπνF D
2

8pF 

Tr[−F̌i jQ(∇̂iQ)(∇̂ jQ)], (30)

S′
4,1 = iπνF D
2

8pF 

Tr[iQ(∇̂i∇̂ jQ)(∇̂i∇̂ jQ)]. (31)

The double expansion consists of terms Sm,n that are of order
m in gradients, and order n in 1/(pF 
). Here, braces in in-
dices denote symmetrization of the tensor, which is defined as
the average X(i1,...,iN ) = 1

|P|
∑

σ∈P Xiσ (1),...,iσ (N ) over all permu-
tations σ , where P is the set of permutations of 1, . . . , N and
|P| = N!.

The prefactor of the diffusion term S2 is connected to
the longitudinal Drude conductivity by the Einstein relation
νF D = e−2σxx. Similarly, the prefactor of the field strength
term S4,1 = SH is related to the transverse Hall conductiv-
ity by νF D
2/(pF 
) = e−3 dσyx

dB |B=0 where σyx = σxxωcτ and
ωc = eB

m is the cyclotron frequency [61]. By the generic gauge
structure of the theory, this coefficient is the same both for the
Hall effect and the spin-Hall effect. One can also note that un-
like in the quantum Hall effect [51–53], we are here working
in the limit of small field strengths, and so the prefactor is not
quantized.

While such physical considerations suggest that the rela-
tionship between the coefficients of these two terms is fixed,
in general the coefficients of the higher-order gradient terms
can be modified by the longitudinal fluctuations of the Q field.
Already if we allow for nonzero longitudinal part B �= 0 on
the saddle-point level [62], additional corrections of similar
order in the small parameters as in S4,0 and S′

4,1 appear and
additional considerations are necessary if one wants to derive
coefficients of such terms from the microscopic theory. On the
saddle-point level, the coefficient of S4,1 is not renormalized
by them.

The higher-order gradient terms in Eq. (25) are usually not
of direct physical interest (see, however, [63,64]), except if
they break a symmetry present in the lower-order model S2.
In that case, they can give rise to new physically interesting
phenomena. We discuss the model symmetry in more detail in
Sec. III B.

We can recognize that the non-Abelian field strength term
S4,1 = SH is a generalization of the spin-Hall term in Ref. [46]
from the extrinsic spin-Hall effect to the intrinsic one, with
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the correspondence F̌i j ↔ − pF



θεi jkσk , where θ is the spin-

Hall angle. In the equations of motion, this term will lead to
conversion between charge and spin currents, a feature that is
not present in a model containing only S2. The term in S′

4,1 on
the other hand was previously noted in Ref. [47] in the context
of thermoelectric effects for A = F = 0.

B. Symmetry analysis

Terms in the action S can be classified based on which sym-
metries they break. A symmetry relevant for magnetoelectric
effects is the electron-hole symmetry, or the “quasiclassical”
symmetry, which implies [65] a certain lack of coupling be-
tween spin and charge transport. The electron-hole symmetry
can be understood as one that flips the sign of the electron
dispersion ξp = p2

2m − μ �→ −ξp. On the level of the σ model,
this can be expressed as the transformation [65]

Q �→ Q̃ ≡ −τ1Q̄τ1 = −τ2σyQT σyτ2, (32)

where Q̄ = τ3σyQT σyτ3 is a time-reversal transformation.
Similarly as for Green functions, the transformation swaps the
Nambu blocks and reverses time, which corresponds to revers-
ing sign of the “normal” part in the Bogoliubov–de Gennes
Hamiltonian while keeping the anomalous unchanged. A sim-
ilar transformation was used in Ref. [47]; the above is its
extension to a superconducting case, which also requires
keeping the superconducting anomalous self-energy terms ∝
Tr[�τ3τ1eiτ3ϕQ] invariant.

In the usual σ model the action S0 consists of S2 and the
leading term in S
. In the latter term, Ǎ0 changes sign under
the e-h transformation Eq. (32), whereas S2 remains invariant.
This in particular implies that at the level of S0, the trans-
formation Eq. (32) defines a mapping between systems with
opposite directions of the Zeeman field A0. When combined
with the time-reversal symmetry, this mapping forbids the
anomalous supercurrent [65,66], which explains the absence
of magnetoelectric effects in the theory defined by the leading
contribution S0 to the σ model.

By analyzing the subleading higher gradient terms in
Eq. (27), we find that S4,0 is invariant under the transformation
of Eq. (32), but S4,1 = SH and S′

4,1 change sign. Expansion of
S
 (see Appendix A 4) can be classified similarly. Hence, even
though S4,0 is formally larger in the quasiclassical parameter
pF 
 � 1, it has the same symmetry as S2, and we expect its ef-
fect is merely a renormalization of diffusion and not of interest
for us here. In contrast, the terms breaking the “quasiclassical”
e-h symmetry introduce new physics and qualitatively change
the behavior of the system.

The first antisymmetric term S4,1 = SH , Eq. (30), intro-
duces the spin-Hall effect. This term is responsible for all
magnetoelectric effects mediated by intrinsic SOC, such as
direct and inverse spin-galvanic/Edelstein effects in normal
conductors and the appearance of anomalous supercurrents
and anomalous Josephson effect in superconductors.

The second antisymmetric term S′
4,1 of Eq. (31) and the

term iπν

8pF

Tr
(∇̂iQ)(∇̂iQ) appearing in S
 (see Appendix A 4)
were previously presented in Ref. [47] providing an extension
of the σ model to include thermoelectric effects.

IV. SADDLE POINT

As noted in Sec. II, variation of the action produces the
generalized Usadel equation that is the saddle-point condition
for S[Q].

Technically, the variation under the condition Q2 = 1 is
calculated by writing Q = T �T −1, where � is the uniform
saddle-point solution, and by observing that δQ = [W, Q]
with W = (δT )T −1. A straightforward calculation [62] with
subsequent integration by parts then produces the final result,
which can however be represented in different forms, reflect-
ing different formal properties of the saddle-point equation.
On the one hand, the commutator form of the allowed varia-
tions δQ = [W, Q] implies that the saddle-point equation also
has a commutator form [. . . , Q] = 0, which guarantees that
it is consistent with the normalization condition Q2 = 1. On
the other hand, the gauge invariance of the action implies that
the saddle-point equation can be represented in a form of a
covariant conservation law,

∇̂iJi = [i
 + iǍ0, Q], (33)

where the matrix current Ji can be expressed as a variational
derivative of the action with respect to the gauge potential

Ji ≡ − 2

πν

δS

δǍi
= J (2)

i + J (4,0)
i + J (4,1)

i + J (4,1′ )
i , (34)

where from S2 and S4,1 we obtain

J (2)
i = −DQ∇̂iQ, (35)

J (4,1)
i = −Dτ

4m
[{F̌i j + QF̌i jQ, ∇̂ jQ}

− i∇̂ j (Q[∇̂iQ, ∇̂ jQ])]. (36)

Similarly, from S4,0 and S′
4,1:

J (4,0)
i = −3D
2

5

(
Q∇̂(i∇̂ j∇̂ j)Q

+ Q[∇̂(iQ∇̂ j∇̂ j)Q + 2∇̂(i∇̂ jQ∇̂ j)Q]Q

+ 1

2
Q∇̂(iQ∇̂ jQ∇̂ j)Q

)
, (37)

J (4,1′ )
i = −Dτ

2m
[∇̂iQ, ∇̂ jQ∇̂ jQ]. (38)

As we noticed before, whereas the numerical prefactors in
Eqs. (35) and (36) are not modified on the saddle-point level
[62] by the longitudinal corrections, prefactors in the last two
equations have to be renormalized.

At this point it is instructive to compare the present co-
variant theory with intrinsic SOC, and the theory of diffusive
systems with SOC of extrinsic origin, such as random impu-
rities [46]. At the level of the nonlinear σ model, the extrinsic
and intrinsic theories can be connected by (i) replacing the
usual gradients with the covariant gradients, and (ii) identi-
fying F̌i j ↔ − pF



θεi jkσk in the spin-Hall term. It is natural

to expect that the same replacement rules should work for
the Usadel equation. However, this does not look obvious
if one naively compares the Usadel equation from Ref. [46]
and Eq. (33) with the current given by Eqs. (35) and (36).
In the extrinsic case an additional torque term T appears in
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the Usadel equation, while the current has a form that can be
identified only with the first term in Eq. (36). This apparent
contradiction is resolved by noticing that the expected torque
is of course there, but because of the gauge symmetry it must
have a form of a covariant divergence. It therefore appears in
the Usadel equation as an additional contribution to the cur-
rent. Indeed, by using the identity −i[F̌i j, f ] = [∇̂i, ∇̂ j] f and
the replacement F̌i j �→ − pF



θεi jkσk , we recover the correct

torque T of the extrinsic theory. Also, in the case of extrinsic
SOC, there is a spin relaxation Elliot-Yafet term, in the Usadel
equation. In the present case of Eq. (33), the spin relaxation
stems from the double covariant gradient term when substi-
tuting Eq. (35) into Eq. (33). This term corresponds to the
Dyakonov-Perel type of spin relaxation.

Finally we make a connection to the well established
theory of normal conductors with SOC. The normal-state
diffusion equations can be recovered from Eq. (33) by the
replacement

Q �→
(

1 2 f
0 −1

)
, (39)

where the 2 × 2 matrix is in Keldysh space, and Nambu
structure is trivial and we replace τ3 �→ 1. Here f (r, t, t ′) =
f0(r, t, t ′) + σ · f (r, t, t ′) is the spin-dependent distribution
function of electrons. The Usadel equation then becomes the
diffusion equation

[iε̂, f ] = ∇̂iJi, (40)

Ji = −D∇̂i f − Dτ

2m
{F̌i j, ∇̂ j f } − 3D
2

5
∇̂(i∇̂ j∇̂ j) f , (41)

where we wrote the terms corresponding to the leading term
of S
, and the spatial gradient terms S2, S4,1, and also S4,0

which gives a symmetrized derivative term. The other higher-
gradient term S′

4,1 gives no contribution in normal state.
Keeping only the first two terms in Eq. (41), when in-

tegrated over the energy, results to the known spin-charge
diffusion equations in the case of normal metals with intrinsic
SOC [33,67–70]. In the case of U (1) magnetic field strength
B, one can derive the equations describing the ordinary
Hall effect.

The last symmetric derivative term in Eq. (41) from S4,0

is essentially always neglected in derivations of such normal-
state equations, even though it is formally larger by pF 
 � 1
than the SOC term. As we argued in Sec. III B, it can however
be excluded on symmetry grounds. For completeness, let us
show how this term would appear in standard derivations. In
the normal state, we can consider the quasiclassical distribu-
tion function f ( p̂, r; t, t ′) on the Fermi level, which depends
on the position and momentum direction. It obeys a transport
(Eilenberger) equation [71]

− 1

τ
( f − 〈 f 〉) = (v · ∇̂ + ∂t − ∂t ′ ) f = D̂ f , (42)

where ∇̂ is the gauge-invariant gradient and v( p̂) is the veloc-
ity. This formulation works on the 1/(pF 
)0 level, and will
not capture magnetoelectric effects. We can formally solve
Eq. (42), take the average 〈·〉 over momentum directions p̂,

and expand in τ → 0 to find

0 = 1

τ
〈(1 + τ D̂)−1〈 f 〉 − f 〉 = 1

τ

∞∑
n=1

〈[−τ D̂]n〉〈 f 〉. (43)

Truncating to fourth order in spatial gradients and first order
in time derivative, this gradient expansion becomes

0 = −(∂t − ∂t ′ )〈 f 〉 + τ 〈viv j〉∇̂i∇̂ j〈 f 〉
+ τ 3〈viv jvkvl〉∇̂i∇̂ j∇̂k∇̂l〈 f 〉 (44)

= −(∂t − ∂t ′ )〈 f 〉 + D∇̂i∇̂i〈 f 〉 + D
2d

d + 2
∇̂(i∇̂i∇̂ j∇̂ j)〈 f 〉,

(45)

where d is the space dimension. The first two terms constitute
the standard diffusion equation, and the third term is what ap-
pears in Eq. (40), recognizing that ∇̂i∇̂(i∇̂ j∇̂ j) = ∇̂(i∇̂i∇̂ j∇̂ j).

V. EXAMPLE: ANOMALOUS CURRENT IN A
SUPERCONDUCTING SYSTEM WITH RASHBA SOC

It was predicted first by Edelstein [12,13] that a su-
perconductor with a Rashba SOC supports spontaneous
supercurrents in the presence of a Zeeman field. This is noth-
ing but the superconducting version of the spin-galvanic effect
predicted in normal systems [34]. Anomalous supercurrents
are not only present in superconductors but also in prox-
imitized normal systems and Josephson junctions with SOC
[15–19].

The spin-galvanic effect in superconductors has been stud-
ied primarily on linear response assuming either a small
superconducting gap � or a small Zeeman field A0 [13,
15–19,72]. Going beyond linear response is not straightfor-
ward. The result of Ref. [40] suggested that the spin–galvanic
relation between the charge current and the induced spin in
a superconductor is identical to that in a normal metal, i.e.,
that the current induced by the SOC is proportional to the
deviation of the spin density from the Pauli response δS.
However, as follows from Eq. (11), this statement is incorrect.
In this section we determine the anomalous current induced
in a Rashba superconductor to all orders in the magnetic field
and arbitrary temperatures.

Let us consider a two-dimensional infinite homogeneous
normal system with an isotropic Rashba SOC, proximitized
by a superconductor. The SOC is described by the SU(2) vec-
tor potential with components Ax = 2ασy and Ay = −2ασx.
Because the system is homogeneous, no gradient terms enter
Eq. (33). Moreover, the term Eq. (36) does not contribute to
the Usadel equation which acquires the simple form [40]:

Dα2[σi, Q[σi, Q]] = [i
 + ihσx, Q]. (46)

The term in the left-hand side is the Dyakonov-Perel relax-
ation term due to the SOC, and we have assumed that the
Zeeman field h points in x direction. From this equation one
determines the function Q which in the present situation has
the structure

Q = Q̂0 + Q̂xσx, (47)

where Q̂0,x are 2 × 2 matrices in Nambu space.
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Once the matrix Q is obtained one can determine the Hall
matrix current J (H ) given by Eq. (11):

Jan = −Dτ

4m
(iπT ν)

∑
ωn

Trτ3{F̌yx + QF̌yxQ, ∇̂xQ}. (48)

Notice that the last term in Eq. (11) does not contribute in the
case considered here. This expression has the same structure
of the matrix current derived in Ref. [40] after the substitution
F̂i j → (F̂i j + QF̂i jQ)/2. As we demonstrate next the term
QF̂i jQ leads to an enhancement of the anomalous current
when h ∼ �.

First, in order to obtain an analytical result we neglect the
relaxation term and obtain for the components of Q in Eq. (47)

Q̂0,x = g0,xτ3 + f0,xτ1 (49)

with

g0,x = g+ ± g−
2

, (50)

f0,x = f+ ± f−
2

, (51)

and

g± = ωn ± ih√
(ωn ± ih)2 + �2

, (52)

f± = �√
(ωn ± ih)2 + �2

. (53)

We have used the Matsubara representation of the Green’s
functions, with ωn = πT (2n + 1), and h is the amplitude of
the Zeeman or exchange field.

It is easy to check that the Q defined by Eqs. (47)–(53)
satisfied the normalization Q2 = 1. To calculate the charge
anomalous current Jan one substitutes the above Q in Eq. (48):

Jan = − iπT Dτα3

2m

∑
ωn

(g+ − g−)(1 + g+g− + f+ f−)

= 2πT Dτα3

m
h�2

∑
ωn

Re
√

�2 + (ωn + ih)2

h4 + 2h2
(
ω2

n − �2
) + (

ω2
n + �2

)2 .

(54)

The value of the maximum of Jan at h = � in the limit
T � � can be found as follows. For small T and h = � the
Matsubara sum in Eq. (54) is dominated by ω � �.
Therefore,

Jan|h=� ≈ π�Dτα3

m
T

∑
ω>0

√
�

ω3/2

= π�Dτα3

m

23/2 − 1

(2π )3/2
ζ (3/2)

√
�

T
. (55)

This result holds when neglecting the spin relaxation. If the
latter is taken into account, the 1/

√
T divergence at T → 0

saturates to the value 1/
√

�DP at temperatures smaller than
the Dyakonov-Perel spin relaxation rate �DP = Dα2.

Inclusion of the spin-relaxation term stemming after substi-
tution of Eq. (11) into Eq. (8) does not allow for a analytical
solution for the Green’s functions. We therefore calculate

FIG. 1. The anomalous current J̄an = Jan2m/(π�Dτα3) (blue
solid line) as a function of the field h for Dα2 = 0.1� and T =
0.02�. The red line shows the result obtained from Ref. [40].

numerically the anomalous current, Eq. (54). In Fig. 1 we
show the result for Dα2 = 0.1� at T = 0.5�. The red line
shows the result obtained using the expression for the cur-
rent from Ref. [40], Jan = −iπT Dτα3/(2m)

∑
ωn

(g+ − g−).
Whereas at a small field both results coincide (linear regime),
the anomalous current at fields comparable to � is clearly
larger than the one obtained in that work.

VI. CONCLUSIONS

With the help of computer algebra, we have derived the
nonlinear σ model for superconducting and normal systems,
including the intrinsic SOC. The latter enters the theory as
an effective SU(2) gauge field and therefore appears in the
σ model only via gauge covariant combinations, the field
strength, and covariant derivatives. We have performed a sys-
tematic gradient expansion and identified the spin-Hall term,
which is responsible for the spin-Hall effect and other mag-
netoelectric effects mediated by the intrinsic SOC, such as
spin-galvanic/Edelstein effects and anomalous supercurrents
in superconductors. In the same order of the gradient expan-
sion, we also recover the previously discussed contribution
related to thermoelectricity [47].

The saddle-point equation of the model, Eqs. (33)–(38),
which corresponds to the generalized Usadel equation, reveals
new terms only present in the superconducting state and in
nonlinear regimes, e.g., Eq. (36). We applied the derived
equations to compute the anomalous current generated by
a Zeeman field in a superconductor with Rashba SOC. We
observe a substantial increase in the anomalous current com-
pared to the results of previous incomplete theories, which
clearly demonstrates the importance of new nonlinear terms
in the saddle-point equations.

The presented generalized nonlinear σ model provides
a flexible and convenient tool for studying diffusive super-
conducting systems with intrinsic SOC. It is expected to be
especially useful for analyzing the effects of intrinsic spin-
charge coupling in the nonlinear regime at the saddle-point
level and for the description of a wide range of fluctuation
phenomena.
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In our derivation of the σ model we described supercon-
ducting correlations at the mean-field level. Apparently the
mean-field approximation is not critical for our approach.
Both the Cooper channel interaction and the usual Fermi-
liquid interactions can be straightforwardly included into the
formalism of the σ model without resorting on the mean-field
treatment (see, for example, Ref. [73] and references therein).
A natural further development of our work is to extend the
model beyond the mean-field description of electron-electron
interactions in the spirit of Refs. [43,50,73,74] to study the
interplay of interactions, spin-charge coupling, and supercon-
ductivity.
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APPENDIX: COMPUTER ALGEBRA METHODS

1. Gradient expansion

We compute the expansion of

δS = − i

2
Tr ln G−1 + i

2
Tr ln G−1

= − i

2
Tr ln⊗

[
1 +

(
2pkak − akak

2m
+ a0

)
⊗ G

]
(A1)

in the small parameter ak, ∂k ∼ small. Here G−1
p = μ − p2

2m +
i

2τ
�, and �2 = 1.
As explained in the main text, we work in the Wigner repre-

sentation, where the Moyal product has the gradient expansion

X ⊗ Y =
∞∑

n=0

in

2nn!
X (

←
∇r ·

→
∇ p −

←
∇ p ·

→
∇r )nY (A2)

that corresponds to an expansion in “small,” and can be trun-
cated. It is convenient to express the mass m = τψ/
2 and
the chemical potential μ = ψ/(2τ ) in terms of the scattering
time τ or mean free path 
, and the quasiclassical parameter
ψ = pF 
, to express the result as a double expansion in small

 and large ψ .

The series expansion of the logarithm and the Moyal prod-
uct, and (as we see below) calculation of the momentum
sum is straightforward. It results to the gradient expanded
action, which can in the end be reexpressed in terms of
gauge-invariant derivatives ∇̂ jQ = ∂ jQ − [iA j, Q] and the
field strength F̌i j = ∂iAi − ∂ jA j − i[Ai, Aj]. We truncate the

expansion in order small4, which is where the lowest-order
spatial field-strength term appears.

As the calculation of many (>100) terms is tedious to
do manually, we implement this in computer algebra. The
gradient expansion outlined above can be done symbolically
by considering an algebra of terms cm consisting of a non-
commutative monomial m and a scalar coefficient c, with m
consisting of a product of symbols {�, ai, a0,G}. The only
nonzero momentum derivative of the base symbols is ∂piG =
pi

m GG. The nonzero spatial derivatives we denote in terms
of aX,i ≡ ∂iaX where X is some set of indices. Here ai jk...

are symmetric under exchange of indices, excluding the first
index. The order in small of a monomial is equal to the total
number of indices in a.

At the end of the expansion the monomials appear un-
der tr, where they can be permuted cyclically. We define an
(arbitrary) ordering of monomials m � m′, and permute each
term to the order where the monomial is minimal. The pro-
cedure produces an expansion δS = Tr

∑
j c jm j which after

momentum integration becomes the local gradient expansion
δS = ∫

dd r tr
∑

j c′
jm

′
j . We will also drop total derivative

terms. Finally, we reexpress δS in a gauge-invariant form, in
terms of monomials of symbols QX,i ↔ ∇̂iQX and F̌i j .

It is also possible to formulate the expansion in a mani-
festly gauge-invariant manner, in terms of a gauge-invariant
Moyal product. However, the present approach is simpler to
implement in computer algebra.

The implementation is written using SageMath [78], and is
included in the Supplemental Material [62].

2. Momentum integration

The momentum integrals are calculated exactly, and then
expanded in series in the quasiclassical parameter ψ = pF 
 =
2μτ � 1. Although their analytic evaluation is standard, for
completeness we explain it here in a form suitable for straight-
forward computer implementation.

All expressions generated by the expansion have the form

I =
∑

p

f (p) =
∫ ∞

−μ

dξ ν(ξ )〈 f (p(ξ ))〉, (A3)

f (p) = g(p)GpZ1GpZ2 . . . ZN−1Gp, (A4)

where G−1
p = −ξp + i

2τ
�, and we consider a parabolic band

ξp = p2

2m − μ in d dimensions, ν(ξ ) = (1 + ξ/μ)d/2−1νF .
Here g(p) is a product of pi and a p-independent scalar, and
Zj are momentum independent.

The angular average 〈·〉 over the (d − 1) sphere can be
evaluated with a well-known formula, for n even,

∫
Sd−1

dSp pi1 . . . pin

V (Sd−1)
= pn(d − 2)!!

(n + d − 2)!!

∑
C∈P

∏
(ia,ib)∈C

δia,ib, (A5)

where P is the set of all pairings C of the indices {i1, . . . , in},
and V (Sd ) is the sphere surface volume. The result is zero if
n is odd. We then get 〈g(p)〉 = g0( p2

2m )
β
, where β is an integer

and g0 a scalar.
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TABLE I. Coefficients CβNn in Eq. (A6), for d = 3, expanded in
ψ = pF 
 � 1 up to O(ψ1).

β, N n = 0 n = 1 n = 2 n = 3 n = 4

0, 1 ∞ 1 – – –
0, 2 iψ

2 0 − iψ
2 – –

0, 3 − 3iψ
16

ψ2

8
iψ
16 − 3ψ2

8 –

0, 4 iψ3

16 − 5iψ
128 −ψ2

32 − iψ3

16 + iψ
128

ψ2

32
5iψ3

16 − iψ
128

1, 1 ∞ ∞ – – –
1, 2 ∞ 0 − iψ

2 – –

1, 3 − 9iψ
16

ψ2

8
3iψ
16 − 3ψ2

8 –

1, 4 iψ3

16 + 15iψ
128 − 3ψ2

32 − iψ3

16 − 3iψ
128

3ψ2

32
5iψ3

16 + 3iψ
128

2, 1 ∞ ∞ – – –
2, 2 ∞ ∞ − iψ

2 – –

2, 3 ∞ ψ2

8
5iψ
16 − 3ψ2

8 –

2, 4 iψ3

16 + 75iψ
128 − 5ψ2

32 − iψ3

16 − 15iψ
128

5ψ2

32
5iψ3

16 + 15iψ
128

Using �2 = 1 and that Gp = (−ξp − i
2τ

�)/(ξ 2
p + 1

4τ 2 ), we
can rewrite

I = −iπνF μβ+1−N g0

∑
α

Cβ,N,|α|1 Rα, (A6)

Rα = �α1 Z1�
α2 Z2 . . . ZN−1�

αN , (A7)

where the sum runs over the multi-index α = (α1, . . . , αN ),
α j ∈ {0, 1}, and |α|1 = ∑

j α j . The coefficients are given by

CβNn = in+1(−1)N

πψn

∫ ∞

−1
dz

(1 + z)β+d/2−1zN−n

(z2 + ψ−2)N
, (A8)

where ψ = 2μτ = pF 
.
The integral over z can be evaluated by contour integra-

tion, with the help of an analytic function q(z) satisfying a
Riemann-Hilbert problem q(z + i0+) − q(z − i0+) = θ (1 +
z)(1 + z)d/2−1 on a branch cut along the real axis. The result
is given by

CβNn = −2in(−1)Nψ−n
∑
±

Res
z=±i/ψ

q(z)
(1 + z)βzN−n

(z2 + ψ−2)N
, (A9)

where we can take

q(z) =
{

i
2π

ln(−1 − z)(1 + z)d/2−1, d even,

i
2

√−1 − z(1 + z)(d−1)/2−1, d odd.
(A10)

Calculating the residue and expanding the result in series in
ψ for ψ � 1 is straightforward with computer algebra. The
values for CNβn are shown in Table I for d = 3, expanded in
series of ψ � 1 truncated to order ψ1. To this order, one can
show that the results are the same as from a pole approxima-
tion neglecting the band bottom.

The momentum integral converges for β + d/2 < N + n,
and for other values the constants are diverging. Inspection
of the gradient expansion indicates that momentum integrals
appearing in order k > d of the expansion are all conver-
gent. For d = 2 and 3, a nonconvergent integral appears in
the second-order gradient expansion, but can be removed by
requiring that the expansion is gauge invariant. Namely, for

constant scalar Ai,

0 = Tr ln G−1
p+A − Tr ln G−1

p � − 1

2m
Tr[∂p j (piG)]AiAj .

(A11)

This equation implies a sum rule C120 + d
2C010 = −C122,

using which eliminates all divergent constants appearing.
This operation corresponds to subtraction of the above total
derivative.

The above also allows evaluating the 
 = Ǎμ = 0 uniform
saddle-point equation of Eq. (13) exactly. Making an ansatz
Q = b� with some scalar b, we have

b� = i

πνF

′∑
p

G(p) =
∑

p

1
2πτνF[

μ − p2

2m

]2 + b2

4τ 2

b�, (A12)

where the primed sum is defined with the trace part subtracted,
consistent with tr� = 0. Hence,

b = C011|ψ �→ψ/b = Re

√
1 + ib

ψ
, (A13)

From this it follows b = 1 + O(ψ−2), so with the accuracy we
work with, we can take b = 1.

3. Noncommutative reduction

The final step is rewriting the expansion, which consists
of terms with monomials of symbols {�, a j, a0}, in terms
of gauge-invariant derivatives and the field strength. We do
this using a similar Gaussian elimination approach as used in
noncommutative Gröbner basis constructions [79]. We outline
the approach briefly below.

We define additional symbols Q̄i, Q̄i j , F̄i j , and consider the
relations

Q̄i = [−iai,�], (A14)

Q̄i j = [−iai j,�] + [−ia j, [−iai,�]], (A15)

F̄i j = a ji − ai j − i[ai, a j]. (A16)

The relations to the actual Q and field strength are then Q̄i =
T −1∇̂iQT , Q̄i j = T −1∇̂ j∇̂iQT , and F̄i j = T −1Fi jT .

Consider now the problem of rewriting an expression S =∑
j c jm j expressed in terms of a,� solely in terms of Q̄,

F̄ , and �. It is understood the expression is under tr, and
monomials can be cyclically permuted to their minimal form.
Note that the factors of T , T −1 cancel under tr in expressions
containing only the symbols Q̄, F̄ , with replacement � ↔ Q.

The above relations (A14)–(A16) can be expressed as
g j = 0, j = 1, 2, 3, where gj = ∑

k c′
jkm′

jk are expressions
containing symbols a, Q̄, F̄ , �. Form then the set I of ideal
generators g′

k j = nkg j , where nk are any monomials such that
the maximum order of terms in g′ is � M where M is a
constant; here we can take M = 6. We permute all monomials
in g′

k j cyclically to their minimal form. The set I has a finite
number of elements. Obviously each expression g′ in I satis-
fies trg′ = 0 if the definitions of Q̄, F̄ symbols hold. Gröbner
basis algorithms use a more optimal construction of the set I ,
although they usually do not consider trace permutations.
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Define now a monomial ordering so that all monomials m
containing a symbols satisfy m � m′ for all m′ not containing
any a symbols. The monomials, ordered from largest to small-
est, can be considered as the basis of a vector space: one can
then perform Gaussian elimination on the ideal generator set
I = {g′} and the expression S, to find the scalar coefficients dj

which eliminate the largest terms (in the basis sense) in S′ =
S − ∑

j d jg′
j . Because a symbols were considered largest,

Gaussian elimination removes them first, and the resulting
expression S′ will not contain them if S is gauge invariant.
The results of the transformation are straightforward to verify.

The same approach can be used to rewrite results in terms
of the symmetrized gauge-invariant derivatives, by introduc-
ing symmetrized derivative symbols ordered smaller than
others, and for other forms of symbolic simplification of the
noncommutative expressions under trace.

4. Results

We list below the typeset output of the program in the
Supplemental Material [62] that performs the computations
outlined above. The results are the leading contributions to
the local gradient expanded action, written in form δS =
−πνF

2

∫
d3r trS̄ and in units with 
 = τ = 1.

The spatial gradient part, up to order 4 in gradients and to
ψ−1 in ψ = pF 
,

S̄grad = S̄2 + S̄4,0 + 1

ψ
S̄4,1, (A17)

S̄2 = − 1
12 iQiQi, (A18)

S̄4,0 = 1
20 iQ(iiQ j j) − 1

16 iQ(iQiQjQj), (A19)

S̄4,1 = − 1
12 QiQjQi j + 1

12 iFi jQQiQj, (A20)

Here (. . .) in indices means tensor symmetrization, Q =
T �T −1, and Qi = ∇̂iQ, Qi j = ∇̂ j∇̂iQ, and F is the field
strength.

The first term in S̄4,1 can be written in various forms
under trace, using Eqs. (A14) and (A15). For example,
Tr(QiQjQi j ) = −Tr(QQi jQi j ) = − 1

2 Tr(QiiQjQj ).
The a0 part, up to fourth order in “small” and to ψ−1 in ψ :

S̄
 =
4∑

j=0

(
S̄
, j,0 + 1

ψ
S̄
, j,1

)
, (A21)

S̄
,0,0 = 0, (A22)

S̄
,1,0 = C010
 + Q
, (A23)

S̄
,2,0 = − 1
4 iQ0Q0, (A24)

S̄
,3,0 = − 1
6 F0iQi − 1

4 iQQiQ0i − 1
4 iQQ0Q00, (A25)

S̄
,4,0 = 1
6 iF0iF0i + 1

2 iQ0iQ0i + 1
4 iQ00Q00 + F0iQQ0i

+ 2
3 F0iQ0Qi + 1

3 F0iQiQ0 − 5
16 iQ0Q0Q0Q0

− 5
12 iQ0Q0QiQi − 5

24 iQ0QiQ0Qi − 1
6 iF0iQF0iQ,

(A26)

and

S̄
,0,1 = 0, (A27)

S̄
,1,1 = 0, (A28)

S̄
,2,1 = 1
2 Q

, (A29)

S̄
,3,1 = − 1
4 iQ0Q0
 − 1

4 iQiQi
, (A30)

S̄
,4,1 = −iF0iQ0i − 1
2 F0iQi
 + 1

8 QQ0iQ0i − 3
8 Q0QiQ0i

− 1
2 iF0iQQ0Qi − 1

4 iF0iQQiQ0 − 3
4 iQQiQ0i


− 1
4 iQQ0Q00
, (A31)

where we define Q0 = [−i
, Q] for the “time derivative,” and
Fk0 = −F0k = T (a0k − i[ak, a0])T −1 = ∂k
 − i[Ak,
] =
∇̂k
 for the “field strength.” Above, in contrast to the main
text, we set Ǎ0 = 0. To recover the 0 components of the
fields and the field strengths in Eqs. (A21)–(A31), shift

 �→ 
 + Ǎ0 so that also Fk0 = −F0k �→ ∇̂k
 + F̌k0.
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