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We analyze theoretically two different setups for s-wave superconductivity proximitized j = 3
2 particles in

Luttinger materials that are able to host Majorana bound states (MBSs). First, we consider a one-dimensional
superconductor (SC) wire with intrinsic bulk inversion asymmetry (BIA). In contrast to wires, modeled by a
quadratic dispersion with Rashba spin-orbit coupling, there are two topological phase transitions in our systems
at finite magnetic fields. Second, we analyze a two-dimensional Josephson junction on the Luttinger model
finding a topological region even in the absence of BIA and Rashba spin-orbit couplings. This originates from
the hybridization of the light and heavy hole bands of the j = 3

2 states in combination with the SC pairing. As a
consequence, both systems can be driven into a topological phase hosting MBSs. Hence, we predict that MBSs
form in any SC proximitized Josephson junction on two-dimensional Luttinger materials by the application of
magnetic field alone. This opens an avenue for the search of topological SC.
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I. INTRODUCTION

Remarkable interest in Majorana bound states (MBSs) has
arisen in recent decades [1–5]. In condensed-matter systems,
they manifest as zero-energy modes appearing at the bound-
aries of a topological superconductor (SC) [6,7]. Since they
come in pairs to form a fermionic state, they acquire nonlocal
properties which topologically protect them from decoherence
[4–9]. For this reason, MBSs are ideal candidates for topolog-
ical quantum computation. Consequently, several experiments
attempt to detect signatures of MBSs [3,10–13].

It has been predicted that a semiconducting nanowire with
s-wave proximitized superconductivity and spin-orbit cou-
pling (SOC) can host MBSs at its boundaries [5,14–18]. These
appear in a topological phase after a Zeeman field, perpen-
dicular to the SOC field, inverts the SC gap. Similarly, a
two-dimensional Josephson junction with perpendicular Zee-
man and SOC fields is also able to host MBSs at the boundary
between the normal region and the vacuum [12,13,19–21].
These MBSs appear, if the double degenerate Andreev bound
states (ABSs) split at finite Zeeman fields, giving rise to a
topological regime between two crossings. The topological
gap in the ABS spectrum protects the MBSs against pertur-
bations.

In this paper, we analyze these setups for the j = 3
2 states

of bulk materials such as HgTe, α-Sn, or half-Heusler com-
pounds, which exhibit a quadratic band touching at the � point
around the Fermi energy. These so-called quadratic nodal
semimetals can be described within the four-band Luttinger
model (LM) [22,23]. Luttinger materials display a rich va-
riety of topological phases induced by perturbations, i.e., in
the presence of strain they are three-dimensional topological

*hankiewicz@physik.uni-wuerzburg.de

insulators [24–26] or topological semimetals [22,27–30], with
local attractive electron-electron interaction they transform
into superconducting phase [31,32], and they can show higher
spin SC pairings [33–39]. Our models are appealing for two
reasons: on the one hand, they give a more realistic description
of materials. On the other hand, the LM can be derived from
the k · p model in which spin-orbit interactions, especially
bulk inversion asymmetry (BIA) terms, are already taken into
account [40]. Hence, MBSs could emerge intrinsically with no
extra implementations of spin-orbit interactions in the setup.

Specifically, we show that in a one-dimensional (1D) LM
wire, MBSs emerge from the interplay between intrinsic BIA
and the Zeeman field. Further, in contrast to the semiconduct-
ing Rashba nanowires, the topological phase in our systems
is limited to a finite Zeeman field range. Moreover, we pre-
dict that for two-dimensional (2D) Josephson junctions on
Luttinger materials, MBSs still appear due to the intrinsic
SOC originating from the mixing between light hole (LH) and
heavy hole (HH) bands. Therefore, in Josephson junctions on
2D materials described by j = 3

2 particles no extra SOC is
necessary to generate MBSs.

II. THEORETICAL MODELS

We use the two-dimensional four-band LM [41] to describe
the j = 3

2 states of our systems:

ĤL(k) = α0k21̂4 + αzM̂z(k) + α�M̂�(k) − μ1̂4, (1)

with M̂z(k) = 5
2 k21̂4 − 2(k · Ĵ)2 and M̂�(k) = k2

x Ĵ2
x + k2

y Ĵ2
y −

2
5 (k · Ĵ)2 − 1

5 k2Ĵ
2
. Here, k = (kx, ky, 0) is the momentum;

Ĵ = (Ĵx, Ĵy, Ĵz ) are the j = 3
2 spin matrices; and α0, αz, and α�

are material-specific parameters related to the effective masses
of the bands while μ is the chemical potential. We emphasize
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FIG. 1. Sketch of the setups: (a) A one-dimensional Luttinger
wire of length L in contact with an s-wave superconductor and in
the presence of a Zeeman field Bx or By. (b) A two-dimensional
Josephson junction of length L with a Zeeman field applied in a
normal region of width W . Two s-wave superconductors of width
WS and phases φS1 = −φ/2 and φS2 = φ/2, respectively, separated
by a normal regime N on top of the Luttinger material.

that the αz and α� terms involve an intrinsic symmetric SOC
in the system for at least two dimensions [33].

Using the Nambu basis (c3/2, c1/2, c−1/2, c−3/2,−c†
−3/2,

c†
−1/2,−c†

1/2, c†
3/2), where c†

jz
(c jz ) are the creation (annihila-

tion) operators of particles with z components of total angular
momentum jz, we get the Bogoliubov–de Gennes (BdG)
Hamiltonian describing a 1D SC wire [Fig. 1(a)]

ĤW (kx ) = τ̂zĤL(kx )|ky=0 + τ̂zĤBIA(kx ) + �τ̂x1̂4 + Byτ̂0Ĵy,

(2)

where τ̂ = (τ̂x, τ̂y, τ̂z ) are the Pauli matrices in Nambu
space. The second term corresponds to the BIA ĤBIA(kx ) =
βkx{Ĵx, Ĵ2

y − Ĵ2
z }, where β is the BIA strength and {· · · } is

the anticommutator. We identify ĤBIA as an intrinsic source
of SOC interactions in any semimetal of the Td tetrahedral
symmetry group. The proximitized SC is represented by the
induced s-wave pairing potential �. In addition, a Zeeman
term By is applied perpendicularly to the BIA field.

For the 2D Josephson junction [Fig. 1(b)], we consider the
Hamiltonian

ĤJJ (k) = τ̂zĤL(k) + ĤJJ
� + τ̂0ĤJJ

Z . (3)

In this setup, two SCs (S1 and S2) are separated by a non-
SC (N) region of width W . Therefore, the SC coupling
takes the form Ĥ� = ��(|x| − W/2)[eiφ(x)τ̂+ + e−iφ(x)τ̂−]1̂4

where �(x) is the Heaviside function, φ(x) = (φ/2)sgn(x)
is the SC phase, and τ̂± = (τ̂x ± iτ̂y)/2. Additionally, the
Zeeman field is only applied in the normal region such that
ĤJJ

Z = �(W/2 − |x|)BxĴx.
In the presence of a Zeeman field, our systems have broken

time-reversal symmetry and conserved particle-hole symme-
try. Therefore, they are in the symmetry class D [42,43] which
is categorized by the topological invariant Q = det(r) in 1D,
where r is the reflection matrix [44,45]. We notice that, even
though the Josephson junction is a 2D system, the normal
region in which the MBSs appear can be considered as a
quasi-1D wire since the MBSs are localized along the y di-
rection only. Therefore, we obtain the topological invariant
of both setups by employing the method for one dimension
explained in Ref. [45].

The solutions to the scattering problem and BdG equa-
tion were calculated numerically using the KWANT package
[46].

FIG. 2. (a)–(d) Bulk band-structure calculations of an infi-
nite wire with proximitized superconductivity and Zeeman field
By [see Fig. 1(a)], using the parameters of HgTe (α0, αz, α�) =
(16.58, 9.36, −1.6) h̄2

2m and β = −4.31 meV nm [47,48]. We set the
chemical potential at μ = 0.25 meV and � = 0.2 meV. The color
code indicates the character of the bands being light-hole (red) or
heavy-hole (blue) like. The insets in (d) specify the topological
invariant Q. The critical magnetic fields BHH and BLH are given in
Eq. (4). (e) Size of the minimum gap for all momenta as a function
of the superconducting gap � and the strength of the bulk inver-
sion asymmetry β in the topological phase at By = (BHH + BLH)/2.
(f) Band structure of a wire with finite length L as a function of By

with a system size much larger than the localization length of the
MBS (L � λ). States localized at the boundaries of the wire are indi-
cated in red, showing the Majorana bound states in the topologically
nontrivial region.

III. SUPERCONDUCTING WIRE

In comparison with the two-band Rashba model, the four-
band LM considers double degenerate LH and HH states. We
show that the interplay of these two types of states in the LM
gives rise to intriguing physics. The LM can describe both
semimetal (|α0| < |2αz − 3/5α�|) and metal (|α0| > |2αz −
3/5α�|) regimes, where the LH and HH states have either
opposite or the same curvature.

For the sake of simplicity, we study the band structure of
the SC wire focusing on semimetals (|α0| < |2αz − 3/5α�|)
and μ > 0, where the Fermi energy only lies in the LH band
[Fig. 2(a)]. In the absence of a Zeeman field, the SC coupling
� opens a gap in all states around the Fermi energy and
we are in a trivial phase with Q = +1. Applying a Zeeman
field By breaks the time-reversal symmetry of the system.
Consequently, the bands will split into positive and negative
energies depending on their spin degeneracy. One can find a
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critical Zeeman field for each band where a topological phase
transition occurs. This is caused by a band crossing at zero
momentum. Such critical fields are given by

BHH = 2

3

√
�2 + μ2, BLH = 2

√
�2 + μ2. (4)

For k = 0, the critical Zeeman field By = BHH corresponds to
a crossing between the quasielectron and quasihole states in
the BdG Hamiltonian for the jz = −3/2 bands. This crossing
yields a topological transition to a nontrivial phase charac-
terized by a topological invariant Q = −1 [Fig. 2(b)]. The
second critical field By = BLH denotes a band crossing be-
tween the quasielectron and quasihole states for the jz =
−1/2 bands. In this regime, the system undergoes a second
topological transition and returns to a trivial phase Q = +1
[Fig. 2(c)]. The existence of two topological transitions can be
used as an additional knob to identify MBSs in experiments
such as in Ref. [51]. This last feature cannot be observed
in two-band wires with Rashba or Dresselhaus SOC [14,15]
since more than one topological transition can only occur in
systems with more than two bands.

We note that in the absence of BIA, the system is gapless
[see Fig. 2(e)]. In one dimension, the αz and α� terms do not
act as SOC and only give a difference in the effective masses
of the | jz| = 1

2 and | jz| = 3
2 states (see the Supplemental

Material [52]). This is due to a simple fact that squared com-
ponents of total angular and spin momenta give a constant.
Therefore, the gap cannot be opened with only the application
of Zeeman fields and BIA has to be included as a source of
SOC to find topological features in the system. High BIA
strengths will enhance the topological gap. Hence, we expect
the formation of MBSs in a wide range of materials from the
Td symmetry class.

Due to the bulk-boundary correspondence [53], the non-
trivial topological invariant implies that we have a MBS
localized at the edges of the wire. Using tight-binding cal-
culations, we show in Fig. 2(f), that such zero-energy states
indeed appear in the nontrivial region for L � λ, where λ is
the localization length of the MBS [5]. As expected, the MBS
at each end of a shorter wire hybridizes and yields Majorana
oscillations around zero energy.

Similar results can be also obtained by considering Rashba
SOC instead of BIA. However, we focus here on BIA since
it is an intrinsic property of the material, while Rashba SOC
has to be generated by an applied electric field or asymmetric
quantum well structure. We note that if Rashba SOC is con-
sidered in the 1D wire along the x axis [Fig. 1(a)], one requires
a different direction of the Zeeman field (Bx) [14,15].

IV. TWO-DIMENSIONAL JOSEPHSON JUNCTION

In 2D Josephson junctions, the propagating particles in
the N region experience multiple Andreev reflections at the
NS interfaces giving rise to ABSs that are confined to the N
region [|x| � W/2; see Fig. 1(b)] [20,21]. We first focus on
the ky = 0 case of an infinite L system, making the junction
effectively 1D. In the absence of a Zeeman field, those ABSs
are degenerate. An in-plane Zeeman field applied to the N
region breaks the time-reversal symmetry and lifts the degen-
eracy of the ABS [Fig. 3(b)]. This leads to two zero-energy

crossings at critical phase differences, indicating an effective
inversion of the gap and a change in the topology. Therefore,
the energy gap as a function of Zeeman field and phase differ-
ence [see Fig. 3(c)] gives a topological phase diagram which
can be alternatively obtained by calculating the topological
invariant Q. In a perfect system, without normal reflection at
the NS interface, the topological region is centered around
the Thouless energy (ET = π

2
h̄vF
W = 2.2 meV). Since the SC

regions in our system have a finite length much larger than the
coherence length [54], we find a small contribution of normal
reflection, which affects the topological phase diagram. It was
shown [23] that any semi-infinite 2D Luttinger semimetal with
a single edge and without cubic anisotropy (α� = 0) hosts
either one (for 1 � |α0|/|αz| < 2) or two (for |α0|/|αz| < 1)
edge states, originating from the quadratic node in the bulk
band structure. Metallic Luttinger materials (|α0|/|αz| > 2) do
not host edge states. In this work, we focus on semimetals with
one edge state at positive energies, using the material-specific
parameters of α-Sn (α0/αz = 1.57) shown in Fig. 3(a). For
such materials, the sign of μ is important and can be used
to tune the system into different topological phases. In the
subgap energy range (|E | < |�|), the transmission in the N
region is only given by the jz = ±3/2 states for μ < 0 and
determined by a combination of jz = ±1/2 and edge states for
μ > 0. From now on, we focus on the μ < 0 phase, without
edge states.

Having a topological phase, which can host Majorana
bound states, demands additionally a finite gap at all trans-
verse momenta ky. Interestingly, we find such gaps at all points
in the topological region of Fig. 3(d) away from φ = 0, even
without additional inversion symmetry breaking by BIA or
Rashba terms. Previously, 2D Josephson junctions built from
semiconductors were modeled by a two-dimensional electron
gas, where an additional inversion symmetry breaking Rashba
or Dresselhaus term was needed to open a topological gap
[12,20,21,55]. In the Luttinger semimetal, the intrinsic SOC
of the αz and α� terms is kxky{Jx, Jy} [52]. This term in
combination with a finite phase difference between the SCs
opens a topological gap with a nontrivial topological invariant
under magnetic field.

Considering a system that is confined in y direction with
a finite length L allows us to study the wave functions of the
states in real space. We show the density of the lowest-energy
wave functions in the different regions of the topological
phase diagram in Figs. 3(e)–3(h) at φ = 1.2π . In the trivial re-
gion for small magnetic fields, we find ABSs which are bound
to the normal conducting region at |x| � W/2 [Fig. 3(e)] in
the induced SC gap. For magnetic fields in the topological
region with Q = −1, we find a single zero-energy state which
is additionally localized in y direction giving rise to a MBS
[Fig. 3(f)]. The localization length of the MBS is propor-
tional to the inverse of the topological gap [E top

g (φ, Bx ) =
minky Eg(φ, Bx, ky)]. For increasing magnetic fields, the gap
of the ABS closes again at ky = 0 and provides a second band
inversion with the transition to trivial SC (Q = +1). Here,
we find two zero-energy states which are localized in y direc-
tion [Figs. 3(g) and 3(h)] combining to a trivial conventional
fermion.

Figures 3(i) and 3(j) show calculations for the conduc-
tance of the system around the edge of the N region. Here,
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FIG. 3. (a) Band structure of the nonsuperconducting semi-infinite 2D semimetal regime with the bulk continuum (blue shaded) and the
edge states (red). The dashed line indicates the chemical potential μ. (b) Andreev bound states as a function of the superconducting phase
mismatch φ for the Zeeman field Bx = 0.5 meV and ky = 0. The dashed lines indicate the topological phase transitions characterized by
the topological invariant Q = ±1 (framed insets). (c) Energy gap Eg of the Andreev spectrum of the 2D Josephson junction at ky = 0 as a
function of φ and Bx . The topological regions in the phase diagram are separated by the gap closings (black lines). (d) Topological gap of the
Andreev spectrum for all momenta [E top

g = minky Eg(ky )]. (e)–(h) Density of the lowest energy wave functions in real space for φ = 1.2π . (e)
Nonlocalized Andreev bound state in the trivial region (Bx = 0.05 meV), (f) localized zero-energy Majorana bound state in the topological
region (Bx = 2.0 meV), and (g) and (h) two localized zero-energy states in the trivial region (Bx = 4.0 meV). (i) Conductance calculated at
the edge of the N region of the Josephson junction as a function of energy E and φ at Bx = 0 meV and (j) Bx = 0.5 meV with a zero-bias
peak in the topological region. Here, we used the parameters for Josephson junction based on α-Sn (α0, αz, α�) = (18.62, 11.88, 0) h̄2

2m [49],
μ = −1.0 meV, while the s-wave induced SC gap is taken for β-Sn with � = 0.56 meV [50]. The dimensions of the junction are W = 20 nm,
WS = 150 nm, and L = 1000 nm.

we added a small probe on top of the boundary of the N
region, attached to a lead [52], similar as in Ref. [12]. Without
magnetic field [Fig. 3(i)], one can clearly see the signal of
the degenerate ABSs which cross at φ = π . At finite mag-
netic field [Fig. 3(j)], the ABSs split and host a topological
region in between two crossings. The calculated conductance
shows a clear zero-bias peak in the topological region, in-
duced by MBSs, which we predict to be observable in future
experiments.

We emphasize that the opening of a topological gap is
independent of inversion symmetry breaking SOC terms,
like BIA and Rashba, in a 2D Josephson junction on
Luttinger semimetals. However, our findings are still appli-
cable if such terms are present, as in tetrahedral materials,
such as HgTe. Therefore, we predict that any quadratic
nodal Luttinger semimetal hosts a MBS in a 2D Josephson
junction.

V. CONCLUSIONS AND OUTLOOK

In this paper, we analyze two different Luttinger semimetal
systems that host topologically nontrivial properties leading
to MBSs. In SC wires, we find two topological transitions for
two critical magnetic fields related to light- and heavy-hole
band inversions. Interestingly, the range of magnetic fields
where topological phase exists is material independent and
only determined by the chemical potential. Moreover, we
demonstrate that the intrinsic BIA term of any material of the
tetrahedral symmetry group is sufficient for a gap opening in

a SC wire, if the magnetic field is applied perpendicular to the
wire.

In 2D Josephson junctions, we show that the intrinsic SOC
of Luttinger materials in combination with the phase differ-
ence of the SCs is sufficient to generate MBSs, even without
the application of BIA or Rashba SOC. This opens an avenue
for the search of materials which should have intrinsically
emergent MBSs. As an example, we propose the experimen-
tally relevant Josephson junction on 2D β-Sn–α-Sn–β-Sn.

Our results could also shed light on the formation of MBSs
in other quadratic nodal semimetals, such as Pr2Ir2O7 and
YPtBi [28,34]. Moreover, the competition between non-SC
edge states [see Fig. 3(a)] in the Luttinger semimetal and the
formation of MBSs could give rise to physics that can be
controlled by the chemical potential. Additionally, we expect
interesting features in Josephson junctions on the metallic
phase of j = 3

2 Luttinger systems.
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