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Anti-Poiseuille flow: Increased vortex velocity at superconductor edges
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Using the time-dependent Ginzburg-Landau equations, we study vortex motion driven by an applied current
in two-dimensional superconductors in the presence of a physical boundary. At smaller sourced currents the
vortex lattice moves as a whole, with each vortex moving at the same velocity. At the larger sourced current,
the vortex motion is organized into channels, with vortices in channels closer to the sample edges moving faster
than those farther away from sample edges, opposite the Poiseuille flow of basic hydrodynamics in which the
velocity is lowest at the boundaries. At intermediate currents, a stick-slip motion of the vortex lattice occurs in
which vortices in the channel at the boundary break free from the Abrikosov lattice, accelerate, move past their
neighbors, and then slow down and reattach to the vortex lattice, at which point the stick-slip process starts over.
These effects could be observed experimentally, e.g., using fast scanning microscopy techniques.
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I. INTRODUCTION

In the presence of an applied magnetic field a type-II su-
perconductor may exhibit a vortex state, characterized by a
certain density of order parameter singularities (vortices). In
equilibrium and in the absence of important disorder effects,
the vortices generically form an ordered “Abrikosov lattice”
[1]. An applied current produces a force on the vortices, and
the resulting vortex motion leads to dissipation [1–3], which
is one of the main concerns for many applications such as
superconducting qubits and superconducting digital memory
[4,5], high-field magnets [6], terahertz radiation sources [7],
and resonant cavities in particle accelerators [8,9]. A deeper
understanding of the nature of vortex motion may enhance
device performance, enabling many intriguing applications
[10–13].

Vortex structures driven by an external current in systems
with [14–21] and without [22–26] pinning sites have been
studied. Similarly, some recent works on skyrmion dynamics
in magnetic systems, which have many similarities to the
vortices in a type-II superconductor, have attracted attention
[27,28]. Vortex dynamics is even richer in the presence of
specific geometrical features [29–33]. In particular, intricate
inhomogeneous flow patterns are observed near boundaries
in vortex arrays [31], colloidal bubbles [34], and ion crys-
tals [35]. Of particular interest is the “phase slip line state”
[36–38] in which a set of parallel vortex rows is created and
each vortex follows in its own “assigned” channel. This phe-
nomenon originates from an effective attraction to the other
vortices due to suppression of the order parameter created
behind each moving vortex [39–41]. This mechanism was

*Dante.Kennes@rwth-aachen.de

analyzed in the context of the viscosity and the instability of
the vortex motion using both Bardeen-Stephen and Larkin-
Ovchinnikov theories [2,24,42].

In this work, we use time-dependent Ginzburg-Landau
(TDGL) theory [43–45] to investigate the flux flow prop-
erties of clean two-dimensional superconductors driven by
externally sourced currents in finite geometries. We find a
low-current regime in which the vortex lattice moves as
a whole, a high-current “anti-Poiseuille” regime in which
vortices near the sample boundaries move faster, and an inter-
mediate regime characterized by a “stick-slip” behavior. We
show that our results can be understood in terms of a Bardeen-
Stephen [2] analysis in which the reduced order parameter
close to the edge provides a lower viscosity for the vortex
motion and can be understood in terms of the phase slip line
state.

The rest of this paper is organized as follows. In Sec. II, we
present our model and the computational method adopted for
this paper. In Secs. III and IV, we show the main results of our
calculations and the corresponding discussion, respectively.
Finally, Sec. V concludes the paper with a summary of results
and discussion of future work.

II. FORMALISM

We use TDGL equations to describe the dynamics of a
complex superconducting order parameter � = |�|eiφ in a
two-dimensional strip geometry in the presence of both an
external current created by a source and drain of particles
whose strength is denoted by Q and an external magnetic
field B directed perpendicular to the superconducting film.
The electromagnetic field is expressed by the vector potential
A and the scalar potential �. We denote the charge density
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as ρ and current density as J and choose the units to be
h̄ = c = e = 1. The equations are [3,46–48]

1

D
(∂t + 2i� )� = 1

ξ 2β
�[α − β|�|2]

+ [∇ − 2iA]2�, (1)

J = σ [−∇� − ∂t A]

+ στsRe[�∗(−i∇ − 2A)�], (2)

ρ = � − �

4πλ2
T F

, (3)

∂tρ + ∇ · J = Q, (4)

∇2� = −4πρ. (5)

Here D is the normal state diffusion constant, � is the electro-
chemical potential per electron charge, ξ = √

6D/τs, and the
superconducting coherent length is given as ξ0 = ξ/

√
α/β,

where τs is the spin-flip scattering time. α and β are system-
dependent constants, which set the magnitude of the order
parameter. σ and λT F are the normal state conductivity and the
Thomas-Fermi static charge screening length, respectively.
We measure length in units of ξ and time in units of ξ 2/D
(since ξ is the unit of length, we write this as D−1). We
choose the parameters as follows: α = β = 1, τs = 6D/ξ 2,
λT F /ξ = 1, and σ/(D/ξ 2) = 1, and we set the length and
width of the two-dimensional (2D) strip to be L = 50ξ . We
confirmed that this particular parameter choice does not affect
the general conclusions of this paper. We choose the Coulomb
gauge ∇ · A = 0 [49].

We study a system that is periodic in y and has an open
superconductor-vacuum boundary conditions in x [24,50,51]:

�(y + L) = �(y), (6)

(−i∇x − Ax )�|x=0, L = 0, (7)

[ − (∇�)x − ∂t Ax]|x=0, L = 0. (8)

The advantage of the periodic boundary condition is that it
avoids the need to consider complications, which are irrele-
vant here, related to the creation and destruction of vortices at
sample edges [52].

We consider very thin films in which the sample thick-
ness is much less than the London penetration depth, so
that the magnetic field can be taken to be spatially uniform
and described by the Coulomb-gauge vector potential A =
(0, B(x − L/2), 0). We choose magnetic field values such that
the number of vortices is commensurate with the system size
so that each vertical line of vortices in Fig. 1 has the same
number of vortices to avoid additional complications that arise
when there is an additional vortex which could go into any one
of the channels.

The external current is introduced by the source term Q in
Eq. (4), which defines source and drain regions of width ξ over
the entire length of the open boundaries. Specifically, we take
Q to be independent of y and Q(x, y) �= 0 only for 0 < x < ξ

and L − ξ < x < L. Thus, this current flow is homogeneous
in the entire sample (except for the source and drain sections).

The simulations were performed using a finite-element
method in space implemented in FENICS [54], and we dis-
cretize the time derivative by a finite-difference approximation
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FIG. 1. False-color representation of the magnitude of the su-
perconducting order parameter |�| (top) and the corresponding
y-averaged order parameter, denoted as |�|y, against x (bottom)
for zero applied current [Q/(D2/ξ 6) = 0] in (a), (b), (d), and (e)
and nonzero applied current [Q/(D2/ξ 6) = 0.55] in (c) and (f). The
magnetic field strengths are ξ 2B = 0.043 for (a), (c), (d), and (f) and
ξ 2B = 0.053 for (b) and (e). The configuration depicted in (c) is
a snapshot showing one instance in time of a dynamic state. The
corresponding video is available in the Supplemental Material (SM)
as Video 14 [53].

in which the order parameter is updated in time steps of D�t
= 0.5. We have verified that decreasing the time step does
not change the results. The initial conditions (at time t = 0)
of all variables except � are set to zero, while �(x, y, t = 0)
is chosen to describe the superconducting state with some
random fluctuation over the entire 2D sample [55].

In our calculation protocol we first set the current to zero
and evolve the system; once a stable vortex lattice is formed,
we introduce the current and then analyze the flow after a
steady state is reached. To be specific, nonzero Q is introduced
at Dt = 1000, when a rigid vortex structure has already been
formed, and an analysis of vortex flow created by the sourced
current is performed after Dt = 1500.

III. RESULTS

In this section we present the main features of our results.
Before doing so we summarize the expected physics. In a
magnetic field, the superconducting order parameter of a thin
film exhibits vortices, points at which the order parameter
vanishes and around which there is a quantized circulation
of the superconducting phase. The density of vortices is set
by the applied field, and the energy associated with super-
posing the quantized circulations leads to vortex-vortex inter-
actions that are repulsive and logarithmic at long scales; the
resulting equilibrium configuration is a triangular “Abrikosov
lattice” with the lattice vectors parallel or at angles of ±π/3
to the open boundaries at x = 0, L [shown in Fig. 1(a) as an
example]. In this state, if the order parameter amplitude is
averaged over y and then plotted against x, vortex rows cor-
responding to equally spaced minima in the order parameter
amplitude are evident [shown in Fig. 1(d) as an example]. In
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FIG. 2. Series of false-color plots of the magnitude of the order parameter |�| for ξ 2B = 0.043 and Q/(D2/ξ 6) = 0.55 at different times.
The same two vortices are labeled by red and blue dots for each time to highlight that the vortices close to the edge (red dot) move faster than
the ones in the bulk (blue dot). Each plot is a snapshot showing instances in time which are separated by 20D−1 from left to right, and the
initial time is Dt = 1500. The corresponding video is available in the SM as Video 14 [53].

the presence of an applied current J a vortex is accelerated
by a Lorentz force F = J × B/c directed perpendicular to the
current and the magnetic field and experiences a viscosity η,
which is within Bardeen-Stephen picture given by [3]

η = �0σ
Hc2

c2
∼ �2, (9)

where σ is the conductivity appearing in the TDGL equa-
tions and �0 is the flux quantum. Hc2 is the upper critical field
which is proportional to the square of the superconducting
order parameter in the clean limit studied here. The system we
study has a translation invariance in the y direction so that in
the presence of a current one possible solution is a uniformly
translating vortex lattice in which the velocity is determined
from the Lorentz force and the viscosity. As we shall see,
in our system, other solutions are possible, corresponding to
nonuniform vortex motion. In all of our investigations, the
nonuniformly moving state exhibits the same row structure as
in the equilibrium and uniformly moving states, but vortices
in different rows may move with different velocities.

A. Equilibrium

First, we perform simulations without an externally
sourced current, Q = 0. We initialize our simulation as
described in Sec. II and allow the system to evolve to a time-
independent state. The time evolution takes around 600D−1.
Figure 1(a) presents a false-color plot of the magnitude of
the order parameter |�| against the x-y position in our sam-
ple for a magnetic field of B = 0.043ξ 2. As expected, an
Abrikosov vortex lattice is formed, with the lattice aligned
with the boundaries. The periodic boundary conditions along
y mean that there is a continuous family of equilibrium so-
lutions translated by arbitrary amounts along y. The vortex
positions are visible as regions of very small order parameter
amplitude, and the row structure alluded to above is evident.
From Fig. 1(d), which plots |�|y, the y average of the order
parameter in Fig. 1(a) as a function of x, we see essentially
no boundary effects, except for a small enhancement near the
sample edges related to a weak tendency for vortices to avoid
the edges because of supercurrent reflection at the boundary.

Figures 1(b) and 1(e) show similar plots obtained for the
slightly larger magnetic field B = 0.053/ξ 2. In this case the
time to equilibration is rather shorter: 100D−1 [initialized
from the state shown in Figs. 1(a) and 1(d)], and despite

the larger field, new vortices are not induced in the sample.
Instead, the vortex lattice pulls farther away from the sample
edges, leading to a higher vortex density in the sample center,
while the order parameter near the sample edges is strongly
suppressed. The stronger suppression of the order parameter
at the boundary signals the incipient formation of a new row
of vortices which would take place at even higher fields.

B. Nonzero current drive

A current applied in the x direction will cause the vortex
lattice to move in the y direction. Because our model has
no pinning, vortices will move under any applied current. At
small applied currents our numerically computed solution is
just a uniformly translating vortex lattice. However, above a
critical current the lattice structure is somewhat disrupted. The
parallel chain structure remains, but the vortices in the chain
closest to the sample edge flow at a higher velocity. This is
illustrated in Fig. 2, which shows a series of false-color plots
of the order parameter amplitude presented at time intervals
20D−1 apart. Two vortices, one in the leftmost row and one in
the second row from the left, are highlighted by red and blue
dots, respectively. The difference in velocities is evident.

To quantify the dependence of the differential vortex ve-
locity on the magnitude of the source term Q in Eq. (4), we
present in Fig. 3 a plot of the difference of the time-averaged
velocities of two tagged particles, v1 of a vortex in the leftmost
row and v2 of a vortex in the adjacent row (e.g., the red and
blue vortices in Fig. 2, respectively) as a function of Q. We see
that the difference in velocities remains zero up to a critical
value Q ≈ 0.4D2/ξ 6. For larger Q the time-averaged velocity
difference increases linearly with Q − Qc until, at a yet larger
Q ≈ 0.6D2/ξ 6, the system is reset: the number of vortex
channels changes from six to four due to strong suppression
of the order parameter close to the open boundary (see the
Supplemental Material (SM), Videos 17, 18, and 19 [53]). In
the newly established four-channel structure, the same charac-
teristic as for the intermediate regime 0.4 < Q/(D2/ξ 6) < 0.6
is observed, as shown in Fig. 3 by a linear increase as a
function of Q/(D2/ξ 6) after the jump in the curve.

IV. INTERPRETATION

We now argue that the velocity differential arises from a
position dependence of the viscosity. We see from Figs. 1(c)
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FIG. 3. Differences of the time-averaged velocities of two tagged
particles, v1 of a vortex in the leftmost row and v2 of a vortex in the
adjacent row (e.g., the red and blue vortices in Fig. 2, respectively),
as a function of the strength of the source term Q (a plot for the indi-
vidual v1 and v2 as a function of Q is shown in Fig. 8 in Appendix A).
The vortex speeds are extracted from the simulations averaging from
Dt = 1500 to Dt = 1980. The color corresponds to the parameters
shown in Fig. 7. All corresponding videos are available in the SM
[53] (see also Table I in Appendix B).

and 1(f) that at high drive current the typical value of |�|,
|�|y, far from a vortex is smaller near the sample edge than
in the middle, implying via Eq. (9) that the vortices closest
to the sample edge experience a lower viscosity. As clearly
seen from the comparison between Figs. 1(d) and 1(f), in the
presence of an externally sourced current, |�|y in the region
away from the vortices is reduced as it goes to the sample
edge. To study the dependence of the reduction of the order
parameter on the strength of the source term Q in Eq. (4),
we define the time- and y-direction-averaged order parameter
amplitude, denoted as ¯|�| in each vortex row, and plot in
Fig. 4 the ratio of ¯|�| assigned in the two rows, ¯|�|1 in the left-
most row and ¯|�|3 in the middle left row. The ratio ¯|�|1/ ¯|�|3
monotonously decreases both before and after Q ≈ 0.6D2/ξ 6,
where the number of vortex channels changes from six to
four, which implies that the viscosity difference between the
leftmost and middle left rows increases as the sourced current
increases within the systems with the same number of vortex
channels.

Now let us consider the equation of motion in the y direc-
tion for a vortex in the leftmost row, supposing that the other
vortices in the system are in an ordered, uniformly translating,
state:

FV L(y) + J�0

c
= η1ẏ. (10)

Here FV L is the force arising from all of the other vortices. The
current term may be related to the velocity of the uniformly
translating part of the vortex lattice, denoted V , as J�0

c = η̄V ,
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FIG. 4. Ratio of the averaged order parameter amplitude between
¯|�|1 in the leftmost row (edge) and ¯|�|3 in the middle left row (bulk)

as a function of the strength of the source term Q. The x-dependent
order parameter ¯|�| is calculated by averaging over the y direction
and over the same time duration as for the vortex speed shown in
Fig. 3. The color corresponds to the parameters shown in Fig. 7. All
corresponding videos are available in the SM [53] (see also Table I
in Appendix B).

where η̄ is the average viscosity relevant to these vortices.
In the frame comoving with the uniformly translating state
Eq. (10) becomes

FV L(y) + (η̄ − η1)V = η1ẏ. (11)

In other words, in the comoving frame the vortices at the edge
of the sample experience two forces: one set by the mean ve-
locity and the viscosity difference and one from the lattice of
uniformly moving vortices. This latter force is periodic under
translation by the vortex lattice vector and has a maximum
value. At small current, both the difference in viscosity and
the mean velocity are small, so this force is insufficient to
overcome the force from the vortex lattice. The solution in
the comoving frame is then y = 0, with y shifted from its
equilibrium position by an amount proportional to the force.
As the current is increased, the (η̄ − η1)V term increases,
the shift in mean position increases, and when the position
exceeds the point of maximum lattice force, the solution in
the comoving frame becomes time dependent.

A. Anti-Poiseuille flow

As discussed above, in the nonuniformly moving state
[0.4 < Q/(D2/ξ 6) in Fig. 7 below], the vortices move faster
at the edge of the sample because the vortices closest to the
edge experience a lower viscosity due to the reduction of the
order parameter, shown in Eq. (9). To quantify the relation
between the vortex velocity and the reduction of the order
parameter, here we perform a simple analysis by neglecting
vortex-vortex interaction and the corresponding force arising
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FIG. 5. Average speed of the vortex flow depending on its spatial
position along x. The same averaging procedures as in Figs. 3 and 4
are used for the vortex speed v and the x-dependent order parameter

¯|�|, respectively. To obtain a quantification of anti-Poiseuille flow,
we fit the vortex speeds by C0 + C1 cosh[C2(x − L/2)/ξ ], yielding
C0 = 0.456, C1 = 3.32 × 10−5, and C2 = 0.455. The resistance over
the separate channels r = ��̄ is calculated by taking the differences
of the averaged scalar potential �̄ between each vortex channel (see
Fig. 6 for details), where �̄ is obtained from the same averaging
procedure as for ¯|�|. The same parameters as in Fig. 2 are chosen
for the simulation.

from it, FV L ≈ 0, which enables us to consider the dynamics
of each vortex row independently and may be reasonable in
the large-current regime in our present study. In this case,
Eq. (10) can be applied to all vortex rows, which is given as
J �0

c = ηẏ. Since the current J is homogeneous over almost
the entire two-dimensional sample in our simulations (except
the source and drain sections), together with Eq. (9), we can
get a simple prediction for the vortex speed and the order
parameter:

ẏ ∝ �−2. (12)

In order to check relation (12), we summarize represen-
tative results in Fig. 5, where we plot time-averaged vortex
speeds v (for an analysis of the time-dependent velocity ẏ,
see Sec. IV C) and the x-dependent inverse of the square of
the averaged order parameter ¯|�|−2. Overall, we find good
agreement between the simple prediction (12) and the full
numerical simulations for v. The slight disagreement between
v/(ξD) (blue dots) and ¯|�|−2 (blue curve) may be a result of
neglecting the intricate vortex-vortex interactions.

The vortex flow behaves opposite to the Poiseuille flow of
water in a pipe. Instead of moving slower towards the bound-
ary, the vortices tend to speed up. We therefore call this type of
flow anti-Poiseuille flow. The quantitative details of the flow
behavior of course depend on the geometry and parameter
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2 )

FIG. 6. Average scalar potential �̄ depending on x. The same av-
eraging procedure and parameters as in Fig. 5 are used. The quantity
r = ��̄ shown by the purple squares in Fig. 5 is calculated from
differences between the heights of each plateau shown. Specifically,
we use the points marked by the blue dots to define r.

regime considered. To quantify this effect, we note that in our
simulations the behavior can be fitted by an exponential func-
tion v = C0 + C1 cosh(C2�x), where �x is the distance from
the center of a sample and C0/1/2 are constants. Specifically,
we fit the vortex speeds by C0 + C1 cosh[C2(x − L/2)/ξ ]. In
this language C1 < 0 would correspond to vortices moving
slower when approaching the boundary, while C1 > 0 means
that vortices move faster at the edges (anti-Poiseuille flow),
with |C1| and |C2| quantifying the strength of the influence of
the boundary.

B. Resistivity

To connect to experimentally accessible transport quanti-
ties we consider the resistances across the vortex channels
R = ��̄/Q, where ��̄ is the difference in the scalar po-
tential left and right of a given channel averaged over the y
direction [56]. In a Bardeen-Stephen picture, that difference in
the scalar potential is proportional to the number of vortices
in each channel and their velocities. In Fig. 6, we show the
time- and y-direction-averaged scalar potential depending on
x. Since the external current is constant in our system, we can
consider differences of the scalar potential r = ��̄ to be di-
rectly proportional to the resistance between vortex channels.
Figure 5 clearly shows that faster vortex flows (blue dots)
result in proportionally higher resistance r (purple squares), in
accordance with the Bardeen-Stephen picture. Following the
same arguments as for the vortex velocity, we therefore find
r ∝ �−2.

C. Intermediate drive: Stick-slip motion

At small to intermediate sourced currents, vortex-vortex
interactions become relevant and, in combination with the
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FIG. 7. (a) Differences in vortices’ positions along the y direction
in the leftmost y1 and the adjacent y2 channel as a function of time
(e.g., the difference between y coordinates of the vortex marked in
red and blue in Fig. 2). The periodic boundary condition is unfolded
to calculate the y coordinates. (b) Corresponding time derivative
of (a), namely, differences in the time-dependent velocity within
the leftmost ẏ1 and the adjacent ẏ2. All corresponding videos are
available in the SM [53] (see also Table I in Appendix B).

local suppression of the order parameter near the boundaries,
lead to an interesting time inhomogeneous stick-slip motion
of the vortices. Figure 7 shows how the difference between
the positions along the y direction of the leftmost y1 and
adjacent y2 vortices evolves as a function of time Dt . For
weaker drive [Q/(D2/ξ 6) = 0.4] the two vortices move to-
gether [(y1 − y2)/ξ is time independent]. For the strongest
drive [Q/(D2/ξ 6) = 0.5875] the two vortices move at dif-
ferent approximately constant velocities, but at intermediate
drive a stick-slip behavior is evident, in which the relative po-
sition exhibits a series of approximately linear increases in the

difference in the positions of neighboring vortices separated
by plateaus where the separation is time independent.

In Fig. 7(b) we present the difference in the correspond-
ing time derivatives. For the smallest Q/(D2/ξ 6) = 0.4, the
difference in time-dependent velocities (ẏ1 − ẏ2)/(ξD) is al-
most zero at all times, meaning that the lattice moves as a
whole, while for the largest Q/(D2/ξ 6) � 0.55, the velocity
difference (ẏ1 − ẏ2)/(ξD) is essentially constant. For the in-
termediate Q the relative velocity alternates in time between a
large value and a small value.

The times of linear increase in Fig. 7(a) with the peaks
in Fig. 7(b) correspond to when the leftmost vortex passes
the adjacent vortex while the plateau in Figs. 7(a) and 7(b)
corresponds to the leftmost and adjacent vortices moving
with the same speeds as in the small sourced current regime
Q/(D2/ξ 6) � 0.4 (see the SM, Videos 10 and 12 [53]). At
each region of the linear increase in Fig. 7(a) and the peak in
Fig. 7(b), a shift of the leftmost and adjacent vortex channels
occurs. Or put into the language of the stick-slip phenomenol-
ogy, initially, the leftmost vortex sticks to the lattice, then it
accelerates and passes (slips) across the adjacent vortex, and
slows down to stick again to the newly established Abrikosov
lattice, which is repeated as a converged nonequilibrium sta-
tionary state. This behavior relies on the interplay between the
vortex-vortex interactions and the large driving current (creat-
ing the reduced order parameter) as well as the boundary. The
former tries to maintain the Abrikosov vortex lattice, while
the latter two enforce the anti-Poiseuille flow. By increasing
Q/(D2/ξ 6), the plateaus begin to disappear in Fig. 7(a), and
in Fig. 7(b) the number of peaks increases with the decrease
of the peak height, which shows that vortex-vortex interaction
gradually becomes almost negligible and the speed difference
between the leftmost and adjacent vortices converges to a
constant. So for increasing strength of the source the stick-slip
phenomenology is increasingly washed out.

V. CONCLUSION

Using time-dependent Ginzburg-Landau theory, we stud-
ied the dynamics of vortex flows in 2D superconducting thin
films with an external current sourced through the sample.
We found that at small sourced currents the vortex lattice
moves as a whole in which all vortices move at the same
velocity, while at larger sourced currents a vortex motion is
assigned to channels in which vortices in channels closer to
the sample edge move faster than those farther way from the
sample edge. We showed that the velocity differential in the
larger-current regime arises from a position dependence of
the viscosity depicted as by a Bardeen-Stephen picture and
expressed the equation of motion for the vortex in the channel
next to the boundary. Further analysis while neglecting intri-
cate vortex-vortex interactions yielded a simple prediction for
the position-dependent vortex velocity, which demonstrates
good agreement between this simple prediction and our full
numerical calculations within the time-averaged analysis. The
behavior of vortex flow was found to be opposite what is
typical in Poiseuille-like flow; namely, the velocity of the flow
increases towards the boundary. In addition, detailed real-time
analysis of the vortices’ motions for the larger-current regime
revealed a stick-slip motion of the vortex lattice as the sourced
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FIG. 8. The time-averaged velocities v1 and v2 as a function of
the strength of the source term Q. The differences in the two triangles
at each Q value correspond to the circles in Fig. 3.

current is increased. Initially, the vortices in the channel at the
edges stick to the Abrikosov lattice; then they start to acceler-
ate and move past their neighbors, followed by them slowing
down to again stick to another reestablished Abrikosov lat-
tice, which periodically continues as a stationary state of the
system. This intricate motion relies on the interplay between
the vortex-vortex interactions and the large driving current at
a boundary (creating the reduced order parameter).

Experimentally, this effect may be observed by a local
probe that can count the rate at which vortices cross the
probe to map the vortex velocity in space along the edge.
A scanning superconducting quantum interference device can
be used for low Ginzburg-Landau parameter superconductors
[22], κ = �/ξ (where � and ξ are the penetration depth and
coherent length, respectively), or one could use an ultrafast
scanning tunneling microscope [57].

The numerical results presented in this paper employed a
superconductor-insulator boundary. We have also investigated
the case of the metal-superconductor boundary, finding the
same physics (see Video 17 of the SM as an example [53],
where the order parameter continuously goes to zero at the
boundary as the metallic boundary would naturally create).
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APPENDIX A: TIME-AVERAGED VELOCITIES v1 AND v2

In this Appendix, we show in Fig. 8 a plot of the individual
time-averaged velocities v1 and v2 as a function of the strength
of the source term Q. As discussed in Fig. 3, v1 and v2 are
almost the same up to the critical value Q ≈ 0.4D2/ξ 6. This
can also be clearly seen from Fig. 8 as the two curves overlap
and show a linear increase as a function of Q. From the critical
value, the slopes of the linear curves for v1 and v2 differ. At
around Q ≈ 0.6D2/ξ 6, both linear curves drop because the
system is reset (the number of vortex channels changes from
six to four as discussed in Sec. III B). After the drop, the same
0.4 < Q/(D2/ξ 6) < 0.6 feature is found by linear increases
as a function of Q with different slopes for v1 and v2.

APPENDIX B: BRIEF EXPLANATION OF THE VIDEOS

In this Appendix, we show the correspondence between the
video number and the strength of the source term Q in the SM,
which is summarized in Table I.
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