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Odd-frequency Cooper pairs are gathering attention for the convenience of investigating the edge state of
topological superconductors including Majorana fermions. Although a spinless p-wave superconductor has
only one Majorana fermion in a topological phase, the system with magnetic fields can reach the topological
phases with multiple Majorana fermions. To distinguish these multiple Majorana fermion phases, we correlate
the energy spectrum with the odd-frequency pair amplitude as increasing the system size. The system size
dependence tells us three pieces of information: the parity of the number of the Majorana fermions at the edge,
the number of low-energy modes corresponding to the Majorana fermions with different localization lengths, and
the fingerprints of the Majorana fermions. Also, we present the spatial dependence of the odd-frequency f vector
that is created from odd-frequency pair amplitude and the spin structure of odd-frequency Cooper pairs. We find
that the odd-frequency f vector is fixed in the same direction in any topological phase. Also, we show that the
spin state of odd-frequency Cooper pairs tends to be oriented toward the direction of the magnetic fields. Our
results highlight that the odd-frequency Cooper pairs can be a good indicator for the detection of the multiple
Majorana fermions and the distinction among the topological phases.
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I. INTRODUCTION

An odd-frequency Cooper pair, proposed by Berezinskii,
is a special couple of electrons [1]. Conventionally, the
amplitude of Cooper pairs that constitute superconductivity
shows an even-frequency dependence. Under the Fermi-
Dirac statistics, which two electrons forming a Cooper pair
satisfy, even-frequency spin-singlet even-parity and even-
frequency spin-triplet odd-parity pairings can exist. This is
because the pair amplitude must be antisymmetric for the
exchange of spin and position between two electrons. Re-
laxing the restriction that the pair amplitude is even for
frequency enables odd-frequency spin-triplet even-parity and
odd-frequency spin-singlet odd-parity pairings to exist [1,2].
Several works, however, theoretically indicate the thermody-
namic instability [3–6] of the odd-frequency Cooper pairs
in the bulk of a homogeneous single-band superconductor
[1,2,7–10]. For this reason, the odd-frequency Cooper pairs
being secondarily generated from an even-frequency super-
conductor are more promising [11–14].

Nonuniform systems [12,15–17] or systems with mag-
netic fields [11,18–22] induce the odd-frequency Cooper
pairs. Examples of the nonuniformity include edges (sur-
faces) and junctions. Fascinating phenomena, caused by the
odd-frequency Cooper pairs, are a long-range proximity ef-
fect in an s-wave superconductor / ferromagnet junction
[11,18–22] and an anomalous proximity effect in a spin-triplet
superconductor / diffusive normal metal junction [23–28]. In
particular, the anomalous proximity effect is closely related to
Majorana fermions and topological superconductors.

Majorana fermions are quasiparticles with no distinction
between creation and annihilation. They are expected to

be applied as qubits because of their non-Abelian statistics
[29,30]. The Majorana fermions appear as zero-energy states
at the edge of a topological superconductor [31]. The simplest
model for representing Majorana fermions is the Kitaev chain:
a spinless p-wave superconductor [32]. At each edge of the
Kitaev chain, the number of Majorana fermions, correspond-
ing to the winding number, is one. Considering higher-order
hopping and magnetic fields in a p-wave superconductor with
spin degrees of freedom allows us to access topological phases
with multiple Majorana fermions [33–36].

There is a one-to-one correspondence between the Majo-
rana fermions and the odd-frequency Cooper pairs [14,28,37–
41]. Specifically, in the low-frequency limit, the amplitude
of the normal Green’s function (corresponding to the Ma-
jorana fermions) is equal to that of the anomalous Green’s
function (the odd-frequency pair amplitude) [28,37,38]. The
odd-frequency pair amplitude, accompanying the Majorana
fermions, has a 1/ω dependence, where ω is frequency
[38]. In addition, the sum of the odd-frequency pair am-
plitude is related to the winding number that is extended
to a finite frequency in a limited semi-infinite system with
chiral symmetry: the spectral bulk-boundary correspondence
[38,42].

This paper aims to distinguish the number of Majorana
fermions in terms of the odd-frequency Cooper pairs and to
elucidate the spatial dependence and spin structure of the
odd-frequency pair amplitude in the p-wave superconductor
with the multiple Majorana fermions. In the semi-infinite sys-
tem with the multiple Majorana fermions, it is not easy to
distinguish the topological phases with the different topo-
logical numbers (winding number) by focusing on the local
density of states at the edge. This is because these Majorana
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FIG. 1. (a) A sketch of a p-wave superconductor (red tube) with magnetic fields. The superconductor lies in the x direction. The magnetic
fields are applied in the y-z plane. We set the d vector in the x-y plane. Hopping is considered up to the third-nearest-neighbor sites: (t1, t2,
t3). j: site, L: the number of sites in the system. (b) A topological phase diagram in the p-wave superconductor with the magnetic fields as a
function of t2 and t3: �↑↑ = 0.18t1, �↓↓ = 1.8t1. The topological phases with the multiple Majorana fermions (MFs) (w > 2) are obtained for
t2, t3 > t1. (c)–(g) Energy bands of normal states (�↑↑ = �↓↓ = 0) in k space. (c) 0 MF, (d) 1 MF, (e) 2 MF, (f) 3 MF, (g) 4 MF phases, where
MF means the Majorana fermion. Parameters in (b)–(g): θ = π/4, h/t1 = 2, μ/t1 = 1.

fermions appear as the same zero-energy states. Therefore,
we have concentrated on the odd-frequency Cooper pairs that
have been useful for understanding the topological properties
and transport phenomena of the Kitaev chain [28,43].

First, we investigate the system size dependence of the odd-
frequency pair amplitude with and without magnetic fields
that break chiral symmetry. The system size dependence pro-
vides three pieces of information: the parity of the number of
the Majorana fermions at the edge, the number of low-energy
modes corresponding to the Majorana fermions with differ-
ent localization lengths, and the fingerprints of the Majorana
fermions. Also, we present the spatial dependence of the odd-
frequency f vector representing odd-frequency pair amplitude
and the spin structure of odd-frequency Cooper pairs. Here,
the vector is defined by imitating the d vector that character-
izes spin-triplet superconductivity. We find the following two
results. The vector is fixed in the same direction in any topo-
logical phase. The spin direction of odd-frequency Cooper
pairs tends to point toward the direction of the magnetic fields.
Our findings show that odd-frequency Cooper pairs can be an
indicator for the detection of multiple Majorana fermions and
the distinction among different topological phases.

Our paper is organized as follows. In Sec. II, we intro-
duce the model of a p-wave superconductor with multiple
Majorana fermions. In Sec. III, we explain how to cal-
culate odd-frequency pair amplitude by using the Green’s
function. Then, we provide the system size dependence of
low-energy modes corresponding to Majorana fermions and
odd-frequency pair amplitude in Sec. IV. In addition, we
present the spatial dependence of the odd-frequency f vec-
tor representing odd-frequency pair amplitude and the spin
structure of odd-frequency Cooper pairs in Sec. V. In Sec. VI,
we discuss a setup for detecting evidence of the multiple
Majorana fermions. Finally, we conclude our work in
Sec. VII.

II. MODEL

As the model for investigating the multiple Majorana
phases, we introduce a p-wave superconductor with magnetic
fields [33] shown in Fig. 1(a). The Hamiltonian of the system
on the lattice is written as

H = HN +Hh +HS, (1)

HN = −μ
∑
j,σ

(c†
j,σ c j,σ ) −

∑
j,σ,ν

tν (c†
j,σ c j+ν,σ + c†

j+ν,σ c j,σ ),

Hh = −
∑
j,σ,σ ′

(h · σ)σ,σ ′c†
j,σ c j,σ ′ ,

HS =
∑
j,σ

[�σσ c†
j,σ c†

j+1,σ + H.c.], (2)

where c j,σ , μ, tν , h = (hx, hy, hz ) = (0, h sin θ, h cos θ ), and
�σ,σ (∈ R, assume spin-polarized case: the component dz = 0
of d vector) denote the annihilation operator with a spin σ

at a site j ∈ [1, L], chemical potential, the νth (ν = 1, 2, 3)
nearest-neighbor hopping, Zeeman potential, and pair poten-
tial, respectively [33]. H.c. means Hermitian conjugate and σ

are Pauli matrices.
The Hamiltonian of the system with L sites can be ex-

pressed in the block matrix form as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

û t̂1 t̂2 t̂3 O · · ·
t̂†
1 û t̂1 t̂2 t̂3

t̂†
2 t̂†

1 û t̂1 t̂2

t̂†
3 t̂†

2 t̂†
1 û t̂1

O t̂†
3 t̂2 t̂†

1 û
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)
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where H = (1/2)[C†
1 ,C†

2 , . . . ,C†
L]H[C1,C2, . . . ,CL]T − μL

with Cj = [c j↑, c j↓, c†
j↑, c†

j↓],

û =

⎡
⎢⎣

−μ − hz ihy 0 0
−ihy −μ + hz 0 0

0 0 μ + hz ihy

0 0 −ihy μ − hz

⎤
⎥⎦,

t̂1 =

⎡
⎢⎣

−t1 0 �↑↑ 0
0 −t1 0 �↓↓

−�↑↑ 0 t1 0
0 −�↓↓ 0 t1

⎤
⎥⎦,

t̂2 =

⎡
⎢⎣

−t2 0 0 0
0 −t2 0 0
0 0 t2 0
0 0 0 t2

⎤
⎥⎦, t̂3 =

⎡
⎢⎣

−t3 0 0 0
0 −t3 0 0
0 0 t3 0
0 0 0 t3

⎤
⎥⎦.

(4)

By applying a Fourier transformation to Eq. (1), we get the
Hamiltonian in k space as

H (k) =
∑
k,σ

ε(k)c†
k,σ

ck,σ −
∑

k,σ,σ ′
(h · σ)σ,σ ′c†

k,σ
ck,σ ′

+
∑
k,σ

[i�σσ sin kc†
k,σ

c†
−k,σ

+ H.c.], (5)

where k is the wave number and ε(k) = −μ − 2t1 cos k −
2t2 cos 2k − 2t3 cos 3k. Equation (5) is rewritten in matrix
representation:

H (k) =

⎡
⎢⎢⎢⎢⎣

ε(k) − hz ihy 2i�↑↑ sin k 0

−ihy ε(k) + hz 0 2i�↓↓ sin k

−2i�↑↑ sin k 0 −ε(k) + hz ihy

0 −2i�↓↓ sin k −ihy −ε(k) − hz

⎤
⎥⎥⎥⎥⎦, (6)

where H (k) = (1/2)
∑

k C†
k H (k)Ck + constant with the base

Ck = [ck,↑, ck,↓, c†
−k,↑, c†

−k,↓]T.
The winding number, telling us the number of the Majo-

rana fermions at the edge of the system, is calculated from the
Hamiltonian in k space shown in Eq. (6):

w = −1

4π i

∫ π

−π

Tr[	H−1(k)∂kH (k)]dk

=
{

0 (trivial)
1, 2, 3, 4 (topological). (7)

	 = τxσz, defined for hx = 0, means the chiral operator
satisfying {	, H (k)} = 0. In this system, the topological
phase with w > 2 can be achieved by controlling the pa-
rameters [33] as shown in Fig. 1(b). The d vector (d =
[(�↓↓ − �↑↑)/2, (�↑↑ + �↓↓)/2,�↑↓]), characterizing the
spin-triplet pairing, with more than one component and long-
distance hoppings (t2 and t3) are necessary conditions to get 3
and 4 MF (Majorana fermion) phases.

The importance of long-distance hopping can be under-
stood from the energy dispersion of the normal states in k
space. The energy dispersion, shown in Figs. 1(c)–1(g), is
calculated as E = ε(k) ± h by the diagonalization of the up-
per left 2 × 2 block matrix in the Hamiltonian [Eq. (6)]. The
number of Fermi points (intersections of energy bands and
E = 0) is more in the 2, 3, and 4 MF phases [Figs. 1(e)–1(g)]
than in the 1 MF phase [Fig. 1(d)], with the exception in the
0 MF phase [Fig. 1(c)]. To have several Fermi points, ε(k)
needs to contain high-frequency components such as cos 2k
and cos 3k. Higher-order hoppings t2 and t3 are a prerequisite
for accessing the 3 MF and 4 MF phases in this system [in the
strict sense, higher-order hopping promotes the sign changes
in the real and imaginary parts of Eq. (A2)].

III. METHOD

To relate the multiple Majorana fermions and the odd-
frequency Cooper pairs, we calculate the ground state energy
corresponding to the Majorana fermion and the odd-frequency
pair amplitude. The ground state energy can be obtained from
the diagonalization of the Hamiltonian in the real space H in
Eq. (3). The odd-frequency pair amplitude is calculated by
using the Matsubara Green’s function. For the large system,
we use the recursive Green’s function method [44] to calculate
the Green’s function at the required site numerically.

The Green’s function at the site j, j′ is defined as

Ĝ(iω, j, j′) = {[iωI − H]−1} j, j′

=
[

Gj, j′ (iω) Fj, j′ (iω)

F̃j, j′ (iω) G̃ j, j′ (iω)

]
, (8)

where I represents an identity matrix. G (G̃) [F (F̃ )] means
the normal Green’s function in the electron-electron (hole-
hole) space [the anomalous Green’s function in the electron-
hole (hole-electron) space] with the 4 × 4 sizes, and ω is
Matsubara frequency. Each local Green’s function can be de-
composed into spin components ↑ and ↓. For example, the
anomalous Green’s function is expressed as

Fj, j′ =
[

Fj, j′,↑,↑ Fj, j′,↑,↓
Fj, j′,↓,↑ Fj, j′,↓,↓

]
, (9)

and G, G̃, and F̃ are described, similarly.
The Matsubara Green’s function shown in Eq. (8) gives

the odd- (even-) frequency spin-triplet s-wave (p-wave) pair
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amplitude:

fo(e) = [
f o(e)
x , f o(e)

y , f o(e)
z

]
=

[
f o(e)
↓↓ − f o(e)

↑↑
2

,
f o(e)
↑↑ + f o(e)

↓↓
2i

, f o(e)
↑↓

]
, (10)

f o
σσ ′ ( j) = 1

2
[Fj, j,σ,σ ′ (iω) − Fj, j,σ,σ ′ (−iω)], (11)

f e
σσ ′ ( j) = 1

2

[
Fj, j+1,σ,σ ′ (iω) − Fj+1, j,σ,σ ′ (iω)

2

+Fj, j+1,σ,σ ′ (−iω) − Fj+1, j,σ,σ ′ (−iω)

2

]
, (12)

where the superscripts o and e stand for the “odd” and “even”
frequencies, respectively. Note that we only focus on the odd-
(even-) frequency spin-triplet s-wave (p-wave) pair amplitude
although there are Cooper pairs with other symmetries. Here,
we define the odd- and even-frequency pair amplitude as the
vector form fo(e) to discuss the spin state of these Cooper pairs.

To get the Matsubara Green’s function in the large finite
system efficiently, we use the recurrence relation in the re-
cursive Green’s function method [44]. The recurrence relation
increasing sites to the “right” given by

g(n)
L = (�L)n•g(0)

L , (13)

�L =
[

aL bL

cL dL

]
, g(n)

L =

⎡
⎢⎢⎣

G(n)
n−2,n−2 G(n)

n−2,n−1 G(n)
n−2,n

G(n)
n−1,n−2 G(n)

n−1,n−1 G(n)
n−1,n

G(n)
n,n−2 G(n)

n,n−1 G(n)
n,n

⎤
⎥⎥⎦,

aL =

⎡
⎢⎣

O Î O

O O Î

O O O

⎤
⎥⎦, bL =

⎡
⎢⎣

O O O

O O O

t̂−1
3 O O

⎤
⎥⎦,

cL =
⎡
⎣ O O O

O O O
−t̂†

3 −t̂†
2 −t̂†

1

⎤
⎦,

dL =
⎡
⎣ −t̂2t̂−1

3 Î O
−t̂1t̂−1

3 O Î
(iω − u)t̂−1

3 O O

⎤
⎦, (14)

where G(n)
j, j′ means the local Green’s function at the j, j′ site in

the system with n sites. The operator • represents the left-hand
Möbius transformation defined as[

A B
C D

]
•Y ≡ (AY + B)(CY + D)−1 (15)

with the square matrix A, B, C, D, and Y with the same size as
each other. Similarly, the recurrence relation increasing sites
to the “left” is obtained by

g(n)
R = (�R)n•g(0)

R , (16)

�R =
[

aR bR

cR dR

]
, g(n)

R =

⎡
⎢⎢⎢⎣

G(n)
1,1 G(n)

1,2 G(n)
1,3

G(n)
2,1 G(n)

2,2 G(n)
2,3

G(n)
3,1 G(n)

3,2 G(n)
3,3

⎤
⎥⎥⎥⎦,

aR =
⎡
⎣0 0 0

Î 0 0
0 Î 0

⎤
⎦, bR =

⎡
⎣0 0 t̂†−1

3

0 0 0
0 0 0

⎤
⎦,

cR =
⎡
⎣−t̂1 −t̂2 −t̂3

0 0 0
0 0 0

⎤
⎦, dR =

⎡
⎢⎢⎣

0 0 (iω − u)t̂†−1
3

Î 0 −t̂†
1 t̂†−1

3

0 Î −t̂†
2 t̂†−1

3

⎤
⎥⎥⎦.

(17)

The local Green’s function after connecting g(m)
L and g(n)

R is
written as follows:

[
g(m+n)

M

]
11 =

⎡
⎢⎢⎣

G(m+n)
m−2,m−2 G(m+n)

m−2,m−1 G(m+n)
m−2,m

G(m+n)
m−1,m−2 G(m+n)

m−1,m−1 G(m+n)
m−1,m

G(m+n)
m,m−2 G(m+n)

m,m−1 G(m+n)
m,m

⎤
⎥⎥⎦. (18)

We can get the local Green’s function at the required site in
the finite system by combining Eqs. (13), (16), and (18).

IV. ODD-FREQUENCY COOPER PAIRS AND MULTIPLE
MAJORANA FERMIONS

In this section, we would like to elucidate the property of
the Majorana fermion. In the semi-infinite system with the
multiple Majorana fermions, it is, however, not easy to dis-
tinguish the topological phases with the different topological
numbers (winding numbers) by focusing on the local density
of states at the edge. This is because the energy states hosting
Majorana fermions belong to the same zero energy. Therefore,
we have investigated the system size dependence of the low-
energy spectra and that of the odd-frequency pair amplitude.
Moreover, we have added the perturbation breaking the chiral
symmetry which removes the multiple Majorana fermions.

To describe the interference of Majorana fermions at
both edges, we have shown the spatial dependence of the
low-energy spectra as a function of the system size in
Figs. 2(a)–2(d). They have been calculated by the diagonaliza-
tion of the Hamiltonian in the real space in Eq. (1). The energy
modes are labeled |E1|, |E2|, |E3|, and |E4| in ascending order
of the absolute values. These four values of energy corre-
spond to the Majorana fermions, and these energy spectra are
normalized by the effective energy gap |EG| at each system
size. For example, in the 1 MF (2 MF) phase, |EG| is the
second (third) smallest energy.

With the chiral symmetry, since multiple Majorana
fermions phases can be achieved, the smallest energy modes,
related to Majorana fermions, approach zero as the system
size increases [solid line plots in Figs. 2(a)–2(d)]. In the 1
MF phase, shown in Fig. 2(a), |E1| decreases and approaches
zero with an oscillation as the system size increases. In the
2 MF phase, shown in Fig. 2(b), |E1| and |E2| go to zero
with degeneracy. These two energy modes are less oscillating.
The three energy modes in the 3 MF phases show different
behavior compared to the 2 MF phases as shown in Fig. 2(c).
The energy |E1| approaches zero faster than |E2| and |E3| with
the increase of the system size, and it has a large fluctuation
while these degenerate |E2| and |E3| have little oscillation. In
Fig. 2(d), the four energy modes in the 4 MF phase are divided
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FIG. 2. (a)–(d) Low-energy spectra as a function of L in the (a) 1
MF, (b) 2 MF, (c) 3 MF, and (d) 4 MF phases. For hx �= 0 (©
and � plots), the chiral symmetry protecting Majorana fermions is
broken. �↑↑ = 0.18t1, �↓↓ = 1.8t1, θ = π/4, h/t1 = 2, μ/t1 = 1.
When magnetic fields hx breaking the chiral symmetry are applied,
the energy modes with the same slope gap out to the nonzero energy.
These topological phases can be distinguished by the presence of
energy modes with different slopes for hx = 0 and the existence of
an energy mode toward zero for hx �= 0.

into two ones, and the energy ones |E1| and |E2| are fluctuating
for L < 1000.

The © and � plots in Fig. 2 depict the energy spectra
as a function of the system size for hx/t1 = 10−5, 10−2. The
magnetic field hx breaks the Majorana fermions that are pro-
tected by the chiral symmetry. In the 1 MF phase shown in
Fig. 2(a), the energy spectrum does not change regardless of
the magnitude of the perturbation. In the 2 MF phase, the
degenerate energy modes do not go to zero but converge to
a nonzero value as shown in Fig. 2(b). The converged value is
on the order of |EMF|/|EG| ∼ hx/t1. In the 3 MF phase, when
a large perturbation is applied, the two degenerate energy
modes become constant with the increase of L [Fig. 2(c)]. The
nonzero value is about |EMF|/|EG| ∼ 10hx/t1. Although the
other energy mode changes to a gentle slope, it decreases to-
ward zero. Figure 2(d), in the 4 MF phase, shows that the four
energy modes converge to nonzero values. These converged
values are on the order of |EMF|/|EG| ∼ hx/t1 or 10hx/t1.
From these results, it can be seen that it is not easy to detect
the zero-energy state in the phase with an even number of
Majorana fermions when magnetic fields are unintentionally
applied in the x direction that breaks the chiral symmetry.

To correlate the multiple Majorana fermions and odd-
frequency Cooper pairs, we demonstrate the odd-frequency
pair amplitude that is enhanced by Majorana fermions. Ac-
cording to a spectral bulk-boundary correspondence, the x
component of the odd-frequency f vector is closely re-
lated to the number of Majorana fermions in this system
(Appendix B). For that reason, we have focused on the x
component of the odd-frequency f vector as a function of the
system size in 1, 2, 3, and 4 MF phases [Figs. 3(a)–3(d)].

FIG. 3. The x component of the odd-frequency pair amplitude at
the edge j = 1 as a function of the system size L in the (a) 1 MF,
(b) 2 MF, (c) 3 MF, and (d) 4 MF phases. θ = π/4, �↑↑ = 0.18t1,
�↓↓ = 1.8t1, h/t1 = 2, μ/t1 = 1, ω/t1 = 10−5. For hx �= 0 (© and �

plots), the chiral symmetry protecting Majorana fermions is broken.
We only focus on the x component of the odd-frequency pair ampli-
tude. This is because the relationship between this component and the
winding number is shown by the spectral bulk-boundary correspon-
dence (Fig. 9, Appendix B). (b) In the 2 MF phase, the odd-frequency
pair amplitude oscillates periodically while (c) it does randomly in
the 1 MF phase. These topological phases can be distinguished by the
number of plateaus for hx = 0 and the existence of the odd-frequency
pair amplitude for the large magnetic fields (hx = 10−2). For the
weak magnetic fields (hx = 10−4), these original plateau structures
are maintained even though the chiral symmetry is broken.

These values are calculated by the Matsubara Green’s function
as written in Eqs. (8), (11), and (16).

We first explain the case where the system has chiral sym-
metry [the solid lines in Figs. 3(a)–3(d)], similar to the energy
spectra shown in Fig. 2. In the 1 MF phase, the odd-frequency
pair amplitude increases sharply near L = 50 with a random
oscillation, and saturates for the large L as shown in Fig. 3(a).
Although the 2 MF case is similar to the 1 MF one, the pair
amplitude is enhanced with a periodic oscillation [Fig. 3(b)].
In the 3 MF and 4 MF cases, these odd-frequency pair am-
plitudes have two plateaus, and they are fluctuating before
the first plateaus as shown in Figs. 3(c) and 3(d). These two
plateaus are corresponding to the two energy modes shown in
Figs. 2(c) and 2(d), and they tell us the existence of multiple
Majorana phases (we discuss the relationship between the
plateau structure and the low-energy spectra being related to
the Majorana fermions in Appendix C).

Additionally, we have investigated the change in the odd-
frequency pair amplitude when the chiral symmetry is broken.
The © and � plots in Figs. 3(a)–(d) show how the odd-
frequency pair amplitude at the edge of the system changes
with increasing the system size for hx/t1 = 10−5 and 10−2,
respectively. When the order of the perturbations hx is similar
to that of the Matsubara frequency ω, the single plateaus in the
1 MF and 2 MF phases and the double plateaus in the 3 MF
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FIG. 4. The spatial dependence of the odd-frequency f vector in the (a) 0 MF, (b) 1 MF, (c) 2 MF, (d) 3 MF, and (e) 4 MF phases. θ = π/4,
�↑↑/t1 = 0.18, �↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1, L = 5000. ω/t1 = EG/2: (a) 2.3 × 10−3, (b) 3.3 × 10−2, (c) 2.9 × 10−2, (d) 1.2 × 10−2,
(e) 1.4 × 10−2. The odd-frequency pair amplitude in the topological phases [(b)–(e)] is localized at the edge of the system while that in the
trivial phase [(a)] is not. These spatial extents depend on the gap size in the bulk shown in Fig. 5.

and 4 MF phases are still kept [the © plot in Figs. 3(a)–3(d)].
Even if small magnetic fields that break chiral symmetry are
applied, the odd-frequency pair amplitude at a finite frequency
tells us the remnants of the multiple Majorana fermions.

For the large perturbations compared to the Matsubara
frequency, the single plateau in the 1 MF phase does not
change [the � plot in Fig. 3(a)]. The two plateaus in the 3
MF phase are transformed into one plateau structure [the �

plot in Fig. 3(c)]. The odd-frequency pair amplitude, in the
even number of Majorana fermions phases, is suppressed, and
the single and double plateaus vanish [the � plot in Figs. 3(b)
and 3(d)]. This is because the energy modes, enhancing the
odd-frequency Cooper pairs, with the same localization length
are mixed by the chiral symmetry breaking, and the degener-
acy at the almost-zero energy can be solved [this can be read
from Figs. 2(c) and 2(d)].

V. SPATIAL DEPENDENCE OF ODD-FREQUENCY
PAIR AMPLITUDE

The next important thing to understand the relationship
between the multiple Majorana fermions and odd-frequency
Cooper pairs is the spin texture of odd-frequency pair ampli-
tude. To evaluate the spin texture, we define the f vector of the
odd-frequency pairing as Eq. (10), as well as the d vector of
the spin-triplet superconducting pair potential. In this section,
we analyze the spatial dependence of the odd-frequency f
vector and the spin texture of it.

Figure 4 shows the spatial dependence of the odd-
frequency f vector. It is calculated by the recursive Green’s
function’s formulation [Eqs. (13), (16), and (18)]. In the 0
MF phase, the components of the odd-frequency f vector
are small, and spread throughout the system with oscillations

as shown in Fig. 4(a). In the 1 and 2 MF phases, the odd-
frequency pair amplitudes are strongly localized at the edge
of the system [Figs. 4(b) and 4(c)]. On the other hand, in
the 3 and 4 MF phases, the pair amplitudes have large values
with oscillations at the edge, and they spread toward the center
compared to in the 1 and 2 MF phases [Figs. 4(d) and 4(e)].

These behaviors of the odd-frequency pair amplitudes can
be explained by the size of the superconducting gap in k
space. This is because the spread of the odd-frequency pair
amplitude in a superconducting state is about the coherence
length ξ ∝ 1/�, where � indicates the superconducting gap.
Figures 5(a)–5(e) depict the electron part (E > 0) of energy
dispersions in 1–4 MF phases. These energy bands are calcu-
lated by the diagonalization of the Hamiltonian [Eq. (6)] under
a periodic boundary condition. The smallest gaps in the 0, 1,
3, and 4 MF phases are located near k = 1 while that in the 2
MF phase is near k = π . We also show a comparison of the
superconducting gap sizes in Fig. 5(f). Comparing Figs. 4(a)–
4(e) and Fig. 5, we can find that the magnitude of the spread
of the odd-frequency pair amplitude is in ascending order of
the minimum gap.

To see anisotropies of the odd-frequency pair amplitude,
we illustrate the direction of the odd-frequency f vectors fo′ =
[Im f o

x , Re f o
y , Re f o

z ] in Fig. 6(a). The spatial dependence of
the f vectors, normalized by themselves, is shown on up-
per panels in Figs. 6(b)–6(f). Also, we depict the angle of

the vectors θ f o , {tan θ f o =
√

(Im f o
x )2 + (Re f o

y )2/Re f o
z , θ f o ∈

[0, π ]}, and ϕ f o , {tan ϕ f o = Re f o
y /Im f o

x , ϕ f o ∈ [0, 2π )}, on
lower panels in Figs. 6(b)–6(f) to capture their direction
clearly. Particularly, we focus on near the edge of the system
j ∈ [1, 140] to correlate the vectors to the edge states. In the
trivial (0 MF) phase, the sign of the y and z components
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FIG. 5. Energy bands (E > 0) of superconducting states in k space. (a) 0 MF, (b) 1 MF, (c) 2 MF, (d) 3 MF, and (e) 4 MF phases. (f) The
comparison of the lowest energy states in each phase. θ = π/4, �↑↑/t1 = 0.18, �↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1. The odd-frequency pair
amplitude shown in Fig. 4 spreads spatially as the gap size in the bulk being plotted in (f) decreases.

changes frequently [Fig. 6(b)]. On the other hand, in the topo-
logical (1–4 MF) phases, the sign of the x component changes
near the edge but ϕ f o and θ f o become constant with small
oscillations slightly away from the edge [Figs. 6(c)–6(f)].
Moreover, the odd-frequency f vector, in each topological
phase, points in almost the same direction (this behavior is not
seen in the even-frequency f vectors as shown in Appendix D).
The fixed vectors point slightly positive from the x axis to the
y-z plane.

To investigate the effect of the magnetic fields on the ori-
entation of the odd-frequency f vector, we change the sign

of hy. Here, the sign of hy does not depend on the winding
number (Appendix A). The angles ϕ′

f o and θ ′
f o represent ϕ f o

and θ f o when the sign of hy is inverted, respectively. As can
be seen from Figs. 6(b)–6(f), θ f o becomes π − θ f o for the sign
inversion of hy while ϕ f o does not change. In other words, the
sign inversion of hy inverts the sign of f o

z .
It can be understood from the analytical calculation in

the bulk that the y component of the magnetic fields af-
fects the z component of the even-frequency f vector. We
calculate the even-frequency spin-triplet f vector in the bulk
[45] as

f e
x = i sin k

Adenom

[
(�↑↑ + �↓↓)h2

z + 2(�↑↑ − �↓↓)εhz + (�↑↑ + �↓↓)h2
y

+ (�↑↑ + �↓↓)ω2 + 4�↑↑�↓↓(�↑↑ + �↓↓) sin2 k + (�↑↑ + �↓↓)ε2
]
,

f e
y = sin k

Adenom

[
(�↓↓ − �↑↑)h2

z − 2(�↑↑ + �↓↓)εhz + (�↑↑ − �↓↓)h2
y

+ (�↓↓ − �↑↑)ω2 + 4�↑↑�↓↓(�↑↑ − �↓↓) sin2 k + (�↓↓ − �↑↑)ε2],
f e
z = sin k

Adenom
[2(�↑↑ − �↓↓)hyhz + 2(�↑↑ + �↓↓)εhy], (19)

with

Adenom = h4
z + 2

[
h2

y + ω2 + 2(�2
↑↑ + �2

↓↓) sin2 k − ε2
]
h2

z + 8(�2
↑↑ − �2

↓↓)εhz sin2 k + h4
y + 2(ω2 + 4�↑↑�↓↓ sin2 k − ε2)h2

y

+ ω4 + 2
[
2(�2

↑↑ + �2
↓↓) sin2 k + ε2

]
ω2 + 16�2

↑↑�2
↓↓ sin4 k + 4(�2

↑↑ + �2
↓↓)ε2 sin2 k + ε4,

by taking the inverse [Eq. (8)] of the Hamiltonian [Eq. (5)]
in k space and using Eqs. (10) and (12). As you can see in

Eq. (19), f e
z is an odd function of hy while f e

x and f e
y are even

functions of it. The sign change of the “ f o
z ” vector, caused
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FIG. 6. The direction of the odd-frequency f vector: (a) fo′ = [Im f o
x , Re f o

y , Re f o
z ] = [‖fo′‖ sin θ f o cos ϕ f o , ‖fo′‖ sin θ f o sin ϕ f o ,

‖fo′‖ cos θ f o ] in the (b) 0 MF, (c) 1 MF, (d) 2 MF, (e) 3 MF, and (f) 4 MF phases. The unit vector fo′/‖fo′‖ (upper figure) and the angle
of the vector ϕ f o , θ f o (lower figure) are plotted as a function of site j. We focus on near the edge of the system ( j ∈ [1, 140]). θ = π/4,
�↑↑/t1 = 0.18, �↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1, L = 5000. ω/t1 = EG/2: (a) 2.3 × 10−3, (b) 3.3 × 10−2, (c) 2.9 × 10−2, (d) 1.2 × 10−2, (e)
1.4 × 10−2. ϕ′

f o and θ ′
f o : ϕ f o and θ f o when hy → −hy. These f vectors are fixed in the same direction in any topological phases. Inverting the

sign of hy reverses the sign of Re f o
z : θ ′

f o = π − θ f o .

by the operation hy → −hy, is inherited from the nature in
the bulk. This is because a translational symmetry breaking
generates odd-frequency spin-triplet even-party Cooper pairs
from even-frequency spin-triplet odd-parity ones.

In this system, the nonunitary state is important for access-
ing the phase with multiple Majorana fermions. The matter
can be understood from the structure of the winding number
that is mentioned in Appendix A. To investigate the nonuni-
tary state of the odd-frequency Cooper pair 〈σ o〉, we calculate
a cross vector 〈σ o〉 ∝ ifo × fo∗ from the odd-frequency f vec-
tor. The cross vector takes a nonzero value for the nonunitary
states.

The spatial dependence of the cross vectors in the 0–4 MF
phases, shown in Figs. 7(a)–7(e), is similar to that of the pair
amplitudes in Figs. 4(a)–4(e). They are on the order of about
the square of the pair amplitude. In the first place, the spin
state of pair potential 〈σ 〉 ∝ id × d∗ is obtained as id × d∗ =
[0, 0, (�2

↑↑ − �2
↓↓)/2] where we assume dz = 0 and �↑↑ and

�↓↓ are real. Since the magnetic fields, applied along the
y = z direction, tilt the spin state of the odd-frequency Cooper
pairs in the direction of y = z, only the x component of 〈σ o〉 ∝
ifo × fo∗ is zero. This result can also be easily confirmed in a
Kitaev chain (Appendix E).

VI. DISCUSSION

In this section, we propose a method for detecting the spin
structure of the odd-frequency Cooper pairs. When the spin
direction of the odd-frequency spin-triplet s-wave Cooper pair
is equal to that of the ferromagnet, it can penetrate into the
ferromagnet over a long distance as compared to the case
where the spin directions are different [11,18–22]. In addition,
the odd-frequency spin-triplet s-wave Cooper pairs are robust
and resonate in impurities. This behavior has been known in
the context of the anomalous proximity effect in a diffusive
normal metal attached to a spin-triplet p-wave superconductor
[23–28].

Taking advantage of these properties of the odd-frequency
s-wave Cooper pairs, we propose a way to observe the
electronic density of states of a topological spin-triplet su-
perconductor by the scanning tunneling spectroscopy with a
ferromagnetic chip containing impurities as shown in Fig. 8.
Then, the local density of states is expected to have a zero-
energy peak or split ones. By measuring the density of states
at the fixed low energy at the edges of samples with dif-
ferent lengths and comparing the obtained data, it may be
possible to show one or two plateau structures in Fig. 3.
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FIG. 7. The spatial dependence of the spin states of the odd-frequency Cooper pairs 〈σ o〉 ∝ ifo × fo∗. (a) 0 MF, (b) 1 MF, (c) 2 MF,
(d) 3 MF, and (e) 4 MF phases. θ = π/4, h/t1 = 2, μ/t1 = 1. ω/t1 = EG/2: (a) 2.3 × 10−3, (b) 3.3 × 10−2, (c) 2.9 × 10−2, (d) 1.2 × 10−2,
(e) 1.4 × 10−2. The magnitude of ifo × fo∗ is on the order of the square of the odd-frequency pair amplitude. The spin of the pair potential
pointing in the z direction is tilted by the magnetic fields in the y-z plane. Therefore, the x component becomes zero.

Additionally, the structure of the odd-frequency f vector with
a fixed orientation, shown in Figs. 6(b)–6(f), may be detected
by using ferromagnetic chips with different spin directions for
one sample and comparing the peak heights of the low-energy
density of states.

VII. CONCLUSION

In this paper, we have shown that the spatial profile of the
odd-frequency spin-triplet s-wave Cooper pairs can become
an indicator for detecting and distinguishing the topological
phases with different numbers of Majorana fermions in a
spin-triplet p-wave superconductor with magnetic fields. It is

FIG. 8. A schematic view for detecting spin-dependent odd-
frequency Cooper pairs in a topological spin-triplet superconductor
by the scanning tunneling spectroscopy. A ferromagnetic (FM) tip
with impurities contacts the edge of a topological spin-triplet super-
conductor (SC).

not easy to distinguish the topological phases with different
numbers of Majorana fermions by only focusing on the local
density of states at the edge of the semi-infinite system. To
solve this difficulty, we have considered the situation where
the energy level of Majorana fermions deviates from zero
by choosing the finite system size and applying additional
magnetic fields to break the chiral symmetry. The induced
odd-frequency pair amplitude at the edge as a function of
the system size has two plateaus when the two energy modes
with different localization lengths exist, such as in the 3
and 4 Majorana fermions phases. While the weak magnetic
fields, breaking the chiral symmetry, gap out the zero energy
states in the even number of Majorana fermions phase, the
odd-frequency pair amplitude at the edge as a function of the
system size keeps its original shape. This result means that
the odd-frequency pair amplitude tells us the fingerprints of
the existence of the multiple Majorana fermions. The strong
magnetic fields that break the chiral symmetry suppress the
odd-frequency pair amplitude in only the even number of
Majorana fermion phases. The suppression allows us to dis-
tinguish between the even and odd numbers of Majorana
fermions.

The structure of the winding number tells us the impor-
tance of the nonunitary superconducting states to access the
multiple Majorana phases. Therefore, we have defined the
odd-frequency f vector on the analogy of the d vector that
characterizes the spin-triplet pair potential. Using the odd-
frequency f vector, we have obtained the following three
results. The odd-frequency f vectors near the edge are oriented
in the same direction in each topological phase, unlike the
even-frequency ones. By inverting the sign of the magnetic
fields with keeping the winding number, we have found that
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the magnetic response of the odd-frequency f vector inherits
the properties of the even-frequency one in the bulk. The
nonunitary spin states of the odd-frequency Cooper pairs,
defined by the cross vector if × f∗, tend to point in the di-
rection of the applied magnetic fields. Our results mean that
the presence of the nonunitary spin state of odd-frequency
Cooper pairs can feature the existence of a topological phase
with multiple Majorana fermions.
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APPENDIX A: STRUCTURE OF THE WINDING NUMBER

The winding number, defined in Eq. (7), characterizes
the topology of the p-wave superconductor system shown in
Fig. 1(a). In this Appendix, we investigate the structure of the
winding number in the system.

The structure of the winding number is expressed by the
off-diagonal component of the off-diagonalized Hamiltonian:

U †H (k)U =
[

O H̃
H̃† O

]
, (A1)

where U is the 2 × 2 matrix diagonalizing the chiral operator
	 = τxσz, and H (k) is obtained in Eq. (6). When k changes

FIG. 9. Sum of the odd-frequency f vector Im fx from the edge
j = 1 to jmax as a function of jmax. This value represents Fedge

[Eqs. (B2) and (B3)] in the spectral bulk-boundary correspondence
[Eq. (B1)] in a semi-infinite p-wave superconductor with mag-
netic fields at an infinitesimal frequency. θ = π/4, �↑↑/t1 = 0.18,
�↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1, ω/t1 = 10−5. 0 MFs: t2/t1 =
2.75, t3/t1 = 0.5; 1 MF: t2/t1 = 1, t3/t1 = 1; 2 MFs: t2/t1 = 0.25,
t3/t1 = 1.25; 3 MFs: t2/t1 = 2, t3/t1 = 1.5; 4 MFs: t2/t1 = 1, t3/t1 =
2. For the large jmax and the low frequency ω, 4ω

∑ jmax
j=1 Im[ f o

x ( j)]
equals the winding number.

from −π to π , the number of times of the determinant

det H̃ = ε2(k) − h2
y − h2

z + 4�↑↑�↓↓ sin2 k

+ 2i sin k[(�↓↓ − �↑↑)ε(k) − (�↑↑ + �↓↓)hz]

(A2)

going around the origin on the complex plane corresponds to
the winding number. Two matters can be seen from Eq. (A2)
as follows:

(i) The winding number does not depend on the sign of hy.
(ii) The nonunitary pairing (�↑↑ �= �↓↓) is important

to reach the multiple Majorana fermion phases. [The term
2i sin k(�↑↑ − �↓↓)ε(k) changes the sign of the imaginary
part of det H̃ more.]

FIG. 10. (a) Definition of the localization length of the odd-
frequency pair amplitude. The x component of the odd-frequency
pair amplitude at the edge in the 4 MF phase [Fig. 3(d)] is replot-
ted. The localization lengths Lc1 and Lc2 of the odd-frequency pair
amplitude are defined as the system sizes taking half the heights
of the steps. Matsubara frequency: ω/t1 = 10−5. (b) Comparison
between the localization length of the odd-frequency pair amplitude
(the � plots with the solid lines) and the system size dependence of
the low-energy modes being associated with the Majorana fermions
(the © plots with the dashed plots). The energy modes |E2| and
|E3| are selected from the four modes in the 4 MF phase shown
in Fig. 3(d). The slopes of |E2|/t1 and |E3|/t1 correspond to those
of Lc1 and Lc2, respectively. θ = π/4, �↑↑ = 0.18t1, �↓↓ = 1.8t1,
h/t1 = 2, and μ/t1 = 1.

224506-10



ODD-FREQUENCY PAIRING IN A NONUNITARY … PHYSICAL REVIEW B 105, 224506 (2022)

In Sec. V, we investigate the magnetic field response of
the odd-frequency f vector by changing the sign of hy so as
not to change the phase. Additionally, we calculate the cross
vector ifo × fo∗ to investigate the nonunitary state of the odd-
frequency Cooper pairs.

APPENDIX B: SPECTRAL BULK-BOUNDARY
CORRESPONDENCE

The spectral bulk-boundary correspondence is a relation-
ship that connects a winding number being extended to a
finite frequency and the odd-frequency pair amplitudes. The
relationship is defined in a semi-infinite system with chiral
symmetry, and is written as

iωF odd
edge(iω) = wbulk, (B1)

wbulk = i

2
Trk[	G(iω)∂kG−1(iω)],

F odd
edge(iω) = Tr j[	G(iω)], (B2)

with a Matsubara Green’s function G(iω) and a chiral operator
	. For an infinitesimal Matsubara frequency, wbulk becomes
equal to the winding number.

In the p-wave superconductor with magnetic fields shown
in Fig. 1(a), the second equation in Eq. (B2) can be trans-
formed as below:

F odd
edge =

∑
j

[Fj, j,↑,↑ − Fj, j,↓,↓ + F̃j, j,↑,↑ − F̃j, j,↓,↓]

= 4ω
∑

j

Im f o
x ( j, iω), (B3)

where we use the chiral operator 	 = τxσz anticommuting
with the Hamiltonian H (k) in Eq. (6), the relation F̃ = −F ∗,

and Eqs. (8)–(11). The sum of the odd-frequency vector Im fx

from the edge j = 1 to jmax [Fedge in Eq. (B3)] is plotted
as a function of jmax in Fig. 9. For a sufficiently large jmax,
wbulk matches the winding number (the number of Majorana
fermions). In Sec. IV, we focus on f o

x among the components
of the odd-frequency f vector. This is because this component
is most closely related to the winding number that is extended
to a finite frequency.

APPENDIX C: RELATIONSHIP BETWEEN THE
LOW-ENERGY SPECTRA BEING RELATED TO

MAJORANA FERMIONS AND THE PLATEAUS OF
ODD-FREQUENCY PAIR AMPLITUDE

In this section, we discuss the relationship between the
low-energy spectra being related to the Majorana fermions
(Fig. 2, Sec. IV) and the plateaus of the odd-frequency pair
amplitude (Fig. 3, Sec. IV). To define the localization lengths
of the odd-frequency pair amplitude, we replot Fig. 3(d) in
Fig. 10(a). Here, we focus on the odd-frequency pair am-
plitude in the 4 MF phase with less oscillation than that
in the 3 MF phase. The localization lengths Lc1 and Lc2

of the odd-frequency pair amplitude are defined as the sys-
tem sizes taking half the heights of the steps (plateaus), as
shown in Fig. 10(a). These lengths depend on the Matsubara
frequency.

Figure 10(b) shows the system size dependence of the low-
energy modes being related to the Majorana fermions [the ©
plots with the dashed lines] and the localization lengths of the
odd-frequency pair amplitude as a function of the Matsubara
frequency (the � plots with the solid lines). To compare their
behaviors, we set the localization length on the x axis and
the frequency on the y axis. In the process of calculating the

FIG. 11. The spatial dependence of the even-frequency f vector in the (a) 0 MF, (b) 1 MF, (c) 2 MF, (d) 3 MF, and (e) 4 MF phases. θ = π/4,
�↑↑/t1 = 0.18, �↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1, L = 5000. ω/t1 = EG/2: (a) 2.3 × 10−3, (b) 3.3 × 10−2, (c) 2.9 × 10−2, (d) 1.2 × 10−2,
(e) 1.4 × 10−2. Unlike the odd-frequency pair amplitude, the even-frequency pair amplitude exists in the center of the system.
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localization length, we remove its oscillation by cutting off the
high-frequency component by the fast Fourier transform. We
select energy modes |E2| and |E3| from the four modes shown
in Fig. 2(d) because these two modes have less oscillation and
different tilts. Unlike Fig. 2, the energy modes in Fig. 10(b)
are normalized by t1.

As shown in Fig. 10(b), the localization lengths Lc1 and
Lc2 of the odd-frequency pair amplitude increase as the
Matsubara frequency ω decreases. The slopes of these lo-
calization lengths Lc1 and Lc2 almost correspond to that of
the energy spectra |E2| and |E3|, respectively. This means
that the plateau structure of the odd-frequency pair ampli-
tude appears when the energy becomes smaller than the
fixed Matsubara frequency. For example, the double plateau
structure emerges in the plot up to L = 4000 [Fig. 10(a)] be-
cause the energy modes |E2|/t1 ∼ 10−10 and |E3|/t1 ∼ 10−7

at L = 4000 in Fig. 10(b) become smaller than the fixed
Matsubara frequency ω/t1 = 10−5 in Fig. 10(a). This re-
sult supports the argument for distinguishing the multiple
Majorana phases by the odd-frequency pair amplitude in
Sec. IV.

APPENDIX D: SPATIAL DEPENDENCE OF
EVEN-FREQUENCY PAIR AMPLITUDE

To compare the odd-frequency f vector to the even one,
we calculate the spatial dependence of the even one by
using Eqs. (10) and (12). The spatial dependence of the
even-frequency f vector in 0–4 MF phases is shown in
Figs. 11(a)–11(e). In the trivial (0 MF) phase [Fig. 11(a)], the
pair amplitude oscillates throughout the space similarly to the
odd-frequency pair amplitude in Fig. 4(a). In the topological
(1–4 MF) phases [Fig. 11(b)–11(e)], these values are con-
stant near the bulk unlike the odd-frequency pair amplitude
in Figs. 4(b)–4(e). Particularly, in the 3 and 4 MF phases,
the amplitude oscillates near the edge as well as that of
odd-frequency in Figs. 4(d) and 4(e). The proportion of each
component | f e

x |, | f e
y |, and | f e

z | in 1–4 MF [Figs. 11(b)–11(e)]
is not equal, unlike that of the odd-frequency components
[Figs. 4(b)–4(e)].

To investigate the proportion of the pair amplitudes | f e
x |,

| f e
y |, and | f e

z | in detail, we have depicted the direction of the
even-frequency f vector [upper figures in Figs. 12(b)–12(e)],
which is defined in Fig. 12(a), and the angles θ f e and ϕ f e

FIG. 12. The direction of the even-frequency f vector: (a) fe ′ = [Re f e
x , Im f e

y , Im f e
z ] = [‖fe ′‖ sin θ f e cos ϕ f e , ‖fe ′‖ sin θ f e sin ϕ f e ,

‖fe ′‖ cos θ f e ] in the (b) 0 MF, (c) 1 MF, (d) 2 MF, (e) 3 MF, (f) 4 MF phases. The unit vector fe ′/‖fe ′‖ (upper figure) and the angle of the vector
ϕ f e , θ f e (lower figure) are plotted as a function of site j. We focus on near the edge of the system ( j ∈ [1, 300]). θ = π/4, �↑↑/t1 = 0.18,
�↓↓/t1 = 1.8, h/t1 = 2, μ/t1 = 1, L = 5000. ω/t1 = EG/2: (a) 2.3 × 10−3, (b) 3.3 × 10−2, (c) 2.9 × 10−2, (d) 1.2 × 10−2, (e) 1.4 × 10−2. ϕ′

f e

and θ ′
f e : ϕ f e and θ f e when hy → −hy. Unlike the odd-frequency f vector, the even-frequency f vectors are not fixed in the same direction in the

topological phases. Similarly to the odd-frequency f vector, inverting the sign of hy reverses the sign of Im f e
z : θ ′

f e = π − θ f e .
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FIG. 13. Energy bands of the Kitaev chain without pair potential
for (a) h = 0 and (b) h/t1 = 1 in k space. The spatial dependence
of the spin of the odd-frequency Cooper pair states 〈σ o〉 ∝ ifo × fo∗

for (c) h = 0 and (d) h/t1 = 1 in real space: ω/t1 = 10−5, L = 5000,
�↑↑/t1 = 0.1, �↓↓ = 0. θ = π/4, μ/t1 = 0.5. (c) The direction of
ifo × fo∗ inherits the spin direction of the pair potential (id × d∗ =
[0, 0, �2

↑↑/2]). (d) The spin of the pair potential pointing in the z
direction is tilted by the magnetic fields in the y-z plane.

[lower figures in Figs. 12(b)–12(e)] for j ∈ [1, 300] in the L =
5000 sites system. In the 0 MF phase, as shown in Fig. 12(a),
the even-frequency f vector oscillates around the negative di-
rection of the x axis. In the 1 MF phase, the direction is almost
along the negative direction of the x axis without oscillation
[Fig. 12(c)]. The even-frequency f vectors in 2 MF, 3 MF, and
4 MF phases are roughly oriented in the direction of between
the −x and −z axes, that of the y axis, and that of between the
−x and y axes, respectively [Figs. 12(d)–12(f), and also see
Figs. 11(d)–11(f)]. The angles θ ′

f e and ϕ′
f e stand for θ f e and

ϕ f e when hy → −hy, respectively. While ϕ f e does not change
(ϕ′

f e = ϕ f e ) with respect to the sign change of hy, θ f e changes
to π − θ f e as shown in Figs. 12(b)–12(f).

In this Appendix, we have gotten two important results.
The even-frequency f vector in each topological phase does
not point in the same direction, unlike the odd-frequency one.
Similarly to the odd-frequency f vector, the sign inversion of
hy inverts the sign of the z component of the even-frequency
f vector. These results support the discussion about the odd-
frequency f vector in Sec. IV.

APPENDIX E: SPIN STRUCTURE OF ODD-FREQUENCY
COOPER PAIRS IN A KITAEV CHAIN

In Sec. V, we have shown the spatial dependence of the
spin states of the odd-frequency Cooper pairs 〈σ o〉 in a p-wave
superconductor with magnetic fields. The Kitaev chain, the
simplest model expressing a spinless p-wave superconduc-
tor, is useful for investigating the effect of magnetic fields
on the spin structure of the odd-frequency Cooper pairs.
The Hamiltonian in Eqs. (1), (5), and (6) can be rewrit-
ten as that in the Kitaev chain by replacing �↓↓, t2, and
t3 → 0.

The plots of the energy dispersion in the bulk of the Ki-
taev chain without pair potential (�↑↑ = �↓↓ = 0), shown
in Figs. 13(a) and 13(b), are obtained by the diagonalization
of the Hamiltonian in k space that is expressed in Eq. (6).
Without magnetic fields, the up and down spin states are
degenerate to E = −2t1 cos k − μ [Fig. 13(a)]. For h/t1 = 1,
these states split to E = −2t1 cos k − μ ± h [Fig. 13(b)].

The cross vector ifo × fo∗ is proportional to the spin polar-
ization of the odd-frequency Cooper pairs 〈σ o〉. Figure 13(c)
[Figure 13(d)] shows the cross vector ifo × fo∗ in the Kitaev
chain without [with] magnetic fields. The spin of pair poten-
tial 〈σ 〉 ∝ id × d∗ = [0, 0,�2

↑↑/2] points in the z direction.
Without the magnetic fields, only the z component of ifo × fo∗

exists since the spin state of the pair potential is inherited,
as shown in Fig. 13(c). When magnetic fields in the y = z
direction are applied, the cross vector has the y component
in addition to the z component [Fig. 13(d)]. These results in-
dicate that the spin of the odd-frequency Cooper pairs inherits
that of the pair potential, and tends to point in the direction of
the magnetic fields.
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